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The effect of transparent-conductive-oxide (TCO) buffer layer on the insulator matrix and on the resistive switching process 
in the metal/TiO2/TCO/metal assembly was studied depending on the material of TCO (ITO - (In2O3)0.9(SnO2)0.1 or SnO2 or 
ZnO). First time electro-physical studies and near edge x-ray absorption fine structure (NEXAFS) studies were carried out 
jointly and in the same point of the sample providing the direct experimental evidence that switching process influences 
strongly the lowest unoccupied bands and local atomic structure of the TiO2 layers. It was established that TCO layer in 
metal/TiO2/TCO/metal assembly is an additional source of oxygen vacancies for TiO2 film. The RL (RH) states are achieved 
presumably with formation (rupture) of electrically conductive path of oxygen vacancies. The inserting the Al2O3 thin layer 
between TiO2 and TCO layers restricts to some extent processes of migration of oxygen ions and vacancies and does not 
permit to realize the anti-clockwise bipolar resistive switching in Au/TiO2/Al2O3/ITO/Au assembly. The greatest value of the 
ratio RH/RL is observed for assembly with SnO2 buffer layer that will provide to implement the maximum set of intermediate 
states (recording analog data) and increases the density of information recording in this case. 
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1. Introduction 

Relentless downscaling of microelectronic devices had already brought the size of their critical parts to the 

range of few nanometers and continues to challenge scientists and technologists. Developing nanoscale memory-bit 

cells [1,2] for non-volatile random access memory (NVRAM) is one key technological step now. Among the many 

candidates for the next-generation non-volatile memory based on a non-charge mechanism, resistance-switching 

random access memory (RRAM) has attracted attention as an essential step towards new era of non-Boolean 

neuromorphic computing [3,4]. The main idea of RRAM connects with creation of passive circuit element memristor 

(short name of memory resistor) [5-7]. As follows from [5] the memristor with memristance M provides a functional 

dependence between flux φ and charge qdφ =Mdq. In special case when M is itself a function of the charge, other 

words, the resistance of the material depends on the charge passing through it a new circuit functions such as resistive 

switching are opened. 
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The mechanism of resistance switching and charge transport is still under debate. In the review [8] three 

different types of the resistive switching (an electrochemical metallization mechanism, a valence change mechanism, a 

thermochemical mechanism) are described. The valence change mechanism occurs in binary oxides and perovskite 

oxides and is triggered by migration of oxygen anions. The change of the stoichiometry is expressed by a valence 

change of the cation sublattice and as a consequence leads to change in the electronic conductivity. In the 

thermochemical mechanism a change of stoichiometry occurs due to a current-induced increase of the temperature. 

The electrochemical metallization mechanism relies on an electrochemically active electrode metal. 

Many binary transition metal oxides [7-15] as well as multinary oxides with at least one transition metal 

sublattice [8, 16-18] show resistive switching. The oxide-based elements demonstrate high speed switching, the 

possibility of obtaining intermediate resistance values and sufficiently stable multilevel switch. The observed resistive 

switching in such elements occurs due to the presence in these materials of the various defects and impurities which 

alter the electron transport in the material. The titanium oxide is considered as the most promising switching material 

[19-21] due to existence of a continuous homologous series of oxides of TiO to TiO2, the existence of thermal-

chemical switching mode [22] and minimum value of switching time (5 ns) [23]. Note that to provide a switching 

control of such elements it is necessary to create defects in materials, either during or after fabrication of the element 

through electric field effect on the pristine structure (electroforming process) [8]. 

It has been established in [24-26] that inserting a thin buffer layer between the substrate and dielectric film 

allows to affect the self-organization and the properties of the active layer. Taking into account a high concentration of 

oxygen vacancies in transparent-conductive-oxide (TCO) films one can assume that TCO layers in 

metal/TiO2/TCO/metal assembly will be an additional source of oxygen vacancies for TiO2 film. Earlier we have 

revealed that such assemblies demonstrate the memristors effect after synthesis (without additional annealing) that 

allows moving closer to understanding the nature of memristor effect. Also it was established that after switching 

process these structures can be retained for a long time. 

In view of the foregoing, the goal of the current paper is a study of the effect of TCO buffer layers on the 

insulator matrix in the metal/TiO2/TCO/metal assembly and on the resistive switching process. In order to gain inside 

into the electronic structure of the TiO2 film for the first time the electro-physical studies and the x-ray spectroscopic 

investigations were carried out jointly. NEXAFS (near-edge absorption fine structure) spectroscopy is one of the 

effective techniques to study the electronic atomic and crystalline structure of materials. X-ray absorption process has 

a local character (associated with hole localization in the core shell) and dipole selection rules for the transitions 

between the initial and the final states have been worked out. Thus the possibility to obtain the information about local 

and partial density of electronic states of the conduction band is appeared. 

 

2. Experimental details 

TiO2 films of 20-80nm thickness were grown by atomic layer deposition (ALD) technique on a top of the 

production-grade substrates (Ni or glass). ALD synthesis provides the thickness-control and the aggressive 

conformality of TiO2 thin films at a reasonably low processing temperature. 

The uniform transparent-conductive-oxide (TCO) buffer layer (ITO ((In2O3)0.9(SnO2)0.1 or SnO2 or ZnO) was 

used and grown on substrate prior to the ALD of TiO2 film. The TiO2 films were deposited in a cross-flow “Nanoserf” 

reactor at a temperature of 200º C using TiCl4, Ti(OCH(CH3)2)4, [(CH3)2N]4Ti and H2O as a precursors. 



The resistive switching behavior of the synthesized structures was measured at room temperature using an 

original setup in the I–V sweep mode (fig.1). The I-V curves of the sample were measured by applying a linearly 

varying current in the range of + / - 10 mA to the top electrode with the bottom electrode grounded. As for the ohmic 

contact to the TiO2 and TCO layers the Cu, Au or Pt circular-shaped electrodes were used as external point contacts. 

The contact area was about 3x10-5cm2. Voltage drop across the sample was changed within + / - 10 volts with 

increment of 12 mV, that allowed to create an electric field of the order of 1MV/cm in the TiO2 layer. The 

experimental error connected with computer extrapolation of the data in the region of zero current at zero voltage was 

about 25 mV. The used setup also allowed registering a capacity (at 1 MHz AC) of the studied structures. 

The quality of the synthesized structures was controlled by a scanning electron microscopy (SEM), a scanning 

ion microscope (SIM) and X-ray microanalysis. It was established for all the films the thickness uniformity better than 

0.3 nm across the wafer. 

The near edge X-ray absorption fine structure (NEXAFS) measurements were performed at the reflectometer 

set-up mounted on the optics beamline (D-08-1B2) at the Berlin Synchrotron Radiation facility BESSY-II of the HZB. 

A GaAsP diode, together with a Keithley electrometer (617), was used as a detector. NEXAFS spectra were measured 

at the incident angle of 45º in the vicinity of Ti L2,3- and OK–absorption edges with energy resolution better than 

E/ΔE=3000. The spectra were obtained by monitoring the total electron yield from the samples in a current mode. 

It was developed and testified a special fiducial grid applied on the surface of the samples enabling to carry 

out the current-voltage measurements and spectroscopic studies in the same point of the film. Also the apertures were 

used to minimize the cross-section of X-ray beam and thus to narrow the area of light spot on the film to the size 

comparable to the Au electrode contact area. As consequence the obtained NEXAFS spectra provided information on 

changes in the electronic atomic structure itself from the electric field impact area. 

 

Figure 1. Circuit diagram of electrophysical measurements. 

 

3. Results and discussion 

It is known [8,10,18,27,28], that in the case of a single-oxide-layer structure (unlike bilayer structures 

consisting of non-stoichiometric oxide and oxide) the electroforming step of the pristine structure is required before a 

bistable switching is achieved. Often, the electroforming is a somewhat slower process than the actual switching. In 

point of fact the electroforming is the soft breakdown of the insulating oxide layer when the high electric field is 

applied to the structure. When high electric field is applied the oxygen atoms are knock out from the lattice and move 

to the electrode with the positive voltage creating defects that lead to formation of levels in band gap [29-33]. 



Impact of a strong electric field of the order 1MV/cm on the metal/TiO2/TCO/metal structures was carried out 

by applying a negative bias to the top electrode (with the bottom electrode grounded) with an appropriate compliance 

current that leads to decrease in the initial resistance R0 of the pristine structure (after synthesis) to RH, which we will 

refer a high-resistance state (RH). 

 

3.1. Current (I)–voltage (V) studies of metal/TiO2/TCO/metal assemblies 

Fig. 2 (a) shows I-V curves for Au/TiO2(20nm)/SnO2/Au assembly. For this structure the initial resistance R0 

was reduced from R0=50 kΩ to RH=5-10 kΩ after electroforming step. The measurements reveal the asymmetric I-V 

loops with non-linear rectifying features following the voltage sweep 0 →Vmin→0 →Vmax→ 0 in sequence, shown by 

the arrows. Detailed analysis of the switching process in metal/TiO2(20nm)/SnO2/metal assembly shows that resistive 

switching from one state to another state in this structure occurs only by changing the polarity of the applied voltage 

(by applying a negative bias for RH→RL switching and only by applying the positive bias for RL→RH switching) and 

under conditions of a strong electric field applied to the TiO2 layer (~ 1MV/cm). An increase in the absolute value of 

the bias potential reaches a certain threshold value above which the structure transfers from the RL state into RH state 

(or some intermediate states) and vice versa. The multiple resistive states realized in the structure and characterized by 

different values of the resistance for Au/TiO2(20nm)/SnO2/Au structure are shown in fig.2 (b). The observed deviation 

from the zero current at zero voltage (fig. 2b) may be related to the nanobattery effect as reported by [34]. However, 

the value of the observed deviation (about 25 mV) is comparable to the experimental error and computer extrapolation 

of the data in the region of zero voltage that does not allow confirm/refute the suggested supposition. Controlling the 

magnitude of the charge flowing through the structure during the process of the resistive switching one can discretely 

change the value of the resistance. It was established that transition from the high resistance state RH to the low 

resistance state RL occurs much faster, i.e. τH → L <<τL → H and was accompanied by an increasing a capacitance of the 

structure in half. The capacitance value remained virtually unchanged within the linear part of the I-V curve. 

Thus formed structure turned out capable of storing RH state for a long time or changes the value of resistance 

(increase of the slope of the I-V linear part curves) up to values of order RL=250Ω, depending on the charge passing 

through the structure. This state we will refer a low resistance state with RL. Change of the resistance value in the 

region of linear part of the I-V curve (change of the slope of the I-V linear part curves) was reversible, and the 

transition from the state with RL to the state with RH was accompanied by the occurrence of charge order of 3x10-2C. 

 



Figure 2. I-V characteristics of Au/TiO2(20nm)/SnO2/Au assembly (arrows indicate the direction of the circuit, the 

colored arrows correspond to transition between resistive states) showing clockwise bipolar resistive switching (a) ; 

multiple resistive states of the structure characterized by different values of the resistance (b) : 1 corresponds to 

minimum value of the resistance RL=300 Ω; 7 corresponds to maximum value of the resistance RH=10 kΩ; 2-6 – 

correspond to intermediate resistance values. 

The dependences of the resistance RL and RH on the electrode material are illustrated in the fig.3 on an 

example of metal/TiO2(20nm)/SnO2/metal assembly. It was established that the RL is independent on the electrode 

material that allows to conclude that in the RL state the conductivity of the structure is completely determined by the 

charge carriers transport on the conducting paths in the TiO2. As opposed to RL, the resistance value RH depends on the 

used electrode material: the maximum resistance value RH was observed in the case of Pt electrodes. 

 

Figure 3. Dependence of the resistance RL (a) and RH (b) on the electrode material for metal/TiO2(20nm)/SnO2/metal 

assembly. 

Since the influence of moisture on the resistive switching process has been pointed out by [35] and especially 

the influence of different electrode materials on the OFF state resistance and ionic concentration in presence of 

moisture [36] we have also carried out additional studies using a special hermetic box filled with nitrogen. It was 

established that atmosphere composition where the measurements are carried out and presence/absence of moisture do 

not effect on the discussed resistive switching and on its characteristics (switching voltage, the resistance values of RL 

and RH states, etc.). Based on this observation and fact that TCO is additional source of oxygen vacancies we can 

suppose that conductivity in RL state is due to formation of conducting filaments composed by oxygen vacancies 

rather than mobile metallic cations as in case of Cu/SiO2/Pt [35] for which influence of moisture is critical. 

Also the resistive switching behavior in the Au/TiO2(20nm)/SnO2/Au assembly on the way of influence on the 

structure was studied. It was established that the number of switches between different states depends strongly on the 

method used. As follows from fig. 4 (a), while continuously measured I-V (continuous applying a linearly varying 

bias voltage) characteristics only the 10-20 complete switching cycles (RL → RH → RL) were observed. When 

applying the current pulse a much larger number of complete cycles of switching (fig.4 (b)) were achieved, and, that 

most importantly, the degradation of the sample was not observed in this case. The obtained resistive states persist at 

least during 60 hours. 



 

Figure 4. Dependence of the RL and RH states on the number (N) of resistive switching in the Au/TiO2/SnO2/Au 

assembly obtained by: (a) continuous applying a linearly varying bias voltage, (b) applying the current pulse. 

Analogous conclusions have been made in the study of Au/TiO2(30nm)/ZnO/Au assembly. I-V characteristics 

for Au/TiO2(30nm)/ZnO/Au assembly are shown in fig.5. 

 
Figure 5. I-V characteristics of Au/TiO2(30nm)/ZnO/Au assembly (arrows indicate the direction of the circuit, 

colored arrows correspond to transition between resistive states) showing clockwise bipolar resistive switching. 

I-V curves of Au/TiO2(25nm)/ITO/Au assemblies without/with Al2O3 layer inserting between TiO2 and ITO 

layers are shown in fig. 6 and 7. The joint analysis of I-V characteristics of all the studied assemblies reveals the 

possibility of implementing anti-clockwise bipolar resistive switching only in the Au/TiO2/ITO/Au assembly. It is 

important that insertion of thin Al2O3 layer between TiO2 and ITO layers does not permit to realize the anti-clockwise 

bipolar resistive switching. 



 

Figure 6. I-V characteristics of Au/TiO2(25nm)/ITO/Au assembly (arrows indicate the direction of the circuit, colored 

arrows correspond to transition between resistive states) showing clockwise bipolar resistive switching (a) and anti-

clockwise bipolar resistive switching (b). 

 

Figure 7. I-V characteristics of Au/TiO2(25nm)/Al2O3(5nm)/ITO/Au assembly (arrows indicate the direction of the 

circuit, colored arrows correspond to transition between resistive states) showing clockwise bipolar resistive 

switching. 



 

Figure 8. Average RH/RL ratio for studied assemblies. 

Summing up the results of current–voltage analysis let us turn to the fig.8 where the average RH/RL ratio for 

all the studied assemblies is shown. One can see that the greatest value of the ratio RH/RL is observed for assembly 

with SnO2 buffer layer. From the viewpoint of practical use of memristor memory this means that it possible to 

implement the maximum set of intermediate states (recording analog data) and increases the density of information 

recording in this case. That is what allows to give preference to sublayer SnO2. 

Based on the obtained set of current (I)–voltage (V) results, we tried to make preliminary conclusions about 

the possible mechanisms of resistive switching process. As was mentioned above the electroforming step of the 

pristine structure, which is required before bistable switching is achieved. The electroforming process is accompanied 

by formation of the levels in the band gap (appearance of an additional conduction channel due to the formation of 

electronic states in the band gap of insulator). As a result the conductivity of the structure in the state RH is defined by 

two processes: conductivity by these levels and conductivity by conduction band on Schottky-like transport 

mechanism. This is evidenced by reducing the impact of emissions through the Schottky-like barrier at the interface 

TiO2 - metal with increasing the work function of the electrode used (fig.3, (b)). 

The independence of the resistance RL on the electrode material i.e. work function (fig.3, (a)) allows us to 

suggest that in the RL state the conductivity of a structure is completely determined by the charge carriers transport in 

the levels in the band gap of TiO2. Such assumption agrees well with [37]. According to [37], the formation of 

complexes containing oxygen vacancies: (Ti3+ - Vo + 2e)0 and (Ti3+ - Vo
+ + 1e)+ is typical for TiO2 layers. Such 

complexes lead to the formation of the energy levels in the band gap located at ~0.3 eV and ~0.5 eV below the bottom 

of the conduction band [37]. It is plausible to associate RL state of the structure with the presence of the maximum 

concentration of the oxygen vacancies in the TiO2 layer, which may form conductive path of oxygen vacancies, so 

called conductive filaments. A significant increase in the resistance of the structure (from ~10 Ω to ~100 kΩ) after 

annealing in oxygen atmosphere is an additional proof of our assumption. Taking into account: i) a significant 

difference in the switching process in the chain RH → RL → RH; ii) a remarkably different inertia of the processes τH → 

L <<τL → H; iii) a different behavior of the intermediate states, it is reasonable to assume that the increasing (transition 

RH → RL) and reduction (transition RL → RH) of conductance occur due to different mechanisms. 

 

3.2. NEXAFS study of Au/TiO2/ITO/Au and Au/TiO2/Al2O3/ITO/Au assemblies 



The absorption spectra in the vicinity of titanium L2,3- and oxygen K-absorption edges were measured for all 

the samples with ITO ((In2O3)0.9(SnO2)0.1) TCO buffer layer. It should be noted that the Ti L2,3- absorption spectra for 

all the studied samples (before and after switching) were almost indistinguishable and corresponded to the spectrum of 

the amorphous TiO2 film. That means that the main changes of the structure occur in the sublattice of oxygen. 

Therefore further the OK-absorption spectra will be discussed only. 

Fig. 9 shows the OK-absorption spectra of the studied films (pristine structure). The relative intensities of all 

the spectra have been normalized to the continuum jump (at the photon energy of 560 eV for O1s absorption spectra) 

after subtraction of a sloping background, which was extrapolated from the linear region below O1s absorption onset. 

Such normalization provides about the same total oscillator strength for all the O1s-absorption spectra over the photon 

energy range of 520-560 eV in accordance with a general idea of oscillator strength distribution for the atomic X-ray 

absorption [38]. It is important to emphasize that all the samples were studied at different points of the structure. It 

was established for each sample that within the statistical error (on the order of 3%) the spectra measured at different 

points on the surface of the sample coincided. 

According to [39-40] the molecular orbitals of TiO2 derived from a linear combination of atomic orbitals 

(LCAO) are characterized by four unoccupied orbitals: 2t2g(Ti 3d + O 2pπ), 3eg(Ti 3d + O 2pσ), 3a1g(Ti 4s + O 2p) 

and 4t1u(Ti 4p + O 2p). In TiO2, all four molecular orbitals are completely empty. In this classification the O K-edge 

features (labeled as a, b, c and d) can be assigned to one electron transitions from the O 1s orbital to the 2t2g, 3eg, 3a1g 

and 4t1u orbitals of TiO2, respectively. Thus a and b peaks reflect the core-electron transitions in the oxygen atoms to 

the lowest unoccupied Ti 3d-t2g and 3d-eg electronic states that are mixed with the 2p states of the ligand (oxygen) 

atoms. As it follows from fig. 9, the spectra for all the studied films correlate well in number and energy position of 

the main details of the structure. Analysis of the energy position of the peaks shows that within the experimental 

accuracy (10 meV) the energy separation between a and b peaks ΔΕa-b=2.2 eV is closed to the value for the amorphous 

TiO2 (2.3eV) [41-42]. At the same time the appreciable decrease of the main band integral intensity (including a and b 

peaks) depending on the material of the buffer layer is traced and is likely a result of the varying of oxygen content in 

synthesized TiO2 films. As it follows from fig. 9, the lowest intensity of this band occurs in the film grown onto ITO 

layer that is likely a result of formation of film with lowest stoichiometry during synthesis due to migration of oxygen 

ions from TiO2 film into ITO since the structure of ITO contains considerable number of oxygen vacancies [43]. An 

additional evidence of this conjecture can be found in the second band characterized by c and d peaks and related to 

transitions into the empty electronic states with mixed Ti 4s,4p + O 2p character. Analysis of the O K-absorption 

spectra [41-42, 44-47] points to the significant differences of the features at the higher energies for different crystal 

modifications and amorphous phase of TiO2. The less pronounced splitting the c and d peaks confirms the lowest 

stoichiometry of the film grown onto ITO buffer layer. The use of the Al2O3 blocking layer allows to restrict to some 

extent processes of migration of oxygen ions and vacancies as it follows from work [48-49]. This fact agrees well with 

our results since the main band integral intensity has a higher value and more pronounced splitting of the c and d 

features is traced in the spectrum of the TiO2/Al2O3/ITO assembly (fig. 9) as compared with TiO2/ITO assembly. 



 

Figure 9. OK-absorption spectra of the TiO2/ITO (1), TiO2/Al2O3/ITO (2) and TiO2/SnO2 (3) assemblies (pristine 

structure). 

 

Figure 10. OK-absorption spectra of the TiO2/ITO (a) and TiO2/Al2O3/ITO (b) assemblies after RH → RL transition 

(2) (negative polarity of applied voltage) and RL → RH transition (3) (positive polarity of applied voltage) to compare 

with OK-absorption spectra of the pristine structures (1). 

Fig. 10 demonstrates the OK-absorption spectra of the TiO2/ITO and TiO2/Al2O3/ITO assemblies before 

(pristine structure) and after resistive switching. As it can be seen from fig. 10 the main band integral intensity is 

appreciably changed after switching that can be related with changes in sublattice of oxygen. In case of the TiO2/ITO 

assembly (fig. 10 (a)) the main band integral intensity is increased and features c and d become more distinguishable 

for both RH and RL states. This can be related presumably with some restoration of stoichiometry of the TiO2 film after 

the resistive switching due to reverse migration of oxygen ions from ITO that may be launched under the influence of 

local heating in the area of high electric field. Effect of the migration of oxygen ions from ITO can be overlapped with 

effects related directly with process of resistive switching (the spectra for RH and RL states are almost 

indistinguishable with slight predominance of main band integral intensity for RH state). In this connection the 



analysis of OK-absorption spectra of TiO2/Al2O3/ITO assembly can give more direct information about process of 

resistive switching since buffer layer of Al2O3 considerably restricts migration of oxygen as it mentioned above. 

It can be seen from fig. 10 (b) that the forming process and irreversible conversion of TiO2 film from R0 to RH 

state in the TiO2/Al2O3/ITO assembly is accompanied by decrease of the main band integral intensity of the OK-

absorption spectrum and the splitting of features c and d becomes less pronounced. This can be related with general 

reduction of stoichiometry of TiO2 film and formation of scattered oxygen vacancies that lead to formation of energy 

levels in band gap. The transition of the film into conductive state is accompanied by a further decrease in the main 

band integral intensity of the OK-absorption spectrum. In our opinion the transition RH → RL is caused by the 

formation of conductive path formed by oxygen vacancies in TiO2 film in the area of localization of high electric field 

as a result of thermal ejection of oxygen ions from regular bonding. Electric field violates the symmetry of the 

potential barrier and reduces its height in the direction of the field on Schottky-like mechanism that additionally 

facilitates ejection of oxygen ions from the regular bonding. The negative polarity of the applied voltage at RH → RL 

transition provides displacement of the oxygen ions from the region of the localization of produced vacancy, 

excluding the possibility of reuptake. In essence, the joined effect of local heating and electric field disturbs the 

balance between release of the oxygen ions and their reuptake. In this case, an increase in conductivity of the structure 

is associated presumably with the formation of filaments of the oxygen vacancies. Since the reuptake of oxygen ions is 

significantly impeded, it is unlikely to expect even short-term reduction in the conductivity that correlates well with 

rapid character of RH → RL transition observed in the experiment (fig. 6 (a)). 

For conducting a RL → RH transition it is necessary to break conducting pass formed by oxygen vacancies and 

reduce a general number of vacancies that correlates with increased main band integral intensity for RH state to 

compare with RL state (fig. 10 b). This requires to implement more complex and combined processes consisting in the 

shipping and/or the formation of an oxygen ions in the region of the conductive path localization (or complexes 

described above) with subsequent its capture and forming a regular (may be distorted) bonding Ti-O. At least two-

stage of the process significantly increases its inertia. The slowest step in this case is the formation of oxygen ions in 

the region of the oxygen vacancies localization. Moreover, this process not just can, but must be accompanied by a 

process of vacancy formation described above, as occurs in the conditions of the joint action of the electric field and 

the local heating. This was observed in the short-term fluctuations of the conductivity of the system for certain values 

of the electric field, established in the experiment (fig. 6 (a)). 

Local heating process at this stage plays a dual role. On the one hand, it can promote the increase in the 

concentration of oxygen ions due to the diffusion and it is a positive factor. On the other hand, the self-heating process 

initiates the formation of oxygen vacancies, which in this case is a negative factor. 

 



Figure 11. Schematic diagram of the conduction mechanism in the TiO2/ITO assembly: a) pristine structure; b) 

formation of conducting path RH → RL; c) rupture of conducting path RL → RH. Solid arrows show the movement of 

oxygen ions (green circles). Dotted arrows show the movement of oxygen vacancies (white circles). The thickness of 

the arrows indicates the intensity is proportional the flow quantity. 

 

Figure 12. Schematic diagram of the conduction mechanism in the TiO2/Al2O3/ITO assembly: a) pristine structure; b) 

formation of conducting path RH → RL; c) rupture of conducting path RL → RH. Solid arrows show the movement of 

oxygen ions (green circles). Dotted arrows show the movement of oxygen vacancies (white circles). 

Schematic diagrams shown in the figs. 11 (a-c) and 12 (a-c) summarize the mechanism of conductivity 

modulation during resistive switching in the TiO2/ITO and TiO2/Al2O3/ITO assemblies. Figs. 11 (a) and 12 (a) 

illustrate the state of the pristine structure. As was mentioned above that the TiO2 film grown onto ITO buffer layer is 

characterized by lowest stoichiometry compared with the film prepared onto Al2O3/ITO buffer layer. Taking into 

account that the ITO layer contains a surplus of the oxygen vacancies [43] (white circles) it is reasonable to assume 

that the O2- ions (green circles) will be easily move from TiO2 into ITO layer within the interface region under the 

influence of the internal electric field (this process is indicated by solid arrows). Al2O3 acts as a barrier layer against 

arbitrary migrations of charged particles [48-49]. 

Fig. 11 (b) illustrates the state of the TiO2/ITO assembly when a negative bias is applied to the top electrode 

and the bottom electrode is grounded. In this case the O2- ions penetrate through the barrier at the TiO2/ITO interface 

into ITO layer leaving behind vacancies. The oxygen vacancies in ITO side serve as the trap sites for the O2- ions 

(dotted arrows). Simultaneously, there is a process of reverse migration of O2- ions from ITO under the influence of 

the local heating (thick solid arrows). As the result, the low resistance state RL (characterized by high conductivity) is 

achieved with formation of electrically conductive path formed presumably by oxygen vacancies (dotted lines) which 

are surrounded by oxygen ions from ITO. The electric field (negative polarity applied to the top electrode onto TiO2 

film) prevents the merger of oxygen ions and vacancies. When positive bias is applied to the top electrode and reaches 

certain threshold value the state of the high resistance RH is realized (fig 11 (c)). O2- ions get trapped in the ITO layer 

moving back towards the TiO2 film, which leads to a rupture of the conduction channel in the vicinity of the interface 

and oxygen vacancies are against get distributed in the ITO layer. It is worth noting that removal of a small amount of 

the O2- ions is sufficient to break the conduction path and thereby to increase the resistance. 

Similar processes occur during the resistive switchings in the TiO2/Al2O3/ITO assembly (fig. 12 (b-c)). But in 

this case, the Al2O3 prevents a spontaneous movement of the oxygen ions and vacancies in the absence of the electric 



field and regulates their movement when the high electric field is applied. The introduction of the Al2O3 buffer layer 

allows to increase the temporal stability of the RL and RH states of the film [48]. In the RL state the reverse migration of 

the O2- ions from the ITO layer into the film is shuted by the alumina barrier. O2- ions drift towards ITO leaving 

behind vacancies under negative electric field (fig. 12 (b)). The reverse migration of O2- ions from ITO into the film 

shut by alumina barrier. So, concentration of oxygen into TiO2 film decreases as evidenced by a decrease in intensity 

of the details a-b in the OK-edge of absorption spectrum (fig. 10 (b)). Under the application of electric field of 

positive polarity removing of O2- ions towards TiO2 film break the conduction path (fig. 12 (c)) and the oxygen 

concentration slightly increases (fig. 10 (b) 3-rd curve). 

 

4. Conclusion 

As it was mentioned in the introduction, the use of a thin buffer layer between dielectric film and substrate 

allows to affect the self-organization of the film. Taking into account a high concentration of oxygen vacancies in 

transparent-conductive-oxide (TCO) layers we have assumed that TCO layer in metal/TiO2/TCO/metal assembly 

could be an additional source of oxygen vacancies for TiO2 film. In this connection the metal/TiO2/TCO/metal 

assemblies were synthesized. The resistive switching process has been studied in the metal/TiO2/TCO/metal 

assemblies depending on the material of TCO (ITO ((In2O3)0.9(SnO2)0.1 or SnO2 or ZnO). The current work first time 

combines both the electro-physical studies and x-ray near-edge absorption fine structure (NEXAFS) investigations. It 

was established that switching process influences strongly the lowest unoccupied bands and local atomic structure of 

the TiO2 layers. It was established that TCO layer in metal/TiO2/TCO/metal assemblies is an additional source of 

oxygen vacancies for TiO2 film. The RL (RH) states are achieved with formation (rupture) of electrically conductive 

path of oxygen vacancies correspondingly. The resistive switching leads to some restoration of stoichiometry of the 

film in the TiO2/ITO assembly. A clockwise and anti-clockwise bipolar resistive switching is realized only in the 

Au/TiO2/ITO/Au assembly. The inserting the Al2O3 thin layer allows to restrict to some extent processes of migration 

of oxygen ions and vacancies and does not permit to realize the anti-clockwise bipolar resistive switching. A greatest 

value of the ratio RH/RL is observed for assembly with SnO2 buffer layer. It was established that a remarkably different 

inertia is a characteristic for increasing (transition RH → RL) and reduction (transition RL → RH) of conductance τH → L 

<<τL → H. Applying the current pulse provides a much larger number of complete cycles of switching unlike 

continuous applying of linearly varying bias voltage; the obtained resistive state persists at least during 60 hours. The 

obtained results are very important for deeper understanding the mechanism of resistance switching and charge 

transport in TiO2 films and its future application as switching material in resistance change memory based devices. 
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