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Abstract. The new 5 MN Hexapod-Shaped Multicomponent Build-Up System (HSM-BUS) 
represents a significant progress in the field of reference transducers in the high force range. As 
any build-up system, the presented hexapod-shaped multicomponent force transducer can lead not 
only to measure forces 5 times higher than the capacity of a each single Uniaxial Force 
Transducer (UFT), but gives also information about the other components of the force vector and 
of the moment vector. Furthermore, the calibration of such type of multicomponent force 
transducer regards only the calibration of the signal outputs coming from each UFT and the 
calibration of the geometry of the system. In this work an a-priori evaluation of the expected 
uncertainty is performed. As a first approximation, the effects of the calibration uncertainties of 
UFTs and of the geometrical tolerances given on the construction drawing were considered. 
Subsequently, with a Finite Element Simulation of the mechanical behavior of the 5 MN HSM-
BUS under load, a mathematical model of elastic deformations has been evaluated and applied for 
evaluating and correcting the systematic errors due to the deformation of the geometry under load. 

Keywords: hexapod, load simulation, build-up system, force transducer, uncertainty budget 

1 Introduction 
The need to have traceable force calibration machines with high capacity, leads to the realization of the Build-Up 
System (BUS). Such systems are composed by several Uniaxial Force Transducers (UFTs) that can be calibrated 
directly by primary force standard machines. Generally, a BUS is composed by three UFTs [1,6] in the same 
direction, therefore allowing the measurement of a force that is three times the capacity of the single UFT. If it is 
required to reach higher loads starting from the same UFT capacity, to maintain isostatic condition, it is necessary 
to create a more complex structure adding additional UFTs in order to increase the total capacity [7]. Another 
possibility is to use a hexapod structure that use six UFTs, reaching five times the capacity of the system 
(considering the mounting angles), as it was already developed at INRiM [8,9]. This structure has also the 
advantage to allow the measurements of all the six components (Multicomponent Force Transducer, MFT), i.e. 
not only the principal axial force (Fz), but also all force and moment vectors (transversal, Fx and Fy), and three 
moment components, (tilting, Mx and My, and torsion, Mz). The main aim is to measure the force in a given 
direction, in our case Fz, therefore the accuracy on all other force and moment components is not at the same 
metrological level. Nevertheless, the information given by the measurement of all the components can be used to 
get a better accuracy on the Fz measurements. 

To assure traceable measurements in this type of BUS, the force calibration of UFTs is not sufficient, since the 
output measurements also depends on the geometry of the hexapod structure. Therefore, consideration of the 



geometry and its possible variations described by the geometrical tolerances and elastic distortion under load have 
become necessary. 

2 HSM-BUS Design 

2.1 System Geometry 
The system geometry of the new 5 MN HS-BU can be briefly outlined with the views of the XY-plane and of XZ-
plane. In the first view (left of figure 1) we can see the distribution of the UFTs, the radius r and the angle γ (while 
angle δ is complementary to it). In the second view (right part of figure 1), the two functional angles α and β are 
shown. 

 
Figure 1: The geometry of MFT 

 

As it can be seen in Fig. 1, due to dimensional limits, it was not possible to connect two UFTs into the same point; 
so, instead of a triangle, each pair of UFTs creates a trapezoid. 

2.2 MFT design 
The 5 MN HS-BU is designed to work with a nominal force value of 5 MN, using 6 UFTs with rated load of 
1 MN, in order to be calibrated using the 1MN deadweight primary force standard machine at INRiM. 

 
Figure 2: The 5 MN hexapod-shaped MFT 

 

Since the UFTs have to work in traction, and not in compression as the HS-BU, it was necessary to create an 
inversion frame, in order to put in traction the UFTs. The load, applied on the upper loading pad (1A), is 
transferred by three columns (2A) to the lower plate (3A), where are fixed the lower clamping heads of the UFTs. 
The upper clamping heads of the UFTs are instead fixed to the upper plate (1B) which, through three columns 
(2B), is supported by the base (3B). To avoid any contact and frictions during the load application, frame A and 
frame B are spaced by a gap of some millimeters.    



2.3 Uniaxial Force Transducers 
A MFT is composed by several uniaxial force transducers (figures 1, 2). Usually, in a BUS, the number of these 
UFTs is three to realize an isostatic structure, although is possible to use more of them. In a HSM-BUS, indeed, 
are used six UFTs (figure 3a), realizing a pseudo-isostatic structure. 

Another peculiarity of the HSM-BUS, is that its UFTs work in traction, and not in compression as in a generic 
BUS. A further difference is the inclination of the UFTs with respect to the horizontal, which leads to the 
necessity to enable each UFTs to continually re-orient itself in order to avoid spurious components on it. This re-
orientation movement can be obtained using a couple of elastic hinges at both ends of every UFT. In our case, due 
to dimensional limitations, the use of elastic hinges is not possible, and spherical joints (figure 3b) were used. 

a)  b)  
Figure 3: a) uniaxial force transducer (UFT), b) spherical joint 

The force will be carried out to every single UFT through plugs passing among the plate and the spherical joints. 
Any deformation under load, generates a rotation moment along the axis of the spherical joint. This rotation 
theoretically allows the re-alignment of the whole hexapod in order to avoid any application of bending moments 
and or spurious components to the single UFTs. Unfortunately the rotation of the spherical joints is subjected to 
the friction due to the applied force. For low value of force applied, the rotation moment result higher than the 
friction, and the UFT is able to rotate, while for higher values of force the friction becomes more and more 
relevant, until it is comparable with the rotation moment, generating spurious components due to the flection. For 
this reason, it is necessary that all UFTs are provided with measuring bridges properly compensated. Furthermore, 
the deflections of the UFTs under the load could effects the geometry of the HSM-BUS, in particular the angle 
formed by a pair of UFTs. In our analysis, these deflections will be treated inside the FEM analysis of the re-
orientation of the UFTs. 

2.4 Signal outputs 
The measurement of the force (Fx, Fy, Fz) and moment (Mx, My, Mz) vectors are obtained combining the outputs 
(Oi) of each UFT in respect to the geometry of the hexapod MFT. 

The applied force tensor is conveyed and subdivided into six different forces (F1, …,  F6), each one acting and 
measured by each single UFT, as shown in equations (1). 

 

𝐹𝐹𝑋𝑋 = [(𝐹𝐹6 − 𝐹𝐹5) − (𝐹𝐹2 −𝐹𝐹1)] cos𝛽𝛽 cos 𝛿𝛿
𝐹𝐹𝑦𝑦 = −(𝐹𝐹4 − 𝐹𝐹3) cos 𝛽𝛽 − (𝐹𝐹5 − 𝐹𝐹6) cos 𝛽𝛽 cos𝛾𝛾 − (𝐹𝐹1 − 𝐹𝐹2) cos 𝛽𝛽 cos 𝛾𝛾
𝐹𝐹𝑧𝑧 = (𝐹𝐹1 + 𝐹𝐹2 + 𝐹𝐹3 + 𝐹𝐹4 + 𝐹𝐹5 + 𝐹𝐹6) cos 𝛼𝛼

2
𝑀𝑀𝑥𝑥 = [(𝐹𝐹1 + 𝐹𝐹2) − (𝐹𝐹5 −𝐹𝐹6 )]2𝑟𝑟 cos 𝛼𝛼2 cos𝛿𝛿

𝑀𝑀𝑦𝑦 = −(𝐹𝐹4 + 𝐹𝐹3)𝑟𝑟 cos 𝛼𝛼
2 + (𝐹𝐹1 + 𝐹𝐹2)𝑟𝑟 cos 𝛼𝛼

2 sin 𝛿𝛿 + (𝐹𝐹5 +𝐹𝐹6 )𝑟𝑟 cos 𝛼𝛼
2 sin 𝛿𝛿

𝑀𝑀𝑧𝑧 = (𝐹𝐹1 − 𝐹𝐹2 + 𝐹𝐹3 − 𝐹𝐹4 + 𝐹𝐹5 − 𝐹𝐹6)𝑟𝑟 cos 𝛽𝛽

  (1) 

 



In the above formulas, α, β, γ and δ, are the nominal angles related to each UFT although different values will be 
evaluated in practice. 

In the same way, it is possible to calculate the single forces (Fi) from the applied forces and moment vectors, as 
shown in equations (2) 

 

𝐹𝐹1 = 𝐹𝐹𝑥𝑥
4cos𝛽𝛽 cos𝛿𝛿 + 𝐹𝐹𝑦𝑦

3cos𝛽𝛽cos𝛾𝛾 + 𝐹𝐹𝑧𝑧
6 cos𝛼𝛼2

+ 𝐹𝐹𝑥𝑥
8𝑟𝑟 cos𝛿𝛿 cos𝛼𝛼2

+ 𝐹𝐹𝑦𝑦
12𝑟𝑟sin𝛿𝛿 cos𝛼𝛼2

+ 𝐹𝐹𝑧𝑧
6𝑟𝑟cos𝛽𝛽

𝐹𝐹2 = − 𝐹𝐹𝑥𝑥
4cos𝛽𝛽cos𝛿𝛿 −

𝐹𝐹𝑦𝑦
3 cos𝛽𝛽 cos𝛾𝛾 + 𝐹𝐹𝑧𝑧

6 cos𝛼𝛼
2

+ 𝐹𝐹𝑥𝑥
8𝑟𝑟cos𝛿𝛿 cos𝛼𝛼

2

+ 𝐹𝐹𝑦𝑦
12𝑟𝑟sin𝛿𝛿 cos𝛼𝛼

2

− 𝐹𝐹𝑧𝑧
6𝑟𝑟cos𝛽𝛽

𝐹𝐹3 = − 𝐹𝐹𝑦𝑦
3cos𝛽𝛽cos𝛾𝛾 + 𝐹𝐹𝑧𝑧

6 cos𝛼𝛼
2

− 𝐹𝐹𝑦𝑦
12𝑟𝑟 sin𝛿𝛿 cos𝛼𝛼

2

+ 𝐹𝐹𝑧𝑧
6𝑟𝑟 cos𝛽𝛽

𝐹𝐹4 = 𝐹𝐹𝑦𝑦
3 cos𝛽𝛽 cos𝛾𝛾 + 𝐹𝐹𝑧𝑧

6cos𝛼𝛼2
− 𝐹𝐹𝑦𝑦

12𝑟𝑟sin𝛿𝛿 cos𝛼𝛼2
− 𝐹𝐹𝑧𝑧

6𝑟𝑟cos𝛽𝛽

𝐹𝐹5 = − 𝐹𝐹𝑥𝑥
4cos𝛽𝛽cos𝛿𝛿 + 𝐹𝐹𝑦𝑦

3 cos𝛽𝛽 cos𝛾𝛾 + 𝐹𝐹𝑧𝑧
6 cos𝛼𝛼

2

− 𝐹𝐹𝑥𝑥
8𝑟𝑟cos𝛿𝛿 cos𝛼𝛼

2

+ 𝐹𝐹𝑦𝑦
12𝑟𝑟sin𝛿𝛿 cos𝛼𝛼

2

+ 𝐹𝐹𝑧𝑧
6𝑟𝑟cos𝛽𝛽

𝐹𝐹6 = 𝐹𝐹𝑥𝑥
4cos𝛽𝛽cos𝛿𝛿 −

𝐹𝐹𝑦𝑦
3 cos𝛽𝛽 cos𝛾𝛾 + 𝐹𝐹𝑧𝑧

6 cos𝛼𝛼
2

− 𝐹𝐹𝑥𝑥
8𝑟𝑟cos𝛿𝛿 cos𝛼𝛼

2

+ 𝐹𝐹𝑦𝑦
12𝑟𝑟sin𝛿𝛿 cos𝛼𝛼

2

− 𝐹𝐹𝑧𝑧
6𝑟𝑟cos𝛽𝛽

 (2) 

3 Uncertainty budget 

3.1 General considerations 
As already seen, one of the most important features of the HSM-BUS, is that, as shown by Equation (1),  
measurements of Fi can be directly related to the calibrated UFTs outputs Oi, from which the forces Fi are 
evaluated, and to the angles α, β, γ and its complementary angle δ. An a priori evaluation of the uncertainty can 
be made directly from the construction drawings, considering the geometrical tolerances. Hereafter, taking 
Equations (1) as mathematical models and considering the variabilities of all the independent variables, i.e. the 
geometry of the system and the forces measured by the UFTs, following the ISO GUM [10] the expected 
uncertainty can be evaluated. 

3.2 Valuation of the functional angles α and β 
The forces and moments measured by the HSM-BUS are a combination of the forces measured by the single 
UFTs, multiplied by sine and/or cosine of relevant angles, among which two of them, denominated α and β, can 
be obtained by the nominal dimensions on the technical drawings, and their variability from tolerances. Starting 
from the design of the upper plate, it is possible to find the distance among the axes of the two holes provided for 
the positioning of the UFT: this distance, at which we will refer as s, is equal to (467,06 ± 0,05) mm. The same 
distance, in the lower plate, from now t, is equal to (166,00 ± 0,05) mm; these two variables are well shown in 
the image below. 

 
Figure 4: front view of the HSM-BUS 



 

To complete this ideal trapezoid, it is necessary to know the length of the two oblique sides, indicated as d, which 
in this case is the length of the UFTs. The distance of the axes of the two holes in a UFT is equal to                 
(326,00 ± 0,02) mm. 

 
Figure 5: UFT dimension lines 

 

In Table 1 the sides of the ideal trapezoid, with the relevant values and tolerances, are shown. 

Table 1: sides of the ideal trapezoid 

Side Symbol Value/m Tolerance/m 
upper base s 4,6706x10-1 0,0005x10-1 
lower base t 1,6600x10-1 0,0005x10-1 

diagonal d 3,2600x10-1 0,0002x10-1 
 

To evaluate the functional angles (α and β) we can use the following equations: 

 
𝛼𝛼 = 2 ∙ sin−1 �𝑠𝑠−𝑡𝑡

2∙𝑑𝑑
�

𝛽𝛽 = cos−1�𝑠𝑠−𝑡𝑡
2∙𝑑𝑑
�

  (3) 

 

and the results are summarized in Table 2. 

Table 2: nominal values of the functional angles 

Angles Values/rad Values/° 
α 9,60x10-1 55,0 
β 1,09x100 62,5 

 

3.3 Evaluation of the contributions to the uncertainty of α and β 
Equations (3) are the mathematical model used to evaluate the contributions to the uncertainty of the functional 
angles. For each side of the ideal trapezoid, using the respective tolerance coming from Table 1, it is possible to 
evaluate the relevant standard uncertainty (considering a rectangular pdf between the ± ai), referred as u(xi) and 



then the sensibility coefficient ci, as the ratio of the incremental variations; at the end, we obtained the specific 
contribution to the standard uncertainty ui(α) and ui(β).  Table 3 and Table 4 are shown as an example of the 
calculation made to evaluate the relative standard uncertainty. 

Table 3: equivalent variance of the independent variables 

Variable Value/m ai/m u(xi)/m 
s 4,6706x10-1 5x10-5 2,89x10-5 
t 1,6600x10-1 5x10-5 2,89x10-5 
d 3,2600x10-1 2x10-5 1,15x10-5 

 

The standard uncertainty of each variable is described as a parameter of category B with cautelatively 30 degree 
of freedom. 

From the equivalent variance is possible to calculate the contribution to the standard uncertainty of the functional 
angles using the appropriate sensibility coefficients, ci. 

Table 4: calculation of the contributions to the relative standard uncertainty of the functional angles 

Variable ci(α) ui(α) ci(β) ui(β) 
s 3,5x100 9,98x10-5 -1,73x100 4,99x10-5 
t -3,5x100 9,98x10-5 1,73x100 4,99x10-5 
d -3,2x100 3,69x10-5 1,60x100 1,84x10-5 

 

In Table 5 the standard uncertainties of the functional angles α and β obtained by the above calculation are 
shown. 

Table 5: standard uncertainties of the functional angles 

Angle ufa/rad 
α 1,5x10-4 
β 7,3x10-5 

 

 

3.4 Analysis of the tolerances 
The above calculations regard only the quotes lines variation in the XY plane, supposing that all the geometry 
would be parallel (or perpendicular) to the Z-axis. Therefore, we have to investigate the effect of an undesired 
inclination, respect to the Z-axis, due to the construction tolerances of the MFT. In addition, we have to consider 
other two ideal geometrical elements: the vertical distance between the two plates, that we will call l, and the 
maximum misalignment of the face of the plates, indicated as m. They are obtained as the sum of the tolerances of 
the distances between the faces of the plates and the centre in which passes the axis of symmetry of the HSM-
BUS. All the elements necessary to our calculations are summarized in Table 6. 

Table 6: list of the ideal geometrical elements 

Variable Symbol Value/m 
vertical distance l 2,89x10-1 

maximum misalignment m 8,00x10-5 
upper base s 4,6706x10-1 
lower base t 1,6600x10-1 

 

The half widths of the functional angles (α and β) are so defined: 



 𝜌𝜌 = 1
2

tan−1 �𝑚𝑚
𝑙𝑙
�  (4) 

 

To complete the contribution to the uncertainty of the HSM-BUS geometry, we need to analyze other two 
complementary angles, γ and δ, as seen in Fig. 1; their half width is defined as: 

 𝜙𝜙 = tan−1 �𝑚𝑚
𝑡𝑡
∙ 𝑡𝑡+𝑠𝑠
𝑠𝑠−𝑡𝑡

�  (5) 
 

The values of the two half width intervals above defined are represented in Table 7. 

Table 7: half width intervals 

Angle Value/rad 
ρ 1,4x10-4 
ϕ 1,0x10-3 

 

This means that, for the two functional angles α and β, the total contribution to the uncertainty is given by: 

 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 = ��𝑢𝑢𝑓𝑓𝑓𝑓�
2

+ 𝜌𝜌2

3
  (6) 

 

and the total contributions to the uncertainty of all the four angles are: 

Table 8: total contribution to the uncertainty of the angles 

Angles utot/rad 
α 1,8x10-4 
β 1,1x10-4 
γ 1,0x10-3 
δ 1,0x10-3 

 

3.5 UFT Calibration 
The calibration of the single UFTs is one important contribution to the uncertainty budget of the HSM-BUS. The 
calibration procedure is conform to the UNI EN ISO 376 [11], and can be summarized as: 

• Two loading phases at initial position (indicated as 0°), only with incremental force values 
• Two other loading phases with relative rotation of the position (approximately 120° and 240°) with 

incremented and decremented force values 

The values obtained are then evaluated fitting the calibration data with a linear regression with equation: 

 𝑦𝑦 = 𝑎𝑎+ 𝑏𝑏× 𝑥𝑥+ 𝑐𝑐× 𝑥𝑥2 + 𝑑𝑑 × 𝑥𝑥3  (7) 
 

Every single UFT has its respective fitting equation that is used to convert the signal output into a force signal. 
Since the calibration of the UFTs are not yet done, but taking into account that for a metrological use of the MFT 
it is necessary to choose UFTs with the lower uncertainty possible, for our calculation we had considered UFTs 
classified in class 00 [11] that corresponds to a maximum relative uncertainty of 6x10-4. 



3.6 Uncertainty budget 
These calculations are made considering an unmodified geometry under loads. With all the evaluated 
contributions to the uncertainty budget, it is now possible to estimate the budget of uncertainty of the signal output 
of the HSM-BUS. We had considered the uncertainty for each type of signal output (Fz, Fx, Fy, Mz, Mx, My), but 
for simplicity we show only the estimation of uncertainty of the axial force Fz. 

From equations (1) we see that the axial force is obtained by: 

𝐹𝐹𝑧𝑧 = 𝐹𝐹1 cos�𝛼𝛼1

2
�+ 𝐹𝐹2 cos�𝛼𝛼2

2
� +𝐹𝐹3 cos�𝛼𝛼3

2
� +𝐹𝐹4 cos�𝛼𝛼4

2
� + 𝐹𝐹5 cos�𝛼𝛼5

2
�+ 𝐹𝐹6 cos�𝛼𝛼6

2
� ≅ (𝐹𝐹1 + 𝐹𝐹2 + 𝐹𝐹3 +𝐹𝐹4 + 𝐹𝐹5 + 𝐹𝐹6) cos�𝛼𝛼�

2
� (8) 

 
We can now evaluate the contributions to the relevant standard uncertainty due to the forces measured by the 
single UFTs and due to the angles, resumed in Table 9. 

Table 9: contributions to the combined relative standard uncertainty for Fz at full load 

Parameter u(xi) ci ui(Fz)/kN ui(Fz)rel 
F(1,2,3,4,5,6) 2.82x10-1 kN 8.87x10-1 2.50x10-1 5.00x10-5 

α 1.63x10-4 rad -1.30x103 2.13x10-1 4.25x10-5 
 
The contributions to the combined relative standard uncertainty have been evaluated taking into account type A 
and B standard uncertainties, and have been combined following the ISO GUM [10] guide lines. 

From the calculations, the relative expanded uncertainty of Fz is equal to 2,68x10-4. It is very important to observe 
that the contributions due to the functional angle α and to the force measurement have about the same weight into 
the expanded uncertainty budget of Fz. 

For the other two components of the force vector, we report briefly the respective calculation of the contributions 
to the relative standard uncertainty. 

Table 10: contributions to the relative standard uncertainty for Fx, evaluated at the level of 100 kN 

Parameter u(xi) ci ui(Fx)/kN ui,rel(Fx) 

Foutput(1,2,5,6) 1.88x10-2 kN 4.00x10-1 7.50x10-3 7.50x10-5 
β 5.69x10-5 rad -1.92x102 1.09x10-2 1,09x10-4 
δ 2.89x10-4 rad -5.77x101 1.67x10-2 1,67x10-4 

 
Table 11: contributions to the relative standard uncertainty for Fy, evaluated at the level of 100 kN 

Parameter u(xi) ci ui(Fy)/kN ui(Fy)rel 
Foutput(1,2,5,6) 1.08x10-2 kN -2.31x10-1 2.50x10-3 2.50x10-5 
Foutput(3,4) 2.17x10-2 kN 4.62x10-1 1.00x10-2 1.00x10-4 

β 8.04x10-5 rad -1.92x102 1.54x10-2 1.54x10-4 
γ 5.77x10-4 rad -5.77x101 2.36x10-2 2.36x10-4 

 

In these cases, we can observe that the most significant contributions to the expanded uncertainty are coming from 
the angles, especially from the complementary ones (δ and γ). As the same way for the force vector, we have 
evaluated the uncertainty of the components of the moment vectors; below are briefly shown the calculation of the 
contributions to the relative standard uncertainty. 

Table 12: contributions to relative standard uncertainty for Mz, evaluated at the level of 100 kN·m and full load for Fz  

Parameter u(xi) ci ui(Mz)/kN∙m ui(Mz) 



Foutput(1,3,5) 3.32x10-1 kN 9.93x10-2 3.30x10-2 3.30x10-4 
Foutput(2,4,6) 2.31x10-1 kN -9.93x10-2 2.30x10-2 2.30x10-4 

r 2.89x10-5 m 4.65x102 1.34x10-2 1.34x10-4 
β 4.64x10-5 rad -1.92x102 8.92x10-3 8.92x10-5 

 
Table 13: contributions to the relative standard uncertainty for Mx, evaluated at the level of 100 kN·m and full load for Fz 

Parameter u(xi) ci ui(Mx)/kN∙m ui(Mx) 
Foutput(1,2) 3.27x10-1 kN 1.65x10-1 5.40x10-2 5.40x10-4 
Foutput(5,6) 2.36x10-1 kN -1.65x10-1 3.90x10-2 3.90x10-4 

r 1.44x10-5 m 4.65x102 6.71x10-3 6.71x10-5 
α 8.69x10-5 rad -2.60x101 2.33x10-3 2.33x10-5 
δ 2.89x10-4 rad -5.77x101 1.67x10-2 1.67x10-4 

 
Table 14: contributions to the relative standard uncertainty for My, evaluated at the level of 100 kN·m and full load for Fz 

Parameter u(xi) ci ui(My) /kN∙m ui(My) 
Foutput(1,2,5,6) 3.08x10-1 kN 9.54x10-2 2.94x10-2 2.94x10-4 
Foutput(3,4) 2.29x10-1 kN -1.91x10-1 4.38x10-2 4.38x10-4 

r 2.04x10-5 m 4.65x102 9.49x10-3 9.49x10-5 
α 1.27x10-4 rad -2.60x101 3.30x10-3 3.30x10-5 
δ 4.08x10-4 rad 6.78x102 2.77x10-1 2.77x10-3 

 

Now we can show the uncertainty for each component of the force vector and of the moment vector: 

Table 15: relative expanded uncertainty of the force and moment components 

Component U(y) 

Fz 2,56x10-4 
Fx 5,09x10-4 
Fy 6,52x10-4 
Mz 1,46x10-3 
Mx 1,96x10-3 
My 5,92x10-3 

4 Data simulation 

4.1 Introduction 
We have theorized that the application of the loads does not affect the geometry of the system. In the last part of 
our analysis, simulating the HSM-BUS under loads, we have verified the amplitude of these variations in order to 
evaluate if they are significant or negligible. 

In the previous paragraphs it was discussed how, during the entire loading process, the single UFT needs to 
modify the initial angles, so it is necessary to verify how much these angle variations are and in which term they 
modify the force measurements. With the use of a FEM simulation, we have studied the variation of the position 
of the HSM-BUS elements in the space, in order to evaluate the different angle values during the loading process. 

4.2 Angle values evaluation 
The measure of the angle under the load application can be obtained from simple geometrical calculation. We 
have simulated the deformation of the system at seven different loads and we focused our attention on two points, 
A and B, as shown in figure 6. 



 

Figure 6: The imaginary triangle created by points A and B. 

 

These two points create an imaginary triangle, so the angle η, i.e. the complementary angle of β and equal to 
α/2, can be obtained from the variations on Z-direction and X-direction using the equation (9). 

 𝜂𝜂 = cos−1�𝑏𝑏
′

𝑐𝑐′
� = cos−1 � 𝑏𝑏+𝛿𝛿𝛿𝛿

�(𝑏𝑏+𝛿𝛿𝛿𝛿)2+(𝑎𝑎+𝛿𝛿𝛿𝛿)2
�  (9) 

 

Thanks to the orientation of the hexapod in the coordinates system, the variation on the Y-direction does not 
influence the angle η, so we can easily neglect it.  

4.3 First simulation 
In order to simplify the model, in our first simulation, we neglected also the variation on the X-direction, so (9) 
became: 

 𝜂𝜂 = cos−1�𝑏𝑏
′

𝑐𝑐′
� ∼ cos−1� 𝑏𝑏+𝛿𝛿𝛿𝛿

�(𝑏𝑏+𝛿𝛿𝛿𝛿)2+𝑎𝑎2
�  (10) 

 

and we obtain the values in Table 16. 

Table 16: Angle values simulated under load 

Force/kN δA/mm δB/mm cos η α/° 
  200 -0,029 -0,040 0,88706 54,99 
  500 -0,073 -0,100 0,88707 54,99 
1000 -0,145 -0,201 0,88709 54,98 
2000 -0,290 -0,402 0,88712 54,97 
3000 -0,435 -0,602 0,88716 54,96 
4000 -0,580 -0,803 0,88720 54,95 
5000 -0,725 -1,004 0,88723 54,95 

 

At this point, we compare the difference on the force calculated with the theoretical angle (55°) and with the 
simulated ones, obtaining the results in Table 17. 

  



Table 17: Theoretical values vs. simulated values of the force 

Theor. force/kN Theor. α/° Simul. α/° Sim. force/kN Rel. diff. Δ 
  200 55 54,99   199,99 5,1x10-5 
  500 55 54,99   499,97 6,3x10-5 
1000 55 54,98   999,92 8,4x10-5 
2000 55 54,97 1999,75 1,3x10-4 
3000 55 54,96 2999,50 1,7x10-4 
4000 55 54,95 3999,17 2,1x10-4 
5000 55 54,95 4998,76 2,5x10-4 

 

The relative differences, i.e. the possible errors generated by the deformation of HSM-BUS under load, resulting 
from the above calculation are significant considering the use of MTF for our applications. Therefore, we have 
investigated the possibility to modify our equations taking into account the variation of the angle values under 
load. Therefore, we have calculated a first order polynomial interpolated equation (11) through a linear regression 
of the simulated values, i.e. 

 2𝜂𝜂 = 𝑎𝑎 + 𝑏𝑏 · 𝐹𝐹  (11) 
 

where a = 54,99056(±0,00003) and b = -9,05(±0,01)x10-6. 

Now, the comparison of the theoretical force with the simulated and corrected ones gives us the results shown in 
Table 18. 

Table 18: Simulated values vs. corrected values 

Theor. force/kN Simul. α/° Corr. α/° Corr. force/kN Rel. diff., Δsim Rel. diff., Δcorr 
  200 54,98875 54,9887   200,000003 5,1x10-5 -1,3x10-8 
  500 54,98603 54,9860   499,999981 6,3x10-5   3,8x10-8 
1000 54,98150 54,9815   999,999941 8,4x10-5   5,9x10-8 
2000 54,97247 54,9725 1999,999966 1,3x10-4   1,7x10-8 
3000 54,96346 54,9634 3000,000552 1,7x10-4 -1,8x10-7 
4000 54,95439 54,9544 4000,000119 2,1x10-4 -3,0x10-8 
5000 54,94531 54,9453 4999,999439 2,5x10-4   1,1x10-7 

 

It is easy to see that this correction theoretically allow reducing at a negligible level the expected errors due to 
mechanical distortions. 

4.4 Final simulation 
At this point, we have verified if it is correct to neglect the effect on the angle values given by the variation on the 
X-direction. Therefore, at the load of 5 MN, we have compared the theoretical force with the simulated forces 
derived from the angle η computed using the equations (9) and (10). As results, we have obtained significant 
differences in the results, showing that the effect of the position variation on the X-direction cannot be neglected. 
Therefore, we have recalculated all the angle values taking into account both the Z-direction as the X-direction 
variations. The difference on the angle values are shown in figure 9. 



 
Figure 7: Angle values calculated with x variable (equation 10) and constant (equation 9). 

 

As before, we calculated a fitting curve using a linear regression of all the angle values simulated in order to 
provide the angle values for all possible loads conditions, obtaining a nearly linear pattern of the values, as shown 
in Table 19: 

Table 19: Simulated values vs corrected values 

Theor. force/kN Simul. α/° Calc. α/° Calc. force/kN Rel. Diff., Δcorr 
  200 54,98815 54,9881 199,989 -3,9x10-8 
  500 54,98455 54,9845 499,965 -2,2x10-8 
1000 54,97852 54,9785 999,902   6,2x10-8 
2000 54,96651 54,9665 1999,696   7,2x10-8 
3000 54,95455 54,9545 2999,381 -1,5x10-7 
4000 54,94248 54,9425 3998,956   1,2x10-7 
5000 54,93051 54,9305 4998,423 -4,5x10-8 

5 Final uncertainty budget 

5.1 Enhanced mathematical model 
From the previous calculation, we have seen that it is necessary to take into account a correction Δα to the 
functional angle α and that the model considering the variation into the two directions X and Z is the best. This 
correction, as a function of the applied nominal force F, is described by: 

 Δ𝛼𝛼 = 𝑎𝑎 + 𝑏𝑏 ∙ 𝐹𝐹  (12) 
 

and has the following parameter: 

Table 20: Parameter of the correction Δα 

Parameter Value u(xi) 
a -9,45x10-3 ° 1,39x10-5 ° 
b -1,20x10-5 °/kN 4,94x10-9 °/kN 

 

The functional angle α presents in equations (1) must be corrected as α +∆α. 

5.2 Enhanced uncertainty budget 
Now we have to verify if it necessary to re-evaluate the uncertainty on the force and moment components, since 
there is a new contribution to take into account. As an example, we have done the calculation on the expanded 
uncertainty of Fz, which is obtained modifying equations (1) with equation (12): 
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 𝐹𝐹𝑧𝑧 = (𝐹𝐹1 + 𝐹𝐹2 + 𝐹𝐹3 + 𝐹𝐹4 + 𝐹𝐹5 + 𝐹𝐹6) cos �𝛼𝛼+Δ𝛼𝛼

2
�  (13) 

 

The contributions to the relative standard uncertainty are shown below: 

Table 21: contributions to the relative standard uncertainty 

Parameter u(xi) ci ui(Fz) 
Foutput 5,64x10-5   8,87x10-1 5,00x10-5 

a 2,78x10-9 -2,27x101 6,30x10-8 
b  9,88x10-13 -1,13x105 1,12x10-7 
F 4,78x10-8   2,72x10-4  1,30x10-11 
α 3,59x10-8 -1,30x103 4,66x10-5 

 

As can be easily seen, the contributions to the uncertainty budget due to the correctional factor are much lower 
than others higher contributions, so they do not increase significantly the total uncertainty. 

5.3 Possible enhancements of the uncertainty budget 
The calculation seen above are referred to the tolerances given in the technical drawing. Therefore, the uncertainty 
can be reduced by measuring accurately the real geometry and using UFTs with a lower uncertainty. The goal of 
the project is to use the new 5 MN MFT as a 5 MN force reference transducer with internal traceability, for 
replacing the present one, which must be calibrated externally and has a uncertainty of 5x10-4. To reach this level 
of uncertainty, is possible to use UFTs in class 00 [11], that allows a maximum expanded uncertainty of 6x10-4, 
that would lead a relative uncertainty of 2,7x10-4 on the axial force output (Fz). 

6 CONCLUSIONS 
The 5 MN Hexapod-Shaped Multicomponent Build-Up System (HSM-BUS) can represent a calculated standard, 
taking traceability within INRIM force laboratory. From the present study result possible to obtain the required 
measurement accuracy with the proposed HSM-BUS just using the geometrical tolerances prescribed for the 
mechanical construction. Being the angle effects the main contributions to uncertainty, it is necessary a high level, 
metrological measurement of the geometry of the system to enhance the accuracy. The use of UFTs in class 00 
[11] can also help. 

The simulation of the HSM-BUS behaviors under load had shown the necessity to estimate the variation of the 
functional angle α for each UFT. It can be a source of a significant error and shall be taken into account in the 
calculation process.  

The metrological characterization of the new 5MN HSM-BUS is obtained by three different procedures, i.e. the 
calibration of each UFT, the measurement of the system geometry and the evaluation of the functional angle α 
under load. 

The next step will be the realisation of the new 5 MN HSM-BUS and the its comparison with the actual 5 MN 
uniaxial force reference transducer. 
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