arXiv:1405.0327v1 [cs.SE] 2 May 2014

Big Data Analytics for QoS Prediction Through
Probabilistic Model Checking

Giuseppe Cicaotti, Luigi Coppolino, Salvatore D’Antonioyigi Romano
University of Naples, Parthenope
Centro Direzionale di Napoli,
80143 Naples - Italy
Email: {giuseppe.cicotti,luigi.coppolino,salvatore.danteloiigi.romang @uniparthenope.it

Abstract—As competitiveness increases, being able to guarant- every moment of the analysis the actual value of parameters
ing QoS of delivered services is key for business successidthus is retrieved, via run-time monitoring of the real-systemda
of paramount importance the ability to continuously monitor the it js used with the parametric model. The actualized model
workflow providing a service and to timely recognize breachein is ysed by the model checker which estimates the probability
the agreed QoS level. The ideal condition would be the possiity {4t i the very next future, the system will reach a status
to anticipate, thus predict, a breach and operate to avoid it or corresponding to an SLA vi(;Iation. Since the amount of data

at least to mitigate its effects. In this paper we propose a nuel - - L . .
checking based approach to predict QoS of a formally descriéd retrieved during system monitoring can raise up very guickl

process. The continous model checking is enabled by the usag [6], We use big data analytics solutions to guarantee the rea
of a parametrized model of the monitored system, where the time evaluation of model parameters.

actual value of parameters is continously evaluated and upted ~ To validate the proposed approach we have developed a
by means of big data tools. The paper also describes a protggg ~ prototype of the QoS prediction framework and we have
implementation of the approach and shows its usage in a case demonstrated its usage against a case study in the field of
study. Smart Grids[[31],[[32].

Keywords—Big Data Analytics, QoS Prediction, Model Check-

ing, SLA compliance monitoring The paper is organized as follows. Sectioh Il describes

related work on QoS prediction. In sectidn] Ill we present
the overall architecture enabling our QoS prediction appho
Section[1V illustrates the case study to which we applied
The service-oriented computing paradigm has been changhe proposed methodology, while section 1V-A describes the
ing the way of creating and developing software-based semprototype developed to validate our approach. Se€tion ¥esdo
vices. This paradigm is the foundation of the Utility Com- the paper with conclusions and future work.
puting in which both hardware resources and software func-
tionalities are made available according to the as-a-8ervi 1
(aaS) model[1]. This model allows developing new serviges b '
integrating and reusing existing ones, i.e. third partyegacy QoS prediction is surveyed in_[22]._[23]._[29], [25]. A
systems. The result of such an integration is services beingrediction performance model is treated inl[22], where the
provided by extremily complex workflows|[2], [84]. Multiple authors exploit the Markovian Arrival Process (MAP) and a
parties are thus accountable for the successuful delivery dMAP/MAP/1 queuing model as a means to predict perfor-
the service. The terms of service promised to the end-user ahance of servers deployed in Cloud infrastructure. Althoug
the provided service are described by means of an agreemdntour Smart Grid case study we use a M/M/1 queuing model,
normally named Service Level Agreement (SLA)[3], [4]. The our QoS prediction methodology does not rely on a specific
terms of service regulating the relationship among partiesnodel which, therefore, could be adapted as needed. In [23]
collaborating to deliver the final service are named Openali is proposed a prediction-based resource measurement which
Level Agreement (OLA). Both SLAs and OLAs are ultimatelly use Neural Networks and Linear Regression as techniques to
describing a QoS level to be matched while providing theforecast future resource demands. A regression model & use
service. Independentrly of the origin of QoS terms (SLA oralso in [29] to produces numerical estimation of Servicedlev
OLA), itis of paramountimportance the ability to continshyy ~ Objectives (SLOs) so as to predict SLA violations at runtime
monitor the workflow providing the service and to timely Similarly, in [25] is presented the PREvent framework, a
recognize breaches in the agreed QoS levéls([5], [30]. Téwd id system which uses a regression classifier to predict viziati
condition would be the possibility to anticipate, thus peeda  but not details are given about the performance of the method
breach and operate to avoid it, or at least to mitigate isotsf  In [18], [26], [19] the QoS requirements are controlled by
In this paper we propose a new QoS prediction approach whickolving a QoS optimization problem at runtime. Particylarl
combines run-time monitoring with a model-based analysisn [18] a linear programming optimization problem is adapte
method such as probabilistic model-checking. In our apgroa to define a runtime adaptation methodology for meeting QoS
we use probabilistic model-checking to analyze a probsthili requirements of service-oriented systems, whereas a-multi
model of the monitored workflow. To limit the state explotion objetive optimization problem is proposed in _[26], [19] to
problem, characteristic of model-checking analysis, veeia®e  develop QoS adaptive service-based systems to guaramtee pr
that the system analysed is described as a parametric ddgdel. define QoS attributes.

I. INTRODUCTION

RELATED WORK
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A collaborative method is proposed ih_[27] in which model parameters. Once the model has been populated with
performance of cloud components are predicted based oe usagstimated values of the parameters, it is processed by tdelmo
experiences. Although this method could be appropriate fochecking software. In our prototype we have used PRISM [8]
QoS indicators from the user perspective, is impractical invhich is an open-source probabilistic model checker which
general case where QoS are business-oriented. supports the analysis and checking of a wide number of
model types. The model checker explores states that can be
reached since current state in a fixed number of transitions

is proposed in[[24],[[28]. Gallotti et al. iH_[24] propose an (de . . S
o iy . pending on the the desired prediction time-lapse). & ah
approach named ATOP - i.e. from Activity diagrams TO the states representing a violation is likely to be reachigd w

Prism models - which from an abstract description of service i . : A
compositions (activity diagram) derives a probabilistiodel a probability higher than a fixed threshold (violation alarm

to feed the PRISM tool for the evaluation phase. However}hreShOId)’ than a QoS breach is predicted.

unlike our solution this is a methodology conceived for eval It is worth noting that the usage of a parametric model,
uating system at design-time. Similar to our work, inl[28] which is continuously updated, and the fixed time-lapse used
the authors propose a two-phase method involving mongorinfor the prediction, allow limiting the well-known state d&p

and prediction with the aim of monitoring at run-time the sion problem due to the exhaustive states exploration tgra
reliability of compositional Web services which exhibihcgom by model-checkers. One further optimization could be ojeera
behaviour. Although this method also takes advantage of they pruning those braches including states reachable with a
probabilistic model checking technique, it focuses maimty  probability lower than the violation alarm threshold.

reliability by providing a DTMC-based Markovian model. In ) ) o
contrast, we propose a general CTMC probabilistic model for As for the parameters evaluation, continous monitoring of
performance indicators in which both state and transitien a & complex system may require the real-time analysis of huge

parameterised, resulting in a model adaptable at run-time. amounts of data. Such requirement can be matched by using
advaced Big Data Techniques and tools. In particular, in our

. A RCHITECTURAL OVERVIEW prototype we used a Complex Event Processor (CEP) to infeer
parameters value from collected data. In an advance ppoty

This section describes the approach behind our solutioghe Big Data layer could be used to support the model-chgckin
for QoS prediction. An high level architecture overview is process.

represented in fid.] 1.

A QoS prediction by using a Model Checking solution

To guarantee that the automatic procedure be both efficient
and consistent, two conditions are to be held:

QoS Requirements
ngA/ '_'_I_]Iq e the size of the state space of the model has to be
Pl sufficient to perform the model-checking analysis in a
7y s . time that is compatible with the updating time of the
--------- AN ystem Parametric
Reference System  |a-nmnm-m v Model QoS data of the modelled system

— e e the evaluation of the model parameters should always
data | Parameters allow the representation of the critical QoS states to
alue .

) be monitored.
Big Data Analytics

’ Model Checking
Based Real-Time

Monitoring Platform The first condition is key for obtaining a near real-time
— QoS prediction system. Indeed, it requests to balance Hee si
! | of the QoS model at run-time by taking into account both the

real time constraint imposed by the monitored service ard th

Qﬁ:z‘::;;s\:“es time spent to model check. A preliminary analysis during the

model definition has to be conduct in order to ensure that this
condition is still true even though the model is fully expadd
Fig. 1. The QoS Monitoring and Prediction achitecture (i.e. no pruning of its state space is considered). The secon
condition allows verifying that, if narrowed, the modelllsti
Given a system/process to be monitored for QoS comincludes states of the real system related to critical Qd%ega
pliance with a set of SLAs and OLAs, we assume that ae.g. warning and/or violation states).
formalized model of the system is made availabe. Such a . .
model is based on a state-transition description which s ab __Consequently, our methodology considers the following
to capture the evolution of Key Performance Indicators @{PI steps:
over time. Moreover states and transitions must be explesse
as parameters. The KPIs can be inferred by the SLAs and
OLAs defining the expected QoS. They can thus be used to
identify the conditions of violation of the expected QoScBu
conditions are represented by some final states in the state-

1) Specification of the parameterised QoS stochastic
model and QoS constraints to monitor

2) Real-time data analysis and parameters synthesis

3) Generation of the internal state-transition Model rep-

o resentation
transition model. 4) Execution of the Probabilistic Model-Checking to
At run-time, the reference system is continously monitored quantify the likelihood of future QoS state

and collected data are used to evaluate the actual value of 5) QoS Verification



In the first step we define a stochastic model which is suitechumber of request served, etc. To better fit our case study, we
to the kind of properties we are interested in monitoring. Inselect a M/M/1 queuing model to represent these type of indi-
this paper we show a case study, from the Smart-Grid domaircators. The intuition is that such indicators represerdugses
modelled by means of a CTMC. The steps 2-5 are involvedvhose arrival usage requests are determined by a Poisson
in an endless loop which makes our approach adaptive. Iprocess of parameteX, whereas the resource service time
particular, the second step needs to analyse data receyed follow an exponential distribution of parameterdistributed
the CEP so to determine the parameters of the model, aratrives with a distribution usage is approximated queuing
computes the current KPIs value. The third step generages thmodel by having where arrivals are determined by a Poisson
finite state-transition representation of the system maatel process and job service times have an exponential distyibut
which performing model-checking in the fourth step. Fipall .
the fifth step deals with verifying the QoS on the basis of the Let us assume a K_PI as a variadtewhose values can
current KPIs and/or quantification of future QoS states. range in selx seen as:

keVk =Ay UCy Uy

A. QoS Properties Specification where the subset$y,, Cy andly have the following meaning:

In a previous work we introduced the concept of Quality

Constraint (QC)[10] as a mean to express constraints on.KPIs Av: it is the set ofAdmissible Values: takes when
A QC is defined as a boolean condition on a single KPI. The the system is in a state which fulfills all the QCs
language we used to specify QCs is an interval-based version defined on the KPI o
of the Linear-time Temporal Logic (LTL). Particularly, iAQ] Cyv:  itis the set ofCritical Values i.e. limits/targets
we introduced two temporal operatat®ng andwithin which values, on which the system still meets the re-
present the following semantic: quired quality but beyond which this is no longer
true.
e P alongT: P is true in any time instant belonging to Iy: it is the set oflnadmissible Valueg takes when
T the system is in a state which does not fulfill at

e P within T there exists at least a time instant T least a QCs defined on the KP!I

in which P is true We assume thalx is totally ordered and its subsets are

Thus, thealong andwithin are, respectively, the restriction disjoint, that is:

of the Linear Temporal Logic (LTL) globally (G) and eventu- Va,b,c:a€ Ay,be Cy,cely sta<b<c
ally (F) operators to the interval. A QC without temporal
operator is interpreted as an expression to be verified @ligal
the lifetime of the monitored system, hence resulting usefu
for specifying safety property.

It is worth noting that in the context of runtime monitoring
we check properties against execution traces of the sysiem,
ordered sequences of past (up to now) states. Althoughsn thi
way we are able to recognise a violation as soon as it happens,
we do_ not have any means to evaluate if it will happen anq:ig. 2. The general form of the adopted queueing model
when in the future.

In this model-based approach we tackle this issue by The figl2 illustrates our general queueing model. We con-
defining Predictive Indicators (Pls) upon the monitored «PI Sider a queue as a discrete representation of thelget
A Pl is a numerical indicator which statistically quantifyet I particular, theVy is partitioned into a sequence of
probability for a KPI to be in a certain state (i.e. a range ofdisjoint intervals/; = [a;,b], i € 0,..,N —1 with [I;] =
values) in a predetermined time instant in the future. Takin b; — a; = % Moreover, forb; € I;, a;+1 € I; 41 for all
advantage of probabilistic model-checking we define sush Pli € 0,.., N —2, we haveb; < a;;1. This helps to preserve
as probabilistic temporal formulae (in the logic suitabte f the semantic distinction among the subséts, Cy and Iy.
the underlying model) which can be evaluated over all posHence, we can writd; < I; if i < j.
sible evolution considered in the service model. Furtheemo
as numerical indicators Pls can be monitored by means
specifying QCs. To this purpose we have extended our Q
language with theval(p) operator which accept temporal logic

formula ¢ to be evaluated by means of a model checker too'belonging respectively to the intervaland; with i < j. We

As a predictive quality indicatogval(p) can be monitored by : : P
specifying a Quality Constraint as we will see in the SmartalOlaIOt the queueing model by interpreting:

Grid case study. e the queue lengtil = i as representing the interval
I; in which k&, lies

Thus, lett be the total amount of elapsed time from the
eginning of KPI monitoringw = ¢t—1 the time window, with

< t, in which we take into account the KPI variations, and

ki, , ki, t1 < to two sequential values of the KPI of interest

B. Performance Model e given all the transitiond; to I; with i < j (resp.

In this work we focus our attention on KPIs which refers i > j) observed up to the time instantthe increment

to quantifiable service performances, i.e. resource atibn, (resp. decrement) rat®; (resp.u:) is ZKJ. Jwi the



ratio of the sum of all incremenys-i (resp. decrement

1 — j) over the time window we want to consider for QoS Data Extraction. To tackle the Big Data issue, our
the rate updating. architecture takes advantage of a Complex Event Processing
(CEP) which could be performed on any data-intensive
distributed framework (e.g. Hadoop). Such combination
allows to extract, process and deliver (complex) data in
real-time, empowering the QoS monitoring and prediction
phases. Following our case study, we show an example of a

Therefore, the queue length increases fram = 4 to
Lg=i+1fori=0,.,N —1 with a rate\, and decreases
from Lo = ito Lg = ¢ —1for¢ = 1,..,N with a
rate ;. An M/M/1 queue model can be described by an

CTMC. In this way, by using the CSL as a language t0complex event to derive thealance indicator(Bl) from the

formally specifying properties, we employ the probalitiist p,gic SmartMeterMeasureEvent originating from the Smart
model-checking technique to conduct a quantitative amalys \jeters of EPs and ECs:

on the KPIs by means of their queue representation.

insert into Bal ancel ndi cat or Event
IV. THE SMART GRID CASE STUDY sel ect (EP.neasure - EC. neasure) as index
The proposed QoS Prediction approach has been validatéd om EP. Smar t Met er Measur eEvent as EP,
with respect to a Smart Grid (SG) case study. EC. Smar t Met er Measur eEvent as EC,

SG is the integration of the IT infrastructure into a tra- g o) ect "range_i"
ditional power grid in order to continuously exchange andt . o, Bal ancel ndi cat or Event
process information to better control the production, coms- b1 e i ndex index >= | nin and <= | max
tion and distribution of electricity. For this purpose Smar - -
Meters (SMs) devices are used to measure variations ofielect
parameters (e.g. voltage, power, etc.) and send such data t
computational environment which, in turn, analyse and tooni
it in a real-time fashion.

The first query compute the Bl and create the event

%Bal ancel ndi cat or Event . The second query is a tem-

plate used by our QoS Monitoring tool to generate the actual

queries. They are used to classify at which range the index
In this case study, our tool performs the remote monitoringdelongs to. Based on this data, the QoS Analyser component

on behalf of an Energy Distributor (ED) which purchasescompute the transition rate from one range to another tode fe

electric power from Energy Producers (EPs) and retails it tdhe PRISM model. On the other side, a temporal-based query

Energy Consumers (ECs). The primary goal of the ED igs used for a real-time anomalous detection:

to balance the purchased electric power with respect to the

variations of power demand. sel ect nmeasure, "Critical Val ueMsg"

The SG Model.For the sake of simplicity we have built a basic f rom EP1. Smart Met er Event . wi n: ti me( 15 nin)

model which represents an ED, EP (or aggregated values @ther e neasure < BASE_PROD

many EPs) and EC (or aggregated values of many ECs) as a

three-queue system networked as in fiy. 3. Each queue is a In this case we take advantage of the temporal-based

discrete representation of the real-valued KPI to be medell capability of the CEP language. The select deliver a

The PRISM-based model we define implements the queuedri ti cal Val ueMsg message based on the fact that a

EDg, EPg, and EC with queue length and transition rates specific energy producer (EP1 in the example) is gone

as parameters. Furthermore, the séfs Cv, Iy are arranged underproduction. The message is delivered to the QoS

as follows: Monitoring which in turn perform the associated action,.e.g
Ay = {de tde > adMopin andde < admmaw} nOtlfy ED.
Cyv ={de : —crimin < de < admpin} U ) ) . )
U {de : admmas < de < crimas} Quality Constraints to be Monitored. Briefly we report

only two types of QCs: the first is a safety property (neither
within nor along operator specified) which assesses if the

where admmaz, admmin @nd crimin and cripa. represent predicted violation probability in the next 15 minutes is o
the minimum and maximum thresholds of the admissible anghsn 109%.

critical value sets.

Iy = {de¢ : de < —CPimin O de > Crimaz}

eval(P>o.1[F<30"Vviol State"]) =fal se 2)

Parameters Updating. In the queuing model the queue
length and the transition rate are updated as follows. Two The second QC guarantees to be notified if the probability
thresholds are set on both queue edges so that if the curreaftincurring in a violation state in the next 30 minutes isajes
state goes below the first or up the second, the queue lengthan 0.05 twice in a row (considering a measurement events
is doubled or halved respectively. As for the updating of theevery 15 minutes).

transition rate, an Exponential Weighted Moving Average
(EWMA) is applied on the first difference of the time series
under analysis. Thus, I&t = yi,1.,... a time series, we
compute the transition rate as follows:

/ f— — . J—
pr=oalyi—yia) + (L —a)p (1) In our scenario we assume a balance range of 800 Mega
in which the initial value ofp is set to0. The[1 is used for Watt (MW), i.e. [min, = —400,maz, = 400], and we
both the incrementy(;) and the decrement rate.. firstly evaluate how much time the QoS prediction phase

eval(P—,[F<3," vi ol State"]) < 0.05 within 30m (3)

A. Validation



Energy Distributor

- ) admissible set - S
violationset warning set warningset  violation set

power increment rate power request rate

HENNNNERENRREREEN
i

Current Balance state

<«—— Current Production

Current Consumption —»

Jawnsuo) A31au3

Energy Producer

power increment rate power release rate

Fig. 3. Network queuing system model

Queue length | #States #Trans | BM time (s) MC time (s) Tot. time (s)
20 13280 63476 | 0.15 0.38 0.53
40 95360 466156 | 0.81 8.37 9.18
60 310240 1528036 7.75 52.51 60.27
80 721920 3569116 20.53 197.11 217.64
100 1394400 6909396 42.80 492.28 535.089
TABLE T. QUEUES LENGTH MODEL SIZE, AND EXECUTION TIME
takes with respect to different model size (Table I). Thdeab 10
also reports the size of the model in terms of number of 0.9
states and transitions. As expected by using a model-akgcki 0.8

technique, the time is exponential against the model size. £o7
However, as the last row shows, we can also observe that £os

even in case of millions1(°) of states and transitions - that Zos T omuaten?
means a fine-grained discretisation - the total time is less © g o4 - Simulation 3
minutes, hence still comparable with the updating rate liysua =03
considered for SGs. 02
0.1
We have selected a queue length of 40 - i.e. a unit O %0 15 20 s 30 a1
increment/decrement of the queue correspond to a 20MW of Current Balance State
balance variation - and set these threshold®:,,,;, = —200,
adMmaz = 200, cFimin = —380, crimae. = 380. Our tests are Fig. 4. Violation Probability (queue length=40)
based on property] 3 evaluated by simulating three different
scenarios:

Case A: EPs inject in the grid as much energy as ECs V.. CONCLUSIONS ANDFUTURE WORK

need (balanced case).

To support Big Data analysis of QoS information, in this
per, we have proposed a QoS prediction framework which
takes advantage of the qualitative and quantitative aizalys

c C: Th . . . rYgen‘ormed by a probabilistic model-checking techniquer Ou
ase C: The energy consumption request rises twice Conly,rqach uses a parametric QoS model and performs a prob-
pared with the production rate (imbalanced con-

o abilistic model-checking analysis in order to evaluate QoS
dition). related predictive indicators (PIs). In this way, pre-al@pS
states can be notified in advance, giving a greater control to

Fig. [4 plots the violation probability estimated for such the Service Provider to avoid, or at least manage, possible
scenarios. For scenario A the violation probability varies breaches of Service Level Agreements (SLAs) contractel wit
a symmetrical fashion around the balance point (i.e. queu8ervice Consumers. We have realized and presented a validat
length 20). The scenario B exhibits a higher probability ining prototype - built on top of the PRISM Model Checker,
all the overproduction states (i.e. queue length less than t as well as experiments on a Smart Grid case study, which
balance point), and a lower one for a large number of stateshows the effectiveness of our methodology and how, tuning
representing the power grid overload (i.e. queue lengtatgre the model parameters, the time required to model checkss les
than the balance point). This characteristic is emphasised than the time needed to receive updated QoS information from
the third simulation which represents the imbalanced (overthe monitored service. In the next future we plan to extered th
loaded in this case) scenario. In addition, we notice how irexperimental campaign validating our approach and to exten
such anomalous conditions all minimum values of violationthe usage of this framework to monitor security![33] and pthe
probability are higher than the other two scenarios. non-functional aspects other than provided QoS.

Case B: ECs request less than EPs produc%a
(overproduction).
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