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INTRODUCTION

In this thesis the externally induced Rashba effect and spin polarization in graphene is
studied with the aim of controlling its size in a very wide range. This problem is of major
scientific interest due to possible applications of graphene in spintronics. Graphene is a
single layer of carbon atoms arranged in honeycomb lattice.Graphene is, in principle,
known for a long time: the graphene electronic structure was, for example, calculated in
1947 [1], on a Ni(111) substrate it was prepared already in the 1970s[2], subsequently dif-
ferent methods of preparation were developed, and the graphene electronic structure was
studied on different substrates [3–10]. For most of the time, it was called agraphite mono-
layer and the termgraphenebecame popular only recently. Graphene became famous in
2004 after a micromechanical cleavage method for bulk graphite was proposed [11]. "For
groundbreaking experiments regarding the two-dimensionalmaterial graphene" Andre
Geim and Konstantin Novoselov were awarded the Nobel Prize in Physics in 2010 [12].
Due to a high quality and a lattice structure with two atoms per unit cell graphene has
peculiar electronic, optical and mechanical properties. Graphene has a very high electron
mobility [13] and is promising for ballistic transistors and transport [14], for field-effect
transistors [11, 15], transparent conducting electrodes [16, 17], ultracapacitors [18] and
many other applications.

The Rashba effect is related to spin-orbit coupling and is important for spintronics
applications because it creates spin polarization of electronic states in nonmagnetic sys-
tems. The effect was discovered by Emmanuel I. Rashba and published in 1960 [19].
The Rashba splitting manifests itself first of all in the case of two-dimentional electron
gas (2DEG) systems, like surface states of metals, quantum wells, semiconductor het-
erostructures, thin metallic films and graphene [20–26]. It appears in the presence of an
external electric field normal to the two-dimentional electron gas plane or in the presence
of a broken inversion symmetry because of interfaces or substrate [19,27]. Spin-orbit cou-
pling can be utilized to achieve efficient spin filtering [28,29] and due to spin precession
it could be used in spin field-effect transistors [30,31].

In this thesis we combine the graphene and spintronics topics and study how is it pos-
sible to control the spin polarization of the graphene electronic structure. The main idea
is to find ways to produce a very small and a very large spin polarization or Rashba-
type spin splitting in graphene by an external influence, to study which substrates are
suitable for growing a high quality graphene layer with verysmall spin-orbit coupling
and which substrates could give us observable in experiments and suitable to applica-
tions spin-polarization of Dirac fermions. Graphene for spintronics is very interesting,
first of all, because it consists of carbon atoms and has a veryweak intrinsic spin-orbit
coupling. Electrons have in graphene a very long spin coherence length at room tempera-
ture [32–35], a successful control of the spin current in a gate-tunablegraphene spin valve
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was shown [36]. Graphene could serve as a source of spin-polarized electrons [37] and as
material for spin-filters [38] and spin field-effect transistors [30,36]. Transport properties
of graphene with an externally induced spin-orbit splitting have been intensively investi-
gated in recent years and important predictions have been made: the spin Hall effect [39],
the quantum spin Hall effect [40, 41] and, with an additional exchange interaction, the
quantum anomalous Hall effect [42]. The Rashba effect in graphene even enhances the
calculated Kondo temperature of adsorbed impurities [43].

The Rashba splitting of metalic surface states is known, on the other hand, for a long
time. The best experimental example is the Au(111) surface state measured by angle-
resolved photoelectron spectroscopy first in 1996 [21] and we will discuss this in detail
in section2.2.1. The observed large spin-orbit splitting of the Au(111) surface state is at-
tributed to spread of the surface state wave function normalto the surface into the region of
nuclear charge and experiencing an influence of atomic spin-orbit splitting; the model was
developed in 1966 [44]. The substrate material nuclear charge role was later seenagain
when states with large spin-orbit splitting in a Au and Ag monolayers on W(110) were
observed [26,45]. It was shown that the size of the splitting does not depend on the atomic
number of the Au or Ag overlayer but depends strongly on the substrate. Spin- and angle-
resolved photoemission study revealed that the states in electronic structure of deposited
thin metallic layers acquire spin polarization through spin-dependent overlayer-substrate
hybridization. The effect of induced by substrate spin-orbit splitting was observed also
for quantum-well states in gold, silver and aluminium films on W(110) substrate [46,47].
In the current thesis we will try to use this possibility to induce spin-orbit coupling in
overlayers through contact with high-Z substrates to produce a giant Rashba splitting of
Dirac fermions in the graphene electronic structure.

The thesis has the following structure. In Chapter1 we discuss the main experimen-
tal techniques used to study the systems in question, namelyX-ray Photoelectron Spec-
troscopy (XPS), Angle-Resolved Photoelectron Spectroscopy (ARPES), Spin-resolved
ARPES (SARPES), Low-Energy Electron Diffraction (LEED) as well as an overview of
the experimental stations at which experiments have been conducted.

Chapter2 contains overviews of the two main topics of this thesis, namely the graphene
and the Rashba effect. First each of these topics is introduced and then it is shown how
to combine them, i.e. how the Rashba effect in graphene shouldlook like. Then Chapter
3 is related to the electronic and spin structure of graphene grown on transition metal
ferromagnets. The discovery of intact Dirac cones is discussed as well as the Rashba
effect and Dirac cone spin polarization. In Chapter4 graphene on other low-Z substrates
such as silicon carbide and silver is treated, in some sense in continuation of the previous
chapter. The main topic aim is to elucidate possibility to induce spin-orbit coupling by
interaction with a low-Z substrate.

Chapter5 is the main chapter of this thesis. It is devoted to the giant Rashba effect in
graphene induced by high-Z substrates. The chapter is split into two parts: graphene on
gold and graphene on iridium. The first part concerns the electronic and spin structure
and the observation of the giant Rashba effect in the graphene/Au system. There are dis-
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cussions from both experimental and theoretical sides. Also the atmospheric stability of
the graphene/Au system is shown. The second part is devoted to the graphene/Ir system:
protection of iridium surface states by the graphene layer,a giant Rashba effect and its
control by rotational displacement of graphene domains relative to the iridium substrate.
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CHAPTER 1

EXPERIMENTAL TECHNIQUES

1.1 Introduction

Photoelectron spectroscopy is one of the most direct and extensively used experimen-
tal techniques in solid state physics for the investigationof the electronic structure of
materials [48]. It is based on thephotoelectric effect, i.e.,emission of electrons as a con-
sequence of absorption of photons, first observed by Heinrich Hertz in 1887 [49] and
explained by Einstein in 1905 [50]. Later such photoelectric effect developed into a vari-
ety of techniques which differ in the energy of photons used and the information about the
electronic structure they provide. We will consider in moredetail X-Ray Photoelectron
Spectroscopy (XPS), Angle-Resolved PhotoElectron Spectroscopy (ARPES) and Spin-
and Angle-Resolved PhotoElectron Spectroscopy (SARPES). ARPES is a part of Ultra-
violet Photoelectron Spectroscopy (UPS) and is focused on the dispersion of electronic
valence bands. SARPES additionally probes the spin polarization in one or several direc-
tions. Photon energies in UPS are relatively small, in the ultra-violet range, 10-100 eV.
For XPS higher photon energies are used and main focus goes tolocalized core-levels of
the system in study.

1.2 X-Ray Photoelectron Spectroscopy

When light is incident on a sample, it can be absorbed allowingelectrons to escape from
the material. They carry a certain kinetic energy, which is determined by the electronic
structure of the sample and the incident beam energy~ω. There are two main models of
such process: The one-step model of photoemission as a transition between initial and
final states consisting of wave functions that obey appropriate boundary conditions at the
surface as well as a rather simplified three-step model. We will consider in this work only
the second one because it has proven to be rather successful [51, 52] and gives enough
information on the processes in the systems which we study.

The three-step model of photoemission considers these three independent steps:

1. Photoexcitation of electron by incident light;

2. Travel of the excited electron to the surface;

3. Escape of the electron through the surface potential barrier into vacuum.
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1.2 X-Ray Photoelectron Spectroscopy

Monochromatized light of energy~ω hits the sample and excites electrons from an
occupied initial stateΨi with energyEi to an unoccupied final stateΨ f with energyEf .
In the one-electron approach the Schrödinger equationĤΨ = i~∂Ψ

∂t for the electron in
electromagnetic field with vector potentialA is:

[

1
2m

(

p̂+
e
c

A
)2

+V(r)

]

Ψ = i~
∂Ψ
∂t

(1.1)

where p̂ = −i~∇ is the momentum operator and V(r) the potential in which electron is
moving.

In the dipole approximation we consider the vector potential as small and constant over
atomic dimensions, therefore∇A = 0 and it is possible to express the hamiltonian by a
sum of the stationary state of the unperturbed system and a perturbation: Ĥ = Ĥ0+ Ĥ ′,
where

Ĥ0 =
p̂2

2m
+V(r) Ĥ ′ =

e
2mc

(Ap̂+ p̂A)≈ e
mc

Ap̂ (1.2)

The transition rate is given by Fermi’s golden rule:

Pi f =
2π
~
|< Ψ f |Ĥ ′|Ψi > |2 δ(Ef −Ei −~ω) (1.3)

Using commutators[p̂, Ĥ0] =−i~∇V and[r, Ĥ] = i~p̂/mone can write the matrix element
in the following form:

< Ψ f |p|Ψi >= imω < Ψ f |r|Ψi >=
i
ω

< Ψ f |∇V|Ψi > (1.4)

So, for a true free electron system with∇V = 0 the photoemission process does not take
place. But at the surface of the sample or close to nuclei∂V/∂z 6= 0 and a photoeffect
occurs [52]. The final state is defined by the band structure of unocupiedbands, but for
rather high energies a free parabolic final band approximation is most commonly used
[48].

The second step of the photoemission process is the travelling of the excited electron
to the surface. Electrons may as well travel away from the surface and scatter several
times before reaching the surface. The inelastic scattering process gives rise to a large
background of secondary electrons in the spectra which is usually subtracted or even
ignored. Probability of reaching surface without scattering is determined by the inelastic
mean free pathλ:

N
N0

= exp

(

−d
λ

)

(1.5)

whereN0 - initial number of excited photoelectrons,N - number of photoelectrons which
reach the surface,d - distance to the surface. Theλ value depends in turn on the electron
energy and on the interaction strength for that energy with other electrons, phonons etc.

11



1 Experimental techniques

Figure 1.1: ’Universal curve’: inelastic mean free path versus electron kinetic energy for
various elements [48,53].

This dependence is about universal for all materials and is shown in Figure1.1 [48,53].
There is a minumum ofλ around 50-60 eV kinetic energy, corresponding to an escape
depth of about 5 Å. Therefore, ARPES and SARPES are surface sensitive techniques
which probe the band structure of the top one or two atomic layers of material. Never-
theless, the initial state wave functionΨi may extend into the bulk, allowing to probe the
bulk electronic structure as well. At higher energies the escape depth is larger, so that XPS
gives more information about the bulk of the material. However, surface components are
sometimes also present as shoulders near the main core-level peaks.

The third step of the photoemission process is the escape of the electron through the
surface potential barrier into vacuum. This is possible if the photoelectron energy is higher
than the work functionΦ. The electron kinetic energyE′

kin in the vacuum is then:

E′
kin = ~ω−|EB|−Φ (1.6)

whereEB is the binding energy of the initial state, i.e. initial energy of the photoelectron
before photoexcitation relative to the Fermi energyEB = EF −Ei. Electron then travels
through the vacuum to the analyzer. Sample and analyzer are grounded (Fig. 1.2(a)),
so that, they have the same Fermi level. The analyzer’s work function Φa is different
from the sample’s work functionΦ and, consequently, detected kinetic energyEkin is also
different:

Ekin = ~ω−|EB|−Φa (1.7)

For a detailed picture for energetics of the photoemission and detection processes see
Figure1.2(b), and for the structure of a typical XPS overview spectrumFigure1.3. In
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1.3 Angle-Resolved Photoelectron Spectroscopy
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Figure 1.2: (a) A general schematic of experiment. Photons incident on the sample produce
photoelectrons which travel through vacuum to the analyzer. Sample andana-
lyzer are grounded. (b) Energetics of the photoemission and detection processes.
Ei and Ef are initial and final states,Φ andΦa are work functions of sample and
analyzer respectivly.

experiments with metallic samples, the binding energyEB is usually determined from the
spectrum by a direct measurement of the energy separation from the Fermi edge to the
peak of interest.

1.3 Angle-Resolved Photoelectron Spectroscopy

Angle-Resolved Photoelectron Spectroscopy (ARPES) is the most commonly used method
to study dispersions and other properties of the occupied electronic states in the valence
band. Dispersions are energy versus wave vector dependences of the electron in initial
stateEi(ki). The photon energy~ω of the incident light in ARPES in the general case is
in the vacuum ultra-violet range and its momentumpph = ~ω/c is very small compared
to the size of the Brillouin zone of the material under study. Therefore, transfer of elec-
trons to the final state during photoexcitation practicallyhappens without change of the
wave vector,k f = ki. It is useful to independently consider the components parallel to the
surface and perpendicular to the surface,k f = kin

‖ +kin
⊥, because they behave differently

when the electron crosses the surface of the sample.
Due to the translational symmetry at the crystalline surface kout

‖ = kin
‖ +G, wherein

andout denote inside and outside the sample;G is a reciprocal surface lattice vector. In
the following, we will consider only the first Brillouin zone and kout

‖ = kin
‖ .

Because of the sample’s work functionΦ and energy conservation, component of the
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1 Experimental techniques
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Figure 1.3: Structure of a typical XPS overview spectrum. Down to about 10 eV belowthe
Fermi level there is the valence band. At smaller kinetic energies Ekin (larger
binding energies EB) there are discrete core levels. Closer to zero kinetic energies
there is a large secondary electron background.

wave vector normal to the surface changes during transitionof the photoelectron from the
sample into vacuum:

kout
⊥ =

√

(kin
⊥)

2− 2mΦ
~2 (1.8)

Knowing the kinetic energy and the direction in which the photoelectron moves in vacuum
(defined by an angleθ relative to the sample surface normal, see Figure1.4(a,b)), we have:

kout
⊥ = |kout|cos(θ) =

√

2mEkin

~2 cos(θ) (1.9)

kin
⊥ =

√

2m
~2 (Ekin ·cos2(θ)+Φ) (1.10)

For the component parallel to the surface:

kin
‖ = kout

‖ = |kout|sin(θ) =
√

2mEkin

~2 sin(θ) =
√

2m(~ω−|EB|−Φa)

~2 sin(θ) (1.11)

If energies are given in units of eV and the wave vector in units of Å, it is possible to write
the simplified equationkin

‖ ≈ 0.512
√

~ω−|EB|−Φasin(θ). Thus, as a result of measur-
ing the binding energies of bands for different angles one can get full three-dimensional
EB(kin) dispersion relations for the electronic bands in the valence band of the sample. In
the case of two-dimentional systems like surface states or one atom thick films there is no
dispersion in the direction normal to the surface andkin

‖ is enough.
In the experiments for the present Thesis hemispherical energy analyzers were used
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1.3 Angle-Resolved Photoelectron Spectroscopy
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Figure 1.4: (a) Geometry of the ARPES experiment. Analyzer detects photoelectronsemitted
at an angleθ to the surface normal. Figure at the panel (a) is adapted from
Ref. [54]. (b) Scheme of refraction of the photoelectron at the sample surface.

[48], see Figure1.4(a). A hemispherical analyzer consists of electrostatic lens module,
entrance slit, hemispheres, exit slit and detector. Electrostatic lenses focus incoming pho-
toelectrons to the entrance slit, through which electrons enter the space between the hemi-
spheres with a certain kinetic energy. Then, due to the potential difference between the
inner and outer hemispheres, electrons propagate on a circular trajectory to the exit slit on
the other side of the analyzer. Only electrons which enter the analyzer with a specific ki-
netic energy can get to the exit slit, and that energy dependson voltages on hemispheres.
Due to the small size of the entrance slit, the analyzer selects only the electrons in a
specific direction. A finite angle divergence∆α determines the angle resolution, usually
about 0.1◦ for the ARPES, 1◦ for the SARPES (to get higher intensity) and up to 15◦ for
XPS (usually there is no need in angle resolution for XPS).

Behind the exit slit of the analyzer there is a detector which multiplies number of in-
coming electrons to measurable current. There are two main types of detectors in ARPES:
based on channeltron electron multipliers and based on channelplates. With a channel-
tron type detector the measurement of only one angle and a fewenergies, depending on
the number of channeltrons, at a time is possible and an angledependence is measured by
changing angle between the sample normal and the analyzer; energy spectrum is achieved
by scanning different energies in the needed energy region.Channelplate-based detectors,
in turn, show angle and energy dependence directly in one image. Scanning of voltages
is nevertheless needed to obtain data in a wider energy region.

Summarizing the above, it is possible to measureI(Ekin,θ,φ) specta of photoelectrons
from the sample, whereI measured intensity proportional the number of photoelectrons
andθ andφ are angles between the sample normal and analyzer (see Fig.1.4(a)). By
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Figure 1.5: (a) General scheme of the Mott detector [55] and (b) its work principle. In-
coming electrons are accelerated by 25 kV and hit a target, part of them scatter
backwards (Rutherford scattering) and enter channeltron detectors located at op-
posite sides. From the difference in measured currents from these detectors the
spin polarization is determined.

convertingEkin into EB andkin as was shown above, information about the dispersions in
the valence band of the sample is obtained.

1.4 Spin- and Angle-Resolved Photoelectron
Spectroscopy

Spin- and Angle-Rosolved Photoelectron Spectroscopy (SARPES) is used when informa-
tion about the spin polarization of the electronic bands under study is required. In the
general case the electron spin is preserved during the photoemission process, provided
that magnetic fields are absent, i.e., the detected spin direction is the same as of electrons
inside the sample before photoexcitation. For detection ofthe spin polarization and spin
direction a conventional hemispherical electron energy analyzer was used equipped with
a Rice University-type Mott detector [55,56], Fig. 1.5. This detector works as follows:
After passing the exit slit of the hemispherical analyzer photoelectrons are accelerated by
a 25 kV potential and then experience spin-dependent Mott scattering from a target witha
a high atomic number. Usually gold or thorium foils are used.After backscattering, elec-
trons enter into one of four channeltron-type detectors located around the target at 90◦ to
each other and 60◦ to the target surface normal, see Fig.1.5.

The Mott scattering is spin-dependent. LetN↑ andN↓ be the number of electrons with
spin up and down, respectively, hitting the target. A large fraction of these electrons
will be lost in the bulk of the target but a small amount will backscatter and enter the
detectors. Two opposite detectors will be sensitive to the spin quantization axis normal to
the scattering plane: with the counts in the left detectorNL ∝ 1

2

[

N↑(1+S)+N↓(1−S)
]
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1.4 Spin- and Angle-Resolved Photoelectron Spectroscopy
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Figure 1.6: Principle of spin-resolved measurement for an ideal spin-split Gauss peak: (a)
result of measurement by left and right detectors; (b) corresponding asymmetry
between left and right channels; (c) calculated shapes of spin up and spin down
spectra; (d) corresponding spin polarization.

electrons and those on the right oneNR ∝ 1
2

[

N↑(1−S)+N↓(1+S)
]

, where the constant
S is calledSherman functionand characterizes the efficiency of the spin detector, the
measured asymmetry between channels is:

ALR =
NL −NR

NL +NR
= S

N↑−N↓
N↑+N↓

= S·P (1.12)

whereP is the spin polarization of the photoelectrons entering thespin detector. It is
possible to obtain the number of spin up and spin down electrons from measured counts
NL andNR:

N↑ ∝
1
2
(NL +NR)(1+ALR/S) (1.13)

N↓ ∝
1
2
(NL +NR)(1−ALR/S) (1.14)

In Figure1.6 this data conversion is demonstrated based for the example of an ideal
spin-split Gauss peak. The splitting is 0.1 in energy units,the FWHM is about 0.83 and
the dimentionless Sherman function is 0.112. In Fig.1.6(a) it is shown how the measured
spectra look like. The difference between the left and rightdetectors measurements is too
small to see by eyes, but the asymmetry calculated by equation 1.12and presented in Fig.
1.6(b) clearly shows the presence of a spin splitting. In Fig.1.6(c,d) spin up and spin
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Figure 1.7: (a) Example of spin-split band in the electronic structure of one monolayer of
gold on W(110). Red and blue lines are spin up and spin down spectra frommea-
surements together with their fits; dashed lines are fits of peaks after background
substraction. (b) Corresponding spin polarization.

down peaks and the spin polarization are shown, calculated by equations1.13, 1.14and
1.12corespondingly.

It is interesting to note that such spin-resolved measurements are not limited by the
energy resolution of the experiment. Even infinitely small spin splittings can theoretically
be resolved if the measurements could be performed with perfect statistics without any
noise. In reality, spin-resolved measurements take a largeamount of time and at the end
after the conversion still have rather large noise. This limits the possibility to determine
exact values for splitting and polarization. In Figure1.7(a) an example of an experimen-
tally obtained spin-resolved spectrum of a spin-split interface state from a monolayer of
gold on tungsten (110) is shown (details about this state seein Ref. [26]). Noisy red
and blue lines represent spin up and spin down, respectively. Red and blue lines without
noise are fitting results; dashed lines represent fits of peaks after background substrac-
tion. In Figure1.7(b) the spin polarization is shown calculated directly as the difference
divided by the sum of spin up and spin down spectra. This is typical presentation of
spin-resolved measurements results and here the spin polarization at the peak positions
is about 50-70%. It is, however, important to note, that in Figure1.7(b) the polarization
of all electrons (peak and background) at a given energy is shown. To determine the po-
larization of a certain band in the electronic structure, one has to fit the spectra and use
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Figure 1.8: Low Energy Electron Diffraction device [55] (a) and wire diagram explaining its
working principle (b). (c) Example of diffraction image obtained by LEED from
a clean Ir(111) surface (inverted colours); hexagon of dark spots isproduced by
diffraction of electron beam from the triangle grid of iridium atoms at the surface.

for the polarization calculation instead of the electron counts the area under the peak of
interest without background and unrelated peaks. In such approach, the spin polarization
of each of two components of the split peak of Figure1.7(a) is about 100%, i.e. each of
these components in the band structure consists of only one spin direction. In the case
when there is no splitting, but a spin polarization is present, one would see spin up and
spin down peaks at the same energy position, but having different intensity.

1.5 Low Energy Electron Diffraction

Low Energy Electron Diffraction (LEED) was used to study thequality of sample surface,
its crystallographic structure, the ordering of adsorbateatoms at the surface and for the
alignment of the sample in the photoemission experiments along certain hight-symmetry
directions. An electron gun produces a beam of electrons with low energy (about 20-
200 eV) which hits the sample surface, backscatters, passesseveral grids and reaches a
fluorescent screen at a +5 kV potential. If the surface has an ordered structure, diffraction
of elastically reflected beams occurs and is visible as an arranged structure of spots on the
fluorescent screen. Because of the small mean free path of electrons at these energies ,
LEED is a surface sensitive technique with probing depth of only 5-10Å.

In Figure1.8(a) a conventional LEED device [55] is shown. Figure1.8(b) is a sim-
plified wire diagram explaining its working principle. The LEED device consists of an
electron gun, grids and screen. Electrons are emitted from acathod under negative poten-
tial and are accelerated and focused in the direction of the sample. After reflection from
sample surface involving diffraction, the electrons pass four grids and hit the fluorescent
screen. Because of a special grounded contact inside of the electron gun after electron
acceleration, sample grounding and a grounded first grid, the electrons travel in zero po-
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Figure 1.9: (a) Real space picture. Incident electron beam hits the sample surface normally
and scatters in all directions. In certain directions constructive interference hap-
pens and diffraction spots appear on the LEED screen. (b) Reciprocalspace
picture and Ewald construction - graphical presentation of equations1.17. Each
point of the 2-dimensional reciprocal lattice is an infinite rod in the third dimen-
sion.

tential on straight lines inside the experimental chamber.The second and third grid are
for suppression of inelastically scattered low energy electrons. The fourth grid is also
grounded and protects thre other grids from the +5 kV potential of the screen. Other ways
of use are possible, but we don’t consider them in this work. Figure 1.8(c) shows the
example of a LEED image obtained from a clean Ir(111) surface. The hexagonal struc-
ture of the LEED spots means that iridium atoms on the Ir(111)surface are arranged in
two-dimensional hexagonal lattice.

The electron beam incident on the sample with momentump can be considered as
de Brogliewaves with wavelengthλ = h/p = h/

√
2meE (whereh is Planck’s constant,

me - mass of electron, E - electron beam energy). One can write a simplified equation
also as well:λ[nm] ≈

√

1.5/E[eV]. These waves scatter from the ordered structure of
atoms of the surface and interfere with each other. If in somedirection distance between
atoms (or adatoms) on the surface isd then there are diffraction spots at anglesφ (relative
to the surface normal) given by theBragg equationwhich describes the conditions for
constructive interference:

dsin(φ) = nλ (1.15)

From this equation it is clear that angle-distancesφ on the LEED screen are inverse pro-
portional to the real distancesd; thus, reciprocal space description in LEED pictures
analysis is commonly used.

Let us consider a lattice of atoms at the surface defined by primitive vectors (a,b).
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1.6 Experimental stations

Primitive vectors of the reciprocal lattice are then:

a* =
2π b×n
|a×b| b* =

2π n×a
|a×b| (1.16)

wheren is the unit vector normal to the surface [57]. By the Laue condition, incident
electrons of wave vectork0 and scattered electrons of wave vectork obey the equations:

|k|= |k0|=
2π
λ

k‖ = G‖
hk = ha* +kb* (1.17)

whereh andk are integers.
Graphically these equations can be presented as a so-calledEwald constructionfor the

case of a 2-dimensional lattice [58], see Figure1.9. A real space picture is shown in Figure
1.9(a) and the corresponding reciprocal lattice picture is shown in Figure1.9(b). Both are
side view representations. Because scattering occurs mostly at the surface layer (which is
2-dimensional), the reciprocal space lattice is also 2-dimensional, but along the third axis

each point spreads infinitely like rods. ProjectionsG‖
hk are diskrete values depending on

integerh andk. The length of the scattered wave vector is the same as that ofthe incident
wave vector; its possible directions are such that the vector’s start and end are both on
rods.

Note that there is inverse proportionality of distances on the LEED picture relative to
real distances at the surface. This leads to the effect, thatlong range superstructures due
to adatoms or a moiré pattern are visible in the LEED picturesas small superstructures
around main LEED spots.

1.6 Experimental stations

All measurements were done at the BESSY-II synchrotron, Berlin. Electrons are emitted
by an electron gun and accelerated in a microtron and a synchrotron to the energy of 1.7
GeV. Then electrons are injected into the storage ring wherethey live for 8 hours before
the next injection. During these 8 hours there is a current of∼150-300 mA due to mov-
ing electrons by approximately circular closed orbit in thestorage ring. This orbit is not
a perfect circle, it consist of many straight parts andinsertion devicessuch asbending
magnetsandundulators. In bending magnets (also called asdipoles) electrons with hor-
izontal speed come into a vertical magnetic field. The Lorentz force acts perpendicular
to both the magnetic field and the electron speed and deflect electrons from the straight
line movement, this leads to emission ofsynchrotron radiationby a tangent line as a re-
sult of acceleration due to the normal to electron movement direction Lorentz force. In
undulators there are many bending magnets with opposite magnetic field direction and
the synchrotron radiation from each of them participate in interference. As a result an
emission angle is smaller and energy spectrum is narrower but intensity is much larger
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1 Experimental techniques

compared to the case when radiaton from each bending magnet is directly added with-
out interference. Except the high radiation intensity modern undulators allow to control
polarization of the emitted synchrotron light.

After the bending magnets and undulators electrons continue to move in the storage
ring but radiation goes by straight lines into many beamlines around the storage ring. In
beamlines radiation passes monochromator which selects the needed photon energy and a
number of focusing mirrors. As a result, photons are focusedin small focus points inside
preparation chambers which are located at the end of beamlines. During the work on
this thesis several BESSY beamlines were used, two branches of UE-112 beamline, BUS
beamline, RGBL beamline.

Several experimental stations were used for experiments. The main are: ’1-square’ sta-
tion for high resolution angle-resolved photoelectron spectroscopy and ’PHOENEXS’ for
spin-resolved measurements. The first one, ’1-square’ station, is equipped with Scienta
R8000 [59] hemispherical electron energy analyzer and a 6-axes automated cryomanipu-
lator. Energy and angle resolution were 6 meV and 0.3◦, respectively. The ’PHOENEXS’
station has a SPECS PHOIBOS 150 hemispherical electron energyanalyzer [55] coupled
to a Rice University Mott-type spin polarimeter [55,56] operated at 26 kV. Overall energy
and angular resolutions of the experiments were 80 meV and 1◦. Details about the work
principle of the hemispherical analyzers and the Mott-detector were presented above in
sections1.3and1.4. Scanning tunneling microscopy (STM) measurements were made in
a separate station equipped with Omicron VT SPM [60]. STM measurements were done
at room temperature with tungsten tips.

All mentioned experimental stations consist of ultra-highvacuum (UHV) chambers
with ∼ 10−10 mbar base pressure. In each of these systems there are analytical cham-
ber (where measurements were conducted), preparation chamber (where the main sample
preparation procedures were conducted) and aload-locksystem (through which samples
were transfered between air and UHV). Each experimental station contains low-energy
electron diffraction (LEED) module (was discussed in section 1.5), exchangeable evapo-
rators of different materials, quatz microbalance, leak-valve for controlled gas injection,
sputter gun, high temperature heater (up to 2000◦C) and wobble-sticks for sample trans-
fer.
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CHAPTER 2

GRAPHENE AND RASHBA EFFECT

2.1 Graphene

Graphene is a single layer of carbon atoms arranged in a honeycomb crystal structure. It
is a carbon allotrope similar to graphite but consists of only one layer, i.e., graphene is
two-dimensional. The carbon-carbon distance in-plane isd = 1.42 Å, but graphene has
two atoms in unit cell and, thus, the lattice constant of graphene isa=

√
3d = 2.46 Å.

It is possible to grow graphene on many different substratesby various methods, such
as:

1. segregation of dissolved carbon contamination from the substrate bulk to the surface
[2];

2. crackingof hydrocarbons on hot surface [3–5];

3. intercalation of materials under the graphene layer [6,7,10];

4. thermal decomposition of SiC [8,9];

5. micromechanical cleavage of bulk graphite [11,13].

In this chapter we will not consider the growth methods in details, they will be discussed
in the corresponding chapters specifically to the systems inquestion. The history of
graphene, its peculiar properties and possible applications have shortly been discussed
in the introduction. We will focus here on the theoretical description of the electronic
structure of a free ideal graphene layer, because the large number of its properties is due
to its peculiar electronic structure.

We will consider the graphene electronic structure from point of view of the tight bind-
ing approximation, where the electronic band structure is calculated using a set of wave
functions made of superpositions of wave functions for isolated atoms. In graphene the
carbon 2s and 2p orbitals undergo asp2-hybridization and for each carbon atom form
three in-planesp2 bonds and one out-of-planepz bond. In the graphene electronic struc-
ture they form threeσ and oneπ band. For the peculiar graphene electronic properties,
mostly theπ band plays a role and we will consider at this stage only theπ band disper-
sion.
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2 Graphene and Rashba effect

Figure 2.1: (a) Graphene layer: layer of carbon atoms in honeycomb arrangment. (b) Mag-
nified view and (c) explanation of the crystal structure. Unit cells are marked
with dashed lines; arrows show unit vectors. Each unit cell contains two carbon
atoms marked as ’A’ (red) and ’B’ (blue). Number of red and blue atoms form
two hexagonal sublattices.
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2.1 Graphene

Let X(r) be a normalized wavefunction for the 2pz orbital of an isolated carbon atom
of the graphene layer. By Bloch’s theorem and because the graphene layer consists of two
sublattices A and B (see Fig.2.1(c)), we have [1,61]:

ψ = φ1+λφ2 (2.1)

φ1 =
1√
N

∑
A

exp[ik · rA]X(r− rA) (2.2)

φ2 =
1√
N

∑
B

exp[ik · rB]X(r− rB) (2.3)

where N is the number of unit cells in the crystal.

Substitute2.1 in the Schrödinger equation

Hψ = Eψ (2.4)

multiply by φ∗1 andφ∗2 and integrate over all volume. As a result we get:

{

H11+λH12 = ES11+λES12

H21+λH22 = ES21+λES22
(2.5)

where

Hi j =
∫

φ∗i Hφ jdτ Si j =
∫

φ∗i φ jdτ (2.6)

The atomic wavefunctionsX(r) are normilized in such a way that:
∫

X∗(r)X(r)dτ = 1 (2.7)

In this case holdsS11 = S22 = 1. We assume also, that there is no direct overlap between
atomic wavefunctions of neighbour atoms, thus,S12= S21= 0. From the definition ofHi j

follows thatH12 = H∗
21.

It is possible to present equations2.5 in a matrix form:
(

H11−E H12

H21 H22−E

)(

1
λ

)

= 0 (2.8)

The solution is:

E =
1
2

[

H11+H22±
√

(H11−H22)2+4|H12|2
]

(2.9)
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2 Graphene and Rashba effect

Assuming from the symmetry thatH11 = H22, we get

E = H11±|H12| (2.10)

We omit exchange integrals between atoms that are not neighbours. However, only
atoms of sublattice B are the neighbours of atoms of sublattice A and vice versa. In this
case the exchange integrals between atoms of the same sublattice are zero and we have

H11 =
∫

X∗(r)HX(r)dτ = E0 (2.11)

Thus, for the graphene energy dispersion the main role will be played only by theH12

term, so we will skipE0 and write for simplicity:

E =±|H12| (2.12)

There are three neighbour atoms near any selected atom, their coordinates are:
(

a/
√

3,0
)

(

−a/2
√

3,a/2
)

(

−a/2
√

3,−a/2
)

(2.13)

wherea= 2.46 Å lattice constant of graphene (shown by black arrows in Fig. 2.1(c)).

Inserting coordinates2.13into 2.2and2.3and simplifying trigonometrical expressions
we obtain the energy dispersion:

E(k) =±γ

√

1+4cos2(
a
2

ky)+4cos(
a
2

ky)cos(

√
3a
2

kx) (2.14)

whereγ ≈ 2.8 eV is the nearest-neighbour hopping energy:

γ =
∫

X∗(r−ρ)HX(r)dτ (2.15)

andρ is the vector to nearest neighbours.

The energy dispersion2.14 is shown in Figure2.2. There are occupiedπ and unoc-
cupiedπ∗ bands touching each other at 6 so-called Dirac points located at theK points
of the graphene Brillouin zone. A magnified view near theK point is presented in Fig.
2.2(c), where the dispersion looks like a cone. For ideal freestanding graphene, the Dirac
points are exactly at the Fermi level. Therefore, graphene is a zero gap semiconductor or
semimetal. To prove that the dispersion is in fact a cone, onecan calculate the dispersion
behaviour near theK point by insertingk = (kx,ky) = K+q into equation2.14, whereq
is a momentum relative toK and has a small magnitude (|q| << |K|). Using sin(x) ≈ x
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2.2 Rashba Effect

Figure 2.2: Graphene Brillouin zone (a) and electronic structure (b). Top (blue) band isπ∗

unoccupied band, bottom (red) is occupiedπ band. AtK points they touch each
other at the Dirac points located at the Fermi level. At (c) magnified view ofthe
K point is shown, the so-called Dirac cone.

and cos(x)≈ 1−x2/2 one gets:

E(q)≈±
√

3
2

γa|q|=±υF |q| (2.16)

Thus, near theK point there exists a linearE(q) dispersion. υF ≈ 1× 106 m/s is the
corresponding Fermi velocity.

The linear energy dispersion is very unusual for the electronic structure of materials. It
is a distinctive feature of relativistic Dirac fermions with zero rest mass [13], as it appears
to neutrinos. Fermi velocity here plays the role of an effective speed of light.

2.2 Rashba Effect

2.2.1 Rashba effect in case of 2D electron gas

The Rashba effect is very important for spintronics and otherapplications, because it
creates a spin polarization of electronic states in nonmagnetic systems. The effect was
discovered by Emmanuel I. Rashba and published in 1960 [19]. The Rashba splitting
manifests itself predominantly in the case of two-dimentional electron gas (2DEG) sys-
tems, like surface states of metals, quantum wells, semiconductor heterostructures, thin
metallic films and graphene [20–26].

It is known, that a magnetic field affects electrons and leadsin atoms to the so-called
Zeeman splittingof spin up and spin down electron states. Surprisingly, a splitting of
electron states appears also when the electron moves in zeromagnetic field, but in a
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2 Graphene and Rashba effect
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Figure 2.3: Travel of an electron in perpendicular electric field seen in (a) laboratory rest
frame and (b) electron rest frame. In the latter case an effective magnetic field
Beff appears.

non zero external electric field. In this case theeffective magnetic fieldplays a role,
which appears from the electron’s point of view (electron rest frame), Figure2.3. If in
the laboratory rest frame the electron moves with velocityv in a perpendicular external
electric fieldE, then the effective magnetic field is:

Beff =
1
c2E×v (2.17)

Based on the Dirac equation it is possible to extend the hamiltonian for the case of
spin-orbit coupling:

HSO =− e~
4m2

ec2σ(E×p) =− µB
2mec2σ(E×p) (2.18)

whereµB is the Bohr magneton,me the mass of electron,p the electron momentum, and
σ = (σx,σy,σz) the vector of Pauli matrices, which is directly related to the spin operator:
Ŝ = ~

2σ.

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

(2.19)

The last part of equation2.18is the effective magnetic field discussed above.

When electrons move in a 2-dimensional plane with momentump = ~k = ~(kx,ky,0)
and the external electric fieldE = (0,0,Ez) is normal to that plane, then the hamiltonian
2.18transforms into:

HSO =
~µB

2mec2Ez(σxky−σykx) = αR(σxky−σykx) = αR

(

0 ky+ ikx

ky− ikx 0

)

(2.20)

The constantαR is also calledRashba parameterand depends linearly on the electric field
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2.2 Rashba Effect

Figure 2.4: (a) Spin-splitting of free electron parabola to two components with opposite spin:
red - spin up and blue - spin down. (b) Same, but shown in two k‖ dimentions.
Arrows on top show spin-directions at different points, spin rotates whenone goes
around E axis. (c) Experimental observation by ARPES of spin-splitted surface
state bands of Au(111). Figure (c) was taken from ref. [62]

Ez normal to the surface or in other words, on the potential gradient−∂Φ(z)
∂z . Eigenvalues

are±αR

√

k2
x +k2

y =±αRk‖
Due to this dependence of the Rashba parameter on the potential gradient normal to

the surface, the Rashba effect appears under nonsymmetricalconditions. Time rever-
sal symmetry demands thatE(k,↑) = E(−k,↓) [22], inversion symmetry means that
E(k,↓) = E(−k,↓). Together these equations giveE(k,↑) = E(k,↓), i.e., in a system
with inversion symmetry spin up and spin down bands degenerate. In two-dimentional
planes like surfaces and interfaces when different materials are present or their conditions
differ on different sides of the plane, a potential gradientappears, the Rashba parameter
becomes nonzero, andE(k,↑) 6= E(k,↓).

In the case of a two-dimentional free electron gas, the full solution is represented by
two parabolic bands with opposite spins shifted byk‖ relative to each other, see Figure
2.4:

E±(k‖) =
~

2k2
‖

2me
±αRk‖ (2.21)

These parabolas have minima at±k0 with energyE0:

k0 =
meαR

~2 E0 =−meα2
R

2~2 (2.22)

The energy splitting between spin up and spin down is∆E(k‖) = 2αRk‖, i.e., has a linear
dependencek‖, and reverses withk‖.

Figure2.4(a) shows a model of Rashba-split free electron parabolasE±(k‖) and Fig.
2.4(b) shows a three-dimentional view on these. Arrows at the top show how the spins
rotate aboutk‖ = 0 and transform from spin up on one side to spin down on the other side.
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2 Graphene and Rashba effect

Figure2.4(c) was taken from [62] and shows the experimental observation of spin-split
Au(111) surface states by angle-resolved photoemission.

As was discussed above, the electric fieldEz normal to the surface or interface plays
the main role for existence and size of the Rashba effect. There are several possibilities
for their origin:

1. applied external electric field

2. workfunction step at the sample surface or interface between two materials

3. high nuclear charge.

The workfunction step leads to splittings of the order of 10−6 eV on the Fermi level
[22]. This is much smaller than the experimentally observed values on surfaces of high-Z
materials. For example, the energy splitting of Au(111) surface state close to the Fermi is
≈ 0.1 eV [21,62].

The nuclear charge explains the large spin-orbit splittingin the case of high-Z materials.
The surface state wavefunction is not perfectly two-dimensional, but spreads normal to
the surface into the region of the nuclear potential, which is proportional toZ and is much
larger than size of the workfunction step. More detailed model takes atomic spin-orbit
splitting into account. In the case of gold, the spin-orbit splitting of the 6p level is 0.47
eV [63]. The Hamiltonian for spin-orbit coupling modifies to [44,64]:

H ′
SOC=

ξ
~

L ·σ (2.23)

whereξ is of order of atomic spin-orbit splitting. Then energy splitting is:

∆E(k‖)≈ 2ξk‖ (2.24)

and gives result close to experimental values for high-Z materials.

2.2.2 Rashba effect in case of graphene

To discuss the case of graphene properly, we must separate the spin-orbit coupling effects
into intrinsic andextrinsicones. Intrinsic spin-orbit coupling is related to the graphene
layer itself without influence from the environment, such assubstrate or external fields.
The intrinsic spin-orbit coupling in graphene is very weak with splittings of the order of
0.05 meV or even less [65,66]. For spintronics such weak spin-orbit coupling is advanta-
geous because it leads to a long spin coherence length of∼1.5–2µm [32–34]. Theoret-
ically, the spin coherence length could even be 10 times higer [35] and, therefore, there
is still room for future implementation of graphene as a possible element in spintronics
devices. An externally induced spin-orbit splitting couldoccur if the graphene layer is in
contact with a specific substrate or there are impurities on or in the graphene [7,67]. A
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2.2 Rashba Effect

Figure 2.5: (a) Dirac cone of free graphene without spin-orbit interaction. (b,c) Two- and
three-dimensional view of the graphene band structure near theK point in the
presence of extrinsic (Rashba) spin-orbit coupling.

large spin-orbit coupling in graphene could open the way forgraphene as active element
of spintronic devices such as the Datta-Das spin field-effect transistor [30]. Recently, we
observed that a large Rashba-type spin-orbit coupling can beinduced in thin metal films
due to interaction with a high-Z substrate [45, 47] and that this works for graphene as
well [7]. In the present thesis and in the corresponding publication [68] we discuss the
observation and the origin of a giant Rashba splitting of the Dirac cone when the graphene
layer is located on top of gold or iridium substrates.

In the case of a conventional two-dimensional free electrongas the Rashba effect is
observed at theΓ point of the Brillouin zone as ak‖ shift of parabolic bands of different
spin in opposite directions. Therefore the energy splitting depends linearly on thek‖
value. In the case of a spin-orbit split graphene Dirac cone there are many differences.
First of all, the Dirac cones in the graphene electronic structure are located far away from
theΓ point, i.e., at sixK points as shown in Figure2.2. Secondly, the split bands resemble
nearK the peculiar band structure of bilayer graphene [69], with an energy gap between
upper and lower branches of one spin and no gap between branches of the other spin [70].
And finally, the energy splitting between spin up and spin down bands for the case of
graphene is constant, i.e. there is nok‖ dependence of energy splitting. Such behaviour
was calculated in Ref. [70] based on a 4×4 Hamiltonian of graphene with extrinsic spin-
orbit coupling from Ref. [40]:

H = ~υF(σ ·k)+ 1
2

λ(σ×s)z (2.25)

Here,υF is the Fermi velocity,λ is a spin-orbit coupling constant,σ are Pauli matrices
for the pseudospin, ands are Pauli matrices for the real spin.
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2 Graphene and Rashba effect

The resulting equations for the band structure around theK point are [70]:

Eνµ(k) =
νµ
2

(

√

λ2+(2~υFk)2−µλ
)

(2.26)

whereµ = ±1 corresponds to spin andν = ±1 to chirality. The spin-orbit splitting is
∆E = |λ| and is constant. Spins are in-plane and rotate about theK point. A graphical
presentation of this solution is shown in Figure2.5. In panel (a) there is the Dirac cone
of free graphene without spin-orbit interaction. In panels(b) and (c) there is the Dirac
cone for the case of an externally induced spin-orbit splitting. The panel (b) shows this in
a two-dimensional cut view and the panel (c) in a three-dimensional view. Pure blue and
red colours denote spin directions towards the viewer and away from the viewer, normal
to the image surface. It has been found that the photoemission process could be affected
by interference as due to the A–B sublattices influencing thephotoemission intensity and
the observed spin-polarization direction [71]. For the valence band electrons the main
influence of such interference is in theΓK direction but beyond theK point. Spin-resolved
photoemission measurements are usually conducted in otherdirections and the giant spin
rotation effect proposed in Ref. [71] has not yet been observed experimentally.

32



CHAPTER 3

GRAPHENE ONFERROMAGNETS

3.1 Introduction

We discussed in the previous section that the Rashba effect depends strongly on the po-
tential gradient normal to the surface and that there are several possible sources of such
gradient such as: (i) applied external electric field, (ii) workfunction step at the sample
surface, (iii) nuclear potential of high-Z substrate atoms. If the grapheneπ band wave
function spread into the location of substrate atom wave functions, a contribution from
the potential gradient around the nuclei of the substrate atoms becomes possible. This is
possible by hybridization between the grapheneπ band and substrate bands. For mate-
rials with higher atomic numberZ the effect will be larger than for materials with low
atomic number, thus, for low-Z substrates under the graphene layer we can straightfor-
wardly predict the absence of a Rashba effect and spin-split bands in the graphene band
structure. Despite this reasoning, several experiments indicating the opposite appeared in
the literature. In graphene on nickel a large energy shift upto 255 meV of the graphene
π band was observed by angle-resolved photoemission when themagnetization of the
graphene/Ni(111) system is reversed [72]. In graphene grown by thermal decomposition
on SiC an anisotropic spin splitting of theπ band of up to∼200 meV was observed by
spin- and angle-resolved photoemission [73].

In order to study ways to externally induce and control the spin polarizaton and spin-
orbit splitting of the electronic bands in graphene we need to examine these effects. We
conducted a number of experiments by means of the spin- and angle-resolved photoemis-
sion of graphene on different substrates, both low-Z and high-Z. Results of our study
concerning of giant energy shift Ref. [72] were presented before [74,75]. In the current
chapter we will investigate graphene on ferromagnets (nickel and cobalt) in various ways
regarding their electronic and spin structure.

3.2 Preparation

Several methods of graphene preparation are known with different methods more or less
suitable for different substrates. The graphene monolayeron Ni(111) was already pre-
pared and studied in the 1970s by segregation of carbon atomsfrom the bulk to the nickel
surface [2], later by the so-calledcrackingprocedure [3–7,10,76] and by thermal decom-
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3 Graphene on Ferromagnets

Figure 3.1: Procedure of Propylene (C3H6) cracking and the resulting structure of graphene.
In the inset, larger substrate atoms indicate the top Ni (Co) layer, smaller ones
the second layer, and the third layer atoms are hidden under the carbon atoms.

position of SiC [8,9,77]. Later a micromechanical cleavage method using bulk graphite
was shown [11,13].

We used the cracking procedure to grow graphene on nickel andcobalt surfaces due
to the simplicity of this method and the large scale high quality graphene layers that are
obtained as a result. This method is shown schematically in Figure 3.1. The sample is
heated by the electron bombardment method to∼ 800 K and propylene gas (C3H6) at
pressures around 10−6 mbar is introduced into the vacuum chamber for 5 min. Propy-
lene molecules in contact with the hot Ni or Co surface break upand the carbon atoms
assemble to form the graphene layer. This process is self-limiting and only one graphene
layer grows due to the fact that Ni and Co atoms on the surface serve as catalyst for the
cracking of theC3H6 molecules. So, after the first graphene layer is formed, it cannot
catalyze the formation of a second layer. There is still the possibility that more graphene
layers could form at the interface between Ni or Co and the graphene layer due to carbon
atoms segregating from the bulk of nickel and cobalt but higher temperatures and longer
heating time are needed for this to happen. The self-limitation of the graphene growth
is an advantage of this method over other graphene growth methods such as the thermal
graphitization of SiC.

The structure of the resulting graphene layer is shown at theright side of Figure3.1.
Carbon atoms are on top of the Ni atoms; the second Ni layer atoms are under the centers
of graphene hexagons. This structure is based on the LEED intensity analysis made in
Ref. [78] and confirmed directly by STM for graphene islands on top of Co(0001) [79].

Due to technological reasons and better structural qualitythe Ni(111) and Co(0001)
substrates were∼ 15−20 monolayer thick films grown on W(110) crystal surface. Tung-
sten was cleaned by cycles of oxygen treatments at∼ 900 K andflashes(short heating
to ∼ 2000 K) to remove carbide and to remove adsorbed oxygen, respectively. Nickel
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3.2 Preparation

Figure 3.2: Low-Energy Electron Diffraction images from (a) W(110), (b) Cobalt filmon
W(110) and (c) graphene/Co(0001)/W(110).

and cobalt films were deposited from electron beam evaporotors and were subsequently
annealed.

The quality of the tungsten surface, the nickel (cobalt) films and of the resulting graphene
layer was checked by LEED and photoemission (ARPES and XPS). Figures3.2(a-c) show
LEED images from the clean W(110) surface, a Co(0001) film and from graphene on
cobalt, respectively. Tungsten has a body-centered cubic crystal structure, the LEED
image from its clean (110) surface appears like a hexagon, but is streched-out in one di-
rection. In XPS the cleanliness of the tungsten surface is clearly visible by the presence
of surface components of the W 4f core levels, see Figure3.3. In the presence of carbide
there is an additional complicated structure of spots in theLEED image, in the presence
of oxygen there is a clear(2×2) reconstruction. Near the W 4f core levels additional
peaks at higher binding energies appear and surface components have smaller intensity
or fully disappear. Nickel has a cubic close-packed crystalstructure, cobalt has a hexag-
onal close-packed crystal structure, but both Ni(111) and Co(0001) surfaces which are
obtained by growing nickel and cobalt on the tungsten (110) surface have a hexagonal
atomic arrangment and the LEED patterns are hexagons.

There is only a small mismatch∼ 2 % between the graphene lattice constant and surface
lattices Ni(111) and Co(0001). Thus, graphene on these surfaces grows with high quality
and in registry with substrates. The orientation of the graphene layer is fully consistent
on the whole sample area and from experiment to experiment; it is related to the direction
of the underlying W crystal. In the LEED image from graphene on cobalt (Figure3.2(c))
there are additional circle segments which correspond to the presence of rotated graphene
domains, but these segments are weak meaning that the numberor size of the rotated
domains is small.

The Scanning Tunneling Microscopy (STM) characterizationof graphene/Ni(111) and
graphene/Co(0001) shows good quality of graphene layer, Figure3.4. STM images show
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3 Graphene on Ferromagnets

Figure 3.3: Tungsten W4 f core levels measured at hν = 110eV photon energy. Such spec-
trum is very useful for the check of the W(110) surface quality. If the surface is
clean there are sharp and intence surface components near the main bulkcore
peaks.

Figure 3.4: STM from graphene on Ni(111) (a) and on Co(0001) (b). Tunneling parameters:
Vt =+2 mV, It = 25nA.
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3.3 Electronic structure and intact Dirac cones

Figure 3.5: (a) Open and filled circles denote the experimental band structure of
graphene/Ni(111), broken curves indicate bulk graphite dispersion and dashed
areas near the Fermi level show Ni d states. Figure (a) is from ref. [4], photon
energies are hν = 21.2 and 40.8 eV. (b) Angle-resolved photoemission data of
graphene/Ni(111) and (c) of graphene/Co(0001). Photon energy hν = 62eV.

also that there is no sixfold symmetry as would be expected for a free graphene layer,
but a threefold symmetry is observed. This is evidence for symmetry breaking between
A andB graphene sublattices, i.e., carbon atoms of one graphene sublattice are on top of
the nickel or cobalt atoms and carbon atoms of the other sublattice are on top of the third
layer atoms of the substrate (see Fig.3.1).

3.3 Electronic structure and intact Dirac cones

The electronic structure of graphene on nickel is characterized by a large shift of the
grapheneπ band to higher binding energy as compared to the electronic structure of
the free graphene layer [4, 7, 76, 80]. Figure3.5(a) shows the experimental band struc-
ture of the graphene/Ni(111) system obtained by photoelectron spectroscopy with He I
(hν = 21.2 eV) and He II (hν = 40.8 eV) excitation sources. The Figure is from the first
investigation of this system in Ref. [4]. In the present work the electronic structures of
graphene on Ni(111) and graphene on Co(0001) systems were studied and results are pre-
sented in Figure3.5 panels (b) and (c), respectively. The presented measurements were
performed in theΓM andΓK directions of the graphene Brillouin zone. One can see Ni
(Co) d states near the Fermi level and two grapheneσ bands dispersing from 5 eV to
higher binding energies. The grapheneπ band reaches from∼ 10 eV at theΓ point up to
∼ 4.5 eV at theM point, and up to∼ 3 eV at theK point. After crossing of the Brillouin
zone border at theK point, the grapheneπ band hybridizes with Ni (Co)d states. The
strong shift of the grapheneπ band by∼ 2 eV as compared to the case of free graphene
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and graphite (dashes in Figure3.5) and clearly visible effects of hybridization with Ni
(Co) states indicate a strong interaction of the graphene layer with the substrate.

From first sight, there is no apparent Dirac-cone-type dispersion around theK point
and for a long time it was believed that the Dirac cone is destroyed in these systems
due to strong graphene-Ni (Co) interaction and a resulting breaking of the symmetry
betweenA andB sublattices [6, 81]. Density functional theory (DFT) and tight binding
calculations also showed a large gap at theK point [38,82]. Despite this, a thorough view
at the experimental data, both ours and that published by other groups, shows that the
grapheneπ band crosses theK point without any break or detectable gap there. To study
such unexpected behaviour, we conducted a full angle-resolved photoemission mapping
of the region around theK point for both graphene on nickel and graphene on cobalt
as well as and high-resolution angle-resolved measurements through theK point in the
direction normal toΓK . The results are published [83] and shown in Figures3.6(a-d). The
measurements were conducted at various photon energies both at room temperature and
at low temperature to improve the energy resolution and to test the effect of the thermal
lattice expansion on the electronic structure. The intact Dirac cone is visible with an
intense Dirac point at 2.84 eV binding energy. The enhancement of intensity exactly at
the Dirac point tells us that there is no gap. In Figures3.6(e-f) the same structure of the
intact Dirac cone is observed for the case of graphene on cobalt. The Dirac point is at
2.82 eV binding energy. The measurement direction is schematically shown in panel (g).
The reason why the Dirac cone is not observed in the dispersion in theΓK direction is
a destructive interference of photoelectrons from two graphene sublattices. This effect
has been studied in graphite [84]. At the crossing from the first into the second Brillouin
zone in theΓK this interference has the effect that in the first Brillouin zone (before the
K point) only the grapheneπ branch is visible and theπ∗ branch is not visible, but in the
second Brillouin zone after theK point the opposite happens. Due to this effect in the
ΓK direction Dirac cone is not recognized, but only one graphene band which isπ before
theK point andπ∗ after. In the measurements normal to theΓK direction both sides of
the dispersion are in fully symmetrical conditions, so thatboth π and π∗ branches are
fully visible and the Dirac cone and Dirac point are observed. The presence of this strong
interference effect indicates that the observed Dirac-cone-like band structure is from the
graphene layer, not from the nickel (cobalt) substrate. No measurements of these systems
in such symmetrical direction were done before. A sampling of the Dirac cone at different
photon energies as presented in Figures3.6(a-d) shows an energy shift of the nickel states
with the photon energy or, in other words, shows a dispersionof nickel states in the
k⊥ direction. But at the same time the Dirac point and Dirac cone positions and shape
are preserved confirming the two-dimensional nature. This additionally proves that the
observed Dirac-cone-type band structure originates from graphene and not from the bulk
nickel (cobalt) states.

Thus, our measurements clearly show the presence of intact Dirac cones in systems
where the symmetry betweenA and B graphene sublattices is broken. Also a strong
n-doping of graphene with the 2.82-2.84 eV shift of the Dirac point to higher binding
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3.3 Electronic structure and intact Dirac cones

Figure 3.6: Experimental band structure normal to theΓK direction through theK point for
(a-d) graphene/Ni(111) and (e-f) graphene/Co(0001). The presented band struc-
tures were measured at room temperature in the case of graphene on cobalt and
at low temperature (∼ 40 K) in the case graphene on nickel. In panels (a,b,d,e)
the second derivative of photoemission intensity over energy is presented. Panels
(c) and (f) show line cuts (energy distribution curves, EDC) of raw data from
panels (b) and (e). The intact Dirac cone is clearly visible in all of the presented
figures. (g) Schematic view of the measurement direction.
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energies is observed. A giant hybridization gap is in fact also observed, but it is located
at binding energies lower than 2 eV (see Figures3.6(b) and (e)) and away from the Dirac
point. Note that this gap is a common hybridization effect not related to the effects of
sublattice symmetry breaking and opening of a gap at the Dirac point.

3.4 Absence of Rashba effect

As mentioned above, in graphene on nickel a large energy shift up to 255 meV of the
grapheneπ band was observed by angle-resolved photoemission as a result of reversal
of the magnetization orientation of the graphene/Ni(111) system [72]. The results were
interpreted as showing a Rashba effect in a ferromagnet and itwas supposed that the
grapheneπ states become spin-polarized due to hybridization with theNi substrate. Con-
trolling of the spin of electrons in graphene by the externalmagnetic field which switches
the magnetization of the nickel could be important for spintronics applications, but the
measurements of Ref. [72] do not include a direct proof by spin-resolved photoemission
of the presence of spin polarization or spin-splitting in the graphene. To check that the
observed energy shift has some relation to the electron spinwe conducted such spin-
resolved experiments and showed the absence of any detectable spin-orbit splitting of the
grapheneπ band. Those results were published [74] and discussed in a PhD Thesis [75].
In the current chapter the subject will be discussed very shortly because it it is necessary
as starting point for the discussions of the spin-resolved data in the following chapter.

Figure3.7shows a direct measurement by spin- and angle-resolved photoelectron spec-
troscopy of the grapheneπ band atk‖ = 0.7 Å−1 along theΓM direction, i.e., the position
where the large shift was observed in Ref. [72]. Blue and red lines are spin up spectrum
(I↑) and spin down spectrum (I↓), respectively. The spin polarization was calculated as

p=
I↑− I↓

I↑+ I↓
(3.1)

and is presented at the bottom part of the Figure3.7. There is a strong spin polarization
of the nickel 3d states which are located close to the Fermi level, but absolutely no spin
polarization or spin splitting of the grapheneπ band. Thus, the effect reported in Ref. [72]
is neither the Rashba nor an exchange interaction effect.

Magnetic moment and exchange splitting of the 3d states of cobalt are∼ 3 times
larger as compared to nickel [85, 86]. Thus, if the exchange or Rashba-type splitting
of the grapheneπ band take place in the graphene/Co(0001) system, they shouldbe bet-
ter visible than in the graphene on nickel case. Based on this,similar experiments with
graphene/Co(0001) were done. As was discussed above, geometric and electronic struc-
tures of graphene/Ni(111) and graphene/Co(0001) are very similar. But due to the fact
that the easy magnetization directions in these systems arerotated by 90◦ relative to each
other, experiments in bothΓK andΓM directions were done. The result is same as for the
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3.4 Absence of Rashba effect

Figure 3.7: Spin- and angle-resolved photoemission of graphene/Ni(111) measured at hν =
56 eV at k‖ = 0.7 Å−1 along theΓM direction. Blue and red spectra correspond
to opposite spin orientation, the bottom panel shows the spin polarization. The
sample was remanently magnetized and the Ni was an epitaxial film on W(110).
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Figure 3.8: (a) ARPES measurement of graphene/Co around theK point of the graphene
Brillouin zone normal to theΓK direction. (b) First derivative of intensity over
energy of the data from panel (a). The measurement was done at the spin- and
angle-resolved photoemission experimental station and the dashed lines in(b)
show where spin-resolved spectra were measured. Photon energy hν = 62eV.

case of graphene on nickel, i.e., absence of the Rashba or exchange-type spin splitting of
the grapheneπ band.

As a final remark it is worthwile to mention that the discussedabsence of a Rashba
effect in graphene on nickel and cobalt is in agreement with our expectations. In any
case it remains possible to use both systems for spintronicsas a source of spin-polarized
electrons [37], for spin-filters [38] or as a substrate for graphene on other metals like
gold [6], copper [80], iron [87] and others with their own peculiar spin properties. We
will return to this point and pick two prominent examples in chapters4.3and5.1.

3.5 Dirac cone spin polarization

The above mentioned investigations of the spin splitting ofthe grapheneπ band in graphene
on ferromagnets were done before we discovered the presenceof the intact Dirac cone
in these systems. The measurements were done at theΓ point and other points in the
graphene Brillouin zone along different directions. However the main focus was onk‖
wave vector values around half the distance fromΓ to K andM , because exactly there the
maximum effect was predicted in Ref. [72]. After our discovery of intact Dirac cones in
graphene on nickel and cobalt [83] we expanded our search for possible spin-related ef-
fects in these systems to the region of the Dirac cone and the hybridization of the graphene
π band with the nickel (cobalt) 3d states. Due to the fact that magnetic moment and ex-
change splitting of the 3d states of cobalt are∼ 3 times larger as compared to nickel we
selected and studied the graphene on cobalt system.

In Figure3.8data from the spin-resolved photoemission experimental station is shown,
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measured near theK point of the graphene Brillouin zone in the direction normalto ΓK .
This spin-integrated measurements are required to make sure that the spin-resolved spec-
tra probe the Dirac cone. The data as presented as measured inpanel (a) and as first
derivative over energy in panel (b). At theK point the graphene Dirac point is clearly vis-
ible as a bright spot at∼ 2.9 eV binding energy. The enhanced intensity at the Dirac point
is reproduced and means that grapheneπ bands cross at this point without a detectable
gap. Dashed lines in Figure3.8(b) show where the spin-resolved spectra were obtained.
We measured the spin-resolved spectra for two opposite magnetization directions of the
sample (both magnetizations along theΓM ([1100] of Co) direction) and for two light
polarizations: linear horizontal (predominantlyp type) and linear vertical (s type). In the
presented dispersion of Figure3.8(a,b) we can clearly follow how the grapheneπ band go-
ing from high to low binding energies and after passing the Dirac point starts to hybridize
with cobalt 3d states which are located in the region of∼ 0−2 eV binding energy. These
cobalt states are known to be spin polarized. Note that theirspin polarization must reverse
when the sample magnetization is reversed. Presence of these spin polarized cobalt states
when the graphene layer is on top is by itself interesting forspintronics devices due to the-
oretical possibility of using these states in spin filter devices [88]. However, the graphene
Dirac cone was believed to be destroyed and its possible spinpolarization or spin splitting
were not studied. From another point of view it would be very promising to detect a spin
polarization or spin splitting of the Dirac fermions, because their high mobility could be
maintained, especially with the possibility of an externalcontrol by electric or magnetic
fields. As we discussed before there is no detectable spin splitting or polarization of the
grapheneπ band from theΓ point up to∼ 2/3 of theΓK distance.

Here we focus on the spin-resolved measurements of theπ band around theK point.
They are presented in Figures3.9, 3.10, 3.11. The Figure3.9(a) shows spin-resolved
spectra measured at theK point of the graphene Brillouin zone. The red line shows
the spin up (majority spin) spectrum, the blue line shows thespin down (minority spin)
spectrum. There are:

1. A large spin polarized background (spin down in panel (a)).

2. At ∼ 5.2 eV binding energy a trace of the grapheneπ band dispersion around the
M point visible in theΓK direction due to rotated domains. The peak itself is not
spin polarized (if one removes the background spin polarization).

3. In the region∼ 2.4−3 eV binding energy the graphene Dirac point with dominant
spin up polarization is located.

4. From∼ 2 eV and up to the Fermi level there are spin polarized cobalt 3d states.

The observed strong spin polarization of the graphene Diracpoint is of significant interest
here both from a fundamental point of view and for possible use in spintronics devices.
The nature of this spin polarization will be the topic of further verification and discussion
in the remainder of this section.
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Figure 3.9: (a,b) Spin-resolved spectra at theK point of the graphene Brillouin zone. (a) and
(b) were measured for opposite magnetization directions. (c) Asymmetries are
shown from panels (a) (blue) and (b) (gren). The zero asymmetry level is shown
as dashed line. (d-f) Same for23◦ away fromK point.

At the Figure3.9(b) spin-resolved spectra similar to the spectra from panel(a) are
shown, but measured after reversal of the magnetization. Spectra in panels (a) and (b) are
identical, but with spin up and spin down electrons exchanged. In particular the Dirac
point spin polarization has reversed together with that of the cobalt states. In panel (c)
the spin asymmetries for both magnetization directions areshown. This is required since
the background spin polarization as well as the absolute spin polarization of other peaks
depend strongly on the correct determination of thezero asymmetrylevel. From a single
spin-resolved measurement it is usually not known where thezero asymmetry level is
located, and the measurement of both magnetization directions after one another solves
this problem in our case as it is visible in panel (c): the zeroasymmetry level is located
at the symmetry line of both spin asymmetries, or in other words, passes through the
points where the asymmetry value does not change after the sample is magnetized in the
opposite direction. Figures3.9(d-f) display the same measurements as (a-c) but for an
emission angle 23◦ from theK point. There only the cobalt 3d states close to the Fermi
level visible with which the grapheneπ band hybridizes. Other angles were measured as
well and show a smooth transition from the Dirac point into the cobalt 3d states (spectra
not shown here).

As was seen in Figure3.8the dispersion and photoemission intensities are symmetrical
relative to theK point. We checked if there a reversal of spin polarization of any of the
observed bands. The results are presented in Figure3.10. Spectra for two opposite an-
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Figure 3.10: Comparison of spin-resolved spectra for two symmetrically located points rel-
ative to theK point: (a,b) for±3◦ and (d,e) for±9◦ from theK point. (c,f)
Comparison of asymmetries for corresponding opposite points. Spectraand
asymmetries are identical.

gles relative to theK point look identical and their spin asymmetries as well. This means
that for both cobalt and graphene the spin polarization is symmetrical relative to theΓK
direction. As was shown in section2.2.2concerning the Rashba effect, a Rashba-type
spin-orbit splitting leads in graphene to the inversion of the spin polarization for two op-
posite sides of theK point. Our observation of absence of such reversal means that if there
is a Rashba-type splitting it is very small, and the measured spin polarization is a ferro-
magnetic one with the origin in the cobalt 3d states. Via spin-dependent hybridization the
cobalt 3d states polarize the grapheneπ states.

The grapheneπ band intensity in the photoemission is very sensitive to thelight polar-
ization due topz origin of theπ band. For the measurement close to theK point the sample
has been rotated by a polar angle out of normal. With a linear horizontal (predominantlyp
type) light polarization we reached a minimum angle betweentheπ orbitals and the elec-
tric field vector of the incident photon beam thus giving the maximumπ band intensity in
the photoemission due to matrix element effects. When the light polarization is changed
to the linear vertical (s type), theπ band intensity drops significantly and this helps to
separate graphene and cobalt contributions. The comparison of spin-resolved spectra for
the two polarizations is shown in Figure3.11. In panels (a) and (c) the linear horizontal
polarization is presented and in panels (b) and (d) the linear vertical one. In the case of
vertical polarization the grapheneπ peak intensity drops down significantly as expected
(panel (b)). Such approach makes a preliminary fit of the measured data possible. The
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Figure 3.11: (a,b) Measurements at theK point for two light polarizations: (a) standard
linear horizontal polarization and (b) linear vertical polarization at wich the
grapheneπ band intensity is suppressed. Solid lines are fits of the measured
spectra. The fit was conducted at the same time for both polarizations, with
identical resulting peaks positions, but different intensities. (c,d) Same for23◦

away fromK point.
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Figure 3.12: Comparison of dispersions near theK point for (a) graphene on cobalt and (b)
bare cobalt. Energetically close to the graphene Dirac point there is a cobalt
state with dispersion to higher binding energies. The energy difference between
the Dirac point and the cobalt state is∆ ∼ 0.4 eV.

fitting procedure was conducted at the same time for both beampolarizations, the peak
positions and widths for two polarizations were kept the same but peak intensities were
allowed to change. In Figure3.11the fit result is shown by solid red and blue lines. The fit
could allow to discuss spin polarizations of all the bands participating in the fit indepen-
dently, but due to several possible fit solutions we refrain from doing this here and leave
it to further study. The main result of the fitting attempts isthat possible solutions have
additional cobalt components near the Dirac point. From a theoretical point of view in
literature there is information confirming this conclusion[89]. It must be determined how
the cobalt components contribute to the spin polarization of the π peak in the spectrum

To experimentally prove additional cobalt states in regionof the graphene Dirac point,
studies of the Co(0001) without graphene were done exactly inthe same geometry as for
the graphene/Co(0001). Results of the angle-resolved photoemission measurements are
shown in Figure3.12. In panel (a) the case of graphene on cobalt is shown and at the
panel (b) the case of cobalt without graphene. Around∼ 2.4 eV binding energy there is
a cobalt state with dispersion to higher binding energies. Comparing to Ref. [89] one can
conclude that there are contributions of both a minority spin spband and non-dispersing
a minority spind band. The peak position at theK point is shifted compared to the Dirac
point by∆ ∼ 0.4 eV. There are also much more intense cobalt states close to Fermi level
as compared to the graphene/Co case. Note that when the cobaltsurface is covered by the
graphene layer, the photoemission intensity of all the observed cobalt states drops down.
Thus, a contribution of the cobalt state close to the Dirac point to the graphene/Co spectra
at theK point should be visible maximally as a small shoulder.

To study the influence of the cobalt state on the spin polarization of the Dirac point in
the graphene/Co system we conducted spin-resolved measurements of the Co(0001) and
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Figure 3.13: Spin-resolved spectra at theK point for graphene on cobalt (solid lines) and
cobalt itself (dots). In this figure the spectra were normalized to the same back-
ground level.

compared them to the graphene/Co(0001) for the same geometry. The results are pre-
sented in Figure3.13. Solid lines represent graphene on cobalt and dots represent cobalt
without graphene. To see relative intensities of peaks the background spin polarization
was removed in this figure by normalization. In the spectrum of Co(0001) there is a fully
spin-polarized peak at∼ 2.4 eV binding energy. 100% spin polarization of this peak could
make a strong influence to the spin polarization of the Dirac point when graphene is on
top of cobalt. There are two possible ways:

1. Direct hybridization with the grapheneπ bands which form the Dirac cone.

2. Superposition of independent photoemission intensities from this peak and the graphene
Dirac cone.

Direct hybridization of this cobalt band with the grapheneπ band does not happen because
in the angle-resolved measurements presented on Figures3.8and3.12there is no apparent
hybridization gap at the corresponding place. In case of hybridization the graphene dis-
persion should break, like it breaks further away fromK when hybridizing with cobalt 3d
states at∼ 1−1.5 eV binding energy. Superposition of photoelectron intensities should
in any case occur. The question is for the relative impact of the cobalt state spin polariza-
tion on the spin polarization of the Dirac point. Looking on the Figure3.13such impact
should be considered small, because:

1. The total spin up photoemission intensity at the Dirac point in the case of graphene
on cobalt is larger than in the case of cobalt without graphene. This is clearly visible
in figure 3.13where the background spin polarization was removed, but it is also
valid if one considers the true measured count rates.
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2. After the graphene layer is put on top of cobalt, the photoelectron intensity of the
peak in question becomes even smaller.

3. The first derivative in Figure3.8(b) displays the flat Co state under the graphene
while in absolute intensities of Figure3.8(a) its contribution cannot be seen in com-
parison with the intence Dirac point.

So, the observed spin-polarization of the Dirac cone could not be explained fully by the
cobalt peak spin polarization under the graphene layer. Nevertheless it plays a role of
up to 1/3 of the size of the observed Dirac cone spin polarization. The main part, as
was discussed already, originates in the hybridization with spin polarized 3d cobalt states
more close to the Fermi level.

The main conclusion of the presented discussion is that the ferromagnetic substrate
induces a spin polarization into the peculiar graphene Dirac cone. By applying a mag-
netic field this spin polarization could be reversed. Such spin polarized Dirac fermions
are interesting from a fundamental point of view and as additional possibility for using
graphene in spintronics.
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CHAPTER 4

GRAPHENE ON LOW-Z MATERIALS

4.1 Introduction

In graphene on silicon carbide (SiC) an anisotropic splitting of theπ band of up to∼200
meV was observed by spin- and angle-resolved photoemission[73]. This finding lacked
a clear explanation and contradicts the expectation that inorder to induce a spin splitting
in graphene by the substrate, the substrate should be a high-Z material. Both silicon
and carbon of the SiC substrate are low-Z atoms and have a small intraatomic potential
gradient to produce a detectable spin splitting of the grapheneπ band. The potential
gradient due to the workfunction step is also not enough to give rise to the spin splitting
[22]. After submission of the present result [] the interpretation of thearXiv publication
[73] in terms of a Rashba-type spin splitting of the grapheneπ band was revoked by
the authors in their second preprint version leaving the question for the size of the spin-
orbit splitting in graphene/SiC explicitly open [90]. Here the results for graphene on SiC
and graphene on silver obtained by means of spin- and angle-resolved photoemission are
presented in a more general context and with the following objections: 1) to directly check
by experiment if the Rashba effect can exist in such systems, 2) to check the performance
of the spin detector when applied to systems without substantial spin-orbit splitting, 3) to
characterize the graphene/SiC and graphene/Ag systems forfurther comparison of their
electronic and spin structure with other systems, like graphene on gold and iridium.

In Chapter3.2 two examples of low-Z substrates under the graphene layer were al-
ready discussed: nickel and cobalt. The measurements showed no Rashba-type spin-orbit
splitting in these systems in agreement with our expectations, but the presence of a ferro-
magnetic spin polarization of the graphene Dirac cone was discovered. Now we will con-
tinue to discuss low-Z substrates, the graphene/SiC system in detail and the graphene/Ag
system briefly.

4.2 Graphene on SiC(0001)

4.2.1 Preparation

We discussed the cracking procedure to produce a graphene monolayer on nickel and
cobalt surfaces. For graphene on SiC another method is usually used - the thermal de-
composition of silicon carbide [8,9,77,91]. When heated to high temperatures, a silicon

50



4.2 Graphene on SiC(0001)

carbide surface evaporates silicon atoms leaving on the surface graphene layers. By con-
trolling temperature and heating time it is possible to growmonolayer graphene as well as
multilayer graphene and graphite. There are several SiC crystal polytypes and the main
ones are 3C(β) cubic silicon carbide, 4H and 6H(α) hexagonal silicon carbides. The
hexagonal 6H-SiC(0001) surface can be of two types: Si-terminated SiC(0001) and C-
terminated SiC(0001) [91]. On the Si-terminated surface graphene grows of high quality
and in registry with the substrate, but on the C-terminated silicon carbide the graphene-
surface interaction is smaller and graphene grows in rotated domains which lowers unifor-
mity of the graphene layer. In our study we prepared and characterized graphene on both
cubic and hexagonal SiC, but in the present thesis only the graphene on Si-terminated
6H-SiC(0001) will be discussed.

At first, the substrate was by our collaborators at Erlangen University etched in molec-
ular hydrogen at a pressure of 1 bar and a temperature of 1550◦C to remove polishing
damage. A surface covered by a silicate adlayer [92] forms. Then by annealing of the
sample at a temperature of 1650◦C in 1 bar of argon a sequence of low-energy electron
diffraction image occurs showing the following transformations [8]: (

√
3×

√
3)R30◦,

(6
√

6×6
√

6)R30◦ then(1×1) one monolayer graphene structure together with(6
√

6×
6
√

6)R30◦ reconstruction and finally the(1× 1) graphite structure. Figure4.1 shows
the typical LEED image for the case of close to monolayer coverage. The structure
(6
√

6×6
√

6)R30◦ is also calledzero layeror buffer layergraphene, it is often used as
a starting point of experiments when a pure graphene monolayer or multilayer is grown
or graphene is intercalated by other atoms like gold [93] is formed. Graphene monolayer
grows on top of this zero layer phase and its interaction withthe substrate is rather small
because the zero layer serves as passivation layer for the SiC substrate and decouples the
graphene monolayer from it [94]. For the present samples the thermal decomposition pro-
cedure was stopped when∼ 1 graphene layer was formed. The coverage was confirmed
by x-ray photoelectron spectroscopy (XPS). Several samples were then transferred in air
from Erlangen to the spin- and angle-resolved photoemission setup and cleanedin situby
annealing to temperatures below 1000◦C.

4.2.2 Electronic structure

The formation of the electronic structure of the graphene/SiC(0001) measured by angle-
resolved photoelectron spectroscopy inΓK andΓM directions is presented in Figure4.2
taken from Ref. [94]. Panel (a) shows the zero layer graphene and panel (b) for 1 mono-
layer graphene on top of the zero layer. The most striking difference between their elec-
tronic structures is that the zero layer graphene system is nonmetallic and there is noπ
band, as characteristic of graphene. Theσ states are clearly visible and this means that
the atomic structure of this layer is very similar to that of the graphene monolayer, but
theπ band is destroyed due to strong interaction with the substrate. When the graphene
monolayer is formed on top of the zero layer, the intact and intenseπ band is clearly visi-
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4 Graphene on low-Z materials

Figure 4.1: Low-energy electron diffraction (LEED) image of close to monolayer coverage of
graphene on SiC(0001).

Figure 4.2: The band structure inΓK andΓM directions of (a) zero layer graphene and (b)
1 monolayer graphene/SiC(0001) measured by means of angle-resolved photoe-
mission. Photon energy hν = 50eV. This figure is taken from Ref. [94].

52



4.2 Graphene on SiC(0001)

Figure 4.3: Graphene/SiC(0001) Dirac cone. Measurements done by angle-resolved photoe-
mission near theK point of the graphene Brillouin zone in the direction normal
to ΓK at hν = 62eV.

ble (Figure4.2(b)). It approaches the Fermi level at theK point of the graphene Brillouin
zone as expected for the graphene layer.

Due to the destructive interference of photoelectrons fromthe two graphene sublattices
[84] theΓK direction is not ideal for seeing the graphene Dirac cone indetails. To do this,
measurements near theK point in the direction normal toΓK were done and the result
is shown in Figure4.3. Then-doped [8, 95] intact Dirac cone dispersion characteristic
of massless Dirac fermions is clearly visible with the Diracpoint∼ 420 meV below the
Fermi level. From the photoemission, no gap is visible at theDirac point but it should be
mentioned that in the literature there was a long discussionon this topic [91,93,96].

4.2.3 Absence of Rashba effect

The determination of the spin-orbit splitting by spin-resolved photoemission is princi-
pally possible with very high accuracy due to the fact that the photoemission spectra are
counted by separate counters. In particular, the measurable splitting is not limited by the
energy resolution but by the acquired statistics and systematic errors. Because not only a
giant spin splitting but also a strong anisotropy of it was predicted varying between >200
meV and zero splitting [73], we sample a substantial number ofk-points in different direc-
tions around theK point. Because spin-resolved measurements are time consuming, we
limited the acquisition time for each measurement to allow for statistical and systematic
errors below 10 meV. Two samples of monolayer graphene on SiC(0001) were studied by
spin- and angle-resolved photoemission at a photon energy of hν = 55 eV, we will call
them sample A and sample B. The overall energy (of electrons and photons) and angular
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4 Graphene on low-Z materials

Figure 4.4: Spin- and angle-resolved photoemission from three different points in the
graphene Brillouin zone for two perpendicular spin quantization axes. (a,b) Sam-
ple A, pointk1 on theΓK line. (c,d) Sample B at pointk2 where the maximum
splitting was predicted in Ref. [73]. (e,f) Sample B at pointk3 where 200 meV
splitting was reported in Ref. [73]. No splitting of the grapheneπ peak is seen.

resolution of the experiments were 80 meV and 1◦. The base pressure was 2·10−10 mbar,
and experiments were done at room temperature.

Figures4.4(a,c,e) and (b,d,f) display data for the two perpendicular spin quantization
axes in the graphene plane which the present measurement probes, parallel to theΓK
direction (kx) and normal to it. Panels (a,b) show data from sample A at the point k1 of
the graphene Brillouin zone (k1 position is shown in Fig.4.5). Panels (c,d) show data
from sample B at pointk2, where the maximum splitting was predicted [73] but which
has not been probed before in experiment [73]. Panels (e,f) show a measurement from
the sample B at pointk3 where 200 meV splitting was reported at first. Only theπ peak
is measured here but with improved statistics. No splittingis seen. Figure4.5 shows as
crosses all the points in the graphene Brillouin zone around theK point where our spin-
resolved measurements were conducted. The thick black lineis a calculated constant
energy surface∼ 0.8 eV below the Dirac point. The spectra have been analyzed by the
procedures which will be explained in the text below and no splitting was observed with
the confidence limit being of the order of 10 meV.

Each individual measurement, i.e., eachk-point, gives four spin-resolved spectraI↑x (E),
I↓x (E), I↑y (E), andI↓y (E), whereE is the binding energy. For each measurement, the spin-
orbit splittings of theπ-band∆SO,x and∆SO,y for spin quantization alongx (‖ ΓK) andy
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4.2 Graphene on SiC(0001)

Figure 4.5: Region near theK point of the graphene Brillouin zone with a black thick line
showing a calculated constant energy surface (at∼0.8eV below the Dirac point).
Crosses denote points where the spin-resolved measurements were done. The
upper limit of the spin splitting of each measurement (δUL in meV) is given at
each measuredk point separately for spin quantization axes (a) along x (‖ ΓK)
and (b) along y (⊥ΓK).

(⊥ΓK), respectively, have been determined as follows: As the lineshape in angle-resolved
photoemission is not defined as straightforwardly as, e. g.,in core-level photoemission,
we decided not to fit theπ-peak shape but to calculate the centroid (geometric center) of
theπ-peak for each spin independently after subtraction of the backgroundB(E), i. e.:

E↑
cent,x =

∑ [E · (I↑x (E)−B(E))]

∑ [I↑x (E)−B(E)]
(4.1)

where the sum is over all data points in the peak. The resulting splittings are then:

∆SO,x = E↑
cent,x−E↓

cent,x (4.2)

∆SO,y = E↑
cent,y−E↓

cent,y (4.3)

An alternative approach for determining the splitting has been used as well, it is shown
schematically in Figure4.6. In this case the splitting∆SO,x (analogous fory) is an average

over spin splittings∆i for every data point on the sides of the peak,∆i = E↑
i −E↓

i . E↑
i and

E↓
i are determined from the conditionI↑i (E

↑
i ) = I↓i (E

↓
i ) by linear interpolation in order

to assure a one-to-one correspondence between data points in the spin-up and spin-down
spectra. Both approaches gave the same results for∆SO for all k-points. The statistical
errorσx has then been calculated as the standard deviation of the mean value∆SO,x.
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4 Graphene on low-Z materials

Figure 4.6: One out of several ways to determine the spin splitting of the grapheneπ peak.

We found thatσx andσy become so small that they are smaller than the systematic
errors of the experiment. The systematic error of the spin-resolved photoemission spec-
trum results mainly from the sample alignment for an individual measurement, and it
changes for each newk-point since each newk-point requires a new sample alignment.
One possible way to control this systematic error is to reverse the spin splitting by sub-
sequently comparing+k with -k as we will do for the Rashba-type spin-orbit splitting in
of graphene/Au in chapter5. This is not possible in the present experiment because we
do not observe a Rashba splitting. In each measurement we sampled a differentk-point,
therefore we cannot reduce the systematic errorδ∆SO below the measured value for the
spin splitting, i. e.,δ∆SO= |∆SO|. Therefore, the upper limit of the spin splitting at each
k-point isδUL,x = |∆SO,x|+σx.

We took particular care to sample both supposed [73] areas of large and small splitting.
Our seven probedk-points are marked in the Figure4.5 by yellow crosses. The upper
limits of the spin splittings are shown there near the crosses separately for the two spin
quantization directions in the graphene planex [‖ ΓK, Fig. 4.5(a)] andy [⊥ΓK, Fig.
4.5(b)] which the present experiment probes. The upper limits are in each case∼ 20 meV
or less.

The anisotropy of the Rashba splitting was in Ref. [73] supported by theory. To rees-
timate the size and anisotropy of Rashba-type spin-orbit splitting for graphene on SiC in
view of our experimental results density functional theorycalculations in the generalized
gradient approximation using the full-potential linearized augmented planewave method
were performed for us by G. Bihlmayer at Jülich. He assumed a geometry matching a
p(2×2) graphene unit cell to a(

√
3×

√
3)R30◦ unit cell of 6H-SiC(0001), similarly to

the model employed in Ref. [97] with two carbon layers on the SiC. The substrate was
modeled by a film of six bilayers of SiC where the dangling bonds of the lower surface
were saturated with H. This avoids coupling effects throughthe film. The structural pa-
rameters were taken from Ref. [97]. Although the structural model can be refined [98],
it is reasonable to assume that the present model captures the spin-orbit effects in this
system quite well.

Three different SiC terminations, a Si- and a C-terminated one, as well as a C-terminated
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20

40

60

80

100

∆ 
E

 (
µe

V
)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

k|| (A
-1

)

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

E
 -

 E
F
 (

eV
)

Figure 4.7: Lower panel: Dirac cone of graphene on a C-terminated SiC substrate witha
C-deficient interface layer. k‖ = 0 indicates theK -point, negative k‖ values
signify the direction towardsΓ , positive k‖ values towardsM . Upper panel:
Spin-orbit splitting of the upper (blue) and lower (red) branch of the Dirac-cone
formed by the pz band. At theK point, the splitting reduces to about20µeV, at a
band-crossing at around0.15Å−1 it can reach more than 0.1 meV. Calculations
courtesy of G. Bihlmayer (Jülich).

substrate with a C-deficient interface layer were compared inthese calculations. In all
three cases the Rashba-type spin-orbit splitting of the valence-band part of thepz bands
at theK point was far below the resolution limits of our experiment. Slight variations
come from the different surface terminations, ranging from0.02 meV for the Si- and
C-terminated surface to 0.05 meV for the C-deficient one. According to the model of
spin-orbit splitting in graphene [66,70,99] this value is the Rashba contribution, i.e. the
part that is induced by the substrate. In addition, these calculations also give the intrinsic
spin-orbit splitting for the graphene, which are of the sameorder of magnitude, 25µeV,
in good agreement with previous calculations [66, 99]. In addition, a dangling bond is
observed above the Fermi level which cannot be accessed by photoemission. Where this
flat band crosses the Dirac cone, locally an enhancement of the spin-orbit splitting by a
factor 5 - 10 occurs. Finally, the anisotropy of the splitting was investigated, i.e., the fact
that the spin-orbit splitting of the occupied branches develops differently alongKΓ and
KM.

The spin-orbit splitting is found to vary up to 50%: Figure4.7shows the Dirac-cone on
a C-terminated SiC substrate with a C-deficient interface layer. Indeed, the branches show
a different evolution of the spin-orbit splitting in the directionKΓ (negativek‖ values)
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4 Graphene on low-Z materials

Figure 4.8: (a) Band structure of graphene/Ag in theΓK direction. In the region of 4-7 eV
binding energy the flat dispersion of Ag4d states is seen. (b,c) Spin- and angle-
resolved photoelectron spectra showing the absence of a detectable spin-orbit
splitting of the grapheneπ band.

andKM (positive k‖ values) that is, moreover, dependent on the branch of theπ band.
The upward dispersing branchπ∗ shows a rather constant splitting of 50− 60µeV until
it crosses another band at 0.15Å−1, where the splitting gets significantly enhanced. The
downward dispersing branchπ starts at−0.17Å−1 with a large spin-orbit splitting of
100µeV, which drops to 35µeV in the directionKM.

We discussed above that there is no sizable Rashba effect in the experiments of graphene/
Ni(111) and graphene/Co(0001). The present results for graphene/SiC(0001) are also in
agreement with our conclusion that a sizable Rashba splitting in graphene requires the
proximity to a heavy element such as Au [7]. We will discuss this in chapter5 using a
Ni substrate and Au intercalation. As a outlook, it has actually been demonstrated that
the system graphene/SiC(0001) can be intercalated with a Au monolayer [93,100]. This
would be a promising semiconductor system for achieving a Rashba-type spin-orbit split-
ting at the Fermi level in graphene.

4.3 Graphene on Silver

Graphene on silver was prepared by theintercalationprocedure where a silver (or gold,
copper etc.) layer is put on top of graphene/Ni(111) and the system is annealed for∼5
min at a temperature around 600 K. During annealing the deposited metal goes under
the graphene layer and decouples graphene from the substrate. This procedure will be
discussed in detail in Section5.1.1for Au layer. The intercalation procedure of gold is
schematically shown in Figure5.1, for the case of silver the procedure is the same.

The electronic structure of graphene/Ag is shown in Figure4.8(a). It is rather similar
to the free graphene electronic structure, but there are also several substantial differences:
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4.3 Graphene on Silver

1. The full grapheneπ band is shifted to higher binding energy by∼ 1 eV in average
and reaches 9 eV binding energy in theΓ point.

2. This corresponds ton-doping and the Dirac point is at∼ 0.6 eV binding energy.

3. We observe a gap at theK point of the graphene Brillouin zone, i.e., at the Dirac
point.

The grapheneπ band crosses silver bulk states in the 4–7 eV binding energy region with-
out apparent hybridization between them. However, the intence flatd band at 4 eV could
indicate a hybridization with the grapheneπ band. Due to destructive interference of
photoelectrons from two graphene sublattices [84] in the ΓK direction only parts of the
grapheneπ andπ∗ bands are visible around theK point: In the first Brillouin zone only
theπ band is visible, in the second Brillouin zone only theπ∗ band is visible as a small
intensity spot close to the Fermi level.

Spin-resolved measurements are presented in Figures4.8(a,b). They were measured
at hν = 62 eV photon energy at severalk points close to theK point. Similarly to the
graphene/SiC case which we discussed in Section4.2, there is no detectable spin-orbit
splitting of the grapheneπ band. This result is fully expectable since Ag is low-Z ma-
terial. The absence of a sizable spin splitting in graphene on low-Z materials is also a
perfect test for the functional calibration of the spin detector, the correctness of which is a
precondition for the proper characterization of spin effects in graphene on high spin-orbit
materials.
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CHAPTER 5

GRAPHENE ON HIGH-Z MATERIALS

5.1 Graphene on gold

As it was mentioned before in the Thesis the intrinsic spin-orbit coupling in graphene
is very weak. The splittings are of the order of 0.02 meV as concluded in section4.2
an agreement with previous calculations [66, 99]. For spintronics such weak spin-orbit
coupling is good because it leads to a long spin coherence length of the size of∼1.5–2
µm [32–34]. We also mentioned in the introduction that an externally induced large spin-
orbit coupling in graphene could open the way for graphene asthe channel material in the
Datta-Das spin field-effect transistor [30]. The element gold is often used to demonstrate
large spin-orbit coupling effects [21, 101]. There are spin-split surface states at theΓ
point in the region of the Fermi level [21]. We have discussed these surface state as an
example of the Rashba-type spin-orbit splitting in section2.2.1[21,102,103]. The band
dispersion of graphene with broken up-down symmetry required for the Rashba effect
was calculated in Ref. [70] and was discussed in section2.2.2, see Figure2.5. In zero
magnetic field, the band topology was predicted to be similarto that of the unbiased
spinless bilayer graphene but with an additional spin texture which is tangential to the
circular constant-energy surfaces.

Previously we studied the graphene/Au/Ni(111) system by spin- and angle-resolved
photoemission and published the observation of∼ 13 meV spin splitting of the grapheen
π band [7]. This splitting is due to the influence of the Au and is three orders of magnitude
larger than the∼ 0.02 meV intrinsic spin-orbit splitting in graphene. In the current chapter
we will show that the spin splitting can be further enhanced by an order of magnitude. We
will discuss the spin- and angle-resolved photoelectron spectroscopy characterization of
the graphene/Au/Ni(111) system and show∼ 100 meV splitting. The value of splitting is
nearly constant at different points of the graphene Dirac cone and reverses with reversal of
the wave vector in full agreement with the calculated Rashba effect for graphene. Because
this splitting is so large compared to the case of the free graphene layer, we call it aGiant
Rashba effect.

The grapheneπ band dispersion is linear as for freestanding graphene and reaches the
Fermi level. The splitting extends to the Fermi level as well, i.e., the Fermi surface is
spin split and spin polarized, keeping in mind that the spin polarization vanishes when
integrated over k. We will show that a spin-dependent hybridization of the grapheneπ
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5.1 Graphene on gold

Figure 5.1: Schematic view of intercalation of gold between graphene and nickel. About 1-1.5
monolayer of gold is deposited on top of graphene and subsequently annealed.

band with gold 5d states is a source of the observed giant Rashba effect in the graphene.
The observation of different superstructures of gold underthe graphene layer as well as the
results fromab initio calculations will be discussed. Based on theab initio calculations,
the giant spin-orbit splitting is attributed to dilute Au atoms that are very close to the
carbon atoms, i. e., closer than the Au atoms in an ideal Au monolayer in contact with the
graphene.

5.1.1 Preparation and electronic structure

To prepare graphene/Au/Ni(111) we used the procedure of propylene (C3H6) crackingto
make a graphene/Ni(111) system first. This procedure and thesample characterization
were discussed in section3.2 and schematically shown in Figure3.1. The result of the
cracking is a large-scale high-quality graphene layer on nickel. After that, a gold layer is
inserted under the graphene layer by the intercalation procedure. The mass equivalend of
about 1-1.5 monolayer of gold is deposited on top of the graphene/Ni at room temperature
and the system is subsequently annealed at about 700 K for∼5 min. The intercalation
procedure is schematically shown in Figure5.1. It is important to note that the intercala-
tion of Au is self-limited at a concentration of about 1-1.2 ML. If more Au is deposited,
STM and ARPES show that exceeding material remains on top of graphene and forms
large 3D islands. We characterized the graphene/Au/Ni(111) system with a number of
experimental techniques: LEED, STM, photoelectron spectroscopy of core levels (XPS),
high resolution angle-resolved photoelectron spectroscopy (ARPES) and by spin-resolved
photoelectron spectroscopy (SARPES). A part of this characterizations was published in
Ref. [7]. STM and LEED from graphene on gold show a large scale uniform graphene
coverage with a moiré superstructure which is caused by a small lattice mismatch be-
tween layers. In the present Thesis new data is reported. Angle-resolved photoelectron
spectroscopy measurements were done in different directions in the graphene Brillouin
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5 Graphene on high-Z materials

Figure 5.2: Electronic structure of graphene/Au/Ni(111) measured by angle-resolved photo-
electron spectroscopy at hν = 62 eV. (a) Large angle and energy range overview
in theΓK andΓM directions. (b) Magnified view of the Dirac cone region mea-
sured normal to theΓK direction. (c,d) Directions of corresponding measure-
ments. Horizontal axes in both (a) and (b) panels are in-plane wave vectors but
in (a) they are measured relative to theΓ point and in (b) relative to theK point.

zone, at different photon energies and polarizations, different concentrations of gold, dif-
ferent temperatures and other preparation conditions. Figure 5.2(a) shows a large angle
and energy scale overview of the band structure of graphene/Au/Ni(111) measured at a
photon energyhν = 62 eV in theΓK and ΓM directions. The grapheneπ band extends
from ∼ 8.2 eV binding energy at theΓ point to∼ 2.6 at theM point and to the Fermi
level at theK point of the graphene Brillouin zone. It crosses gold 5d states in the 2.5-6.5
eV binding energy region. The energy at theΓ point compared to the graphene/Ni case
is by ∼ 2 eV shifted to lower binding energies. Figure5.2(b) shows a magnified view
of the region near theK point measured in the direction normal toΓK to observe both
branches of theπ band at the same intensity. There, the dispersion is that of alinear Dirac
cone with the Dirac point close to the Fermi level (slightlyp-doped). Such dispersion is
the peculiar property of a freestanding graphene layer. Boththe energy position at theΓ
point and the presence of an intact Dirac cone show that the intercalated gold layer decou-
ples graphene from the nickel substrate and transforms the graphene band structure into a
quasifreestanding one. These observations are in full agreement with previous studies of
this system [6,7,95,104].

5.1.2 Giant Rashba effect in graphene

Figure5.3shows the spin- and angle-resolved photoemission measurements of graphene/Au/Ni(111).
Panel (a) shows theπ band with its linear quasirelativistic dispersion, and crosses indicate
where spin-resolved photoemission spectra (b–d) have beenmeasured. The splitting be-
tween spin-up spectraI↑(E) (upward triangles) and spin-down spectraI↓(E) (downward
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5.1 Graphene on gold

Figure 5.3: Giant spin-orbit splitting∆so of the grapheneπ band. (a) Angle-resolved photoe-
mission near theK point of the graphene Brillouin zone of graphene/Au/Ni(111).
Crosses indicate where the Dirac cone of the grapheneπ-states is probed by (b–d)
spin- and angle-resolved photoemission spectra (hν = 62eV). Blue and red lines
in panels (b–e) are spin up and spin down spectra. (e) The spin splitting reverses
with the sign of k‖. In panels (a) and (b) the directions in the graphene Brillouin
zone where corresponding measurements were done are shown as insets.
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5 Graphene on high-Z materials

triangles) is clearly visible and amounts near the Fermi level to 90 meV atk‖ = 1.65 Å−1

and−105 meV atk‖ =−1.65 Å−1. Apparently, the sign of the splitting reverses with the
sign ofk‖ as expected for a Rashba effect (see panels (d) and (e)). This giant spin splitting
is the central experimental result of the present Thesis. Note that the splitting exceeds also
the room-temperature broadening, and together with the fact that it extends to the Fermi
energy, it becomes directly relevant for transport applications. In fact, transport properties
of graphene with an externally induced spin-orbit splitting have been intensively investi-
gated in recent years [39,41,42] and important predictions have been made: the spin Hall
effect [39], the quantum spin Hall effect [40,41] and, with an additional exchange inter-
action, the quantum anomalous Hall effect [42]. In brief, the spin Hall effect describes
spin accumulation, the quantum spin Hall effect can be described as the quantum Hall ef-
fect with the external magnetic field replaced by the effective magnetic field of Figure2.3
and is the two-dimensional version of a topological insulator, and the quantum anomalous
Hall effect combines the spin-orbit splitting with an exchange splitting of similar size.

To establish the connection between our previous 13 meV dataand the new 100 meV
data, we undertook a closer inspection of the spin-resolvedspectra of Figure5.3. They
reveal that the system is inhomogeneous and the high-splitting phase (∼ 100 meV) and
the low-splitting phase (∼ 10 meV) are present simultaneously. Line fits and spectral
decompositions (Figure5.4) show that the high-splitting phase makes up between one
third and two thirds of the spectral weight. Note that the photoemission experiment aver-
ages over a macroscopic sample region of about 200µm×200µm so that the two phases
roughly share this area. Returning to Figure5.4, the decomposition is possible due to the
energy shift between the two phases with the low-splitting phase observed at about 200–
500 meV higher binding energy. The fit of the spectra was done under the most simple
assumption: in addition to the spin-up and spin-down components (here at lower binding
energy) we allow for a non-split component (as an approximation to the small splitting of
13 meV) (green line). Because the four displayed spectra stemfrom three measurements
with slightly different ratios between the coexisting phases, their ratios are allowed to vary
in the fit as well. The negative wave vectork‖=-1.65 Å−1 shown in panel (d) can only
be reached by a large change in the electron emission angle. This changed also the light
polarization conditions and an additional component to roughly model the appearance of
the Ni 3d state at the Fermi energy (yellow line) had to be introduced in this case. Finally,
it should be mentioned that the giant magnitude of the splitting and the distribution of the
spectral weight between the high-splitting and low-splitting phases ranging from 1 : 2 to
2 : 1 have been reproduced in experiments in severalin situ preparations and at different
beamlines.

5.1.3 Hybridization as the source of the giant splitting

We want to discuss the electronic origin of this strongly enhanced spin splitting including
the reason for the two phases of low and high splitting and therelation to our previous
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5.1 Graphene on gold

Figure 5.4: Fit of the spin-resolved spectra from Figure5.3 revealing contribution of the
phase with low spin orbit splitting to the spin-resolved spectra. The non-split
component at higher binding energy (green) models the≈13 meV spin-orbit split
band observed in our previous study [7].
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Figure 5.5: (a) Scanning tunneling microscopy and (b) low-energy electron diffraction for
1.1 ML of gold under the graphene layer with a9×9 moiré-type superstructure.
(c) Angle-resolved photoemission (first derivative of the intensity over energy).
Hybridization between theπ band of graphene and5d states of Au is emphasized
by the dashed red lines. White dashed lines denote the k‖ values for which the
spin-resolved spectra displayed in (d) were measured (hν = 62 eV). (d) Spin-
resolved measurements in the region of hybridization between the graphene and
gold bands. It is seen that the spin-splitπ states develop directly out of a large
spin-orbit splitting of Au5d states. Blue and red triangles denote spectra for
opposite spin.

results. Direct probing as well as controlling of the Au interlayer as the likely source
of the giant Rashba splitting are challenging because most ofthe Au atoms are located
underneath the graphene layer. Basically, we can only control the nominal amount of
Au deposited on top of the graphene/Ni before intercalationwhich typically exceeds the
subsequently intercalated amount. While graphene and Ni(111) have a lattice mismatch
of only 1.2%, the mismatch between the graphene and Au(111) is much larger (∼ 14%).
Therefore, the intercalated monolayer of Au cannot reach the same atomic density as the
Ni. Probing of the resulting interfacial structure is possible by STM and by LEED as is
shown in Figure5.5(a,b) for 1.1 ML of gold under the graphene layer with a 9×9 moiré
superstructure. The moiré effect reveals the superstructure through the periodic beatings
developing because of the mismatch between the graphene lattice and the Au monolayer.
Note that in Ref. [7] this structure was roughly assigned as 10×10.

Unfortunately, the core levels do not allow to draw any conclusions about the structure
of gold under the graphene layer as the shape and the energy positions of the 4f states
of Au do not change during the intercalation process. This isshown, as an example, for
graphene on Co(0001) in Figure5.6. The Au 4f spectra before and after intercalation
do not show a core-level shift which could be used to identifythe sites of Au atoms.
While Au 4f does not visibly change, the C 1s spectra show a shift indicating successful
intercalation.

We argue that for observing the spin-orbit splitting of the size of 100 meV in the
graphene/Au system, the spin-resolved ARPES measurements are required because the
ARPES spectrum without spin-resolution as presented in Figure 5.7(a) reveals only a
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Figure 5.6: Characterization by core-level spectra of gold intercalation under the graphene
on Co(0001). After synthesis of graphene (black) the Au (≈1.5 ML) is deposited
at room temperature (red) and subsequently intercalated by annealing (blue). The
data shown are for Co(0001) instead of Ni(111) but are otherwise comparable.
The spectra have been normalized to equal maximum intensity.

Figure 5.7: Consistency of spin-resolved and non-spin-resolved ARPES measurements. (a)
Dashed blue and red lines denote spin-up and spin-down spectra from spin-
resolved ARPES setup. The green dashed line is a sum of experimental spin
up and spin down spectra. The thick blue line shows experimental data fromthe
high-resolution ARPES setup. (b) Blue and red dashed lines to model the100
meV spin splitting with300meV FWHM peaks. The thick red line shows a sum
of blue and red dashed lines. The thick blue line shows the same high-resolution
experimental data as in panel (a).
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Figure 5.8: Comparison of +k‖ = 0.6 Å−1 (+10◦) and −k‖ data (−10◦) for
graphene/Au/Ni(111). The behavior of the spin polarization [p=
(I↑ − I↓)/(I↑ + I↓)] shows an almost vanishing spin polarization at k‖ = 0,
as expected for a Rashba effect, and a rather clear reversal for−k‖ if we
take into account that the spin polarization of Au 5d states is also subject to
spectroscopic effects such as the linear dichroism of Au 5d emission [105] which
do not reverse with the sign of k‖. This means that the Rashba-type spin-orbit
splitting of the grapheneπ states is accompanied by a Rashba effect on the Au
monolayer itself. Such effect has similarly been observed for Au/W(110)[26,46].

sharp peak without any apparent splitting. The summation ofthe spin-up and the spin-
down spectra gives a broad peak (dashed green line) in panel (a). On the other hand, the
ARPES data [solid blue line in (a)] is sharper due to higher angle resolution of the angle-
resolved photoemission setup. Therefore, in (b) we have simulated the summation of two
peaks split by 100 meV for the case of better angular resolution in the angle-resolved
experiment. It is seen that also in this case no splitting of spin-integrated peak appears
and it is not possible to distinguish a spin splitting at suchbroadening and splitting sizes
without direct spin resolution.

Figures5.3(a) and5.5(c) show that the graphene electronic structure resembles that of
the freestanding graphene. The Au layer prevents any considerable carbon-Ni hybridiza-
tion which would modify the dispersion of theπ band near the Fermi energy as discussed
in section4.3. Nevertheless, also in the quasifreestanding phase with intact Dirac cone
(Figure5.5(c)) several hybridization points between theπ states of graphene and 5d states
of Au are revealed at the binding energies between 4 and 6.5 eV. This is also much clearer
than for the Ag intercalation in Fig.4.8. In addition, replicas of the grapheneπ band
shifted to smaller and larger values of the wave vectork‖ are observed (orange arrows in
Figure5.5(c)). Their shift ink‖ amounts to between 1/7 and 1/9 of theΓK distance. The
STM image in Figure5.5(a) shows a moiré pattern of a similar periodicity. The observed
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superstructure can be identified by the LEED more accuratelythan by STM as a 9× 9
(Figure5.5(b)). This is in good agreement with the periodicity of the band replicas in
the photoemission spectra. Dashed lines in Figure5.5(c) show where we probed the hy-
bridization points by the spin-resolved spectra (Figure5.5(d)). These spectra reveal that
the giant∼ 100 meV spin splitting of theπ band smoothly merges into an even larger
spin splitting (∼ 0.6 eV) of the Au 5d states. This provides a strong indication that the
spin-dependent hybridization of the carbonπ states with thed states of the heavy Au is
the origin of the giant Rashba splitting in graphene. For probing if the spin splitting of
the Au is also of Rashba type, spin-resolved measurements fortwo opposite directions of
the in-plane wave vector were performed, and the results areshown in the Figure5.8. It
is seen that most features of the spin polarization show a reversal.

Interestingly, when a larger nominal amount of Au is deposited on top of graphene
prior to intercalation, it forms after intercalation a slightly different 8× 8 superstruc-
ture. Figures5.9 and5.10show the characterization by STM, LEED and ARPES of the
graphene/Au/Ni(111) system after intercalation of different amountsof Au in which the
transition from the 9× 9 to the 8× 8 superstructure manifests itself. In Figure5.9(a)
graphene on bare Ni(111) shows a pronounced 3-fold symmetryin STM and (e) a clear
p(1×1) pattern in LEED which means that graphene is perfectly in registry to the Ni sub-
strate. In panel (b) graphene on Ni(111) intercalated with various submonolayer amounts
of Au is shown. Underneath of the graphene, the Au forms islands of various dimensions
and shapes. STM scans of these islands exhibit thep(9×9) moiré superstucture. This
superstructure is attributed to the lattice mismatch between Au and Ni. The interatomic
distances are in bulk Au 2.88 Å and in bulk Ni 2.48 Å. Since the lattices of graphene and
Ni(111) match exactly, it is not surprising that 1 ML Au/Ni(111) also forms ap(9×9)
structure at room temperature [106, 107]. We find that underneath the graphene, this
structure is rather stable independently of the exact amount of intercalated Au. These
p(9×9) islands always co-exist with areas which resemble cluster superlattices (marked
with green arrows). Those areas can be attributed to the formation of an interfacial al-
loy between Ni and Au under the graphene. Such surface alloy has been observed for
Au/Ni(111) after annealing [108]. However, these clusters cover only a minor part of the
sample surface and were not found relevant to our results. The fact that we do not observe
large areas of alloyed Au under the graphene is understandable: It was shown and demon-
strated for carbon monoxide that the presence of another species reverses the process
again (de-alloying) [108] so that the graphene layer is expected to prevent the alloying
of Au with Ni. In Figures5.9(c,f) graphene on Ni intercalated with a full Au monolayer
(nominally 1.1 ML) demonstrates in STM and LEED a perfectly periodic moiré pattern.
A quantitative analysis is easier by the LEED than by the STM since the LEED super-
structure can be evaluated relative to the distance between(0,0) and (1,0) spots without the
need for any calibration. Our data reveals that the moiré is due to ap(9×9) superstruc-
ture. On panels (d,g) it is shown that further increase of theAu amount leads to ap(8×8)
structure which is less ordered in STM but clearly distinguishable in LEED. When the
Au is deposited as a wedge, scanning the sample during LEED shows a clear jump from
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Figure 5.9: (Figure is located on two pages.) Characterization by STM, LEED and ARPES of
the graphene/Au/Ni(111) systems intercalated by increasing amounts of Au. The
first column shows results for graphene/Ni. The second column shows results for
various submonolayer amounts of Au. The third column shows graphene on Ni
intercalated with a full Au monolayer (nominally 1.1 ML) with9×9 reconstruc-
tion. The fourth column shows that a further increased amount of gold leads to a
8×8 reconstruction and an additional hybridization around 3 eV binding energy.
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Figure 5.10: Raw ARPES data from Figure5.9. Raw intensity (top) and first derivative of
intensity over energy without (middle) and with coloured lines emphasizing dis-
persion of hybridized bands (bottom).
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Figure 5.11: Comparison of spin-orbit splittings of p(9× 9) and p(8× 8) superstructures.
The spin splittings are approximately the same and large in both cases.

the p(9×9) to the p(8×8) structure at a certain nominal concentration of Au close to
1 ML. In panels (h-k) the corresponding development of the hybridization of graphene
with Au states from such a wedge-type sample is shown. Thep(8×8) phase leads to an
additional hybridization around 3 eV binding energy. However, rather surprisingly this
hybridization does not further enhance the giant spin-orbit splitting as is seen from Figure
5.11. This indicates that the differences between the 9×9 and 8×8 superstructures play
no role for the giant spin-orbit splitting.

Now we turn toab initio theory in order to clarify the origin of the giant spin splitting.
The calculations were again kindly performed by G. Bihlmayer. Modelling the 9×9 or
8×8 superstructures of the graphene/Au/Ni system would increase the unit cell by two
orders of magnitude as compared to graphene. Moreover, it isunnecessary because both
superstructures show a similar spin-orbit splitting. Ap(1× 1) structure with an on-top
position for graphene on the Au monolayer has been chosen instead as is shown in Figure
5.12(a). The Au monolayer was assumed to be pseudomorphic [meaning p(1×1)] also
to the Ni(111) substrate which results in a compressed Au layer. The important Au-
graphene distance has been chosen in Figure5.12(a) based on the Fermi-level position
from the experiment and in agreement with Ref. [109] asd = 3.3 Å.

The distance between graphene and the Au monolayer is a parameter of an enormous
influence on the spin-orbit splitting in graphene as is shownin Figure5.13. This finding is
in line with calculations for pure metal surfaces Au(111) and Ag(111) where the surface
and nuclear potentials were found to contribute multiplicatively to the Rashba splitting of
the surface state [22,110,111]. In Fig. 5.13the Fermi energy varies with the graphene-
Au distance which allows us to make connection to the experiment. The sign change
from n- to p-doping between d = 3.34 and 3.41 Å is in agreement with calculations for
R-(

√
3×

√
3) graphene/Au(111) which give an equilibrium graphene-Audistance of 3.31

Å [109]. In addition, the behavior of the staggered potential (∆st) is shown. The staggered
potential is induced by the Au lattice which breaks the equivalence of A and B sublattices
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Figure 5.12: (a) Results of ab initio calculations (open circles) showing the 9 meV Rashba-
split Dirac cone for graphene on a gold monolayer in the on-top position at
the equilibrium distance of 3.3 Å. In the inset a magnified view near the Dirac
point is shown; Lines depict the dispersion as predicted from the analytical
model by Rashba [70]. (b) The Au monolayer is laterally moved to the graphene
hollow sites and can now be pressed into the graphene to the non-equilibrium
distance of 2.5 Å without breaking the Dirac cone but enhancing the spin-orbit
splitting to 70 meV. (c) Improved model with the Au atoms still sitting in the
graphene hollow sites but diluted to 0.25 ML Au in a p(2×2) geometry and at
the equilibrium distance of 2.3 Å. Here, a spin-orbit splitting of∼ 50−100meV
and intact Dirac cone are achieved in equilibrium. Blue and red lines in panels
(a-c) denote spin up and spin down bands. Atomic structures are schematically
shown at the bottom of each panel. Calculation courtesy of G. Bihlmayer.
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Figure 5.13: Band topology and distance dependence of doping and spin-orbit splitting. Left:
comparison of the analytically calculated Rashba-type band topology (solid
lines) calculated by Rashba [70] to the calculation of Figure5.12(a) (sym-
bols) [p(1×1) on-top geometry] in the vicinity of the Dirac point finding full
agreement. The line color gives the chirality (ν) and the symbol color (red and
blue) the spin polarization. The spin-orbit splitting∆SOCamounts to 9 meV. For
this structure the graphene-Au distance is varied as shown on the right side:
graphene-Au distance dependence the Fermi energy, staggered potential and
spin-orbit splitting. Calculation courtesy of G. Bihlmayer.
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Figure 5.14: Hybridization as the origin of the spin-orbit splitting in the graphene. Calcula-
tions without spin-orbit interaction reveal anticrossings and hybridizationgaps
which are due to orbital symmetries (see pink circles). (The spin-orbit split-
ting lowers the symmetry further and introduces additional anticrossings.) The
model is p(1× 1) graphene on a Au monolayer in the on top geometry as in
panel (a) of Fig. 5.12. Since theπ-band is made of pz orbitals, the observed
hybridization with d2z and dyz orbitals is determined by symmetry. Calculation
courtesy of G. Bihlmayer.

of the graphene if one sublattice is in the on-top position relative to the Au as shown in
the geometry sketch of Figure5.12(a). This effect from the staggered potential causes a
splitting of the Dirac cone of a few meV for large graphene-Audistances but it increases
strongly for short distances breaking the Dirac cone.

The experimental Fermi level corresponds with its slightp-doping to the distance 3.3–
3.4 Å in the theoretical model, and data for the distance of 3.3 Å is shown in Figure
5.12(a). This is also the equilibrium distance calculated before for graphene/Au(111)
[109]. According to analytical prediction, the band topology ispeculiar around theK
point with two pairs of bands as was seen in Figure2.5. This analytical model [70, 71]
does not assume any specific surface configuration. The bandshave so far been confirmed
for freestanding graphene in a supercell geometry by density functional theory calcula-
tions for an applied fieldE = 4.0 V/nm [66]. In the ab initio calculations this fieldE is
realistically created by the interface to Au. This was done in Figure5.12(a) which shows
the spin-orbit split bands at the Dirac point atK for the on-top geometry. In the inset,
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theseab initio results (symbols) are magnified near the Dirac point and compared to the
dispersion of the analytical model (solid line), which is fully confirmed. The spin-orbit
splitting is 9 meV in Fig.5.13for d = 3.3 Å. A similar value of 8 meV was calculated
recently [99].

In agreement with the experiment, ourab initio calculation reveals Cπ-Au d hybridiza-
tion as the source of the spin-orbit splitting in the graphene. The grapheneπ-band (pz or-
bitals) hybridizes indeed with the deeper Au 5d bands ofdz2 anddyz type because of their
matching symmetry. Despite the large distance of 3.3 Å the hybridization is strong which
has not been considered in the literature in connection withgraphene-noble-metal inter-
faces. This is best seen on Figure5.14after the spin-orbit coupling is turned off. This
leaves only gaps caused by hybridization. We determine hybridization gaps of widths
Eg,z2 ≈ 0.8 eV andEg,yz≈ 0.5 eV. Their absolute binding energies do not compare well to
the experiment revealing the limitations of the Au monolayer as model substrate. This sit-
uation improves largely and the main Cπ-Au d hybridization moves from∼ 3 eV to∼ 4
eV belowEF when the Ni substrate is included in the calculation as is shown in Figure
5.15. The distanced = 3.3 Å nicely reproduces the position of the graphene states from
the experiment, the same distance was used in the graphene-Au bilayer model of Figure
5.13. But we observe that between these two models the binding energies of the Au 5d
bands suffer considerable changes due to the Ni substrate, mainly Au-Ni hybridizations
which make the Au 5d bands difficult to distinguish. Thedyz band from Figure5.14orig-
inating at -2 eV atΓ and arriving at -6 eV atK can be distinguished also in Fig.5.15. A
new Au 5d state appears at -1.5 eV atK . The Auspband of Figure5.14is not observed
in the experiment, and Figure5.15shows that the reason is that this band is very strongly
hybridized with the Ni and disappears as a well-defined band.

The spin-orbit splitting in Figure5.12(a) is 9 meV nearEF but increases strongly when
the distance between graphene and Au is reduced (see Figure5.13for the detailed depen-
dence on the distance). On the other hand, the Dirac cone is destroyed at closer graphene-
Au distance, giving, e. g., for 2.5 Å a band gap of 40 meV atK . The reason for this is
the broken A-B symmetry of carbon atoms in the on-top geometry which decreases for
larger distances. In contrast, a hollow-site geometry preserves the A-B symmetry in the
graphene. The geometry for this case is shown in Figure5.12(b). Consequently, an intact
Dirac cone is obtained in the hollow-site geometry also for smaller graphene-Au distances
such as 2.3 Å which is shown in Figure5.12(b). At this arbitrarily chosen interlayer dis-
tance of 2.3 Å a giant spin-orbit splitting of∼ 70 meV is created. However, at such a close
distance repulsive interactions cost as much as 1 eV relative to the equilibrium separation
and this geometry is thus considered unrealistic.

While the giant spin-orbit splitting apparently is difficultto reproduce by density func-
tional theory in equilibrium, the intact Dirac cone is not. The intact Dirac cone is presently
obtained withp(1×1) on-top graphene/Au and has also been found forp(1×1) graphene/Cu(111)
where the on-top position is determined to be energeticallyfavourable [109]. Relative to
this p(1×1) on-top geometry which implies maximum A-B symmetry breaking, a moiré
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Figure 5.15: Effect of the Ni substrate on the electronic structure at the graphene/Au in-
terface. Colors mark states with a high probability density at the graphene
(red), Au monolayer (violet), and Ni substrate (grey). Calculation courtesy of
G. Bihlmayer.
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superstructure such as the 9×9 one necessarily breaks the A-B symmetry to a lesser or
vanishing degree which is favourable for obtaining an intact Dirac cone. After having
investigated other laterally shifted positions of thep(1×1) overlayer and a 4×3 moiré
superstructure as well as corrugation in the graphene all yielding spin-orbit splittings of
the order of 10 meV at equilibrium graphene-Au distances, the conclusion is that the
giant spin-orbit splitting will not be accounted for by the sharp graphene-Au interface
alone that the structural characterization by LEED and STM suggests as simplest case.
This means that a model for a realistic splitting will have toinclude individual Au atoms
which then can obtain a higher coordination to the carbon. Due to the resulting attraction
and shorter distance this allows for a stronger spin-orbit splitting of the grapheneπ states.
As seen above, at small graphene-Au separations the preservation of A-B symmetry be-
comes critical and leads us once again to the hollow site geometry. Figure5.12(c) shows
this situation for graphene/0.25 ML Au in ap(2×2) structure with the Au in the hollow
site relative to the graphene. The distance between Au atomsand graphene layer is 2.3
Å (as for the nonequilibrium Au monolayer of Figure5.12(b)) which is the equilibrium
distance determined by our structural optimization. Figure 5.12(c) shows that this struc-
ture enhances the spin-orbit splitting to values between 50and 100 meV while keeping
the characteristic band topology and the Dirac point. This demonstrates that the measured
giant Rashba splittings are quite reasonable from theab initio point of view.

The 9× 9 and 8× 8 structures will include in the simplest case a substantialamount
of Au atoms arranged in the hollow sites of graphene [112] but this does not imply a
reduced distance, especially if one considers that 9×9 is also the structure which a Au
monolayer alone forms on Ni(111) [106]. Therefore, the 9×9 and 8×8 superstructures
are probably not relevant for the giant splitting and both give rise to only∼ 10 meV
splitting in agreement with our observation shown in Figure5.11.

The previously measured data [7] were characterized by a smaller∼ 13 meV spin-
orbit splitting, and this low-splitting phase is in principle in agreement with our present
calculations for the full Au monolayer. The published [7] band dispersion measured along
ΓK reflects the presence of a sample with structural defects. It contained substantial
contributions of rotated domains visible as characteristic ΓM dispersions appearing along
ΓK which is not the case in the present data even when the amountof intercalated Au
is varied systematically from zero to more than 1 ML as was shown in Figures5.9 and
5.10. The intercalation process under the graphene, including that of Au, is at present
far from understood. The accepted main route is via defects in the graphene [113], and
for large molecules this can be confirmed by STM directly [114]. The presence of many
domain boundaries facilitates the intercalation and apparently results in the low-splitting
phase. Intercalation of Au works, however, also in samples which are free of defects over
large distances. The temperatures required for intercalation and for the initial graphene
formation are very similar in the graphene/Au/Ni(111) system so that an opening and
closing of the graphene bonds appears possible during intercalation. This would more
likely happen for a perfect graphene layer and could lead to more Au atoms that are
locally closer to the graphene, either as subsurface Au or asadatoms.
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Figure 5.16: Same model as in Figure5.15 but with additional Au adatoms, i.e. graphene
is sandwiched between 0.25 ML Au and 1 ML Au on top of a 3 ML thick Ni
substrate. This calculation explores again the influence of the Ni substrate(grey
symbols) under the Au monolayer (violet symbols) on the grapheneπ-states (red
and blue symbols). The upward and downward direction of the triangles marks
the spin, in particular the upward red and downward blue triangles for graphene
states. Left: The states due to the additional Au adatoms (black triangles, Au’)
can be seen to interact with the graphene states through different hybridizations
than the Au monolayer. Right: Zoom near the Dirac point. The spin-orbit split
Dirac cone from the graphene-Au bilayer model of Fig.5.12(c) is thus confirmed
in the present, more realistic, configuration. The fact that higher and lower
energies are not symmetric about the Dirac point is not due to the Ni substrate
but to the p(2× 2) 0.25 ML Au adatoms, like in Figure5.12(c). Calculation
courtesy of G. Bihlmayer.
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The p(2× 2) plot of Figure5.12(c) is useful for demonstrating that an enhancement
of the spin-orbit coupling in graphene by sparsely distributed Au atoms is possible in
an equilibrium structure but it does not imply that the Au arrangement possesses such an
ordered structure. We can certainly exclude that carbon atoms in graphene are substited by
Au atoms. Their size would correspond to two carbon atoms andthe resulting distortion
would manifest itself in STM. Another possibility are non-intercalated residual atoms
above the graphene for which we have no direct experimental evidence because of room
temperature measurements. They have a high mobility on the surface and should be
shifted along by the STM tip. In order to explore a realistic model which includes the Ni
substrate, the band dispersion for a structure of graphene sandwiched between 0.25 ML
Au and 1 ML Au on top of 3 ML Ni has been calculated as well. The result is presented
in Figure5.16and gives practically the same Dirac cone with giant spin splitting as in
Figure5.12(c).

To summarize the results of the present section, we report a giant Rashba splitting in
graphene in contact with Au reaching up to 100 meV. This splitting is caused by the
graphene-Au hybridization. While a flat Au monolayer can account for only∼ 10 meV
spin-orbit splitting as has been reported in Ref. [7], a structure of laterally more separated
Au atoms residing in hollow-site positions closer to graphene provides at the equilibrium
graphene-Au distance an enhanced spin splitting of∆SO∼ 50–100 meV, a realistic Fermi
level position, and an intact Dirac cone. We attribute the simultaneous presence of both
100 meV and 10 meV splittings to the coexistence of areas withand without extra Au
either as adatoms or immersed under the graphene.

5.1.4 Atmospheric stability

For use in real devices, the peculiar electronic and spin structure of the graphene/Au/Ni(111)
system must be stable when the system is exposed to atmosphere, otherwise a way to pro-
tect it has to be found. Exfoliated graphene is known to be stable in air [115] and in
acid solution [116], but it has been assumed that exposure to air is a major source of
doping [11]. In fact, charge inhomogeneities due to doping have been found to affect the
minimum conductivity [117] of graphene through regions in which the Fermi energy shifts
randomly [118]. In this situation, pentacene was recently suggested as protection layer
for graphene [119]. A 15 nm thick pentacene layer deposited on graphene/SiC(0001) was
shown to lead to the samen-type doped graphene dispersion after deposition and removal
by annealing. Graphene in spintronics [32] is particularly vulnerable due to the interfaces
with magnetic transition metals and their high reactivity with air. In the present case, it
can be expected that the reaction of oxygen with the Ni surface either dopes the graphene
or disrupts it. The former would be seen as a pronounced shiftin the Dirac point relative
to the Fermi energy and the latter would replace the itinerant π states by nondispersive
carbide states. On the other hand, certain selfprotection of graphene/Ni(111) has already
been seen by electron spectroscopy: Auger electron spectroscopy indicates a protective
character of graphene toward exposure to air [120]. Moreover, the spin polarization of
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Figure 5.17: Angle-resolved photoemission intensity measured at 62 eV photon energy (a)
before and (b) after exposure to air for 10 min and short annealing at 800K.
The inset in panel (a) shows the directions in the Brillouin zone.

secondary electrons from graphene/Ni(111) was recently found to remain constant after
exposure to 5×10−6 mbar oxygen for 30 min [37].

To study the influence of the atmosphere on the graphene/Au/Ni(111) system, samples
were exposed to air between 10 min and 5 hours at room temperature in a relative hu-
midity between 45% and 55% and, subsequently, reintroducedthrough a load lock into
the ultrahigh vacuum chamber. Figure5.17shows angle-resolved photoelectron intensity
measured at 62 eV photon energy (a) before and (b) after exposure to air for 10 min and
short annealing at 800 K. We see at this stage no difference inthe electronic structure
caused by the exposure. In particular:

1. No carbon of the graphene has become carbidized which would lead to extra nondis-
persive states.

2. No immediate graphene/Ni(111) interface is created which would shift theE(k)
dispersion by 2 eV to higher binding energy [6,7,104].

3. No apparent band gap opens atEF .

4. No apparent doping occurs.

In order to investigate the doping state of the grapheneπ band in greater detail, Figure
5.18displays measurements in the direction perpendicular toΓK (a) near theK point (b)
as prepared, (c) after exposure to air for 1 hour, and (d) after subsequent annealing. The
cut through the Dirac cone shows the Dirac point in Figure5.18(b) located at≈ 80 meV
above the Fermi level, according to our fit. The fit results give the same values within 20
meV after exposure and after annealing. No detectable energy shift means that the doping
state of graphene is not affected by the exposure to air. When the sample is measured
after exposure to air and without subsequent annealing (Fig. 5.18(c)), the photoemission
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Figure 5.18: (a) Direction in the graphene Brillouin zone of the angle-resolved photoemis-
sion measurements presented in panels (b-d), i.e., normal toΓK through theK
point. (b) as prepared graphene/Au/Ni(111), (c) after exposure to airfor 1 hour,
(d) after subsequent annealing.

intensity is suppressed but the Dirac cone position and shape are preserved, thus, the
peculiar graphene electronic properties are also preserved.

Figure5.19shows a typical lineshape of the grapheneπ band. It is seen that the photoe-
mission intensity is at first reduced but after annealing is regained and that the broadening
has almost not increased. The reduction in intensity for thegraphene as exposed is most
likely due to adsorbed water from the atmosphere, which doesnot react with graphene but
as overlayer reduces the photoemission intensity from the graphene bands. The broaden-
ing has increased only very little from 0.48 eV to 0.54 eV after exposure to atmosphere
and practically recovers by the annealing. The small broadening means that not only no
doping occurs in average across the probed sample area of∼ 0.01 mm2 but also that the
inhomogeneity of the doping stays very small. A possible reason has been pointed out
recently. While an icelike H2O layer has a strong influence on the electronic properties of
graphene [121], in a H2O cluster the dipole moments tend to cancel on average leaving
almost no effect on the graphene [122].

No changes were detected also with LEED and XPS (except that the peaks-to-background
intensity ratio changes) even after direct transfer of the sample from air to measurements
without additional heating.

We have tested the Rashba spin-orbit splitting in graphene/Au/Ni(111) by spin- and
angle-resolved photoemission on a sample exposed to air for5 hours. Figure5.20shows
the spin-integrated photoemission spectrum (I↑+ I↓) for k‖ = 0.16Å−1 (measured from
theK point) along with the spin polarization [p= (I↑− I↓)/(I↑+ I↓)]. The change of sign
of p at 1 eV binding energy shows the lasting Rashba splitting. Thesplitting is about 50
meV in this case.
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Figure 5.19: Behavior of the linewidth for the example of k‖ = 0.2 Å−1 measured from theK
point: (a) as prepared, (b) after exposure to atmosphere (increase inlinewidth
by 10% with large suppression of intensity), and (c) after annealing (almost full
restoration of original intensity and linewidth). This means that not only no
doping occurs in average but also no variation in the doping.
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5.1 Graphene on gold

Figure 5.20: (a) Spin-integrated photoemission spectrum of the graphene/Au/Ni(111)after
exposure to air for 5 hours and (b) its spin polarization revealing a substantial
Rashba-type spin-orbit interaction.
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5 Graphene on high-Z materials

Figure 5.21: LEED of (a) clean Ir(111) surface and (b) graphene on Ir(111) withmoiré su-
perstructure. (c) STM of graphene/Ir(111) with the same moiré superstructure.

In conclusion, we have shown that Au-intercalated graphene/Ni(111) is self-protective
against carbidization and oxidation of the Ni and against disruption of the spin-dependent
electronic structure of graphene. The protection of ferromagnets could be interesting
for nanostructures as well. Co forms islands on W(110) when heated and these can be
graphene-covered while maintaining their topology [123]. It would be interesting to check
their stability in air. Moreover, the observation that graphene is self-protective against
doping could mean that doping of graphene by nonmetals requires open edges which are
rare on graphene/Au/Ni(111).

5.2 Graphene on Iridium

Graphene on iridium is an intensively studied system [113,124–127] containing the graphene
monolayer. The graphene is known as weakly interacting withIr(111) with a linearπ band
dispersion forming the peculiar Dirac cone in angle-resolved photoemission with a slight
p-doping [124,128]. The clean Ir(111) surface was prepared by cycles of Ar+ sputtering
followed by annealing at 1600 K. There exist several phases of graphene on Ir(111). The
moiré-type graphene layer (R0 phase) was grown epitaxially by chemical vapor deposi-
tion of propylene (C3H6) at∼ 1500 K and a partial pressure of 3×10−8 mbar. Like for
Ni the self-limitation of this growth method results in a single graphene layer. A mis-
match of∼ 10 % of the graphene and iridium lattices leads to a corrugation [125] and
a moiré superstructure observed in LEED (Figure5.21(b)) and STM (Figure5.21(c)).
In angle-resolved photoelectron spectroscopy, this moirésuperstructure is also visible as
’reflections’ or ’replicas’ of the grapheneπ bands andminigapsat the intersection be-
tween such ’reflections’ and the mainπ bands [124,128]. Both effects correspond to the
expectations for a band structure in the repeated zone scheme of the superlattice.

The band structure of graphene on Ir(111) measured by angle-resolved photoelectron
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Figure 5.22: Angle-resolved photoemission from graphene on Ir(111). (a) First derivative of
intensity over energy of theΓK dispersion. Hybridization between the graphene
π band and Ir d states is shown by a black arrow and dashed black lines. (b)
Magnified view of the region near theK point. (c) Dirac cone measured in the
direction normal toΓK . Insets in (a-c) show directions of measurements in the
graphene Brillouin zone.

spectroscopy is shown in Figure5.22. In panel (a) an overview dispersion is shown in
theΓK direction of the graphene Brillouin zone. The grapheneπ band starts from∼ 8.3
eV binding energy at theΓ point and reaches the Fermi level near theK point. In panel
(b) a magnified view of the region near theK point and the Fermi level is shown. Again,
only part of the total picture is visible due to the destructive interference [84]. To see the
full picture a measurement normal to theΓK direction was done and the result is shown
in panel (c). An intact linear Dirac cone is clearly visible with minigaps at the crossing
points with π band ’reflections’ [124]. The Dirac point is located almost at the Fermi
level with a smallp doping. The presence of the intact Dirac cone similar to the case of
free graphene layer was observed previously for this system[124] and means a quasifree
nature of graphene on iridium with a small graphene-iridiuminteraction strength.

The giant Rashba effect in graphene on gold which we discussedin section5.1is related
to the high atomic number of gold (Z= 79) and hybridization of the grapheneπ band with
gold d states. We showed that at other, low-Z, systems like graphene/Ni, graphene/Co,
graphene/Ag/Ni and graphene/SiC there no Rashba effect could be detected. To verify
that high-Z materials can generally induce a spin-orbit coupling in graphene, we decided
to study additionally the graphene/Ir(111) system. Iridium was selected due to several
reasons:

1. Iridium is also a high-Z material withZ = 77.

2. Iridium features alsod bands, comparable with gold.

3. We observed a spin-orbit split surface state of iridium.
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Figure 5.23: (a,b) Angle-resolved photoemission overview measured at hν = 62 eV for (a)
Ir(111) and (b) graphene/Ir(111). The white frame marks a spin-orbit split irid-
ium surface state. (c,d) Normal emission spectra from panels (a) and (b), re-
spectively. Orange colored parts of panel (d) denote difference between Ir(111)
and graphene/Ir(111) spectra. (e) Ir4 f core level spectra measured at hν= 110
eV photon energy for Ir(111) (blue) and graphene/Ir(111) (orange).

4. Graphene on Ir(111) can be grown of high quality.

5. Graphene on Ir(111) is quasifreestanding similarly to graphene on gold.

In the following sections we will discuss a Rashba-split iridium surface state and its
incredible stability upon graphene formation on top of Ir(111), a giant Rashba effect in
the R0 phase of graphene/Ir(111) with splitting of∼ 50 meV. Finally, a structural study
of rotationally displaced graphene phase with a spin splitting of ∼ 25 meV is presented
with the conclusion that the size of the Rashba splitting can be controlled by the graphene
growth parameters.

5.2.1 Iridium Surface State

We will start with description of the spin-orbit split surface state of Ir(111) which is
an important manifestation of the Rashba effect at the Ir surface. In Figure5.23(a) an
overview band structure s shown. There is an iridiumsp band with minimum around 8
eV binding energy at theΓ point as well as split states around the Fermi level. These
split states are known to be an iridium surface state [129] related to theL-gap surface
state of Au(111) but upside down (negative effective mass) due to a different order of
bulk bands. A magnified view of these surface states is presented in Figure5.24(a). Their
splitting looks like a classical Rashba effect and they resemble a pair of spin-orbit split
bands shifted ink‖ by ∼ 0.075 Å−1 relative to each other. The Rashba parameter is
αR= 1.3×10−10 eV m. This is the largest Rashba effect reported so far for an elemental
metal.
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5.2 Graphene on Iridium

Figure 5.24: (a-c) Magnified view of the iridium surface state region for (a) clean Ir(111), (b)
graphene/Ir(111) and (c) graphene/Ir(111) exposed to air. In panel (b) locations
of spin-resolved measurements are marked by k1, k2 and k3. (d) Comparison of
surface state splitting for Ir(111) and graphene/Ir(111). (e-h) Constant energy
cuts of full photoemission mapping of the surface state region.

Figure5.23(b) shows an overview band structure of the graphene/Ir(111) system on the
same scale as Fig.5.23(a). Band structures with and without graphene are very similar
with the main difference being the intensity of the band around 8 eV binding energy
at theΓ point. In pure Ir(111) this is the iridiumsp band but in graphene/Ir(111) it is
the grapheneπ band which by chance disperses very similarly to the Irspband but has
significantly larger intensity. In the band structure of graphene/Ir(111) also the grapheneσ
states are visible proving additionally the formation of the graphene layer. Surface states
are by their nature very sensitive to the influence of adsorbates. Remarkably, the iridium
surface states are still present after the graphene layer isformed on top of Ir(111). This
observation is the main point of the current section and willbe discussed below in detail.

Figures5.23(c) and (d) show spectra taken from panels (a) and (b), respectively, in
normal emission (Γ point). To compare the two systems in question, in panel (d) the
difference between the spectra is marked in orange. The grapheneσ states have a rather
low intensity but the grapheneπ band is visible as an intense peak on top of the Irsp
peak. Iridium 4f core levels with and without the graphene layer are shown in Figure
5.23(e). Measurements were done withhν = 110 eV photon energy. There is no apparent
difference between the two cases even for the surface components of the core levels. Such
behaviour shows very weak graphene-iridium interaction strength which is in line with the
previously discussed quasifreestanding band dispersion.

To study the iridium surface state modification upon graphene layer formation in detail,
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Figure 5.25: Spin-resolved measurements of the iridium surface state under the graphene
layer at points shown by dashed vertical lines in Figure5.24(b).

we measured that region with high-resolution angle-resolved photoemission. The result
is presented in Figures5.24(a) and (b). After the graphene layer is formed on top of
Ir(111) there is only a slight change of these surface states. Te band maximum is shifted
by 150 meV to lower binding energy, from∼ 340 meV to∼ 190 meV. In panel (d) the
spiltting of the surface state for Ir(111) and graphene/Ir(111) is compared. The splitting
is equal and linear withk‖ in agreement with the Rashba model. A kink atk‖ = 0.06 Å−1

is due to interaction of the surface state with iridium bulkd bands [129]. We conducted a
full photoemission mapping of the region near theΓ point of this surface state when it is
located under the graphene layer. The results are presentedin Figure5.24(e-h) as constant
energy cuts at binding energies 630, 410, 250 and 175 meV. Thecircular structure agrees
well with the theory of the Rashba effect. At 630 and 410 meV twocircles corresponding
to two opposite spin direction rotations in the Rashba model are observed and at∼ 250
meV the inner circle has shrinked to a point.

Direct spin-resolved measurements of the iridium surface state under the graphene layer
shown in Figure5.25 show that the splittings are due to the spin and reverse with the
sighn ofk‖. This spin polarization is apparently fully preserved after formation of the
graphene layer. As we discussed before, to the Rashba effect could lead a surface potential
gradient and also the substrate effect when the surface state wavefunction penetrates into
the substrate core region. Figure5.24(d) gives us an additional information in this context,
i.e., the absence of a change in the spin-orbit splitting when graphene is formed on top
of the iridium surface proves that the observed splitting size is due to the large atomic
number of the iridium substrate atoms and not due to the surface potential. It is in line with
results of previous observation of a substrate induced splittings in Au/W, Ag/W, Au/Mo
and Ag/Mo systems [26] and additionally proves necessity of the high-Z materials when
we want to effectively produce the spin-orbit splitting in graphene by the substrate effect.

Surface states are generally very sensitive to the environment and due to this are usually
not suitable for use in devices. In section5.1.4we have observed the atmospheric stabil-
ity of the graphene/Au/Ni system. The Dirac cone, doping level and spin splitting were
preserved after exposure of the system to atmosphere. In thecase of graphene/Ir(111) we
have an intact spin-orbit split surface state which is covered by a graphene layer. Such
coverage could serve as a protection layer similar to the graphene/Au/Ni case and this is
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Figure 5.26: Superimposed experimental and theoretical data of the iridium surface state at
the Γ point for the case of (a) bare Ir(111) surface and (b) graphene/Ir(111)
system. Large red and blue dots denote contributions of surface localizedbands
of pz character with opposide directions of spin circulation. Calculations by G.
Bihlmayer.

indeed shown in Figure5.24(c). There the graphene/Ir(111) system is shown after ex-
posure to ambient atmosphere for 15 min. This venting does not change the size of the
splitting and energy position of the surface state. The presence of a higher background
relative to the pure graphene/Ir(111) system in panel (b) isdue to some remaining ad-
sorbates. The results of graphene/Au/Ni and graphene/Ir taken together lead us to the
conclusion that the graphene layer, weakly interacting with the substrate, can be consid-
ered as an ideal protection layer.

To clarify the existence and stability of the iridium surface stateab initio calculations
were performed for us. To simulate the bare and graphene covered surfaces, a 15 layer
film of iridium was used and covered by graphene expanded to the Ir(111) in-plane lattice
constant. The graphene sheet was placed at a distance of 0.35nm from the surface. The
surface state can be identified by the spin-polarization dueto the Rashba effect in the
uppermost two Ir(111) layers. The Rashba parameter was obtained from a fit in theΓK
direction and amounts to 1.3×10−10 eV m with and without graphene. Figures5.26(a,b)
present the calculated band structure of the iridium surface state superimposed with the
experimental photoemission data. With the exception of a rather small difference of 0.1
eV in Fermi energies, experimental and theoretical resultsare in very good agreement. In
particular, the relative energy shift of the Ir surface state upon adsorption of graphene as
well as spin-orbit splittings are reproduced by the calculations.

To summarize the present section we mention the observationand study of the Rashba
split surface state of Ir(111), its presence and stability against the environment when the
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Figure 5.27: (a) Spin-resolved photoemission of the grapheneπ band of graphene/Ir(111)
showing the giant Rashba spin-orbit splitting of∼ 48 meV. The measurement
was done at hν = 62 eV in theΓK direction at k‖ ∼ 1.57 Å−1. (b) Schematic
view of the measurement position in the graphene Brillouin zone with a constant
energy cut of the Dirac cone. (c) Two more points measured in the sameΓK
direction show an approximately constant splitting.

iridium is covered by a graphene layer. This behaviour and the very large size of the
Rashba effect are confirmed by density functional calculations.

5.2.2 Giant Rashba effect in graphene

The presence of the Rashba-split surface state on Ir(111) andgraphene/Ir(111) is very
promising for inducing a giant Rashba spin-orbit splitting in the graphene. In Figure
5.27(a) a spin-resolved measurement of the grapheneπ band of the graphene/Ir(111) sys-
tem is shown. There a splitting of∼ 50 meV is observed which is a giant if one compares
to the intrinsic spin-orbit coupling of a free graphene layer. In panel (b) the measurement
position is schematically shown using a constant energy cutof a spin split model Dirac
cone. By arrows the spin rotation directions are marked corresponding to the Rashba
model. In panel (c) two additional spectra are presented showing the nearly constant
splitting value for different wave vectors and binding energies. The measurements of
Figure5.27were done in theΓK direction of the graphene Brillouin zone. With varying
k‖ the spin polarization ’moves together’ with the grapheneπ band. This means that the
grapheneπ band is spin split and the effect is not an accidental overlapof theπ band with
a spin polarized background of iridium states. This is important since the background
is high due to Ird states as compared to graphene on Au. Additionally, there isa sur-
face projected band gap of Ir(111) close to theK point as is shown in Figure5.28(b) and
several spin-resolved measurements were done on theπ band inside the gap. This fur-
ther reduces the possible influence from photoemission fromiridium bands close to the
K point on the spin polarization of the grapheneπ band. The origin of the observed spin-
orbit splitting becomes more clear when one looks at Figure5.28(a) where the graphene
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Figure 5.28: (a) Graphene/Ir(111) band structure in theΓK direction (second derivative of
intensity over energy). The hybridization region of the grapheneπ band with Ir
d bands is marked by a dashed circle and a red arrow. (b) Magnified region near
theK point. Only one half of the graphene Dirac cone is visible here. Crosses
show where the spectra from Figure5.27were measured. A white dashed line
shows the surface projected band gap of Ir(111). Black arrow marksthe mini-
gap.

π band and iridiumd states are marked. Despite the quasifree nature of grapheneon irid-
ium a hybridization between the graphene and iridium bands is observed with∼ 0.5 eV
hybridization gap. This hybridization together with the large atomic number of iridium is
the origin of the giant spin-orbit splitting of the grapheneDirac cone, i.e., electrons from
the graphenepz orbitals approach the high potential gradient around the Irnuclei and this
enhances the spin-orbit interaction. The situation is similar to the case of graphene on
gold which we already discussed in detaile.

5.2.3 Control of Rashba effect by rotational displacement

In the previous Section we discussed the so-called R0 phase graphene on Ir(111) which is
grown at a rather high temperature around 1500 K. The R0 phase is very uniform at a large
scale with a characteristic and sharp moiré pattern observed in LEED and STM as shown
in Figures5.21(b,c). From the literature it is known that at lower temperatures graphene
can grow on Ir(111) in many different rotation variants like14◦, 30◦ etc. [126,127]. In a
very recent publication [127] the growth temperature dependence of the graphene align-
ment was studied and a smooth transition of LEED images from the standard R0 phase
moiré into a bar-like superstructure was observed when lowering the growth temperature.
There was no clear explanation of the observed superstructures. In Figure5.29our charac-
terization by LEED and STM of the low-temperature phase is presented. Both LEED and
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Figure 5.29: (a) LEED and (b) STM images of the low-temperature phase graphene on
Ir(111). They differ drastically from the R0 phase presented in Figure5.21.

STM pictures are drastically different from the R0 phase presented in Figure5.21(b,c):
in the LEED image there is a characteristic bar-like superstructure and in the STM image
there is a triangular structure with an anomalously largez-corrugation of electronic origin.
The STM images were obtained at tunneling voltage+2 mV and current 25 nA.

The Rashba effect depends strongly on the strength of the interaction with the substrate
and, therefore, the dramatic change observed in LEED and STMcould indicate that also
the induced spin-orbit splitting of the grapheneπ band may change. We did a full pho-
toemission mapping around theK point to see the Dirac cone in detail and the results
are presented in Figure5.30. Panels (a) and (b) compare the R0 phase of graphene on
Ir(111) and the low-temperature phase. A giant splitting ofthe Dirac cone of∼ 400 meV
is observed with some differences but rather similar to whatcould be expected in the case
of a giant Rashba splitting. In panel (c) the second derivative of intensity over energy of
the same data as in panel (b) is presented revealing more details. In panels (a-c) black
arrows mark umklapp-induced minigaps. In panels (d) and (e)a constant energy cut at
600 meV below the Fermi level is shown. As we discussed in section 2.2.2the Rashba
effect on the graphene Dirac cone gives rise to two concentric circles. Here we see two
intersecting circles. Further analysis of the data in panels (b-e) results in the consistent
interpretation of the observed structure as overlapping photoemission signal from several
graphene domains rotated by a small angle 2ε = 2.8◦ relative to each other. This is pre-
sented schematically in panel (f). This small rotation angle ε could vary depending on
the growth temperature, therefore, we suggest to call this graphene phase generally ’Rε
phase’. In view of the small angles involved, angle-resolved photoemission proves in this
case a very precise tool for structural characterization, quite differently from its original
objective.

To directly check that the two observed bands split by 400 meVare not spin polarized
branches of the same spin-split grapheneπ band we conducted spin-resolved measure-
ments presented it Figures5.31(a,b). In this geometry (normal toΓK at points shown
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Figure 5.30: (a) Dirac cone of the R0 phase graphene on Ir(111) measured by angle-resolved
photoemission. (b) Dirac cone of the Rε phase. (c) Second derivative of intensity
over energy of data from panel (b). (d,e) Constant energy cut from full photoe-
mission mapping around theK point of the Rε phase reveals two shifted circles.
(f) Model explaining the observed structure as two Dirac cones due to overlap
from rotated Brillouin zones.
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Figure 5.31: (a,b) A draft spin-resolved measurement of the strongly split Dirac cone in the
Rε graphene phase. Measured at k1 and k2 points shown by yellow vertical
lines in Figure5.30(b). In this direction the intensity of peaks is very small, but
enough to conclude that the two observed bands are not a spin-split band. (c)
Spin-resolved spectra of the Rε phase in the same geometry as for the R0 phase
to make a direct comparison of the spin splitting size. The geometry is shown in
panel (d). (e) Drawing explaining that the measured magnitude of spin splitting
is very little affected by the rotation of the graphene domains.
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in Figure5.30(b)) the photoemission intensity is very small for spin-resolved measure-
ments and the statistics is not good. However, it is enough toconclude that there is no
large spin polarization which is expected for the Rashba effect. This is in line with the
angle-resolved photoemission mapping result that these bands are due to a geometrical
effect and are just a superposition of photoemission signals from rotated graphene do-
mains. Each of these two bands could still be spin-split due to a smaller Rashba effect,
but in the discussed geometry the intensity is not enough to resolve it. In another geom-
etry as shown at Figure5.31(d) (similar to the R0 case in Figure5.27(b)) the intensities
of two bands add and in this geometry the photoemission interference effect is smaller,
which leads to a rather high intensity in Figure5.31(c). This spin-resolved measurement
resolves∼ 25 meV splitting of theπ band in the Rε phase. Compared to the intrinsic
spin-orbit splitting in free graphene, 25 meV is still a giant effect, only two times smaller
than in the R0 phase and 4 times smaller than in graphene/Au.

In Figure5.31(d) the energy-momentum region where the photoelectrons are collected
by the spectrometer is marked by a yellow frame. According tothe Rashba effect in
graphene at any given energy the spins are tangential to the constant energy contours of
theπ-band and follow them. Taking into account our experimentalgeometry this does not
change in the photoemission transition [71]. Due to thek-offset of the acquisition region
from theΓ K lines of the Brillouin zones of rotated domains Rε- and Rε+, the spins of
photoelectrons will have slightly different orientation at everyk-point of the isoenergetic
contours inside of the acquisition frame. The situation is zoomed in Figure5.31(e) (for
the sake of simplicity the yellow frame depicts the experimental k-resolution while the
real region of acquisition is not rectangular but elliptical due to circular shape of the
spectrometer aperture).

Now one has to understand to which extent the rotation of spins within the spectrometer
frame can affect the measured spin polarization. Our spin-detector acquires two projec-
tions of Mott-scattered electron spins which are in the plane of the sample surface. One
projection falls on the axisSy which is collinear to theΓ -K direction of the Brillouin zone
of non-rotatedgraphene. Another projection goes to the axisSx which is orthogonal to
Sy. These axes are shown in Figure5.31(e) in orange and bold. Indeed, projections of
spin onSy [white arrows in panel (e)] can be effectively compensated in the photoemis-
sion signal because of superposition of spinsSε- andSε+ coming from the domains Rε-
and Rε+, respectively. In contrast, the projections ofSε- andSε+ on the axisSx [black
arrow in panel (e)] are added and will be acquired by the spin detector. The average an-
gular deviation of spins from the axisSx within the determined width of the spectrometer
frame (∼0.06Å−1) is estimated as 15◦. Instead of a precise treatment of the azimuthal
dependence of the Mott scattering, we obtain for such a smallangle the projection onto
Sx in simple trigonometric terms as cos(15◦) which corresponds to 97% of real spin po-
larization. This shows that the measurement of the Rashba splitting of the Rε phase of
graphene is negligibly affected by the rotational displacement of Dirac cones and correct
spin-resolved measurements from this graphene phase are feasible.

The present structural model of the Rε phase as distribution of rotated graphene do-

97



5 Graphene on high-Z materials

Figure 5.32: (a) Determination of the moiré vector and simulation of LEED for (b) the R0
phase, (c) the Rε phase with randomly distributed rotation angles−1.5◦ < ε <
1.5◦, (d) the Rε phase with−3.5◦ < ε < 3.5◦. (e-g) Experimental observation
of corresponding LEED superstructures.

mains has to be checked for its consistency with the peculiarLEED and STM pictures
of Figure5.29. Concerning the LEED, a principal question is why a superstructure of
nearly straight dashes appears. It is possible to answer on this question with the help of
the vector construction shown in Figure5.32(a). The moiré reciprocal lattice vector is
defined by

kmoiré = kGr−kIr (5.1)

with reciprocal lattice vectorskGr of graphene andkIr of Ir. In the R0 phase,kGr andkIr

directions coincide, and we can determine the moiré latticeconstantamoiré from:

amoiré = (1/aGr−1/aIr)
−1 (5.2)

It is ≈ 27 Å, i. e., 10 Ir unit cells correspond to 11 graphene unit cells.

In the case of a rotated graphene monolayer on Ir(111) the vector equation5.1 leads
to a less obvious result compared to the R0 case. Let graphene be rotated by an angleα
relative to the Ir, then moiré pattern rotates by an angleβ [see Figure5.32(a)]:

tanβ =
sinα

kGr
kIr

−cosα
(5.3)

and the length of the moiré reciprocal lattice vector becomes:

kmoiré =
kIr sinα

sinβ
(5.4)

From equations (5.3) and (5.4) one finds that with rotation of the graphene layer on
top of Ir(111) the moiré pattern rotates about 10 times faster and the moiré lattice con-
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Figure 5.33: Real-space simulation of the moiré structures. Ir atoms (orange) are superim-
posed on graphene (black); (a) and (b) demonstrate why a large rotation of the
moiré pattern is observed. A large rotation of the moiré pattern [14.9◦ in (b)]
happens due to a small rotation of the graphene domain [1.4◦ in (b)]. Simula-
tions in (a) and (b) treat the Ir(111) substrate as a single atomic layer andgen-
erate a moiré pattern which resembles a superstructure of bubbles (or triangles)
(c) characteristic of Rε graphene; (d) and (e) additionally take into account a
second (subsurface) Ir layer and produce a nanomesh-like moiré pattern with
inversed topographic contrast (f) which is typical for the non-rotated R0 phase
of graphene. Gray color in (c) and (f) denotes higher topographic corrugation.

stant decreases. Consequently, the moiré superstructure pattern in the LEED rotates and
increasesin size. This rotation together with the increase in size produces the dashes if
one presumes that there are many graphene domains with rotational displacement angles
densely distributed in a certain angular range.

Figure5.32(b) shows a simulation for the R0 phase graphene and Figure5.32(c) shows
a simulation according to equations (5.3) and (5.4) for the Rε phase where graphene
domains are randomly rotated in a range−α ≤ ε ≤ α, whereα ≈1.5◦. Figure5.32(d) dis-
plays results of the simulation for graphene domains rotated even stronger (α ≈3.5◦). In a
recent paper [127] the same dash-like structures appeared in the LEED but remained un-
explained. In panels (e-g) our experimental observation ofcorresponding superstructures
is shown measured from the graphene/Ir(111) system formed at different temperatures.

The particular triangle structure seen by the STM in Figure5.29(b) for the Rε graphene
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Figure 5.34: STM images showing several local rotated domains which can be identifiedby
their boundaries to other domains. The dash-like LEED patterns are then cre-
ated by the contributions from a multitude of such domains with a distribution of
rotation angles. Insets to (b) display atomically resolved measurements ofdark
and bright triangles of the moiré pattern.

phase can also be explained based on the moiré pattern of rotated graphene domains. We
have performed a simulation of the moiré patterns emerging in graphene domains rotated
relative to the Ir(111) substrate by various angles. For thebeginning we have treated the Ir
substrate as a single (topmost) atomic layer of Ir(111). Thetop half of Figure5.33presents
results for this case. Moiré patterns obtained for R0 graphene and for graphene rotated
by 1.4◦ relative to the Ir substrate are shown in Figures5.33(a) and5.33(b), respectively.
One can see that the moiré structure rotates by a ten times larger angle (14.9◦), fully in
agreement with equation (5.3).

Interestingly, the periodicity of the moiré pattern obtained for R0 graphene in Figure
5.33(a) correlates with experiments, but the type of its topographic corrugation does not.
Indeed, darker areas in Figure5.33(a) [and in5.33(b) for the rotated domain] correspond
to the sites where graphene is not in registry to the Ir layer and where it has higherz-
corrugation. Such correspondence was established by atomically resolved STM measure-
ments which are shown in Figure5.34. Moiré sites with lowz-corrugation display one
graphene sublattice enhanced due to the local breaking of A−B symmetry caused by the
in-registry (i.e., on top) placement of the graphene lattice above Ir atoms. On contrast,
areas with higherz-corrugation exhibit a typical honeycomb graphene structure, which
means out of registry (hollow site) configuration without symmetry breaking.

As a result, the moiré structures from Figures5.33(a) and5.33(b) show up in STM
images as a superstructures of ’bubbles’, schematically depicted in panel (c) [gray color
in Figures5.33(c) and5.33(f) corresponds to higher topographic corrugation]. This is in a
remarkable contradiction to most of our STM data which show that aligned R0 graphene
looks the other way around - like a nanomesh with holes [see Figures5.21(c) and5.33(a)].
Searching for the reason of such discrepancy, we could qualitatively adjust the occurrence
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5.2 Graphene on Iridium

of the moiré pattern in our simulations by taking into account the second(subsurface)
atomic layer of the Ir(111). Simulations performed for R0 and1.4◦-displaced graphene
with subsurface Ir atoms included are reported in Figures5.33(d) and5.33(e), respec-
tively. One sees that the contrast of the moiré pattern is nowfully inverted and the topo-
graphic pattern changes to nanomesh-like [Fig.5.33(f)].

We see that for the correct interpretation of the nanomesh-like moiré pattern of the
R0 graphene phase one has to account for both surface and subsurface Ir layers [Fig-
ure 5.33(d)]. In contrast, the rotated graphene domains in the Rε phase tend to show
a pattern of bubbles (or triangles), a proper understandingof which requires to exclude
the influence of the subsurface Ir layer [Figure5.33(b)]. This is clearly seen in Figure
5.34which report STM images acquired from rotated graphene domains and their neigh-
bouring areas. One sees that the moiré of R0 graphene forms a perfect nanomesh, the
moiré of 1.4◦-rotated domain shows a certain tendency toward triangles and the moiré
of 2◦-rotated graphene reveals a purely triangular pattern. Thefinding that the subsur-
face atomic layer of Ir is not involved in the formation of moiré patterns in the rotational
graphene phases is an indication of aweaker(as compared to R0) chemical coupling be-
tween rotated graphene and Ir(111). This is in line with the aforementioned anomalously
largez-corrugations acquired for Rε graphene domains by STM and, last but not least, the
reduced substrate induced spin-orbit splitting compared to the R0 phase.

In summary, we have observed a giant Rashba-type spin-orbit splitting of graphene on
Ir(111). The splitting (∼ 50 meV) occurs near the Fermi level and is twice larger than
kBT allowing for room-temperature applications in spintronics. Hybridization with Ir 5d
states together with a strong Rashba effect at the Ir(111) surface is identified as reason.
The strong splitting of the Dirac cone seen in the Rε phase is not due to spin but reflects the
geometry of rotated graphene domains which are in this way structurally characterized by
the photoemission data. At the same time the real spin splitting characteristic of graphene
bands in the Rε phase is reduced as compared to the R0 phase. Weakening of a chemical
interaction between graphene and Ir(111) caused by rotational displacement is suggested
as a reason for that. Our findings show that generally a rotational dislocations may be a
tool to control the strength of the extrinsic Rashba effect insupported graphene.
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SUMMARY AND CONCLUSIONS

The thesis is focused on substrate induced spin polarization effects in the electronic struc-
ture of graphene in contact with different substrates. The crystallographic structure and
quality of graphene were studied mostly by scanning tunneling microscopy (STM) and
low-energy electron diffraction (LEED). The overall electronic structure of graphene on
different substrates is studied by means of angle-resolvedphotoemission (spin-integrated)
and the spin structure was investigated by means of spin- andangle-resolved photoelec-
tron spectroscopy. The first part of this thesis contains an overview of the employed
methods: XPS, ARPES, spin-resolved ARPES, LEED, overview of experimental stations.
Then an introduction to the main topics follows: graphene and its electronic structure, the
Rashba effect in a two-dimensional electron gas and at metal surfaces like Au(111) or
Ir(111), and the Rashba effect in graphene. Possible sourcesfor the Rashba effect on
surface states and the grapheneπ band are discussed.

The first scientific part of the thesis is devoted to graphene on ferromagnets. Prepa-
ration procedure and electronic structure of graphene/Ni(111) and graphene/Co(0001)
are discussed. Angle-resolved photoelectron spectroscopy measurements of the graphene
electronic structure in theΓK direction of the graphene Brillouin zone are in agreement
with previously published results and show a stronglyn-doped grapheneπ band disper-
sion without the peculiar relativistic Dirac fermion dispersion near the Fermi level. Mea-
surements in the direction normal toΓK allowed us to make the discovery of intact Dirac
cones in both graphene/Ni and graphene/Co. By measurements inthe ΓK direction the
Dirac cone was not observed before due to a strong interference from two graphene sub-
lattices in the photoelectron emission process. Thus, it has for a long time been believed
that the peculiar Dirac cone-like dispersion in graphene isdestroyed on ferromagnets by
the strong graphene-substrate interaction. The discoveryof intact Dirac cones forces us
to change significantly our view and understanding of the graphene-ferromagnet systems.

Graphene monolayers on nickel and cobalt were then studied by spin- and angle-
resolved photoelectron spectroscopy with the aim to determine the influence of these sub-
strates on spin-orbit coupling and ferromagnetic spin polarization in graphene. There is
no detectable Rashba effect, but a spin polarization of the graphene Dirac cone is discov-
ered and studied in very detail. The spin polarization is attributed to the hybridization of
the grapheneπ band with spin-polarized 3d states of substrate which occurs away from
the Dirac point.

In the second part of this thesis the discussion related to graphene on low-Z substrates
is continued for the examples graphene/SiC and graphene/Ag. The graphene on silicon
carbide system is introduced in detail and the grapheneπ band is carefully measured by
spin-resolved photoemission. As the result, no detectablespin polarization or Rashba
effect were observed in agreement with our expectation thatthe low-Z materials are in-
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5.2 Graphene on Iridium

sufficient to induce a Rashba effect in graphene. This is confirmed by comparison to
ab initio calculations predicting a low spin-orbit splitting of 0.05meV. The graphene on
silver system is discussed very briefly with the same result.

Then the thesis treats graphene on high-Z materials, namely gold and iridium. The main
result is that a giant Rashba effect is discovered with spin-orbit splittings of∼ 100 meV
for graphene/Au and∼ 50 meV for graphene/Ir. Such values are four orders of magnitude
larger than the intrinsic spin-orbit splitting in a free graphene layer. Graphene on gold
and on iridium manifests itself as quasifreestanding with linear Dirac cone and the Dirac
point near the Fermi level. As was measured for graphene/Au,the spin-orbit splitting of
the Dirac cone extends to the Fermi level and, therefore, theFermi surface is spin split.
The source of the giant Rashba effect is attributed to hybridization of the grapheneπ
band with spin-polarized gold (iridium) 5d states and, as a consequence, influence of the
large gold (iridium) intraatomic potential gradient on thegraphenepz orbitals. Ab initio
calculations show that a flat Au monolayer can account for only ∼ 10 meV spin-orbit
splitting and only a structure of laterally more separated gold adatoms could significantly
enhance it. The atmospheric stability of the graphene/Au/Ni(111) system was studied by
exposure of the samples to atmosphere. It is shown that exposure to air does not carbidize
or oxidize the Ni substrate or open an apparent gap in the graphene. Its doping state is
not affected and the Rashba-type spin-orbit effect on the grapheneπ states is preserved.
These results show that it is possible to use the peculiar electronic and spin properties of
the graphene/Au/Ni system in ambient environment and not only under ultra-high vacuum
conditions.

In the thesis also a Rashba split iridium surface state is studied in detail and its un-
expected behaviour upon graphene formation on top of the iridium surface is shown. It
is demonstrated that the existence of the surface state, itsspin polarization, and the size
of its Rashba-type spin-orbit splitting remain unaffected when iridium is covered with
graphene. The protection by the graphene allows the spin-split surface state to survive in
ambient atmosphere. Reducing the growth temperature of graphene on iridium results in
a very large splitting of the graphene Dirac cone. Data analysis shows that this splitting
does not relate to spin but is due to overlap of photoemissionintensities from a distribu-
tion of rotated graphene domains. This model successfully explains unusual structures
observed in ARPES, LEED and STM. The Rashba effect on this phaseis considerably
smaller compared to the usual graphene/Ir phase which implies that the magnitude of
the extrinsic spin-orbit splitting in supported graphene can be controlled by its rotational
displacement relative to the substrate.
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2DEG - Two-dimentional electron gas

ARPES - Sngle-resolved photoelectron spectroscopy

BE - Binding energy

DFT - Density functional theory

EF - Fermi level

eV - Electronvolt

LEED - Low-energy electron diffraction

ML - Monolayer

PES - Photoelectron spectroscopy

QWS - Quantum-well state

SARPES - Spin- and angle-resolved photoelectron spectroscopy

STM - Scanning tunneling microscopy

UHV - Ultra-high vacuum

UPS - Ultraviolet photoelectron spectroscopy

XPS - X-ray photoelectron spectroscopy
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ZUSAMMENFASSUNG

Graphen ist eigentlich eine lange bekannte Form des Kohlenstoffs, deren elektronis-
che Struktur bereits 1947 berechnet wurde und die auf Nickel-Einkristallen schon in den
Siebzigerjahren hergestellt wurde. Ber?hmt wurde Graphen,nachdem Andrei Geim und
Konstantin Novoselov 2004 eine mikromechanische Spaltmethode zur Herstellung von
frei tragendem Graphen vorgeschlagen haben. Sie konnten zeigen, dass die Elektronen
im Graphen sich eher wie Licht verhalten als wie massive Teilchen, und erhielten 2010
den Physik-Nobelpreis "für grundlegende Experimente am zweidimensionalen Material
Graphen".

Beim Rashba-Effekt handelt es sich um eine Ausprägung der Spin-Bahn-Wechselwirkung.
Beide beschreiben die Energieunterschiede, die ein Elektron zwischen zwei verschiede-
nen Orientierungen von Drehimpulsen erfährt. Dreht sich das Elektron im selben Sinne
um sich selbst wie um den Kern des Atoms, in diesem Fall des Kohlenstoffs, nimmt es
eine andere Energie an als in dem Falle, dass diese beiden Drehungen einander entge-
gen gerichtet sind. Dieser für die Atomphysik wesentliche Effekt wurde von Rashba für
zweidimensionale Elektronensysteme, wie Graphen eines ist, beschrieben.

Spin-Bahn-Wechselwirkung und Rashba-Effekt spielen eine wichtige Rolle bei der
Überführung der gegenwärtigen Elektronik, die die Ladung der Elektronen nutzt, in eine
Spintronik, die auf dem Spin der Elektronen basiert. Bisher wird Graphen vor allem im
Hinblick auf den Transport von Ladung untersucht, denn in der Spintronik wäre es zwar
in der Lage, einen Spinstrom verlustarm zu transportieren,könnte aber diesen Spinstrom
kaum beeinflussen, da es eine äußerst geringe Spin-Bahn-Wechselwirkung besitzt.

Das Wesen des Rashba-Effekts ist die Kontrolle der Spin-Bahn-Wechselwirkung durch
äußeren Einfluss. Auf dieser Grundlage wird in der gegenwärtigen Arbeit für verschiedene
Systeme die Spin-Bahn-Aufspaltung mit der Methode der spin-und winkelaufgelösten
Photoelektronenspektroskopie gemessen. Hierzu wird das Graphen auf verschiedene Arten
kristallin auf Einkristalle aufgebracht und mit Beugungsmethoden und mikroskopischen
Methoden strukturell untersucht. Zunächst wird gezeigt, dass Graphen in Kontakt mit le-
ichteren Elementen auf Siliziumkarbid und auf Silber keinehohe Spin-Bahn-Wechselwirkung
zeigt. Dieser Befund bleibt auch auf Nickel und Kobalt derselbe. Allerdings gelingen
zwei überraschende Entdeckungen. Zum einen wird Nickel in der Literatur als Prototyp
eines Substrats angesehen, auf dem die Elektronen des Graphen ihr lichtartiges Verhal-
ten verlieren und massiv werden. Es wird gezeigt, dass das nicht der Fall ist und sich
ein perfekter sogenannter Dirac-Kegel in der Photoelektronenspektroskopie zeigt. Da
Nickel und Kobalt ferromagnetisch sind, ergibt sich nun dieMöglichkeit, die Spins im
Graphen auf ferromagnetische Weise, die grundsätzlich verschieden von der Spin-Bahn-
Wechselwirkung ist, auszurichten. Das wird auf Kobaltsubstrat nachgewiesen.

Das Hauptergebnis der Arbeit ist die Entdeckung einer um vier Größenordnungen er-
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höhten Spin-Bahn-Aufspaltung von Graphen, wenn es in Kontakt mit Gold tritt. Um
diesen experimentellen Befund zu erklären, schließen sich aufwendige elektronische und
strukturelle Untersuchungen an. Dass ein solcher riesigerRashba-Effekt in Graphen auch
von anderen Elementen, die ähnlich schwer wie Gold sind, erzeugt werden kann und
auf Hybridisierung beruht, wird schließlich in einer abschließenden Untersuchung von
Graphen auf Iridium gezeigt. Dieses System unterscheidet sich in struktureller Hinsicht
von Graphen auf Au, und neue Strukturen werden im Rahmen dieser Arbeit erstmals
erklärt. Hier wird das das Zusammenspiel von Struktur, elektronischer Wechselwirkung
mit dem Substrat und induzierter Rashba-artiger Spin-Bahn-Wechselwirkung besonders
deutlich.
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