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Simple Summary: Risk stratification via biomarkers used with imaging could support predicting
high-risk pancreatic intraductal papillary mucinous neoplasms (IPMN) with malignant potential.
We explored the presence of autoreactive antibodies in the blood of patients with IPMN of different
grades of dysplasia, including IPMN with associated invasive carcinoma and early-stage pancreatic
ductal adenocarcinoma (PDAC), to identify signatures of early malignancy. Multivariate predictive
models retained 14 proteins as potential biomarkers for discrimination between all disease classes.
The integration of the autoreactive-antibody panel with clinical variables may aid in risk stratification
of high-risk IPMN patients, which would subsequently improve clinical management.

Abstract: (1) Background: A reliable non-invasive distinction between low- and high-risk pancre-
atic intraductal papillary mucinous neoplasms (IPMN) is needed to effectively detect IPMN with
malignant potential. This would improve preventative care and reduce the risk of developing pancre-
atic cancer and overtreatment. The present study aimed at exploring the presence of autoreactive
antibodies in the blood of patients with IPMN of various grades of dysplasia. (2) Methods: A single-
center cohort was studied composed of 378 serum samples from patients with low-grade IPMN
(n = 91), high-grade IPMN (n = 66), IPMN with associated invasive cancer (n = 30), pancreatic duc-
tal adenocarcinoma (PDAC) stages T1 (n = 24) and T2 (n = 113), and healthy controls (n = 54). A
249 full-length recombinant human protein microarray was used for profiling the serum samples.
(3) Results: 14 proteins were identified as potential biomarkers for grade distinction in IPMN, yielding
high specificity but mediocre sensitivity. (4) Conclusions: The identified autoantibodies are potential
biomarkers that may assist in the detection of malignancy in IPMN patients.

Keywords: IPMN; pancreatic cancer; antibodies; protein microarray; biomarker

1. Introduction

Intraductal papillary mucinous neoplasms (IPMN) are primarily benign cystic tumors
of the pancreas. Over time, they may progress from low-grade dysplasia to high-grade
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dysplasia and subsequently to invasive carcinoma [1]. IPMN show broad heterogeneity
regarding their localization, type of histology, and malignant potential. They can be located
within the main pancreatic duct, in side branches, or in combined forms [2]. Different
grades of dysplasia and histological subtypes of IPMN are defined by pathological analysis.
IPMN are categorized into lesions with low-grade dysplasia, high-grade dysplasia, or
IPMN with associated invasive carcinoma [2]. Additionally, IPMN can be classified by
their histological subtype, namely as intestinal, pancreaticobiliary, or gastric IPMN [3–5].
The extent of IPMN and their associated dysplasia are heterogenous and can affect the
whole pancreas [6]. Moreover, IPMN are a risk factor for the development of pancreatic
ductal adenocarcinoma (PDAC) in the area of the cystic lesion, which is then defined
as PDAC derived from IPMN. In some cases, PDAC and IPMN can both be found co-
existing within the same pancreas in different areas, which is then referred to as PDAC with
concomitant IPMN [7].

Despite the increasing incidence of IPMN, adequate treatment of these lesions is still
subject to discussion. Various guidelines were set over the last decade [4,8–10]. In 2018,
the first evidence-based guideline was published by the European Study Group on Cystic
Tumours of the Pancreas [2]. Although surgical intervention remains the only definite
treatment, timing remains an issue [11]. Late intervention can lead to the evolvement
of PDAC and a poor prognosis [12]. Surgery in the early stages of disease can cause
unnecessary side effects and complications, leading to increased morbidity. Currently, the
indication for surgery depends on various radiological and clinical findings, summarized
as high-risk stigmata and worrisome features [2,4]. However, pathological findings in
resected IPMN often show various grades of malignancy that are not observed during
preoperative radiologic imaging (MRI/CT) [13]. Therefore, additional methods are needed
for preoperative and non-invasive classification to accurately diagnose IPMN grades.

Although cancer cells and the tumor microenvironment exhibit signaling pathways to
evade the immune system, tumor-associated antibodies are nevertheless already present
at early-stage disease and circulate in the blood [14]. Antibodies serve as a multiplier,
yielding more molecules compared with the corresponding antigens, as they are produced
by the immune system, even if the tumor is still small [15]. This makes them appealing
as potential biomarkers for diagnostic and prognostic purposes. The possible utilization
of autoantibodies as biomarkers for cancer has already been studied for several tumor
entities [16–18]. In this study, autoantibodies (AAbs) were detected and analyzed by protein
microarray analyses [19–21], with the following objectives: (1) The identification of distinct
antibody signatures for different pathological stages of IPMN; and (2) the assessment of
the performance of AAbs signatures for the discrimination of low- and high-risk IPMN.

2. Materials and Methods
2.1. Patients and Samples

Serum samples from patients with pathologically confirmed IPMN and PDAC as
well as from healthy donors were obtained from the Pancobank of the European Pancreas
Center (EPZ) at the Department of Surgery, University Hospital Heidelberg. Pancobank
is a member of the Biomaterial Bank Heidelberg. Ethical approval was obtained from the
Ethics Committee of Heidelberg University: 301/2001 and 159/2002. Written informed
consent had been obtained from all blood donors. All patients with IPMN underwent
pancreatic surgery because of either the suspicion of malignancy or other indications for
surgery. In this study, only sera were included for which a final pathological diagnosis
confirmed either IPMN of a specific grade of dysplasia or PDAC.

2.2. Gene Selection and DNA Extraction

To select protein antigens of high interest, a PubMed literature search was performed.
The proteins included in the study matched one or more of the following criteria: re-
ported in previous IPMN-related antibody reports [22], pancreatic cancer-related antibody
reports [18,20,23–27], or cancer autoantibody publications [14,28–30]. Additionally, some
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proteins of importance to pancreatic function, such as CCKBR, PNLIP, LDH, VEGF, LOX,
G6PD, and GPX-4, were included. In total, 364 candidates of interest were identified.
cDNAs were obtained and extracted from the hORFeome 8.1 cDNA library, which consists
of 16.172 cDNAs of human genes stored in vectors in E. coli bacteria [31]. The library was
provided by the Genomic and Proteomic Core Facility of the German Cancer Research
Center (DKFZ). Because not all selected genes were available in the hORFeome 8.1 library,
and some amplified PCR products did not match the quality criteria, 249 cDNAs were
included in the study (Table S1). For DNA extraction, bacterial clones were grown in
96-well plates overnight and subsequently centrifuged at 2750× g at room temperature
for 30 min. The bacterial pellets were resuspended in 100 µL ddH2O and heated to 75 ◦C
for 20 min. After a second centrifugation, the supernatants containing the DNA were
transferred into new plates and either immediately processed or stored at −20 ◦C.

2.3. Microarray Screening

Protein microarrays were produced and incubated as described in full detail else-
where [20,21,32,33]. Briefly, the cDNAs were used for a PCR-based generation of protein
expression templates. During PCR amplification, the functional sequences required for
subsequent in vitro transcription and translation were added at either end of the construct.
Moreover, a 6× His- and a V5-tag were included for quality control. All PCR products
were spotted onto epoxysilane-coated slides using the non-contact Nanoplotter 2 (GeSIM,
Radeberg, Germany). In a second run, each cDNA spot was covered with 8 droplets of the
S30T7 high-yield cell-free protein expression system (Promega, Mannheim, Germany) and
incubated under humid conditions in a ventilated incubator. Positive (Epstein-Barr Virus
VCA p18) and negative controls (PCR mixture without DNA template) were also printed
onto each microarray in several replicates. Success of spotting and protein expression was
assessed using fluorescence-conjugated antibodies directed against 6× His- and V5-tags
present at either end of each expressed protein.

Prior to incubation with blood serum, microarray slides were blocked for 1 h by orbital
shaking in blocking buffer (1× PBS-T with 4% skim milk; Gerbu Biotechnik, Heidelberg,
Germany), followed by three washing steps with 1× PBS-T for 5 min each. The presence
of autoantibodies was assessed by incubation with a mixture of 12 µL patient serum with
333 µL blocking buffer and 55 µL E. coli lysate (1 mg/mL) for 2 h at 4 ◦C, followed by
three washing steps with 1× PBS-T. A fluorescence-conjugated secondary antibody (goat
anti-human IgG + IgM + IgA (H + L); Dianova GmbH, Hamburg, Germany) was diluted
1:333 in blocking buffer, added, and incubated for 1 h. Subsequently, the slides were
washed three times for 7 min, rinsed in water, and air-dried in a ventilated oven at 30 ◦C
for 20 min. Image acquisition was carried out on a Tecan PowerScanner (Tecan, Männedorf,
Switzerland) at λ = 325 nm.

2.4. Data Analysis

GenePix Pro 6.0 software (Molecular Devices, Sunnyvale, CA, USA) was used to
analyze the fluorescence intensity of each microarray spot and to eliminate spatial artifacts.
Signal intensities were expressed as median fluorescence intensity (MFI). Data analysis
was performed with the software R v. 4.1.1. Normalization was performed based on
the negative control MFIs. Normalization was performed for each patient individually
because of high variety in background due to the microarray production processes and the
individual characteristics of the serum samples. In particular, distance weighted averaging
was used [34]. The protein was immunoreactive if its MFI value was at least five standard
deviations above the regional average, and a fold-change is computed by dividing the
observed MFI by such threshold.

Approximate overlap between the age distributions of the disease classifications con-
sidered for biomarker selection was achieved, and sample weights inversely proportional
to the disease class sizes were computed. A weighted multinomial lasso regression with
unpenalized age and sex was fitted with the glmnet R package [35] to select a smaller



Cancers 2022, 14, 3562 4 of 13

subset of biomarkers that discriminate the disease categories. As one patient could be
predicted to belong to one of several classes, generalizations of two-class measures to
assess discriminative power were adopted. Following Hand and Till [36], pairwise areas
under the curve (AUCs), as well as the global M-value, were computed. The M-value
provides a global AUC for multiclass classification problems and is obtained as an average
of the pairwise AUCs. Computation of the latter was performed based on an adaptation
of the HandTill2001 R package [37]. Plots were produced with the ggplot2 [38] and the
pheatmap [39] R packages. Biomarkers selected by the multinomial lasso were screened for
their sensitivity and specificity in predicting different entities.

2.5. Cross-Validation

Apparent measures were computed based on the predicted disease classification
obtained from the multinomial lasso and baseline models fitted on all available patient
samples. As the same samples are used for both model fitting and prediction, apparent
measures tend to be over-optimistic when generalizing to new patients. To counterbalance
this, an outer 10-fold cross-validation procedure was adopted. Here, a subset of patients
was in turn excluded from model fitting, and their disease classification was predicted.
Each fold excluded approximately 10% of the total number of patients of each class. The
cross-validated M-values and confusion matrices were then obtained.

2.6. Functional Annotation Clustering

Functional annotation clustering was performed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) [40,41] to classify identified proteins and
their functionality. This included gene ontology (GO enrichment analysis [42,43]) and
pathways (KEGG pathway enrichment analysis [44–46]).

3. Results

In this study, perioperatively collected sera from 324 patients were analyzed, which
were grouped into two subsets: IPMN and PDAC. As a reference, 54 samples obtained
from healthy individuals (Co) were tested. The IPMN group consisted of 187 samples
from patients with different pathological stages, including 91 IPMN low-grade dysplasia
(IPMN-LG), 66 high-grade dysplasia (IPMN-HG), and 30 IPMN with associated invasive
cancer (IPMN-CA), including colloidal carcinoma and adenocarcinoma. Additionally,
137 samples from PDAC patients were included, which consisted of 24 patients with stage
T1 and 113 with stage T2. Thirteen of the resected Thirteen of the resected PDAC were
pathologically classified as PDAC derived from IPMN, two as PDAC with concomitant
IPMN. As the primary diagnosis in these cases was PDAC, they were allocated to the
PDAC cohort. Only material from patients with a pathologically confirmed diagnosis was
included. Characteristics of cases and controls, including age, gender, TNM classification,
tumor location, histopathological grading, and UICC stage of resection status, are shown
in Table 1. Further patient information, such as comorbidities, paraneoplastic syndromes,
or BMI, was only partially available. An analysis of the data showed no relevant difference
between patient groups.



Cancers 2022, 14, 3562 5 of 13

Table 1. Clinicopathological parameters of IPMN and PDAC patients.

Parameter Healthy Controls IPMN-LG IPMN-HG IPMN-CA PDAC

Samples (n) 54 91 66 30 137

Age (y)
Mean ± SD 43.7 ± 15.7 63.9 ± 10.9 63.6 ± 10.2 66.9 ± 7.9 67.3 ± 10.5

Range 15–85 35–79 31–81 45–78 23–90
Median 41.0 65.4 64.9 67.6 68.7

Sex
Male/Female 23/31 40/51 40/26 20/10 61/76

Location
Head - 54 35 16 104
Body - 6 3 - 14
Tail - 7 10 3 17

Multiple - 19 15 11 -
n/a - 5 3 - 2

AJCC/UICC stage 8th ed
IA - - - 12 15
IB - - - 2 18

IIA - - - 9 -
IIB - - - 5 43
III - - - - 55
IV - - - 2 6

Grading
G1 - - - 4 1
G2 - - - 22 80
G3 - - - 4 53
n/a - - - - 3

Staging
pT1 - - - 12 24
pT2 - - - 2 113
pT3 - - - 16 -

Lymph node
N0 - - - 23 33
N1 - - - 7 44
N2 - - - - 60

Metastasis
M0 - - - 28 131
M1 - - - 2 6

R-classification
R0 - - - 24 44

R0 (CRM+) - - - - 43
R1 - - - 6 47
Rx - - - - 1
n/a - - - - 2

Out of 364 protein candidates of interest, 281 were available in the hORFeome
8.1 cDNA library [31]. An additional 32 candidates could not be amplified by PCR, which
resulted in a final 249 cDNAs microarray platform (Table S1); all proteins were present as
full-length molecules.

Differences between groups were detected in the proportion of immunoreactive pro-
teins per patient sample. While healthy controls showed a low median reactivity of
approximately 0.4%, the low- and high-grade IPMN doubled that score (0.8% each). The
highest rate of immunoreactivity was detected in IPMN with associated invasive cancer
(1.8%). Interestingly, the immunoreactivity scores of PDAC patients were not statisti-
cally significantly different from that of healthy controls. The distributions of the propor-
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tion of immunoreactive proteins per patient sample within all patient groups are shown
in Figure 1.
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Figure 1. Proportion of immunoreactivity. While healthy controls (Co) and PDAC patients show the
lowest proportions of immunoreactivity, no statistically significant difference between non-invasive
(low- and high-grade) IPMN can be detected. IPMN with associated cancer (IPMN-CA) show the
highest percentage of immunoreactivity. Statistical significance is computed based on Kruskal-Wallis
test with Dunn’s post hoc test. The boxplot depicts boxes whose upper and lower hinges correspond
to the 25th and 75th percentiles. Whiskers cover the range from lowest or highest observed value.
Significance is superimposed where *** or * correspond to p-values < 0.001 or 0.05, respectively.

Adjustments for age left a total of 318 patient samples that were considered in the
data analysis. Age and sex distribution of the remaining samples is shown in Table S2.
The biomarker selection analysis was based on 168 proteins, which were seropositive for
at least one patient and whose immunoreactivity pattern across samples was unique. A
protein that was seropositive for all sera of one patient group could not be identified.

The multinomial lasso approach selected in total 14 proteins contributing to discrimina-
tion between diseases: ANXA4, CCKBR, CD99L2, CFI, FXYD7, GPR3, GPR173, HCFC1R1,
HDAC3, PRDX2, RPL22, SLC22A15, TOR1B, and TP53. Model coefficients are provided
in Table S3.

To gain deeper insights into the immunoreactivity of the 14 proteins among different
patient groups, their MFI divided by the threshold value stated as relative signal intensity
are shown in Figure 2.

The proportion of immunoreactive patient samples for each disease category (Co,
IPMN-LG, IPMN-HG, IPMN-CA, and PDAC) and for each of the selected proteins is
shown in a heatmap (Figure 3).
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Figure 3. Heatmap of the proteins selected for disease discrimination and their proportion of reactivity
among patients belonging to each disease class. Proteins are listed to the right of the heatmap. Each
column represents a patient group.

All disease classes (Co, IPMN-LG, IPMN-HG, IPMN-CA, and PDAC) were subjected
to a pairwise comparison, yielding AUC- and M-values (Table S4). Low sensitivity of
the autoantibodies leads to rather low AUC values. In consequence, the different disease
stages could only be discriminated with rather low accuracy. This would make screening
of patients without additional information about pancreatic lesions ineffective. Still, high
specificities could make grade discrimination feasible for patients with radiological findings
of cystic pancreatic lesions. For this reason, markers with high specificities were further
explored for potential discrimination between IPMN grades.

This is of high clinical importance, as clinical care differs within IPMN grades. For
patients with a low risk of developing an invasive carcinoma, surgery is not (yet) recom-
mended, whereas IPMN with high-grade dysplasia or IPMN with associated invasive
carcinoma are recommended for surgical intervention, if applicable. The ability to accu-
rately discriminate between these two subgroups would therefore improve patient care.
For this, high-grade (IPMN-HG) and invasive IPMN (IPMN-CA) cases were merged into
the high-risk group (IPMN-HR). Low-risk IPMN (IPMN-LR) is equivalent to the IPMN-LG
group. The previously identified 14 individual markers show high specificity of over 80%
for discriminating high-risk from low-risk IPMN, except for PRDX2 (Table 2). One half of
the molecules exhibited specificity values even above 90%. However, all marker proteins
were clearly lacking sensitivity, which ranged from 3.5% to 31.4%. The average sensitivity
across the 14 antigens was 12.9%.
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Table 2. Calculation of specificity and sensitivity for the 14 marker antigens for making a distinction
between IPMN-LR and IPMN-HR. On the left, markers with high specificity for IPMN-LR. On
the right, markers with high specificity for IPMN-HR are listed. Specificity values above 90% are
highlighted in bold writing.

IPMN-LR IPMN-HR

Antigen Sensitivity Specificity Antigen Sensitivity Specificity

GPR3 13.3% 96.5% CD99L2 9.3% 100.0%
CFI 19.3% 88.4% RPL22 4.7% 100.0%

GPR173 14.5% 87.2% HCFC1R1 3.5% 100.0%
CCKBR 16.9% 84.9% ANXA4 4.7% 98.8%

FXYD7 9.3% 95.2%
HDAC3 7.0% 94.0%

TP53 9.3% 91.6%
TOR1B 17.4% 85.5%

SLC22A15 19.8% 80.7%
PRDX2 31.4% 71.1%

A combination of marker antigens could enhance diagnostic robustness and accuracy if
the individual marker molecules exhibit reasonable specificities. Thereby, a better sensitivity
could be provided, because cases would be detected, which would be missed by a single
marker. Of the 96 patients with IPMN-HR, 33 (34.4%) were seropositive for at least 1 of
the 7 markers with a specificity above 90%. An autoantibody panel including those seven
markers (CD99L2, RPL22, HCFC1R1, ANXA4, FXYD7, HDAC3, TP53) could add valuable
information about the IPMN grade for approximately one third of patients, whereas
the multinomial lasso model could not find a biomarker panel of reasonable power to
distinguish between IPMN-HR and IPMN-LR.

Analysis of the gene ontology showed that 40% of the genes specific for IPMN-HR are
linked to the negative regulation of the apoptotic process (p = 0.00098), namely ANXA4,
HDAC3, TP53, and PRDX2. This could suggest that changes in the proper function of
programmed cell death, which usually malfunctions in malignant cells, are more often
present in high-risk IPMN.

KEGG pathway analysis identified HDAC3 and TP53 to be associated with the path-
way of viral carcinogenesis. As the etiology of IPMN still remains uncertain, this could be a
hint towards a viral infection being involved in the development of IPMN.

4. Discussion

Because autoantibodies against tumor-associated proteins are produced during the
early stages of tumorigenesis, they are ideal as biomarkers [38]. Most antibody profil-
ing investigations determined antigens recognized by autoreactive antibodies to identify
biomarkers for cancer [47–49]. Multiple reports have identified tumor-associated autoanti-
bodies in multiple cancers, including colorectal cancer [50], bladder cancer [51], ovarian
cancer, and pancreatic cancer [18,52]. However, a thorough data review reported that
autoantibodies as biomarkers have an overall low sensitivity of 14%, although a high
specificity of 95% [26]. Consequently, the diagnostic performance was lower compared to
other types of markers in the serum [52].

Currently, the most prominent and widely used clinical marker for pancreatic tumors,
including IPMN, is CA19-9. Elevated CA19-9 blood levels (>37 U/mL) in IPMN are
associated with the presence of high-grade dysplasia and invasive carcinoma and could be
used to differentiate between IPMN low- and IPMN high-risk individuals [53,54]. However,
recent analyses using sera from a similar cohort as in the current study revealed that CA-
19-9 performed poorly for stratifying IPMN low- and high-risk with an AUC of 0.545 [55].
A recent small but promising study identified MUC5AC in circulating extracellular vesicles
as a possible predictor for malignancy in present IPMN, with a sensitivity of 82% and
specificity of 100% [56].
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Here, we explored the utility of autoreactive antibodies in the blood of patients with
IPMN of various pathological grades (low-grade, high-grade dysplasia) and IPMN with
associated invasive carcinoma. We compared the autoantibody patterns with that of
samples collected from patients with early-stage PDAC (T1 and T2) and healthy blood
donors and adjusted for age differences. In general, we observed a relatively low proportion
of immunoreactive proteins, in accordance with earlier studies [27,57,58]. Specifically, the
low mean reactivity of healthy individuals and PDAC patients was only 0.4%, which
has been previously reported [18,20]. Notably, samples from patients with IPMN with
associated carcinoma were the most seropositive, which is surprising as one would expect
a kind of continuously developing pattern from high-risk IPMN to PDAC. The difference
could indicate a development path towards a highly malign tumor that is different to
PDAC, although pathologically relatively similar.

As for now, the etiology of IPMN remains mostly unclear [59]. Associations with
diabetes mellitus, chronic pancreatitis, and family history of PDAC, which overlap with
risk factors for PDAC itself, have been described [60]. Interestingly, the KEGG pathway
analysis links the antigens identified in this study with viral carcinogenesis, which could
be another possible explanation for the development of IPMN and other pancreatic lesions.
The gene ontology analysis resulted in an association with the anti-apoptotic pathway,
supporting the loss of self-regulatory cell functions during the progress toward malignancy.

Some experimental features of our study setup could have affected the overall per-
formance. The study was designed retrospectively and performed with samples from a
single high-volume center. The genes used for antigen synthesis were preselected, and
not all could be studied because they were not available in the cDNA library. Moreover,
the antigens were recombinant proteins expressed in a bacterial expression system devoid
of posttranslational modification machinery, which might influence antibody binding. In
addition, we applied a highly stringent signal detection by utilizing a threshold of five
standard deviations of the background signal. Last, binary information—binding or no
binding—was used for data analysis rather than considering signal intensities. Once these
technical limitations were resolved, better results could be expected.

Despite the limitations, the abundance of antibodies against 14 proteins in patients’
sera was found to indicate advancing malignant progression of IPMN. The antigens TOR1B
and GPR173 had already been described as markers for discriminating PDAC from chronic
and autoimmune pancreatitis [20]. While diagnostic power is limited by the relatively
low sensitivity, very high specificities were observed. By combining marker proteins, a
reasonable sensitivity could be achieved, adding data about the IPMN status for about one
third of the patients. Because the detection of IPMN with high-grade dysplasia and invasive
carcinoma is often challenging and cross-imaging is frequently inadequate, a combination
of diagnostic tools including radiology, serum analyses, and cytological/histological ap-
proaches could provide an accurate and robust approach for better decision-making for
potential surgical intervention.

5. Conclusions

Considering the hitherto limited number of clinically routinely available biomarkers
to distinguish IPMN of different grades, the integration of the autoreactive-antibody panel
into current disease indicators may aid in the risk stratification of patients with IPMN for
optimizing clinical management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cancers14153562/s1, Supplementary Materials containing Table S1: cDNAs used for producing the
protein microarray; Table S2: Cohort characteristics of the patients retained for the development of the
classification models; Table S3: Multinomial lasso model fit: selected proteins and coefficients; Table S4:
Apparent and cross-validated AUC values for discriminating different pancreatic malignancies.
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