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Abstract: In water-window soft x-ray microscopy the studied object is 
typically larger than the depth of focus and the sample illumination is often 
partially coherent. This blurs out-of-focus features and may introduce 
considerable fringing. Understanding the influence of these phenomena on 
the image formation is therefore important when interpreting experimental 
data. Here we present a wave-propagation model operating in 3D for 
simulating the image formation of thick objects in partially coherent soft x-
ray microscopes. The model is compared with present simulation methods 
as well as with experiments. The results show that our model predicts the 
image formation of transmission soft x-ray microscopes more accurately 
than previous models. 
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1. Introduction 

Water-window soft x-ray microscopy allows imaging of intact cells in their near-native 
“hydrated” state with nanoscale resolution [1]. However, the formation of the 2D images as 
well as their use in 3D tomographic reconstructions is not uncomplicated, primarily for two 
reasons: the depth of focus in these lens-based microscopes is typically smaller than the 
sample and the sample illumination is often partially coherent. Accurate description of the 
image formation process shows promise to alleviate this problem but previous 
computationally feasible models for thick objects are limited to 2D computations or 
incoherent imaging. Here we present an improved model for partially coherent microscopes 
based on 3D wave propagation and show that this model provides a superior description of 
the image formation. 

Soft x-ray microscopes (XRM:s) operating in the water window exploit the natural 
contrast between carbon and oxygen in the E = 284-543 eV energy region (λ = 4.37-2.29 nm) 
and rely on zone-plate optics for the high-resolution imaging. XRM:s are operated at several 
synchrotron sources [2, 3] and laboratory-source-based microscopes are emerging [4]. The 
primary advantage of XRM:s is their unique ability to image the intracellular structure of 
whole intact cells, in 2D as well as in 3D via tomographic reconstruction. The last few years 
synchrotron-based microscopy has demonstrated significant progress and is now delivering 
results of high biological relevance [5, 6]. The challenge in XRM imaging is that the depth of 
focus (DOF) depends on the wavelength (λ) and numerical aperture of the zone plate 
objective (NAzp) as λ/NAzp

2 [7], which does typically not extend through the whole specimen 
so that only part of the sample volume is imaged sharply. Furthermore, the illuminating 
condenser systems often have a smaller NA (NAill) than the zone-plate, resulting in a 
coherence parameter [8], m = NAill/NAzp smaller than 1, i.e. partially coherent illumination. 
Such partially coherent illumination is often advantageous since it provides higher contrast 
for higher-spatial-frequency details [6]. However, the combination of partially coherent 
illumination with part of the sample volume being outside the DOF can introduce non-trivial 
defocus-effects to the image, which, in turn, may cause non-obvious artifacts in the 3D 
reconstruction if not taken into proper consideration. The magnitude of these effects is sample 
dependent, where images of small and/or weakly scattering samples are less influenced while 
large and/or strongly scattering samples may produce significant imaging artifacts. With 
improved optics having higher numerical apertures the problem worsens, since the DOF is 
inversely proportional to the square of NAzp. Typically, state-of-the-art nanofabrication can 
facilitate zone plates that allow imaging down to 10 nm for thin objects but their DOF is short 
[9]. 

The complicated image formation process calls for a model that properly describes the 
resulting image. The purpose of the model is to make better use of resolution and contrast in 
2D and 3D imaging by an improved understanding of the effects of defocus and the 
illumination settings. Transmission soft x-ray microscopes have been modelled previously, 
both for incoherent and partially coherent illumination. For partially coherent illumination 
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Schneider modelled the image formation of thin objects, providing numerical solutions to 1D 
objects [10]. Von Hofsten et al extended this method to 2D numerical calculations [11]. For 
3D samples, Knöchel applied the methodology of Streibl [12] to x-ray microscopy [13]. 
However, this model is less applicable to thick 3D objects since it assumes weakly scattering 
objects (1st Born approx.) [14] and the numerical implementation for typical XRM objects 
would be computationally very demanding. Bertilson et al extended the partially coherent 
illumination model of [11] to thick objects by propagating the electric field through the 
object, but with a 2D treatment of the wave-propagation process [15]. Oton et al studied the 
image formation process in the incoherent case for a thick 3D object subject to a point spread 
function [16]. 

In the present paper we describe a 3D wave-propagation-based model for simulating the 
image formation process in partially coherent XRM:s with thick 3D objects. The model takes 
into account relevant parameters of the illumination, the object and the objective. We 
compare our 3D model with the two computationally feasible thick-object 3D models [15, 16] 
as well as with experiments and conclude that it provides an improved description the 
imaging formation in partially coherent x-ray microscopes. Such improved modelling can 
assist in optimizing experimental parameters in soft x-ray microscopes, contribute to 
improved qualitative interpretation of image data, and, potentially, allow retrieval of 
quantitative data for, e.g., tomographic reconstruction. 

2. Theoretical background 

Figure 1 illustrates the principal experimental arrangement for present operational soft x-ray 
microscopes. Here the object is illuminated by condenser optics, which images the x-ray 
source onto the object plane. The x-rays are absorbed and scattered by the object and 
collected by zone-plate optics which forms the intensity image in the detector plane. It is the 
task of any image formation model to predict this signal given the object and the microscope 
parameters. 

2.1 Projection-based models 

In the simplest model for thick objects it is assumed that the image intensity at the detector 
ID(Mx,My) is formed by rays travelling parallel with the optical axis. Each ray carries an 
intensity I(x,y,za) which is attenuated by the local absorption µ(x,y,z) of the object following 
Beer-Lambert's law 

 ( ) ( )2
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, , , exp ( , , ) ,

b

a

z
D

a

z

I Mx My I x y z x y z dz
M

μ
 

= × − 
  
  (1) 

where M is the magnification, and za and zb define a range outside of which µ(x,y,z) equals 0. 
The projection-based model is simple and applicable where the wave-nature of the light can 
be ignored and the whole object is inside the depth of focus. These are valid assumptions 
when the blur is negligible, e.g., in classical lens-less projection imaging and in low-
resolution microscopy, but are generally not applicable for soft x-ray microscopy, where the 
optics introduce a resolution limit as well as a limited DOF. Furthermore the projection-based 
model does not include the effects of coherence in the illumination, which has been shown to 
have significant influence on the image formation [15]. 

2.2 Point-spread-function-enhanced projection models 

In the point-spread-function-enhanced projection methods the modelling of the imaging 
system is improved by including a defocus-dependent point spread function (PSF). The 
method was first introduced for soft x-ray microscopy by Oton et al [16]. In their 
interpretation, hereafter referred to as the PSF-enhanced method, the intensity ID(Mx,My) at 
the detector plane is given by (in our notation), 
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where Izi(Mx,My) is the intensity image without an object at the detector, za and zb are z-
positions before and after the object, µ is the object’s local absorption, h is the PSF and D(z) 
is the amount of defocus at z. The PSF-enhanced method has the advantage of being analytic, 
albeit only for special cases such as where the PSF is constant in the z-direction or the object 
is considered thin in comparison with the DOF. In the present paper we compare our 3D 
wave-propagation model (Sect. 3) with a numerical version of the PSF-enhanced method with 
a z-dependent PSF. 

3. 3D wave-propagation model 

Our image formation model consists of the three steps illustrated in Fig. 1: decomposition of 
the illumination into plane waves, propagation of each plane wave through the object, and 
imaging by the objective. As is common practice, we assume that scalar theory is applicable 
[11, 15–18]. Also, since the bandwidth of XRM:s is typically small, the first two calculation 
steps are performed monochromatically with wavelength λ0, since the effect of a typical 
experimental bandwidth would only be noticeable in the imaging step. The model is an 
extension of the numerical model of Bertilson et al [15], hereafter referred to as the 2D wave-
propagation model. The major difference is that in our model all calculation tasks are 
performed in 3D, while the model of [15] is limited to 2D in the computationally intense 
wave-propagation step. 

 

Fig. 1. Schematic representation of the simulation model. The illumination is decomposed to 
plane waves that are individually defined by their wave vector k. In the wave propagation step 
the electric field Ek is propagated forward in the z-direction for each incident plane wave 
Ek(za). In the imaging step the output Ek(zb) from the wave propagation step is imaged 
coherently using fourier optics methods to the detector plane. The final partially coherent 
image is formed by taking the sum over all coherent images weighted with the illumination 
intensity. 

3.1 Illumination 

XRM:s have different condenser schemes (zone plates, capillary optics, normal incidence 
mirrors etc.) to collect the light and illuminate the object. Following [10] and [11] our model 
assumes that the condenser illumination consists of secondary source points. Each source 
point independently produces an electric field Ek, resulting in a plane wave with wave vector 
k, which is directed from the source point to the object and has the magnitude k0 = 2π/λ0. This 
method is applicable to any of present condenser schemes. Assuming quasi-
monochromaticity, it is convenient to decouple the stationary envelope uk from the fast 
harmonic space-and-time dependent oscillations Ek as 

 ( )0 0( , ) exp ( ) ( ),E t E j k z t uω= ⋅ − ⋅k k kr r  (3) 
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where j is the imaginary unit and ω = 2πc/λ0 is the angular frequency. At the input plane z = za 
of the wave-propagation step, the stationary envelope is uk(x,y,z = za) = exp(j(kxx + kyy)) for 
the plane wave with wave vector k = (kx,ky,kz). 

3.2 Propagation through the sample 

The modelling of the propagation through the sample is based on the parabolic wave equation 
(PWE) [17]. In addition to scalar theory and quasi-monochromaticity, we assume that the 
medium has no free charges and is isotropic and non-dispersive. These are the same 
assumptions and approximations as are made in Fourier-optics theory [18] and also by 
previous models of XRM image formation [11, 15–17]. For each plane wave incident on the 
sample volume the PWE is solved in the form 

 ( )
0

2 2
, 0 ,

2 x y

u j
u

z
k

k
χ∂ = +

∂
∇  (4) 

where χ is the space-dependent complex electric susceptibility of the object. The plane-wave 
illumination defines the boundary condition at z = za. At the x and y boundaries of the 
calculation volume, we employ the transparent boundary condition (TBC) [19], which allows 
energy to flow out but not to be reflected. 

Equation (4) is solved numerically to obtain the electric field at the z = zb-plane. The 
solution is calculated using the finite differential method (FDM) with the 4th order Runge-
Kutta (RK4) implementation [20]. In each iteration the solution un to the PWE is advanced 
with a step size ∆z in the z-direction as 

 1
1 1 2 3 46 ( 2 2 ) ,n n nu u k k k k TBC+ = + + + + +  (5) 

where k1 - k4 are intermediate evaluations of ∂u/∂z, n is the iteration step, and TBCn is a term 
that manipulates the border elements in order to apply the transparent boundary condition. 
Defining f(u,z) = ∂u/∂z, k1 - k4 are calculated as 

 1 3 22 2

2 1 4 32 2

( , ) ( , )
,

( , ) ( , )

z z
n n n n

z z
n n n n

k f z u k f z u k

k f z u k k f z z u zk

Δ Δ

Δ Δ

= = + +
= + + = + Δ + Δ

 (6) 

The explicit RK4 method is chosen in favor of an implicit method such as the Crank-
Nicholson method used in the 2D wave-propagation method [15]. Implicit methods normally 
have the advantage of higher numerical stability and accuracy, but require that a linear 
equation system is solved in each propagation step, resulting in long computational times. A 
general linear equation system may be written Ay = x, where A is an N × N band matrix, y and 
x are vectors of length N, and N is the number of elements in un. Solving that equation system 
requires O(N × B2) operations [21], where B is the bandwidth (the width of the tightest 
diagonal band that contain all non-zero elements) of A. For the 2D case, where un is an M-
element vector, A will be a tridiagonal (i.e., bandwidth B = 3) matrix with N = M. The number 
of operations required to solve that system is thus O(N × 32) = O(N), which has proven itself 
to be a manageable complexity given the problem size in many calculation tasks [15, 22]. For 
the 3D case, where un is an M × M matrix, A will increase in size to N = M2. In addition A will 
have two additional diagonals with non-zero elements at offset ± M from the main diagonal 
that represent how the PWE now imposes coupling along an additional dimension. Thus, the 
bandwidth B in that case equals 2M + 1, which yields a complexity O(N × (2M + 1)2) = O(N × 
M2) = O(N2) on the number of operations required to solve the equation system. Both the 
increase in the size of the data set (from N = M to N = M2) and the higher order in complexity 
(from O(N) to O(N2)) results in a calculation time that makes it infeasible to solve the PWE 
using an implicit method for the problem sizes considered in this work. 
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The RK4-method performs a fixed number of operations for each element in un at each 
propagation step, yielding the complexity O(N) on the number of operations per propagation 
step. With this the PWE is solvable with a reasonable amount of computational time, despite 
the increase from M to M2 in the data set size. Finally, we note that we do not observe any 
unstable behavior for this method and that the step size can be determined by the desired 
sampling in the z-direction rather than by stability issues. 

3.3 Imaging by objective 

The electric field from each illumination direction that exits the object at z = zb is 
independently imaged coherently by the objective as described in [18]. In short, the electric 
field ED,k that would be at the detector with no other contributions to the illumination than the 
illumination point with wave vector k is given by the electric field after the wave-propagation 
(Ek(zb) = Ek0 u

k(zb)) filtered by an aperture function A and magnified with a factor M as 

 { }{ }0 0
11

(( ,, ) ( , ) )bMx My E K Mx MyE u z A
M

E −== × D,k k k k k  (7) 

where Kk is the transmission function defined by the combined action of the object and the 
objective on the plane wave originating from the condenser with unit strength and wave 
vector k, and  is the fourier transform. The aperture function takes into account the zone 

plate’s numerical aperture (NAzp) and the defocus (∆f) relative zb via 
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where νx and νy are the spatial frequencies, and f is the focal length of the zone plate. The 
final intensity image at the detector ID is the incoherent sum of the electric field resulting 
from each illumination point, 

 
2

0 ,DI I K= k k
k

 (9) 

where I0
k = |E0

k|2 defines the intensity distribution of the plane waves incident on the object. 
With Eq. (9) the image formation can be calculated for all intensity distributions of the 
condenser illumination where the condenser is incoherently illuminated. In particular an 
arbitrary NAill is set by defining a circularly symmetric illumination shape where the largest 
angle of incidence is arcsin(NAill). Thus, the degree of partial coherence characterized by the 
coherence parameter m can be set arbitrarily. For a more general treatment of partial 
coherence that also includes the degree of coherence at the condenser we refer to the 
appendix. However, for transmission x-ray microscopes this effect is small and, thus, not 
included in the present work. Further possible refinements to our model include relaxing the 
monochromaticity condition to a narrow-bandwidth illumination condition in a similar 
manner as in [15], and adapting the aperture function to take into account arbitrary 
aberrations of the optics in addition to the defocus considered here. 

3.4 Computational issues 

To speed up the calculations and have better control of the memory usage the algorithm was 
implemented in C/C++ , instead of in an interpreted language. The time requirement on a 
standard desktop computer when simulating the image formation of a 10 µm × 10 µm × 10 
µm object with 10 nm sampling is typically 1 minute/illumination point. We have so far used 
~200 illumination points, giving a total time of about 3 h for a full simulation. Note that in a 
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typical simulation task the majority of the time is spent on the wave-propagation step. This 
step, however, normally only needs to be performed once for any given object. After the first 
computation the image formation for that object can be quickly reevaluated with different 
microscope parameters. 

All parts of the simulation are accessed through a graphical user interface which provides 
an overview over all available XRM parameters. This simplifies the setup of the simulation 
task. The graphical user interface also aids in the design of realistic phantoms with detail and 
complexity that would otherwise not be manageable. 

Finally, we note that the code can be run as a batch job, allowing it to be processed in 
parallel on a computer cluster. The parallel computing is especially suited for generating a 
full tomographic data set in the same time as it would take to generate the data for a single 
sample orientation. 

4. Results and discussion 

Here we first compare our 3D wave-propagation model with previous models in order to 
assure consistency as well as to identify where the results of the 3D-model differs from 
previous models. Secondly, we compare the models with experiments. It is concluded that our 
3D model provides a significantly improved description of the image formation. 

4.1 Comparison with previous models 

For a quantitative comparison with previous models we simulated the XRM image formation 
with the same basic phantom as object. We used the 2D phantom that was employed in [15] 
(Fig. 2(a)) and extended it to “extended 2D” (Fig. 2(b)) and “full 3D” (Fig. 2(c)) phantoms. 
The phantoms are made of mylar discs (Fig. 2(a)), cylinders (Fig. 2(b)) and spheres (Fig. 
2(c)) with diameters ranging from 66 nm to 280 nm and concentration ranging from 100% to 
78%. The mylar features were placed in a water-containing 5-µm diameter 170-nm thick 
cylindrical shell with 6.3% mylar concentration, and it was furthermore assumed that the 5-
µm diameter phantoms were embedded in a 10-µm thick water/amorphous-ice layer. 

The simulations were performed with the same microscope parameters as in the aperture 
matched (m = 1) case in [15]: λ = 2.48 nm, zone plate outermost zone width 30 nm, and 
condenser NA 0.04; parameters corresponding to the Stockholm laboratory microscope [23]. 
For each simulation a focus series from −9 µm to +9 µm was produced. Figure 2(d) shows the 
result of the 2D wave-propagation model [15] and Figs. 2(e) and 2(f) show the same focus 
series for our model in the x = 0-plane on the extended 2D cylinder phantom and the full 3D 
sphere phantom, respectively. Finally the PSF-enhanced method [16] was applied to the full 
3D phantom. Here we follow [16] by using the defocus dependent PSF of an ideal lens with 
the same NA as the zone-plate optics. Figure 2(g) shows the resulting focus series in the x = 
0-plane. 

Already a visual inspection of the focus series in Figs. 2(d)-2(g) provides valuable 
qualitative information. The similarity of Figs. 2(d) and 2(e) indicates that the difference in 
numerical method between [15] and our model does not influence the result. Comparing Fig. 
2(f) with 2(e), however, shows significant differences, indicating that the 2D or extended-2D 
calculations do not provide a sufficient description of the image formation for full 3D objects. 
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Fig. 2. Comparison of computational models. (a) shows the original 2D phantom of [15] with 
mylar discs, (b) shows the extended 2D phantom with cylinders, and (c) shows the full 3D 
phantom with mylar spheres. (d) depicts the result of a defocus series when the algorithm of 
[15] is applied to the original 2D phantom. (e) shows the defocus-dependent intensity at x = 0 
when the present 3D model is applied to the extended 2D phantom. In (f) the same calculation 
is performed for the full 3D object, indicating significant differences compared to the 2D 
cases. For comparison, the method of [16] is applied to the full 3D phantom and plotted at x = 
0 in (g). Finally, in (h) and (j) the four methods are compared quantitatively. The magenta lines 
in (h) shows how the intensity varies in the center of a mylar feature as a function of defocus, 
while the blue, green and red in (i) are y-profiles at different defocus positions. “Normalized 
intensity” here refers to the ratio between the image intensity with and without object in the 
calculation volume. 

For a more quantitative comparison the intensity was plotted along different lines (Figs. 
2(h) and 2(i)). Figure 2(h) depicts the quantitative intensity as a function of defocus, along the 
magenta-colored lines which pass through one of the mylar features. Following the qualitative 
observations above, we note also an excellent quantitative agreement between the 2D wave-
propagation method [15] and our method on the extended 2D phantom. As expected, the 
quantitative differences for the full 3D-phantom are larger, yielding a significantly shorter 
DOF for the mylar feature of interest. The PSF-enhanced method [16] exhibit a larger 
modulation in the intensity than the other methods. Figure 2(i) shows quantitative intensity 
profiles in the y-direction at three defocus positions given by the blue, green and red lines. 
Also here our method, when used on the extended 2D object, shows good agreement with 
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[15], while the perturbations decay significantly faster with out of focus position when the 
full 3D object is used. The PSF-enhanced method again results in a higher modulation in the 
intensity plots. 

We believe that the differences between the PSF-enhanced method and our 3D method are 
due to contradictory assumptions in [16]. The general theoretical framework of the PSF-
enhanced method is based upon the image formation process being incoherent, but Eq. (5) in 
[16] implicitly makes the assumption that the electrical field only propagates parallel to the 
optical axis. Consequently, in this step the image formation process is treated as fully 
coherent since the illumination cone would be infinitesimal (NAill = 0). 

4.2 Comparison with experiment 

Finally we compare the computational methods with experiments. The experiments were 
performed at the TXM-U41 beamline at HZB Berlin [2]. As test objects we used the silica-
rich frustules of diatoms, since they have the size of a typical mammalian cell as well as a 
rich 3D structure with high spatial frequencies. The frustules were prepared from a sample of 
mixed freshwater diatoms and placed on ordinary TEM grids. The XRM imaging was 
performed at 510 eV (λ = 2.4 nm) with a 40 nm zone plate, yielding the numerical aperture 
NAzp = 0.03 for the zone plate. The DOF is 2.7 µm while the size of the object was 14 µm. 

The numerical aperture of the illumination is NAill = 0.02, resulting in a clearly partially 
coherent imaging case since the coherence parameter m = NAill/NAzp = 0.67 is well below the 
limit m = 1 where the imaging can be considered incoherent. To allow for a proper 
comparison with simulations the actual intensity distribution in the hollow cone illumination 
was measured. Figure 3 shows the measured brightness from the HZB-TXM capillary 
condenser. 

 

Fig. 3. Measured brightness after the capillary condenser and the central stop at the XRM at 
HZB. The areas outside of the dashed line were outside the field of view during the 
measurement and their contents have been extrapolated. θx and θy are the angles the 
illumination makes with the optical axis in the x- and y-direction. 

Figure 4(a) shows images of two overlapping frustules with different defocus (−5, 0, and 
+5 µm). The effect of a limited DOF in combination with the partially coherent illumination 
is obvious, especially at the pores which exhibit significant fringing. 
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Fig. 4. (a) Experimentally acquired images on two overlapping diatom frustules for defocus 
position: −5, 0 and +5 µm. The red rectangles indicate the pore which is studied in greater 
detail in Fig. 5. (b) Renderings of a phantom designed to have similar coarse and fine structure 
and material composition as part of the frustule-pair used in the experiments. (c) Images from 
simulations of the image formation using our 3D wave-propagation model. 

The second step was to develop a phantom similar to the frustule-pair that could be used 
in the computational models. For this purpose we recorded a full tomographic data set at z = 0 
defocus of the frustule-pair and performed a tomographic reconstruction using weighted 
back-projection assuming there was no DOF problem. This reconstructed volume was 
combined with a priori knowledge about diatom frustules and electron-microscopy images of 
detailed substructures in frustules of the same species to define a similar (in structure and 
material composition) 3D phantom. Figure 4(b) shows the result. The 3D phantom was then 
used as an object in our wave-propagation model, with microscope parameters identical to the 
values used in the experiment and an illumination equal to the measured brightness (Fig. 3). 
Figure 4(c) shows the resulting images from this simulation at defocus positions −5, 0, and  
+5 µm. 
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The qualitative agreement between the experimental images of Fig. 4(a) and the 
corresponding simulation of Fig. 4(c) is excellent. In the experimental data as well as in the 
simulated data different parts of the object move in and out of focus at different defocus 
positions. This is consistent with the 2.7 µm DOF. Furthermore we observe considerable 
fringing at the parts of the object that are out-of-focus. This is especially visible at the high-
spatial-frequency structures like the pores. 

 

Fig. 5. Focus series of a pore in the diatom frustule from the experimental data (a) and our 3D 
wave-propagation method’s simulation of the same pore (b). (c) shows the simulated focus 
series of the pore using the PSF-enhanced method and (d) shows it using ideal projections. 
Note that the defocus is relative to the diatom center and not the pore, which is why the more 
focused images are found at the more negative defocus positions. 

In Fig. 5 we make a detailed comparison between the experimentally observed intensity 
pattern from a 120 nm pore and the results from different computational models that allow 3D 
modelling. Figure 5(a) shows the detailed experimental focus series of the 120 nm diam pore 
which is marked by rectangles in Fig. 4(a). Figure 5(b) shows the result of our present 3D 
wave-propagation model. It provides reasonably similar intensity pattern also at this very 
detailed level. For comparison we include results from the PSF-enhanced method [16] (Fig. 
5(c)) as well as the ideal projection method (Fig. 5(d)). It is clear that ideal projections (Fig. 
5(d)) provide images very far from experiment. The focus series from the PSF-enhanced 
method [16] in Fig. 5(c) improves the situation but still falls short of a proper description of 
the fringing. 

5. Conclusion 

We have presented a 3D simulation model based on wave-propagation for the image 
formation in soft x-ray microscopes operating, e.g., in the water window. The key difficulties 
are the limited depth of focus and the partially coherent illumination of these microscopes. 
Our method is benchmarked against previous image-formation models by comparative 
simulations on similar phantoms. Furthermore, the method is compared with actual 
experimental images of diatom frustules measured at the HZB-TXM. 

The 3D wave-propagation model shows excellent agreement with the previous 2D wave-
propagation model when the object has 2D geometry, indicating that the computationally 
effective Runge Kutta algorithm implemented here performs equally well as the implicit 
method used before. However, the discrepancy compared with a simulation performed on a 
3D object demonstrates the necessity for a model operating in 3D. When comparing the 
results from different simulation methods with the actual experimental XRM images, our 
method produced the most accurate predictions of the image formation. For clarity we have 
used strongly scattering objects in this demonstration. 
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The 3D wave-propagation method presented here provides an improved and more 
complete understanding of the image formation in transmission soft x-ray microscopes than 
previous models. This shows promise for several important applications. Parallel modelling 
and experiments will allow for a reduced ambiguity in the interpretation of experimental 
images. In addition, by modelling an experiment before the actual experiment, data 
acquisition parameters and illumination properties can be chosen for optimal results. In the 
future, we plan to include the model in an iterative 3D tomographic reconstruction algorithm 
to improve the results of such 3D imaging. 

Appendix 

Here we extend the theoretical model leading to Eq. (9) to include also partial coherent 
illumination of the condenser. For this general treatment of partial coherence we follow the 
theory of [8]. Under the assumption that the time delay between interfering beams is small the 
mutual intensity J(P1,P2) and the complex degree of coherence µ(P1,P2) are defined as 

 1 2 1 2( , ) ( , ) ( , ) ,J P P E P t E P t ∗=  (10) 

 1 2
1 2

1 2

( , )
( , ) ,

( ) ( )

J P P
P P

I P I P
μ =  (11) 

where P1 and P2 are arbitrary points in space, <> denotes the time average, * denotes the 
complex conjugate, E(P,t) is the complex representation of the electric field at P at instant t 
and I(P) is the average intensity at P. 

The general expression for the propagation of the mutual intensity through an optical 
system from the surface   to the surface  is [8] 

 1 2 1 2 1 1 2 2 1 2( , ) ( , ) ( , ) ( , ) ,J Q Q J P P K P Q K P Q dPdP∗=  
 

 (12) 

where Q1 and Q2 are points on , P1 and P2 are points on  , and K(P,Q) is the transmission 

function from P to Q (P∈ , Q∈) defined as the complex disturbance at Q due to a single 

monochromatic point source of unit strength and zero phase at P. 
Noting that I(Q) = J(Q,Q) and using the definition of the complex degree of coherence, 

the intensity at surface B is inferred from Eq. (12) as 

 1 2 1 1 2 2 1 2( ) ( , ) ( ) ( , ) ( ) ( , ) .I Q P P I P K P Q I P K P Q dPdPμ
∗

   =     
 

 (13) 

In our model   is the surface of the condenser and  is the surface of the detector. The 

illumination consists of a discrete set of points I(P) = k I(Pk)δ(Pk) at the condenser and the 
transmission function is given by K(Pk,Q) = ED,k(Q)/√I(Pk). Thus, the integral in Eq. (13) is 
transformed into the sum 

 ( ), ,( ) ( , ) ( ) ( ) .D DI Q P P E Q E Qμ ∗= × k h
k h

k h
 (14) 

Depending on the illumination system the complex degree of coherence µ(Pk,Ph) may be 
experimentally measured or theoretically calculated given the source parameters. However, it 
should be noted that in microscopes where the coherently illuminated area on the condenser is 
significantly large, it is common practice to reduce the degree of coherence by using 
techniques such as a moving diffuser or wobbling the condenser [24]. In such case µ(P1,P2) 
should be taken as the effective complex degree of coherence. 
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A special case occurs when the coherence length is shorter than the sampling distance at 
the condenser, i.e., µ(Pk,Ph) = δkh. Equation (14) then reduces to the sum in Eq. (9) used in 
this work. 
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