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Abstract—As competitiveness increases, being able to guarant-
ing QoS of delivered services is key for business success. Itis thus
of paramount importance the ability to continuously monitor the
workflow providing a service and to timely recognize breaches in
the agreed QoS level. The ideal condition would be the possibility
to anticipate, thus predict, a breach and operate to avoid it, or
at least to mitigate its effects. In this paper we propose a model
checking based approach to predict QoS of a formally described
process. The continous model checking is enabled by the usage
of a parametrized model of the monitored system, where the
actual value of parameters is continously evaluated and updated
by means of big data tools. The paper also describes a prototype
implementation of the approach and shows its usage in a case
study.

Keywords—Big Data Analytics, QoS Prediction, Model Check-
ing, SLA compliance monitoring

I. I NTRODUCTION

The service-oriented computing paradigm has been chang-
ing the way of creating and developing software-based ser-
vices. This paradigm is the foundation of the Utility Com-
puting in which both hardware resources and software func-
tionalities are made available according to the as-a-Service
(aaS) model [1]. This model allows developing new services by
integrating and reusing existing ones, i.e. third party, orlegacy
systems. The result of such an integration is services being
provided by extremily complex workflows [2], [34]. Multiple
parties are thus accountable for the successuful delivery of
the service. The terms of service promised to the end-user of
the provided service are described by means of an agreement
normally named Service Level Agreement (SLA)[3], [4]. The
terms of service regulating the relationship among parties
collaborating to deliver the final service are named Operational
Level Agreement (OLA). Both SLAs and OLAs are ultimatelly
describing a QoS level to be matched while providing the
service. Independentrly of the origin of QoS terms (SLA or
OLA), it is of paramount importance the ability to continuously
monitor the workflow providing the service and to timely
recognize breaches in the agreed QoS levels [5], [30]. The ideal
condition would be the possibility to anticipate, thus predict, a
breach and operate to avoid it, or at least to mitigate its effects.
In this paper we propose a new QoS prediction approach which
combines run-time monitoring with a model-based analysis
method such as probabilistic model-checking. In our approach
we use probabilistic model-checking to analyze a probabilistic
model of the monitored workflow. To limit the state explotion
problem, characteristic of model-checking analysis, we assume
that the system analysed is described as a parametric model.At

every moment of the analysis the actual value of parameters
is retrieved, via run-time monitoring of the real-system, and
it is used with the parametric model. The actualized model
is used by the model checker which estimates the probability
that in the very next future, the system will reach a status
corresponding to an SLA violation. Since the amount of data
retrieved during system monitoring can raise up very quickly
[6], we use big data analytics solutions to guarantee the real-
time evaluation of model parameters.
To validate the proposed approach we have developed a
prototype of the QoS prediction framework and we have
demonstrated its usage against a case study in the field of
Smart Grids [31], [32].

The paper is organized as follows. Section II describes
related work on QoS prediction. In section III we present
the overall architecture enabling our QoS prediction approach.
Section IV illustrates the case study to which we applied
the proposed methodology, while section IV-A describes the
prototype developed to validate our approach. Section V closes
the paper with conclusions and future work.

II. RELATED WORK

QoS prediction is surveyed in [22], [23], [29], [25]. A
prediction performance model is treated in [22], where the
authors exploit the Markovian Arrival Process (MAP) and a
MAP/MAP/1 queuing model as a means to predict perfor-
mance of servers deployed in Cloud infrastructure. Although
in our Smart Grid case study we use a M/M/1 queuing model,
our QoS prediction methodology does not rely on a specific
model which, therefore, could be adapted as needed. In [23]
is proposed a prediction-based resource measurement which
use Neural Networks and Linear Regression as techniques to
forecast future resource demands. A regression model is used
also in [29] to produces numerical estimation of Service Level
Objectives (SLOs) so as to predict SLA violations at runtime.
Similarly, in [25] is presented the PREvent framework, a
system which uses a regression classifier to predict violation,
but not details are given about the performance of the method.
In [18], [26], [19] the QoS requirements are controlled by
solving a QoS optimization problem at runtime. Particularly,
in [18] a linear programming optimization problem is adopted
to define a runtime adaptation methodology for meeting QoS
requirements of service-oriented systems, whereas a multi-
objetive optimization problem is proposed in [26], [19] to
develop QoS adaptive service-based systems to guarantee pre-
define QoS attributes.
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A collaborative method is proposed in [27] in which
performance of cloud components are predicted based on usage
experiences. Although this method could be appropriate for
QoS indicators from the user perspective, is impractical in
general case where QoS are business-oriented.

A QoS prediction by using a Model Checking solution
is proposed in [24], [28]. Gallotti et al. in [24] propose an
approach named ATOP - i.e. from Activity diagrams TO
Prism models - which from an abstract description of service
compositions (activity diagram) derives a probabilistic model
to feed the PRISM tool for the evaluation phase. However,
unlike our solution this is a methodology conceived for eval-
uating system at design-time. Similar to our work, in [28]
the authors propose a two-phase method involving monitoring
and prediction with the aim of monitoring at run-time the
reliability of compositional Web services which exhibit random
behaviour. Although this method also takes advantage of the
probabilistic model checking technique, it focuses mainlyon
reliability by providing a DTMC-based Markovian model. In
contrast, we propose a general CTMC probabilistic model for
performance indicators in which both state and transition are
parameterised, resulting in a model adaptable at run-time.

III. A RCHITECTURAL OVERVIEW

This section describes the approach behind our solution
for QoS prediction. An high level architecture overview is
represented in fig. 1.

Fig. 1. The QoS Monitoring and Prediction achitecture

Given a system/process to be monitored for QoS com-
pliance with a set of SLAs and OLAs, we assume that a
formalized model of the system is made availabe. Such a
model is based on a state-transition description which is able
to capture the evolution of Key Performance Indicators (KPIs)
over time. Moreover states and transitions must be expressed
as parameters. The KPIs can be inferred by the SLAs and
OLAs defining the expected QoS. They can thus be used to
identify the conditions of violation of the expected QoS. Such
conditions are represented by some final states in the state-
transition model.

At run-time, the reference system is continously monitored
and collected data are used to evaluate the actual value of

model parameters. Once the model has been populated with
estimated values of the parameters, it is processed by the model
checking software. In our prototype we have used PRISM [8]
which is an open-source probabilistic model checker which
supports the analysis and checking of a wide number of
model types. The model checker explores states that can be
reached since current state in a fixed number of transitions
(depending on the the desired prediction time-lapse). If one of
the states representing a violation is likely to be reached with
a probability higher than a fixed threshold (violation alarm
threshold), than a QoS breach is predicted.

It is worth noting that the usage of a parametric model,
which is continuously updated, and the fixed time-lapse used
for the prediction, allow limiting the well-known state explo-
sion problem due to the exhaustive states exploration operated
by model-checkers. One further optimization could be operated
by pruning those braches including states reachable with a
probability lower than the violation alarm threshold.

As for the parameters evaluation, continous monitoring of
a complex system may require the real-time analysis of huge
amounts of data. Such requirement can be matched by using
advaced Big Data Techniques and tools. In particular, in our
prototype we used a Complex Event Processor (CEP) to infeer
parameters value from collected data. In an advance prototype
the Big Data layer could be used to support the model-checking
process.

To guarantee that the automatic procedure be both efficient
and consistent, two conditions are to be held:

• the size of the state space of the model has to be
sufficient to perform the model-checking analysis in a
time that is compatible with the updating time of the
QoS data of the modelled system

• the evaluation of the model parameters should always
allow the representation of the critical QoS states to
be monitored.

The first condition is key for obtaining a near real-time
QoS prediction system. Indeed, it requests to balance the size
of the QoS model at run-time by taking into account both the
real time constraint imposed by the monitored service and the
time spent to model check. A preliminary analysis during the
model definition has to be conduct in order to ensure that this
condition is still true even though the model is fully expanded
(i.e. no pruning of its state space is considered). The second
condition allows verifying that, if narrowed, the model still
includes states of the real system related to critical QoS values
(e.g. warning and/or violation states).

Consequently, our methodology considers the following
steps:

1) Specification of the parameterised QoS stochastic
model and QoS constraints to monitor

2) Real-time data analysis and parameters synthesis
3) Generation of the internal state-transition Model rep-

resentation
4) Execution of the Probabilistic Model-Checking to

quantify the likelihood of future QoS state
5) QoS Verification



In the first step we define a stochastic model which is suited
to the kind of properties we are interested in monitoring. In
this paper we show a case study, from the Smart-Grid domain,
modelled by means of a CTMC. The steps 2-5 are involved
in an endless loop which makes our approach adaptive. In
particular, the second step needs to analyse data received by
the CEP so to determine the parameters of the model, and
computes the current KPIs value. The third step generates the
finite state-transition representation of the system modelon
which performing model-checking in the fourth step. Finally,
the fifth step deals with verifying the QoS on the basis of the
current KPIs and/or quantification of future QoS states.

A. QoS Properties Specification

In a previous work we introduced the concept of Quality
Constraint (QC) [10] as a mean to express constraints on KPIs.
A QC is defined as a boolean condition on a single KPI. The
language we used to specify QCs is an interval-based version
of the Linear-time Temporal Logic (LTL). Particularly, in [10]
we introduced two temporal operatorsalongandwithin which
present the following semantic:

• P along T : P is true in any time instant belonging to
T

• P within T : there exists at least a time instanti ∈ T
in which P is true

Thus, thealong andwithin are, respectively, the restriction
of the Linear Temporal Logic (LTL) globally (G) and eventu-
ally (F) operators to the intervalT . A QC without temporal
operator is interpreted as an expression to be verified all along
the lifetime of the monitored system, hence resulting useful
for specifying safety property.

It is worth noting that in the context of runtime monitoring
we check properties against execution traces of the system,i.e
ordered sequences of past (up to now) states. Although in this
way we are able to recognise a violation as soon as it happens,
we do not have any means to evaluate if it will happen and
when in the future.

In this model-based approach we tackle this issue by
defining Predictive Indicators (PIs) upon the monitored KPIs.
A PI is a numerical indicator which statistically quantify the
probability for a KPI to be in a certain state (i.e. a range of
values) in a predetermined time instant in the future. Taking
advantage of probabilistic model-checking we define such PIs
as probabilistic temporal formulae (in the logic suitable for
the underlying model) which can be evaluated over all pos-
sible evolution considered in the service model. Furthermore,
as numerical indicators PIs can be monitored by means of
specifying QCs. To this purpose we have extended our QC
language with theeval(φ) operator which accept temporal logic
formulaφ to be evaluated by means of a model checker tool.
As a predictive quality indicator,eval(φ) can be monitored by
specifying a Quality Constraint as we will see in the Smart
Grid case study.

B. Performance Model

In this work we focus our attention on KPIs which refers
to quantifiable service performances, i.e. resource utilization,

number of request served, etc. To better fit our case study, we
select a M/M/1 queuing model to represent these type of indi-
cators. The intuition is that such indicators represent resources
whose arrival usage requests are determined by a Poisson
process of parameterλ, whereas the resource service time
follow an exponential distribution of parameterµ.distributed
arrives with a distribution usage is approximated queuing
model by having where arrivals are determined by a Poisson
process and job service times have an exponential distribution.

Let us assume a KPI as a variablek whose values can
range in setVK seen as:

k ∈ VK = AV ∪CV ∪ IV

where the subsetsAV , CV andIV have the following meaning:

AV : it is the set ofAdmissible Valuesk takes when
the system is in a state which fulfills all the QCs
defined on the KPI

CV : it is the set ofCritical Values, i.e. limits/targets
values, on which the system still meets the re-
quired quality but beyond which this is no longer
true.

IV : it is the set ofInadmissible Valuesk takes when
the system is in a state which does not fulfill at
least a QCs defined on the KPI

We assume thatVK is totally ordered and its subsets are
disjoint, that is:

∀a, b, c : a ∈ AV , b ∈ CV , c ∈ IV s.t.a < b < c

Fig. 2. The general form of the adopted queueing model

The fig.2 illustrates our general queueing model. We con-
sider a queue as a discrete representation of the setVK .
In particular, theVK is partitioned into a sequence ofN
disjoint intervalsIi = [ai, bi], i ∈ 0, .., N − 1 with |Ii| =

bi − ai = |VK |
N

. Moreover, forbi ∈ Ii, ai+1 ∈ Ii+1 for all
i ∈ 0, .., N − 2, we havebi < ai+1. This helps to preserve
the semantic distinction among the subsetsAV , CV and IV .
Hence, we can writeIi < Ij if i < j.

Thus, lett be the total amount of elapsed time from the
beginning of KPI monitoring,w = t−T the time window, with
T < t, in which we take into account the KPI variations, and
kt1 , kt2 , t1 < t2 two sequential values of the KPI of interest
belonging respectively to the intervalIi andIj with i < j. We
adapt the queueing model by interpreting:

• the queue lengthLQ = i as representing the interval
Ii in which kt1 lies

• given all the transitionsIi to Ij with i < j (resp.
i > j) observed up to the time instantt, the increment
(resp. decrement) rateλt (resp.µt) is

∑
i<j

j−i

w
the



ratio of the sum of all incrementsj−i (resp. decrement
i − j) over the time window we want to consider for
the rate updating.

Therefore, the queue length increases fromLQ = i to
LQ = i + 1 for i = 0, .., N − 1 with a rateλt and decreases
from LQ = i to LQ = i − 1 for i = 1, .., N with a
rate µt. An M/M/1 queue model can be described by an
CTMC. In this way, by using the CSL as a language to
formally specifying properties, we employ the probabilistic
model-checking technique to conduct a quantitative analysis
on the KPIs by means of their queue representation.

IV. T HE SMART GRID CASE STUDY

The proposed QoS Prediction approach has been validated
with respect to a Smart Grid (SG) case study.

SG is the integration of the IT infrastructure into a tra-
ditional power grid in order to continuously exchange and
process information to better control the production, consump-
tion and distribution of electricity. For this purpose Smart
Meters (SMs) devices are used to measure variations of electric
parameters (e.g. voltage, power, etc.) and send such data toa
computational environment which, in turn, analyse and monitor
it in a real-time fashion.

In this case study, our tool performs the remote monitoring
on behalf of an Energy Distributor (ED) which purchases
electric power from Energy Producers (EPs) and retails it to
Energy Consumers (ECs). The primary goal of the ED is
to balance the purchased electric power with respect to the
variations of power demand.
The SG Model.For the sake of simplicity we have built a basic
model which represents an ED, EP (or aggregated values of
many EPs) and EC (or aggregated values of many ECs) as a
three-queue system networked as in fig. 3. Each queue is a
discrete representation of the real-valued KPI to be modelled.
The PRISM-based model we define implements the queues
EDQ, EPQ, andECQ with queue length and transition rates
as parameters. Furthermore, the setsAV , CV , IV are arranged
as follows:

AV = {de : de ≥ admmin andde ≤ admmax}

CV = {de : −crimin ≤ de < admmin} ∪

∪ {de : admmax < de ≤ crimax}

IV = {de : de < −crimin or de > crimax}

where admmax, admmin and crimin and crimax represent
the minimum and maximum thresholds of the admissible and
critical value sets.

Parameters Updating. In the queuing model the queue
length and the transition rate are updated as follows. Two
thresholds are set on both queue edges so that if the current
state goes below the first or up the second, the queue length
is doubled or halved respectively. As for the updating of the
transition rate, an Exponential Weighted Moving Average
(EWMA) is applied on the first difference of the time series
under analysis. Thus, letY = y1, y2, ... a time series, we
compute the transition rateρ as follows:

ρ′ = α(yi − yi−1) + (1− α)ρ (1)

in which the initial value ofρ is set to0. The 1 is used for
both the increment (µt) and the decrement rate (λt).

QoS Data Extraction. To tackle the Big Data issue, our
architecture takes advantage of a Complex Event Processing
(CEP) which could be performed on any data-intensive
distributed framework (e.g. Hadoop). Such combination
allows to extract, process and deliver (complex) data in
real-time, empowering the QoS monitoring and prediction
phases. Following our case study, we show an example of a
complex event to derive thebalance indicator(BI) from the
basic SmartMeterMeasureEvent originating from the Smart
Meters of EPs and ECs:

insert into BalanceIndicatorEvent
select (EP.measure - EC.measure) as index
from EP.SmartMeterMeasureEvent as EP,
EC.SmartMeterMeasureEvent as EC,

select "range_i"
from BalanceIndicatorEvent
where index index >= I_min and <= I_max

The first query compute the BI and create the event
BalanceIndicatorEvent. The second query is a tem-
plate used by our QoS Monitoring tool to generate the actual
queries. They are used to classify at which range the index
belongs to. Based on this data, the QoS Analyser component
compute the transition rate from one range to another to be fed
the PRISM model. On the other side, a temporal-based query
is used for a real-time anomalous detection:

select measure, "CriticalValueMsg"
from EP1.SmartMeterEvent.win:time(15 min)
where measure < BASE_PROD

In this case we take advantage of the temporal-based
capability of the CEP language. The select deliver a
CriticalValueMsg message based on the fact that a
specific energy producer (EP1 in the example) is gone
underproduction. The message is delivered to the QoS
Monitoring which in turn perform the associated action, e.g.
notify ED.

Quality Constraints to be Monitored. Briefly we report
only two types of QCs: the first is a safety property (neither
within nor along operator specified) which assesses if the
predicted violation probability in the next 15 minutes is more
than 10%.

eval(P≥0.1[F≤30"violState"]) = false (2)

The second QC guarantees to be notified if the probability
of incurring in a violation state in the next 30 minutes is greater
than 0.05 twice in a row (considering a measurement events
every 15 minutes).

eval(P=?[F≤30"violState"]) ≤ 0.05 within 30m (3)

A. Validation

In our scenario we assume a balance range of 800 Mega
Watt (MW), i.e. [minb = −400,maxb = 400], and we
firstly evaluate how much time the QoS prediction phase



Fig. 3. Network queuing system model

Queue length #States #Trans BM time (s) MC time (s) Tot. time (s)
20 13280 63476 0.15 0.38 0.53
40 95360 466156 0.81 8.37 9.18
60 310240 1528036 7.75 52.51 60.27
80 721920 3569116 20.53 197.11 217.64
100 1394400 6909396 42.80 492.28 535.089

TABLE I. QUEUES LENGTH, MODEL SIZE, AND EXECUTION TIME

takes with respect to different model size (Table I). The table
also reports the size of the model in terms of number of
states and transitions. As expected by using a model-ckecking
technique, the time is exponential against the model size.
However, as the last row shows, we can also observe that
even in case of millions (106) of states and transitions - that
means a fine-grained discretisation - the total time is less than 9
minutes, hence still comparable with the updating rate usually
considered for SGs.

We have selected a queue length of 40 - i.e. a unit
increment/decrement of the queue correspond to a 20MW of
balance variation - and set these thresholds:admmin = −200,
admmax = 200, crimin = −380, crimax = 380. Our tests are
based on property 3 evaluated by simulating three different
scenarios:

Case A: EPs inject in the grid as much energy as ECs
need (balanced case).

Case B: ECs request less than EPs produce
(overproduction).

Case C: The energy consumption request rises twice com-
pared with the production rate (imbalanced con-
dition).

Fig. 4 plots the violation probability estimated for such
scenarios. For scenario A the violation probability variesin
a symmetrical fashion around the balance point (i.e. queue
length 20). The scenario B exhibits a higher probability in
all the overproduction states (i.e. queue length less than the
balance point), and a lower one for a large number of states
representing the power grid overload (i.e. queue length greater
than the balance point). This characteristic is emphasisedin
the third simulation which represents the imbalanced (over-
loaded in this case) scenario. In addition, we notice how in
such anomalous conditions all minimum values of violation
probability are higher than the other two scenarios.

Fig. 4. Violation Probability (queue length=40)

V. CONCLUSIONS ANDFUTURE WORK

To support Big Data analysis of QoS information, in this
paper, we have proposed a QoS prediction framework which
takes advantage of the qualitative and quantitative analysis
performed by a probabilistic model-checking technique. Our
approach uses a parametric QoS model and performs a prob-
abilistic model-checking analysis in order to evaluate QoS-
related predictive indicators (PIs). In this way, pre-alert QoS
states can be notified in advance, giving a greater control to
the Service Provider to avoid, or at least manage, possible
breaches of Service Level Agreements (SLAs) contracted with
Service Consumers. We have realized and presented a validat-
ing prototype - built on top of the PRISM Model Checker,
as well as experiments on a Smart Grid case study, which
shows the effectiveness of our methodology and how, tuning
the model parameters, the time required to model check is less
than the time needed to receive updated QoS information from
the monitored service. In the next future we plan to extend the
experimental campaign validating our approach and to extend
the usage of this framework to monitor security [33] and other
non-functional aspects other than provided QoS.
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