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Zusammenfassung

Gegenstand dieser Arbeit ist das Wachstum von dünnen CuInS2-Schichten mittels eines
schnellen thermischen Syntheseprozesses. CuInS2 dient als absorbierende Schicht in
Dünnschichtsolarzellen. Die Herstellung erfolgt durch eine Sulfurisierung von Cu und
In Vorläuferschichten. Dieses Verfahren stellt eine kostengünstigere und ertragreichere
Möglichkeit zu anderen Herstellungstechnologien dar und wird, dank iterativer Op-
timierung der resultierenden Solarzellen, in der groÿ�ächigen Massenherstellung von
Solarmodulen benutzt. Die Mikrostrukturentwicklung während eines solchen Herstel-
lungsverfahrens ist bisher allerdings unbekannt. Dieses Wissen ist notwendig für die
weitere Optimierung und für die zukünftige Gestaltung neuartiger Prozesse.

Diese Dissertation liefert zwei Beiträge zur Sulfurisierungstechnologie. Erstens zeigt sie
eine in situ Methode zur Überwachung der Dünnschichtmikrostruktur während Fest-
körperumwandlungen und Reaktionen mit einer Gasphase. Diese Methode basiert
auf der energiedispersiven Röntgenbeugung. Sie eignet sich sowohl für die Unter-
suchung von isolierten Festkörpermechanismen als auch für die Analyse von kompletten
schnellen thermischen Sulfurisierungen. Zweitens schlägt die Arbeit eine Zerlegung des
komplizierten Sulfurisierungsprozesses in fünf unabhängige Wachstumsmechanismen
vor. Die Analyse von deren Interaktion erlaubt eine nachvollziehbare Beschreibung
der Mikrostrukturbildung in Abhängigkeit von den Prozessein�ussgröÿen. Die Wachs-
tumsmechanismen sind: 1) die Bildung einer Metalllegierung, 2) die Sulfurisierung
einer Metalllegierung, 3) die Reaktion zwischen den Sul�den, 4) die Rekristallisation
der Dünnschicht und, 5) die Interdi�usion der Sul�de.

Jeder Mechanismus wirkt sich anders auf die Schichtmikrostruktur aus und wird in
dieser Dissertation in situ und mit anderen Charakterisierungsmethoden untersucht.
Der erste Schwerpunkt der Untersuchungen betri�t die Bildung von Schichtsytemen
während der Sulfurisierung einer Cu16In9-Legierung. Die Temperatur und der Schwe-
feldruck bestimmen sowohl die Sul�dschichtreihenfolge als auch deren Morphologie. Als
Zweites studiert diese Arbeit die Kinetik der Reaktion zwischen Cu2−xS und CuIn5S8

Dünnschichten. Diese Reaktion verbraucht die Fremdphase CuIn5S8, die zusammen
mit der Hauptphase CuInS2 koexistieren kann. Die Rekristallisation der Dünnschicht
ist das dritte Schwerpunktthema. Dieser Mechanismus bewirkt strukturell defektarme
Körner, die eine Gröÿe von einigen Mikrometern im Durchmesser aufweisen. In diesen
Körnern be�nden sich die Kupfer- und Indiumkationen in der Chalkopyritordnung. Die
Rekristallisation von CuInS2-Schichten wurde das erste Mal in situ beobachtet. Diese
Arbeit schlägt ein Modell zur Beschreibung dieses Mechanismus vor.

Die neue in situ Methode erlaubt die Erforschung schneller thermischer Sulfurisierun-
gen. Anhand der untersuchten Wachstumsmechanismen kann die Mikrostrukturbil-
dung der CuInS2-Schicht erklärt werden. Die vorgeschlagenen Pfade zur Kontrolle
aller Mechanismen unterstützen die Weiterentwicklung der Sulfurisierungstechnologie
und ermöglichen die Entstehung von neuartigen Herstellungsprozessen.
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Abstract

The focus of this thesis is the growth of CuInS2 �lms from a rapid thermal
sulfurization process. This material is used as the absorber layer in thin-�lm
solar cells. The rapid thermal sulfurization of thin Cu-In �lms is a technology
that represents a low cost alternative to other chalcopyrite thin-�lm fabrica-
tion technologies. This technology has evolved to industrial maturity thanks
to the optimization of the resulting solar cell devices. However, the know-
ledge concerning the formation of the �lm microstructure during this kind of
processing is scarce. This knowledge is necessary for further optimization and
future process design.

This thesis makes two contributions to the sulfurization technology. First, it
presents an experimental method to monitor in real-time the microstructural
changes of a thin-�lm during solid-solid or solid-gas reactions. This in situ
method was developed on the basis of the energy-dispersive X-ray di�raction.
It is used to follow and quantify isolated solid state mechanisms and complete
rapid thermal sulfurizations. Second, it divides the sulfurization process into
�ve independent growth mechanisms. The microstructure formation can be
clari�ed by the analysis of their interaction. The mechanisms are: 1) the
alloying of the metals, 2) the sulfurization of the metallic alloy, 3) the reaction
of the sul�des, 4) the thin-�lm recrystallization and 5) the sul�de interdi�usion.

These growth mechanisms are investigated by means of the in situ and com-
plementary characterization methods. The experimental results reveal the im-
pact that each mechanism has on the �lm microstructure. Detailed attention
is �rstly given to the sul�de layered stack formation during the sulfurization of
a Cu16In9 alloy. The layer sequence and the morphology are functions of the
temperature and the sulfur pressure. The second focus concerns the kinetics
of the reaction between CuIn5S8 and Cu2−xS. This reaction consumes the sec-
ondary CuIn5S8 phase that may segregate during sulfurization. The thin-�lm
recrystallization is the third central point of these investigations. This mecha-
nism ensures grain sizes of the order of the thickness of the �lms, low structural
defect densities and the chalcopyrite ordering of the Cu and In cations. This
mechanism is monitored in situ for the �rst time. A model is presented that
describes the thin-�lm recrystallization together with its prerequisites and en-
hancement factors.

The rapid thermal sulfurization of thin metallic Cu-In �lms is investigated
by means of the in situ method developed in this thesis. The investigations
concentrate on the growth mechanisms during the formation of the CuInS2

�lms. The impact of each mechanism on the �lm microstructure is exempli�ed.
Paths to control the growth mechanisms are proposed. These paths support
the further development of the sulfurization technology and enable the design
of innovative fabrication processes.
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1. Introduction and motivations

The concentration of CO2 in the earth's atmosphere has oscillated between 180 ppm and 280 ppm
during the last 400,000 years[97]. Under the highly optimistic scenario that the CO2 emissions are
reduced to zero by 2050, its concentration will achieve 350 ppm by that date[74]. Other optimistic
scenarios estimate that it will stabilize at 550-750 ppm. This CO2 enrichment generated by men
will have dramatic environmental consequences.

Knowing this, the use of carbon-free energy to satisfy our growing needs is unavoidable. The sun
provides the earth in one hour with the amount of energy that is consumed by the humans in
one year. One way to convert the energy of the sun directly into electrical power is photovoltaics.
Chapin et al. presented in 1954 one of the �rst solar cell devices capable of converting solar light
into electricity[25]. These devices were based on silicon. Meanwhile, other materials have emerged
as an alternative to silicon due to their higher absorption coe�cients[111]. This means that less
material is necessary to absorb the same amount of light and results in material savings on one
hand and in a reduction of the fabrication costs on the other. These materials are deposited
as �lms of some micrometers of thickness. This thin-�lm approach o�ers a large cost-reduction
potential for the production of photovoltaic modules.

One example of this approach is the CuInS2-based module production[82]. High-yield and low
production costs are at the basis of this technology. A key step in this fabrication technology is the
formation of the CuInS2 absorber-�lm from metallic precursors. This is done by means of a rapid
thermal process (RTP) where the Cu-In thin �lms are brought to reaction with elementary sulfur
vapor. The thin-�lm formation during such a process has long been looked at as a black box.
The �lm microstructure has mainly been evaluated through the characteristics of the resulting
solar cells or even solar modules. Even though this e�ciency-oriented approach has brought the
material to a competitive level, it does not allow a critical assessment of the processing itself.
This, in contrast, is of clear importance to increase the reproducibility, to optimize the existent
and to design new fabrication processes.

Figure 1.1 presents an idealized CuInS2 absorber with few microstructural defects and a typical
CuInS2 absorber when fabricated by means of RTP. The RTP-CuInS2 �lm presents defects in
its microstructure that a�ect the performance of the �lm as a solar cell absorber. For further
development of this technology it is necessary to:

1. Understand the formation of the microstructure;

2. Lay the ground for the engineering of the �lm.

These two points constitute the main objectives of this thesis. To attain these objectives two tools
were developed and will be presented throughout the following chapters:

� An experimental method based on the energy-dispersive X-ray di�raction[41]. This method
allows to monitor in situ the microstructural changes of a thin �lm as a function of time,
temperature and pressure. Complete sulfurizations or isolated solid state transitions can be
investigated by this method.

� A breakdown of the complex sulfurization process in independent mechanisms. Each me-
chanism can be studied individually in terms of its origin and impact on the microstructure

1



1. Introduction and motivations

Figure 1.1.: Idealized and typical RTP-CuInS2 thin �lms[120]. The numbers indicate the mi-
crostructural features that a�ect the performance of the �lm as a solar cell absorber:
1) surface, 2) point defect concentration and gradient, 3) grain boundaries and other
planar and linear defects, 4) voids at the back contact, 5) pinholes that traverse the
entire �lm.

of the resulting CuInS2 thin �lm.

The investigations on these growth mechanisms by means of the in situ method are the pillars of
this work. This thesis is structured as follows:

� Chapter 2 begins with an introduction to the CuInS2-based solar cell. The following sections
review the main structural, physical, chemical and microstructural features of CuInS2 thin
�lms. The chapter ends with a description of the rapid thermal processing technology to
fabricate such �lms.

� Chapter 3 presents the experimental method that was developed and optimized during this
thesis. This method consists of a custom-made rapid thermal processing chamber coupled to
a synchrotron-based energy-dispersive X-ray di�raction setup. The theory, the technology,
the possibilities and resolution limits of this method will be presented in this section. This
experimental setup is currently unique in its ability to monitor rapid thermal chalcogeniza-
tions.

� Chapter 4 presents the breakdown of the sulfurization process in �ve growth mechanisms: the
alloying of the metals, the sulfurization of the metallic alloy, the reaction of the sul�des, the
thin-�lm recrystallization and the sul�de interdi�usion. This chapter reviews in �ve sections
the theory and the results reported in the literature concerning each one. It concludes with
a summary of the unresolved issues and the open questions that will be addressed by the
experiments.

� Chapter 5 presents the investigations on the growth mechanisms based on the X-ray di�rac-
tion method. The issues and questions stated in the previous chapter are addressed in detail.
The impact of each mechanism on the microstructure of the CuInS2 �lms is discussed. Paths
for the exploitation of these mechanisms to purposely modify the microstructure of the �lms
are proposed in this chapter.

� Chapter 6 presents a new rapid thermal process that bypasses the void formation at the
back of the CuInS2 �lm. This chapter serves as an example of �lm engineering based on the
information gained in Chapter 5.

To summarize, little or no tools are available to monitor the microstructure formation of CuInS2

thin �lms from a rapid thermal sulfurization process and to control it. This thesis endeavors to

2



establish two such tools. The �rst one consists of an experimental method to monitor in situ
the changes in the microstructure of thin metallic �lms during annealing or sulfurizing in a closed
space. The second consists of a breakdown of the sulfurization process into �ve mechanisms whose
interaction determines the �nal microstructure of the �lm. These mechanisms are investigated by
means of the in situ method and concrete information for the �lm engineering is extracted. This
thesis serves as a basis for future design of processes that are based on the sulfurization of metallic
thin �lms.

3





2. CuInS2 Thin-Film Devices and

Material Properties

CuInS2 thin �lms are used as solar cell absorbers. This means that when such a �lm absorbs
photons, free charge carriers are generated in the material. The carriers can be collected by an
appropriate device[144]. A heterojunction solar cell is an example of such a collecting device. The
�rst two sections of this chapter give a brief introduction to CuInS2 based thin �lms solar cells and
to their main technological characteristics. The next sections concentrate on the structural and
physico-chemical properties of the CuInS2 material as well as on the microstructural properties of
the corresponding thin �lms. The last section of this chapter presents their fabrication technology.

5



2. CuInS2 Thin-Film Devices and Material Properties

2.1. De�nition of a solar cell

A solar cell is an electrical device that converts sunlight into electricity. It delivers a maximal
current Iph that is a function of:

� The intensity and energy distribution of the incoming light. This is determined by the solar
irradiance, in watts per area per wavelength, at the measuring location. To standardize the
characterization of solar cells a standard spectrum is used. This is the AM 1.5 spectrum
and corresponds to the spectrum measured when the sun is at an angle of 45° with respect
to the normal of the earth at the measuring location.

� The absorption of the semiconductor. This is a material property and is a function of the en-
ergy of the incoming photons. In the idealized case it is zero for photons of energy below the
bandgap and a constant for photons of energies above the bandgap of the material. The con-
stant is called absorption coe�cient. The absorption coe�cient of CuInS2 is ∼105cm−1 for
photons of energy larger than ∼1.5eV. The absorption coe�cient of silicon is approximately
two orders of magnitude smaller.

� The quality of the semiconductor. This is characterized by the di�usion lengths of the charge
carriers in the material. These di�usion lengths must be of the order of magnitude of the
thickness of the device. This ensures that the carriers that are generated within the cell
achieve the collecting contacts. Di�usion lengths of CuInS2 are of the order of 1µm. For
silicon di�usion lengths must be of the order of some hundreds of micrometers.

A solar cell will deliver less current to an external load depending on the operating point on the
current-voltage characteristic of the device. The ideal current-voltage (I − V ) characteristic of a
solar cell is

I = Is · (exp(
q · V
k · T

)− 1)− Iph , (2.1)

where Is is called the saturation current, q is the elemental charge and k the Boltzmann constant.
In real solar cells the following must be considered:

� The carrier recombination within the space-charge region cannot be neglected. This is
quanti�ed by a diode quality factor, A, that takes values between 1 and 2.

� The resistance at the contacts and interconnectors and the bulk resistance of the �lm is not
negligible. These resistances sum up to form the series resistance, RS.

� The shunt resistance, RSH , is not in�nite. This can be caused by pinholes, large precipitates
or any other source of current leakage.

The current-voltage characteristic of a real solar cell can be better approximated by (using a
one-diode model)[83]:

I = Is · (exp(
q · (V − I ·RS)

A · k · T
)− 1) +

V − I ·RS

RSH

− Iph . (2.2)

The performance of a solar cell can be characterized by its current-voltage characteristic under
AM 1.5 illumination. The basic parameters that can be read from such a measurement are:

1. The short circuit current ISC : it corresponds to the current at V=0. From Equation 2.2,
ISC equals Iph if the series resistance is zero and if the saturation current is negligible.

6



2.2. The CuInS2 solar cell

2. The open circuit voltage VOC : it corresponds to the voltage when I=0. The open circuit
voltage is a function of the band alignments and recombination mechanisms in the solar
cell[49].

3. The �ll factor ff : it is de�ned as the ratio between the maximal power output of the device,
Imp · Vmp, and the idealized power output of the device ISC · VOC :

ff =
Imp · Vmp
ISC · VOC

. (2.3)

The �ll factor characterizes the curvature of the current-voltage characteristic. It is sensitive
to series and shunt resistances but also to recombination mechanisms within the cell.

4. The e�ciency: it is de�ned as the ratio between the maximal power output and the power
of the incoming light.

2.2. The CuInS2 solar cell

The CuInS2 solar cell is composed of a stack of layers that are deposited on a substrate (typically
soda-lime glass). These are:

� the back contact layer: 500nm Mo;

� the absorber layer: 2µm CuInS2 (p-type semiconductor);

� the pu�er layer: 50nm CdS (n-type semiconductor);

� the window layer: 100nm intrinsic ZnO (n-type) + 500nm Al doped ZnO (n+-type semicon-
ductor);

� The Ni/Al front grid for contacting.

Figure 2.1 shows the current voltage characteristic and the main electrical parameters of a solar
cell based on a CuInS2 �lm. This �lm was fabricated by means of rapid thermal processing in
the experimental setup described in Section 3.1 of Chapter 3 during a beamtime at the EDDI
beamline of BESSY II. The CuInS2 layer was optimized to present a double-layered morphology
where a large-grained CuInS2 layer covers a small-grained CuInS2 layer (details on the growth of
such �lms will be given in Chapter 6).
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Figure 2.1.: Current-voltage characteristic of a Mo/CuInS2/CdS/ZnO solar cell. The absorber
layer was prepared by means of rapid thermal processing in the experimental setup
described in Section 3.1 of Chapter 3 during a beamtime at the EDDI beamline of
BESSY II. The reaction path for the fabrication of this CuInS2 �lm will be presented
in Chapter 6.

2.3. Structural properties of CuInS2

CuInS2 belongs to the group of the AIBIIIXV I
2 ternary chalcopyrite compounds. The structure

of the chalcopyrite compounds derives from the cubic sphalerite structure in accordance to the
Grimm-Sommerfeld rule, i.e. average of 4 valence electrons per atomic site. Each X anion is sp3

bonded to two A and two B cations and form together a tetrahedron. The sphalerite structure
can be considered as two inter-penetrating face-centered cubic lattices, one with cations and one
with anions, separated by a translation vector (1

4
,1
4
,1
4
). In the chalcopyrite structure the cation

sublattice is made of ordered group I and group III cations. This reduced symmetry leads to a
primitive cell composed of eight atoms compared to a primitive cell of two atoms in the sphalerite
structure. Figure 2.2 gives a representation of the crystal structures of sphalerite and chalcopyrite
CuInS2.

Figure 2.2.: Crystal structures of sphalerite, chalcopyrite and Cu-Au ordered CuInS2.
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2.3. Structural properties of CuInS2

The chalcopyrite structure belongs to the space group I-42d. Its unit cell is tetragonal and is
distorted along the c-axis so that c/a is no longer equal to 2 as is the case in the sphalerite
structure. In the chalcopyrite structure the anion does not occupy the ideal position inside the
tetrahedron. The anion displacement parameter u is used to characterize this distortion; if u=0.25
there is no distortion. Note that c/a and u are independent. Table 2.1 gives the lattice parameters,
the c/a ratios, the displacement parameters u and the bandgaps of CuInS2, CuGaS2, CuInSe2 and
CuGaSe2.

Table 2.1.: Survey of structural properties[123], melting points[46] and bandgaps[127] of selected
chalcopyrite materials.

Material a/nm c/nm c/a u Tm/ °C Eg(300K)/eV

CuInS2 0.552[115] 1.1135[115] 2.017 0.227[113] 1079[15] 1.5[90]

CuGaS2 0.536 1.043 1.948 0.275 1200 2.5

AgInS2 0.583[15] 1.120[15] 1.922 0.25[54] 871[15] 2

CuInSe2 0.578 1.161 2.008 0.224 986 1.05

CuGaSe2 0.561 1.103 1.965 0.250 1040 1.7

Figure 2.3a) shows the angle-dispersive X-ray di�raction spectrum of CuInS2. This was calculated
with the software POWDERCELL[70]. The re�ections of the chalcopyrite phase fall into three
groups[89]:

� Re�ections having h, k, and l/2 all even or odd. These re�ections correspond to the spha-
lerite structure. Due to the tetragonal distortion (c/a6=2) the splitting of some re�ection
is observed: for example (2,0,0)Sphalerite→ (0,0,4)/(2,0,0)Chalcopyrite. A CuInS2 compound
having a random occupation of cations would present only this type of re�ections without
any splitting.

� Re�ections having h and k even and l/2 odd or vice versa. This re�ections depend on the
anion displacement. If u=0.25 these re�ections vanish.

� Re�ections having h even and k, l odd, or k even and h, l odd. These re�ections contain a
cation term and re�ect the ordering in the action sublattice. These re�ections are also called
super lattice re�ections. If the cations occupy the lattice sites randomly these re�ections
vanish.

The Grimm-Sommerfeld rule can also be ful�lled by cation orderings which are di�erent from the
chalcopyrite structure. Alternating AI and BIII cations in the [001] direction leads to the copper-
gold (Cu-Au) ordering (space group P-4m2)[3]. Figure 2.2 presents the crystal structure of Cu-Au
ordered CuInS2. Rudigier[103] identi�es the Cu-Au ordering in CuInS2 �lms at room temperature.
She observes that the presence of this phase is not compatible with high-e�ciency devices. The
X-ray di�raction spectra of both structures are similar. Figure 2.3 shows the calculated angle-
dispersive X-ray di�raction spectra of chalcopyrite-ordered and Cu-Au-ordered CuInS2 in the
15°-19° and 36°-38° ranges. Alvarez-Garcia[3] uses the re�ections in these 2θ ranges to distinguish
both structures.
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Figure 2.3.: a) Angle-dispersive X-Ray di�raction spectrum of chalcopyrite CuInS2, b) selected
re�ections of the chalcopyrite and the Cu-Au ordering of CuInS2. The spectra were
calculated with the software POWDERCELL[70].

2.4. Physical and chemical properties of CuInS2

Appendix A gives a review on the thermodynamics of the Cu-In-S system, including the phase
diagrams of the Cu-In, Cu-S, In-S, and Cu-In-S systems. Table 2.2 gives the density, the thermal
expansion coe�cient, the bulk modulus, the electronic a�nity, the absorption coe�cient, and
typical electrical characteristics like resistivity and charge carrier di�usion lengths of CuInS2 thin
�lms.

Table 2.2.: Physical properties of CuInS2 at room temperature.

Property Units Values Reference

Density g · cm−3 4.71-4.75 [46]
Thermal Expansion Coe�cient K−1 (1.1±0.2)×10−5 [98]

Bulk modulus GPa 62 ; 75 [72];[130]
Electronic A�nity eV 4.7 [88]

Density of States Valence Band cm−3 ∼1×1019 [66]
Density of States Conduction Band cm−3 ∼1×1019 [66]

Absorption coe�cient cm−1 105 [105]
Electron / Hole mobilities cm2/V s 200 (n-type) /10 (p-type) [126]

Conductivity (Ω · cm)−1 0.1 [37]
Di�usion lengths of electrons /holes µm 0.9 / 2.5 [105]

The conductivity type and the carrier concentration of CuInS2 materials are �xed by their intrinsic
defect concentration[127]. Two parameters describe at best the deviation in composition of a
CuxInwSz phase: the deviation in molecularity ∆m and the deviation in valence stoichiometry ∆y
(see Figure A.6 in Appendix A). They are de�ned as

∆m =
x

w
− 1; ∆y =

2z

x+ 3w
− 1 . (2.4)
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Binsma[12] shows that ∆y (anion poor- or richness) a�ects the level and conductivity type.
Look[75] shows that single CuInS2 crystals can be made n-type by annealing in indium atmos-
phere and p-type by annealing in sulfur atmosphere. As a general observation, anion vacancies
lead to donor and cation vacancies to acceptor type doping. Other defects including interstitials,
InCu and CuIn also a�ect the conductivity. CuInS2 fabricated by the sulfurization of thin metallic
�lms normally exhibit p-type conductivity with charge carrier concentrations between 1016 and
1017cm−3[37].

2.5. Microstructure of CuInS2 thin �lms

Thin-�lm absorbers for solar cells based on AIBIIIX2
V I and CIIXV I materials are polycrystalline.

The grain boundaries a�ect the electronic (or hole) transport in the material [91]. The mean grain
size may a�ect the e�ciency[125], but a large mean grain size is not a necessary condition for a
high-e�ciency Cu(In,Ga)Se2 device[53]. In Cu(In,Ga)Se2 devices, grain size and Ga content are
coupled[1]. Abou-Ras et al.[2] analyze grain size distributions in CuInS2 �lms from a sulfurization
process by means of EBSD (electron backscatter di�raction). He �nds a mean grain size of
∼0.5µm.

Abou-Ras et al.[1] measure the crystallographic texture of the polycrystalline Cu(In,Ga)(S,Se)2
�lms by means of EBSD. They �nd that CuInS2 �lms fabricated through a sulfurization process
present no particular preferred orientation.

Evaporated thin Cu(In,Ga)Se2 and CuInS2 �lms present good adhesion to the Mo back-contact.
Chakrabarti et al.[24] estimate that stresses between 10MPa and 30MPa are present in evaporated
CuInSe2 �lms. Alvarez-Garcia[3] estimates the maximal tensile stress in CuInS2 �lms from a
sulfurization process to be 170MPa. These �lms present a bad adhesion to the back Mo contact.
Large voids between absorber material and molybdenum, as those presented in Figure 1.1 of
Chapter 1, are typically observed in CuInS2 �lms fabricated through a sulfurization process[120].

2.6. Fabrication of CuInS2 thin �lms

CuInS2-based solar modules are being produced on a large scale[82]. They are currently fabricated
by means of a rapid thermal process (RTP) where previously sputtered metallic precursors are
sulfurized in a closed volume[120]. There are other fabrication processes at the laboratory scale
like thermal evaporation[139] or spray pyrolysis[71]. However the RTP technology is the only one
that has bridged the gap to the industrial production. This is thanks to a signi�cant cost-reduction
potential in terms of the deposition chambers, scalability and through-puts.

The rapid thermal sulfurization is composed of two steps:

1. Placing the glass/Mo/Cu/In stacks, with [Cu]/[In]>1, together with elementary sulfur pel-
lets, so that sulfur excess conditions are ensured, in a evacuated and closed reaction box.

2. Heating the reaction box by means of high-performance halogen lamps. The total heating
times are of the order of some minutes (2-5min), and the top temperatures oscillate between
550°C and 600°C.

The excess copper segregates at the surface as Cu-S phases[67] that can be removed by a chemical
etching treatment with KCN[141]. The optimization of the RTP-based CuInS2 �lms has been done
through the analysis of the resulting solar cells and the adjustment of time-temperature pro�le.
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2. CuInS2 Thin-Film Devices and Material Properties

The typical microstructure of the RTP-based CuInS2 fabricated at the baseline of the Helmholtz
Zentrum Berlin was schematically presented in Figure 1.1 of Chapter 1. Solar cells based on such
�lms have achieved world record e�ciencies of 11.4%[64, 120].

Alvarez-Garcia et al.[5] expose void formation between the CuInS2 �lms and the metals during
RTP sulfurization. They propose that these voids coalesce and form the large cavities near the
Mo back contact that are responsible for a bad adhesion. Other than the adhesion problems, the
state of the art CuInS2-based solar cells present e�ciencies that are well below the theoretical
e�ciency of these �lms[49, 119, 66]. The microstructure of these �lms can be improved in terms
of (see Figure 1.1 of Chapter 1 for a representation of the microstructural defects in these �lms):

� the presence of secondary phases within the �lms (phases other than chalcopyrite CuInS2);

� the crystalline quality of the �lms (long range cation order, low defect densities and large
grain sizes);

� the presence of pinholes;

� the point defect distribution near the surface;

� the presence of large voids near the back contact.

This thesis proposes two tools that should support the scientists and engineers when addressing
these issues in the future: �rst, a method for the monitoring of microstructural changes in CuInS2

thin �lms and second, a logical decomposition of the sulfurization process in independent and
quanti�able solid state mechanisms.

12



3. Method

During this thesis the method of the energy-dispersive X-ray di�raction[41] was extended to mon-
itor in real-time the evolution of thin �lms during annealing or sulfurizing in a closed volume.
This task consisted in the development, assessment and optimization of two experimental tools:

� a rapid thermal processing (RTP) chamber;

� a method based on the energy-dispersive X-ray di�raction to monitor processes in situ inside
this chamber.

The analysis of the energetic positions, widths and intensities of the di�raction signals delivers
information concerning the microstructure of the thin �lms[132]. Their dependence on tempera-
ture, time and pressure can be used to study a wide range of solid state mechanisms. Table 3.1
presents some of the information that can be gained thanks to the in situ energy-dispersive X-ray
di�raction method.

The �rst section of this chapter presents the RTP chamber. The second one exposes the principles
of X-ray di�raction and particularly of the energy-dispersive X-ray di�raction of thin �lms. The
third section describes the in situ energy-dispersive X-ray di�raction method.

Table 3.1.: Relevance of the in situ energy-dispersive X-ray di�raction method for the studies of
Cu(In,Ga)(S,Se)2 thin-�lm materials. The main characteristics of the di�raction signals
(energetic position, broadening and intensity) give a wide spectrum of information
concerning the microstructure of the �lms. The table is not exhaustive. For information
on the correlation between microstructure and X-ray di�raction see [132].

Signal characteristic Information Examples

Energetic position Phase identi�cation
Thermal expansion

Chemically induced strains
Mechanically induced strains

Section 5.2
Section 5.3.1
Section 5.1

[41]

Width Domain sizes
Microstrains

Chemical gradients
Twinning

Point defects

Section 5.4

Intensity Reaction progression
Preferred orientation analysis

Section 5.3.1.1
Section 5.3.1.2
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3.1. Rapid thermal processing chamber

Figure 3.1 shows a representation of the RTP-chamber used to fabricate the CuInS2 �lms during
this work. The base pressure is lower than 1x10−3mbar. The chamber contains a reaction box
composed of a graphite ring and two quartz membranes closing a sealed 107cm3 cylindrical volume.
This reaction box is �xed to the chamber walls via a quartz table. A motor valve controls the
sulfur pressure inside the box. Two sets of four lamp heaters each are placed on top and on
bottom of the reaction box, 35mm apart from the top and bottom membranes respectively. The
heaters allow heating rates up to 8.6K/s measured by thermocouples placed 1mm away from the
respective lamps. The walls of the chamber are water cooled. The temperature measurement at
the sample position is a challenge in RTP[52]. The temperature was measured by a thermocouple
in contact with the samples.

The use of a closed volume that is heated isothermally to sulfurize the Cu-In thin �lms has two
important consequences:

1. The temperature of the sample and the sulfur o�er are coupled.

2. The sulfur pressure evolves from pS<10−3mbar to ∼10mbar. The exact pressure inside
the reaction box is unknown. However, if the box is perfectly sealed the pressure can be
calculated (see Fig. A.1 of Appendix A). From this calculations the maximal pressure inside
the reaction box is estimated to be in the 1 to 10mbar range.

Figure 3.1.: RTP-chamber used during this work. The vacuum chamber has a base pressure
pS<10−3mbar. Inside the vacuum chamber a cylindrical graphite reaction box
(107cm3) is placed between two lamp sets. The reaction box has a valve that controls
the pressure inside of it. The temperatures are measured near the lamps and near the
samples.
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3.2. X-Ray di�raction

3.2. X-Ray di�raction

X-ray di�raction (XRD) is based on the elastic scattering of electromagnetic waves of energies E
between ∼0.1keV and ∼100keV by periodically spaced structures. Because these energies corre-
spond to wavelengths λ of the order of 100nm to 10pm, this process can be used to study crystalline
structures. An incident X-ray beam of wave number | ~k |= 2π

λ
will be di�racted by an arrange-

ment of planes periodically separated by the distance dhkl (where h,k,l are the miller indices of
the crystalline structure considered) if the Bragg condition is satis�ed. The Bragg condition can
be written as:

−→
k −
−→
k ′ =

−−→
Ghkl (3.1)

where
−→
k ,
−→
k′ and

−−→
Ghkl are the incident beam vector, di�racted beam vector, and scattering vector

respectively. The latter is given by

−−−→
| Ghkl |=

2πn

dhkl
(3.2)

where n is an natural integer. The Bragg condition for di�raction can be simpli�ed to

n · λ = 2dhkl · sinθ (3.3)

where θ is the angle between incident beam and the lattice planes.

The total intensity of a Bragg re�ection is[140]

Ihkl ∝ V · | Fhkl |2 (3.4)

where V is the volume of di�racting crystallites. Fhkl is the structure factor, that is written as

Fhkl =
∑
α

fα · exp(−Mα) · exp(−i
−−→
Ghkl·−→rα) (3.5)

where α stands for the atoms in the lattice, −→rα for the vector that gives their atomic position in
terms of components along the basis vectors of the lattice, and fα for the atomic form factors.
The factor Mα accounts for thermal vibrations and can be written as[28]

Mα = Bα · (
sinθ

λ
)2 . (3.6)

The isotropic temperature factor, Bα, can be estimated by Rietveld re�nement of powder di�rac-
tion experiments. Table 3.2 shows the results of such re�nements at room temperature and at
868°C[113]. The values of Bα can be linearly interpolated between both temperatures1. These
interpolations are necessary to calculate the temperature dependency of the di�racted intensities.
Figure 3.2 shows the calculated angle-dispersive X-ray di�raction spectra at room temperature
and at 500°C of CuInS2 based on the data of Table 3.2. Table 3.3 summarizes the intensity ratios
of the most prominent CuInS2 re�ections at room temperature and at 500°C.

1The isotropic temperature factors of CuInSe2 were measured as a function of temperature and a linear depen-
dency was observed for temperatures below the chalcopyrite to sphalerite phase transformation[114]. This
linear dependency is also assumed for CuInS2 below 900°C given that the chalcopyrite to sphalerite phase
transformation takes place at ∼950°C (see phase diagram in Figure A.7 of Appendix A).
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Table 3.2.: Rietveld re�nement of CuInS2 powder at room temperature and at 868°C[113].

Temperature a/nm c/ nm BCu/nm2 BIn/nm2 BS/nm2

25°C 0.5521 1.1135 1.568×10−2 1.077x10−2 0.952×10−2

868°C 0.5581 1.1228 7.246×10−2 2.802x10−2 3.606×10−2
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Figure 3.2.: Angle-dispersive X-ray spectra of CuInS2 at room temperature and at 500°C calcu-
lated with the software POWDERCELL[70].

Table 3.3.: Calculated integral intensity ratios of the most prominent CuInS2 re�ections at room
temperature and at 500°C.

hkl 112 004/200 204/220 116/312

I500
◦C

hkl

I25
◦C

hkl

/ % 90 88 79 71

3.2.1. Energy-dispersive X-Ray di�raction (EDXRD)

As a consequence of Equation 3.3 the characteristic lattice plane distances dhkl can be obtained
when irradiating a crystalline material with X-rays of constant energy and observing intensity
maxima whilst scanning θ. This is the angle-dispersive con�guration (ADXRD). θ can also be
kept constant while scanning the energy of the di�racted X-rays. This is the energy-dispersive
con�guration (EDXRD). Bremsstrahlung of an X-ray anode or white light from synchrotron fa-
cilities are used as X-ray sources in EDXRD. The collection of all di�racted photons and their
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separation in energy by an adequate detector leads to complete spectra of dhkl. Bragg's equation
is transformed in the energy-dispersive case to (for the �rst order of the re�ection)

Ehkl =
h · c

2dhkl · sinθ
. (3.7)

3.2.1.1. X-Ray source

The majority of the experiments were carried out at the energy-dispersive beamline EDDI[41] of
the Berlin synchrotron facility (BESSY II). The source is a 7 Tesla multipole wiggler that delivers
a spectrum of X-rays going from ∼5keV to ∼100keV with reasonable intensities for di�raction
experiments. Figure 3.3 presents the X-ray spectrum of this source. The ring current of the
BESSY II synchrotron facility decreases exponentially with a 1.934x10−3min−1 time constant.
The ring current determines the total intensity available for the di�raction experiments.

Figure 3.3.: X-Ray spectrum available at the energy-dispersive beamline (EDDI) at BESSY II
from [41]. The spectrum was acquired in the low current ring modus (1mA) and was
extrapolated to the normal current ring modus (∼250mA).

3.2.1.2. Geometry

The geometry of the di�raction experiments is given in Figure 3.4. The beam is collimated by
a mask at 19m and a pair of slits S1/S2 at 26.8m and 29m from the source respectively. The
detector is placed in a di�ractometer, at a �xed scattering angle 2θ, whose center is at 30m from
the source[41]. The di�racted beams travel through a double slit system S3/S4 before they arrive
at the energy-dispersive detector. For the experiments of this thesis the slits S1, S2, S3 and S4 were
�xed at the values of 1, 0.5, 0.12 and 0.12mm respectively in the axial direction (~z in Fig. 3.4 for
S1 and S2) and of 1mm in the equatorial direction (~y in Fig. 3.4). The intersection of the incoming
X-ray beam and the region of space seen by the detector form the active volume. Only the volume
of the sample that is within this active volume will contribute to the collected di�raction signals.
Figure 3.5 shows the section of the active volume (hatched area) of the experimental setup used
in this thesis.
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Figure 3.4.: Geometry of the energy-dispersive X-ray di�raction (EDXRD) setup (see also [41]).
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Figure 3.5.: Active volume (hatched parallelogram) of the EDXRD setup.
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The lack of parallelism of the incoming and di�racted X-ray beams results in an uncertainty of
the di�raction angle 2θ. This is �xed by the slit system. The extreme possible beam paths are
plotted in Figure 3.5 as dashed-dotted and dashed lines. For the geometry shown in Fig. 3.4 and
the given slit system the uncertainty of 2θ is

∆2θ = 0.016◦. (3.8)

The uncertainty of 2θ is related to the uncertainty of the di�racted energy by (from Eq. 3.7)

∆θ =
tanθ

E
·∆E. (3.9)

For θ = 3.7° (chosen di�raction angle) the Equation 3.9 is visualized in Figure 3.6. The uncertainty
in the determination of the energetic position due to ∆θ can be read from the lines intersecting
the dashed line: at 30keV the uncertainty is of ∼0.05keV and at 60keV it is of ∼0.11keV.
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Figure 3.6.: Uncertainty of the energetic position of a measured re�ection, ∆E, due to the un-
certainty of the di�raction angle ∆θ. The intersection of the dashed line (∆2θmax =
0.016◦) with the corresponding energy error hyperbola gives the uncertainty as a func-
tion of the energy.

3.2.1.3. Temperature dependence

Both the intensity and the energetic of the Bragg re�ection depend on the temperature. On the
one hand the energetic position, Ehkl, of a hkl Bragg re�ection depends on the temperature T
following the law

αhkl =
1

∆T
· ∆dhkl

dT0hkl
=

1

∆T
·

1
EThkl
− 1

E
T0
hkl

1

E
T0
hkl

=
1

∆T
· (E

T0
hkl

ET
hkl

− 1) , (3.10)

where αhkl is the expansion coe�cient of the considered lattice planes, dhkl. Chalcopyrite struc-
tures present in general expansion coe�cients that are anisotropic. This means that the thermal
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expansion in the parallel, αparallel, or in the perpendicular, αperpendicular , directions of the ~c-axis
are not equivalent[62, 63]. The thermal expansion of a hkl plane, whose normal forms an angle ϕ
with the ~c-axis, can be written as[15]

αhkl = αparallel · cos2ϕ+ αperpendicular · sin2ϕ . (3.11)

For CuInS2 αparallel and αperpendicular lie in a narrow range (0.9x10−5K−1 and 1.1x10−5K−1 at
30°C after[14]). Therefore, the expansion coe�cient is taken as isotropic with a mean value of
(1±0.1)x10−5K−1. This means that αhkl can be replaced by this value (with the given uncer-
tainty) in Equation 3.10 for every hkl. This assumption is no longer valid for strongly anisotropic
chalcopyrites like AgInS2[15].

The intensity of the Bragg re�ections decreases with temperature. The decrease in the intensity
comes from the thermal vibrations of the atoms in the lattice and it is described by the structure
factor (Equation 3.5). A similar behavior as the one shown in Figure 3.2 and summarized in Table
3.3 is expected in EDXRD.

3.2.1.4. Energy-dispersive detector

The energy-dispersive detector is capable of collecting and identifying photons of di�erent energies
during a short period of time. The collection of a complete spectrum is possible with a time
resolution that can go down to 1 second. These short acquisition times are a clear advantage of
the energy-dispersive method when compared to the angle-dispersive one. The energy-dispersive
detector consists of a contacted and exposed semiconducting single crystal (Ge in the case of the
EDDI beamline) where an output voltage is produced, proportional to the energy of the incoming
photons[21].

The following issues are relevant for the in situ experiments:

� Escape peaks: The use of a Ge single crystal is accompanied by the apparition of escape
peaks that are situated 9.8keV below the di�raction signals. This peaks correspond to the
absorption of the Kα energy levels of germanium.

� E�ciency: The detector has an e�ciency that is a function of the energy. The e�ciency
given by the manufacturer is: 4% at ∼10keV and a 6% plateau from ∼25keV to ∼100keV.

� Resolution: The resolution depends on the collection settings. For the settings used during
this thesis the resolution of the detector was obtained by analyzing the full width at half
maximum (FWHM) of the radioactive decay lines of 55Fe, 241Am, and 133Ba. The FWHM
dependence on the energy E is well described by the linear relationship:

FWHM(keV ) = 0.241 + 2.4715 · 10−3 · E(keV ) . (3.12)

� Deadtime: An important parameter of the EDXRD method is the deadtime. Denks et al.[30]
show that the deadtime in�uences the energy positions of the re�ections. To avoid this e�ect,
the experiments were carried out under constant deadtime conditions. The realization of
this will be explained in Section 3.3.1. The deadtime, DT , is de�ned as

DT (%) = 1− timecollection

timereal
. (3.13)
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3.2. X-Ray di�raction

3.2.1.5. Re�ection pro�le

The measured X-ray di�raction pro�le h(E) is a convolution of the instrumental pro�le g(E) and
the structural pro�le f(E) of the sample[13]. The convolution of two functions is de�ned as:

h(E) =

+∞ˆ

−∞

f(y) · g(E − y)dy . (3.14)

A deconvolution gives a relation between the breadths of the two contributions and the measured
breadth:

βh = Ψ(βf , βg) (3.15)

where Ψ is a function that depends on the pro�le form. An in�nite perfect crystal has a structural
pro�le f(E) that is identical to a delta function of the energy. Real crystals have defects, impurities
and present nonuniform strains. In the general case, both f and g can be described by a Voigt
function2. The Voigt function is a convolution of a Gauss function and a Cauchy function (see
Appendix C for the de�nition of the functions). The convolution of two Voigt functions is also a
Voigt function. This means that if h(E), f(E) and g(E) are Voigt functions they are characterized
by a Gauss and a Cauchy-breadth, βG and βC respectively. Deconvolution of h yields in this
case[13]:

βCh = βCf + βCg (3.16)

and

(βGh )2 = (βGf )2 + (βGg )2 (3.17)

where the subindices refer to the pro�le (h, f, g) and the superindices (G,C) to the Gauss or
Cauchy contributions.

The 241Am radioactive decay line can be used to asses the instrumentation pro�le g(E) because
in this case the structural pro�le f(E) is a delta function of energy. Figure 3.7a) shows the
measurement and a Gauss-�t of the 241Am radioactive decay line. The residual (di�erence between
the �ts and the measurements) reveals the quality of the �t. The �gure shows that g(E) is well
approximated by a pure Gauss function and that βCg is negligible.

Energy-dispersive X-ray di�raction lines are commonly �tted by pure Gauss functions [21, 30, 42,
76, 36]. Figure 3.7b) shows the measurement and a Gauss �t of the CuInS2 112 di�raction line.
However, in the case where the domain size of coherent scattering is small, for example of the order
of some tens of nanometers, a Cauchy contribution of the Bragg re�ection becomes evident (see
Section 5.31a)). In this case the general Voigt approach must be used. Dehlez et al.[29] propose
a numerical method (described in Appendix E) to obtain the Gauss and Cauchy contributions of
an underlying Voigt function from the measured breadth and full width at half maximum of a
measured re�ection.
2There are two functions that can reproduce a Voigt pro�le and that are numerically easier to manipulate: the
Pseudo-Voigt and the simpli�ed Pearson VII function. The �rst is a sum of a Gauss and a Cauchy function
with a weighting factor η. The second, given in Appendix C) is a function that was not developed for XRD
pro�le analysis at its origin. However, it is adapted to �t XRD pro�les and recent investigations have given a
physical foundation for its use [145].
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Figure 3.7.: a) Instrumentation pro�le taken from the collection of the 241Am radioactive decay
line and b) typical CuInS2 112 di�raction pro�le. Both pro�les are well �tted by a
Gaussian. The quality of the �ts can be assessed by the corresponding residuals.

3.2.1.6. EDXRD of thin CuInS2 �lms

The scattering angle 2θ = 7.4° is adequate to record EDXRD spectra of CuInS2, and by similarity
of Cu(In,Ga)(Se,S)2 materials. This angle ensures an optimal use of the X-ray spectrum (between
10keV and 70keV, see Figure 3.3) and a clear energetic separation of the �uorescence lines3 (in
the low energy range < 30keV) and the di�raction lines (at higher energies >30 keV). Figure 3.8
presents an EDXRD spectrum taken at 500°C of a 0.5 µm Mo/ 2 µm CuInS2/Cu2−xS thin-�lm
stack. The acquisition time for this spectrum was 5 seconds.
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Figure 3.8.: Energy-dispersive X-ray di�raction spectrum of a ∼2µm thick CuInS2/Cu2−xS �lm
at 500°C. 5sec recording time, 20% deadtime. The �uorescence lines of Mo and In
emerge in the low energy range. The di�raction signals emerge on the E > 30keV
energy range. Indexing of the re�ections was made based on the Joint Committee of
Powder Standards (JCPDS) database.

3The �uorescence consists in the absorption of a photon of energy higher as the absorption edge of a species,
expulsion of an electron from the ground levels, relaxation of an electron to the ground level accompanied by
an emission of a photon with a characteristic energy[76].
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3.2. X-Ray di�raction

In the low energy range the Mo Kα, Mo Kβ, In Kα, In Kβ �uorescence lines emerge at 17.4keV,
19.6keV, 24.2keV and 27.3keV respectively. In the higher energy range (EPhoton > ∼30keV) the
Bragg re�ections emerge. The lattice plane distances dhkl can be extracted using Equation 3.7.
Phase identi�cation is possible by comparison of the dhkl with the values reported in the database
of the Joint Committee of Powder Standards (JCPDS). Table 3.4 gives the hkl values and the
corresponding energetic positions of the re�ections of the most common phases in the Cu-In-S
system.

Table 3.4.: Expected di�raction lines at room temperature for the scattering angle θ=3.7° and the
corresponding JCPDS �les of the most common phases in the Cu-In-S system.

Phase hkl re�ections Energy (keV) JCPDS File

Cu 111, 200, 220 46.0, 53.1, 75.1 004-0836
In 101, 110, 112 35.3, 41.7, 57.0 005-0642

CuIn2 002, 211, 112 35.8, 36.9, 41.2 [56]
Cu11In9 311, 312, 313 31.0, 34.8, 44.6 041-0883
Cu16In9 101, 002, 102 31.3, 36.4, 44.6 042-1475
α-InS 011, 101, 110, 004 23.4, 26.0, 32.5, 36.0 019-0588
β-In2S3 400, 511, 440 35.8, 46.4, 50.6 032-0456
CuS 103, 006, 110 34.2, 35.3, 50.7 078-2121

α-Cu2S 630, 106 48.6, 51.4 023-0961
β-Cu2S 220, 110 47.6, 51.2 026-1116
Cu2−xS 200, 220 33.6, 47.6 Calc. (Fm-3m, a= 5.628[34])
CuInS2 112, 200, 220 29.6, 34.3, 48.5 027-159
CuIn5S8 400, 511, 440 35.9, 46.6, 50.8 024-361

Absorption of the �lm

The intensity I of an X-ray beam that traverses a solid of thickness x is

I = I0 · exp(−α · x) (3.18)

where I0 is the initial intensity and α the mass absorption coe�cient4. A signal generated at the
depth d from the surface of a sample will be attenuated by the absorption of the �lm itself. The
path within the �lm increases with decreasing scattering angle theta. Figure 3.9a) shows an X-ray
signal generated within the �lm and the path that it follows to leave it. To evaluate the depth
of the material that is being probed by the di�raction experiments, it is useful to de�ne the dξ%
information depth. This is the depth of the �lm where a generated signal is absorbed to ξ% , or:

I(dξ)

I0

= 1− ξ% . (3.19)

Figure 3.9b) shows the d99%, d90%, d10% and d1% for CuInS2 under θ =3.7° as a function of the
energy. It shows that for energies higher than 35keV, the d10% is larger than 1µm. This means
that when analyzing �lms of 1µm the structural information comes from the whole thickness with

4The mass absorption coe�cients are tabulated in the website of the National Institute for Standard and Tech-
nology (NIST)[51]
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a maximal lost of 10% in intensity. Therefore, for �lms thinner than 1µm, energy dependent self-
absorption e�ects can be neglected (within 10% error). The �gure also shows that �lms thicker
than 200µm absorb completely the whole spectrum. Energy-dependent self-absorption e�ects
cannot be neglected in this case.
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Figure 3.9.: a) De�nition of the information depth d. An X-ray generated at the depth d will
traverse d/sinθ before exiting the sample. In this path in can be absorbed. b)
Information depths of 99%, 90%, 10% and 1% absorption for CuInS2 with an exit
angle θ=3.7°. Calculations are based on the data reported in [51]. The step at ∼28keV
corresponds to the In K absorption edge. For energies ≥35keV the information depth
with 10% absorption is larger than 1µm. For thin �lms of this thickness the generated
information traverses the whole sample with maximal 10% absorption. For �lms with
thicknesses ≥200µm self-absorption e�ects must be taken into account.
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3.3. In situ EDXRD at BESSY II

3.3. In situ EDXRD at BESSY II

Buras et al.[21] and Gerward[42] pioneered in the �eld of in situ energy-dispersive X-ray di�raction.
Ellmer et al.[36] and Pietzker [98] adapted this technique for the analysis of thin-�lm growth.
During this research thesis the EDXRD setup at the energy-dispersive beamline of BESSY II[41,
30] was extended to monitor annealings and sulfurizations of thin �lms in a closed volume. This
included monitoring rapid thermal processes for the �rst time. To achieve this, the chamber
presented in Figure 3.1 is placed at the center of the di�ractometer of Figure 3.4. The chamber
has 1mm thick Al windows for the incoming X-rays and the outgoing di�raction signals. The
X-rays also traverse the cylindrical graphite reaction box. The graphite absorbs X-rays with
energies mainly below 10keV. X-rays di�racted by the sample and �uorescence lines generated
within the sample exit the chamber and are recorded by an energy-dispersive detector in the
10keV to 80keV energy range. Temperature pro�les can be programmed and the sulfur pressure
inside the reaction box can be regulated by means of an externally controlled valve (see Figure
3.1). The characteristics of the in situ experiments are outlined below.

3.3.1. Thermal drift of the sample position

The components inside the chamber expand when the chamber is heated. Due to this, the sample
placed in the reaction box drifts in the ~z-direction of Fig. 3.4 and Fig. 3.5. This thermal drift is
between 100 to 200µm depending on the experimental conditions. Figure 3.10 shows the e�ect of
such a drift on the intensities of the chalcopyrite 112 re�ection and the Mo Kα �uorescence line.
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Figure 3.10.: Intensities of the chalcopyrite 112 Bragg re�ection and the Mo Kα �uorescence line
as a function of the position of the sample in the −→z direction (see Figure 3.4 for the
de�nition of the coordinates). The intensities are a function of the volume of the
�lms and of the amorphous glass substrate in the active volume (see Figure 3.5).

The lowest position (z = -2mm) in Figure 3.10 corresponds to a �lm that has just entered the
active volume (see Figure 3.5). Both the Bragg re�ection and �uorescence line increase in intensity
with increasing z because the �lm penetrates further in the active volume. At z = -1.9mm there
is a maximum of both signals. As z increases further the background stemming from the glass
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3. Method

substrate increases steadily whereas the volume of the �lm in the active volume remains constant.
The signal to background ratio decreases. This yields a decrease of the measured signals for
z ≥ −1.9. This decrease is related to: a) the background subtraction and b) the increase in the
deadtime.

A programmed routine corrects the position of the sample during heating to compensate this
thermal drift. The routine uses the deadtime of the collected spectra as a regulation parameter,
assuring a constant position of the sample. This is the case if the ring current does not fall signif-
icantly during the heating experiment. For long experiments this correction routine introduces a
new error: a ring current induced z-shift, called from now on rc-shift (the de�nition of short and
long heating experiments will be given in the next section).

3.3.1.1. Ring-current induced shift

The deadtime is a function of the incoming photons. To maintain a constant deadtime when the
ring current falls considerably, the correction routine moves the sample to higher z positions. This
ring-current induced shift (rc-shift) is negligible (∼1µm) if the experiments are no longer than
30min and small (∼13µm) for experiments of 300min of duration.

Figure 3.11 shows the e�ect of the correction routine on the EDXRD signals of the CuInS2 and
Mo, together with the ring current and the shift in z position (rc-shift) during a complete injection
(480min). The deadtime (DT ) was kept constant during the injection. The maximal rc-shift was
18µm.

The rc-shift:

� induces a drift in the energetic positions of the Bragg re�ections. This shift is equal to 10eV
for the re�ection at ∼ 30keV and 20eV for the re�ection at ∼43keV and small if compared
to the shift due to the thermal expansion of the CuInS2 112 re�ection (from 25°C to 500°C
∼200eV);

� correlates with an increase of 4eV of the full widths at half maximum (FWHM). This is
negligible because it falls below 2% of the measured width;

� a�ects the intensities of the re�ections. The intensities of the re�ections in the lower energy
range (E <∼30keV) behave di�erently from those in the higher energy range (E > ∼40keV).

To summarize, the thermal drift correction used in this work is based on a �xed deadtime. This
correction is stable and does not introduce signi�cant errors for experiments that are shorter
than 30min. For experiments of 300min of duration the thermal drift correction introduces no
signi�cant error for the determination of the full widths at half maximum. However it introduces
a 10eV error in the determination of the energy position and a 7% error in the determination of
the intensity.

3.3.2. Noise to signal ratio

The ratio between the maximal intensity of a signal and the noise, or noise to signal ratio, is a
source of inaccuracy in the determination of a signal's energetic position, width and intensity. In
some cases a relatively high noise to signal ratio is unavoidable because integration times as short
as �ve seconds are necessary to study fast processes and because the initial re�ection intensity
increases proportionally to the volume of the phase when it appears as a product of a chemical
reaction (see Eq. 3.4). Figure 3.12 shows the Mo 110 re�ection of the same sample recorded with
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Figure 3.11.: Ring-current induced errors in the determination of the energetic positions, the full
widths at half maximum (FWHM) and the intensities of the di�raction signals in-
troduced by �xing the deadtime at 30% during the in situ experiments. The errors
introduced in the experiment are a function of its duration.
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Figure 3.12.: Evolution of the the noise to signal ratio as a function of the integration time for a Mo
110 re�ection. The energetic position, the width and the intensity of the re�ection
can be extracted with more accuracy at lower noise to signal ratios.

increasing integration times and the corresponding noise to signal ratios. Short integration times
are coupled to a larger noise to signal ratio. This ratio determines the inaccuracy of the values
extracted by the �tting procedure.

A numerical simulation was done to quantify the inaccuracy of the values extracted by �tting a
signal with decreasing noise to signal ratios. Figure 3.13 shows the energetic position, the full
width at half maximum and the intensity extracted from a Gauss �t of a simulated re�ection as
a function of the noise to signal ratio. The simulated re�ection consists of an ideal Gauss pro�le
plus random noise. For each �t the noise was randomized. Figure 3.13 is the result of 1000 �ts
made after consecutive randomization. The noise to signal ratio decreases from left to right. The
�gure shows that the energetic position of the re�ection is de�ned within 75eV at high noise to
signal ratios, ∼50%. Therefore, phase identi�cation is possible at very short integration times,
for example one second (see Figure 3.12). The relative energetic position is the most accurate
measurement in energy-dispersive X-ray di�raction. The incertitude on the FWHM is under
0.02keV when the noise to signal ratio is lower than 10%. The intensity is the most inaccurate
measurement. At noise to signal ratios of ∼ 50% it introduces an uncertainty of 40%.

To summarize, the noise to signal ratio is a key parameter that determines the accuracy of the
information that can be obtained from a �t of a measured signal. For noise to signal ratios of 50%
only the determination of the energetic position of a signal can be attempted. For other noise to
signal ratios, the errors can be quanti�ed using Figure 3.13.

3.3.3. Errors in the in situ EDXRD setup

During this work two main con�gurations of the in situ EDXRD setup were chosen:

� Con�guration 1: Short experiment duration, 530 min, with short integration times of ∼5
seconds. The investigations on the metallic alloy sulfurization (Section 5.2 of Chapter 5)
and on the RTP processing (Chapter 6) were done using this con�guration.
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Figure 3.13.: a) Energetic positions, b) full widths at half maximum (FWHM) and c) intensities
extracted from a �t (using the software IGOR Pro) of a simulated signal as a function
of the noise to signal ratio (decreasing from left to right). The simulated signal is
composed of a pure Gauss pro�le plus random noise. The points correspond to 1000
�ts of the simulated signal where the noise was re-randomized after each �t.
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� Con�guration 2: Long experiment duration, ∼300 min, with long integration times of ∼120
seconds. The recrystallization studies (Section 5.4) were done using this con�guration.

The deadtime was held constant in both cases.

Assuming a Gaussian convolution of the sources of error, the total absolute error ∆ of a measure-
ment is

∆ =

√∑
i

∆2
i . (3.20)

∆i represent the absolute errors stemming from di�erent sources.

The main sources of error for the extraction of energetic positions, FWHMs and intensities in the
in situ EDXRD setup are:

� noise to signal ratio;

� ring current shift;

� di�raction angle (∆θ).

These depend on the con�guration of the measurement and on the energetic positions of the signals.
Table 3.5 summarizes the incertitudes in the con�gurations 1) and 2) for EDXRD signals at∼17keV
and ∼30keV. The table shows that both con�gurations are well adapted for the determination of
energetic positions. Con�guration 2 is better adapted for the determination of FWHMs. The error
in the intensity measurement is determined by the sum of the relative errors. The total relative
error in the determination of the intensity is 10% in both con�gurations and depends strongly on
the noise to signal ratio (see also Figure 3.13).

Table 3.5.: Summary of errors of the in situ EDXRD experiment as a function of the experimental
con�gurations and the energetic positions of the signals. The total absolute error in the
determination of the energetic position and full widths at half maximum are calculated
by Equation 3.20. The total relative error in the determination of the intensities is
calculated by the sum of the individual relative errors.

Conf. 1 (short experiments, ∼30min) 2 (long experiments,∼300min)

Energy 17 keV 30keV 17keV 30keV

Param. E /eV FWHM/eV I/% E FWHM I E FWHM I E FWHM I

Noise 10 20 10 10 20 10 2 3 3 2 3 3
rc- shift - - - - - - 10 4 7 10 4 7

∆θ 25 - - 55 - - 25 - - 55 - -
∆ 27 20 10 56 20 10 27 5 10 56 5 10
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3.3.4. Mo normalization and background subtraction

A 0.5µm thick Mo thin �lm serves as a back contact in the Glass/Mo/CuInS2/ZnO solar cell. Mo
has a low chemical reactivity. Therefore the signal of the Mo Kα line at 17.47keV is used for the
normalization of the EDXRD data. This normalization corrects for overall intensity variations.
This procedure has no e�ect in the determination of the energetic position or the FWHM of a
given re�ection. When determining the intensity of a normalized re�ection, the incertitude in the
determination of the intensity of the Mo Kα line must be taken into account.

The background stems mainly from the underlying amorphous glass substrate. To extract the
energetic position, the FWHMs and the intensities of the Bragg re�ections, this background is
removed. To do this, an energy range comprehending the signal to be analyzed is chosen and a
linear background is subtracted.
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4. The Growth Mechanisms

This thesis proposes the breakdown of the complex sulfurization process in independent but inter-
acting mechanisms. This procedure allows a sequential description of the microstructure forma-
tion. Deliberate modi�cation of the microstructure can be achieved if the di�erent mechanisms
are controlled.

The mechanisms are:

1. the alloying of the metals;

2. the sulfurization of the metallic alloy;

3. the reaction of the sul�des;

4. the thin-�lm recrystallization;

5. the sul�de interdi�usion.

The independent mechanisms can be analyzed individually but it is their interaction that de�nes
the �nal microstructure of the �lm. Figure 4.1 presents their sequence. This chapter reviews
the theory and the reported results concerning each mechanism. At the end of the chapter the
unresolved issues and open questions will be summarized.
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Figure 4.1.: Active mechanisms during the rapid thermal sulfurization of Cu-In thin �lms. The
mechanisms are studied independently in this work. The �nal microstructure of the
CuInS2 �lm is a result of their interaction. The typical microstructure of the RTP pro-
cessed CuInS2 presents de�ciencies that can be addressed if the di�erent mechanisms
are controlled.
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4.1. Alloying of the metals

The alloying of Cu-In thin �lms has been studied by Somadossi[122], Pietzker[98] and Neisser[89].
After at most three days of storage at room temperature the Cu/In stack is transformed in
Cu/CuIn2. During heating of this stack, two reactions are typically identi�ed:

CuIn2(s)→ Cu11In9(s) + In(l) | T = 148◦C (4.1)

and

Cu11In9(s)→ Cu16In9(s) + In(l) | T = 307◦C . (4.2)

Both reactions liberate free In in the liquid state.

Interdi�usion experiments between pure copper and pure indium �lms[89] show that below 150°C
the di�usion of Cu into the In supports the formation of the CuIn2 phase. Above 150°C the
intermetallic compound formation is governed by di�usion of In along grain boundaries of more Cu-
rich phases[98]. Mainz et al.[77] show that alloying is of crucial importance during the sulfurization
Cu-In-Ga thin �lms. He postulates that the strains in the Cu9(In,Ga)4 phase are responsible for
the void formation as well as for the subsequent sulfurization stop that is observed in these �lms.

Chemically induced strains of the Cu-In metallic phases are expected if the metals become so Cu-
rich that the solid solution of In in Cu appears. Indeed, the Cu(In) phase expands and contracts
proportionally to the In content. At 650°C Cu dissolves 10.4 at.% In and expands hereby 2.5%
(room temperature measurements)[124]. An estimation of the possible expansion or contraction
of this phase during the sulfurization is missing in the literature. This issue will be addressed
in Section 5.1 of Chapter 5. Large strain di�erences between the metallic phases and the sul�de
phases could be at the origin of void or crack formation in the CuInS2 �lms.

4.2. Sulfurization of the metallic alloy

During the sulfurization of a metallic alloy, a stack composed of sul�de layers may appear. The
layer sequence and its morphology determines the applicability of the resulting �lm as a solar cell
absorber. The idealized con�guration of sul�de phases forming single plane layers above a plane
CuxIny �lm (as shown in Figure 4.2) will be considered in the following. In a situation where
φ2 corresponds to CuS, the �lm would be unusable as a solar cell absorber. This phase would
introduce on one hand a recombination path for charge carriers and on the other short circuits
within the �lm. Indeed a di�culty in fabricating Cu(In,Ga)Se2 �lms is that when they are Cu-
rich, Cu-Se phases segregate within the �lm. Therefore a prerequisite for Cu(In,Ga)Se2 thin-�lm
fabrication is that they are Cu-poor[112]. In the sulfur system the Cu-S phases and the CuIn5S8

phase are susceptible of segregating when sulfurizing in Cu-rich conditions[107, 108, 9].

The sul�de layer sequence is determined by the sulfurization mechanism. The sulfurization of
alloys is a common subject in corrosion of metallic materials[137, 138, 101, 84, 85, 86, 87, 19]. To
address this mechanism it is necessary to refer to theoretical re�ections and empirical observations
on the sulfurization of pure metals and on their extension to the case of metallic alloys.
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Figure 4.2.: Layer sequence during the sulfurization of a Cu-In alloy. Φi stands for the di�erent
sul�de phases, (i) and (ii) represent the alloy/sul�de and sul�de/gaseous sulfur in-
terfaces respectively. The sulfur activity (or pressure) increases from interface (i) to
interface (ii).

4.2.1. Theory of the sulfurization of pure metals

Rickert[101] identi�es three steps in the reaction between a solid metal Me and a chalcogen1 X in
the gas phase to form a MeX �lm (see Figure 4.3):

1. Transition of metal across the Me/MeX interface (i);

2. Di�usion of metal or chalcogen ions and electrons (or holes) through the MeX �lm;

3. Incorporation of X at the MeX/X interface (ii).

The interaction between these three steps determines the growth mechanism. The �lm thickness,
x, characterizes the kinetics of the growth. If the rate determining step is a reaction at one of the
two interfaces, (i) or (ii), a linear rate law of the type:

dx

dt
= k (4.3)

is observed[116]. This is the case of a slow surface reaction due to low chalcogen impingement. In
this case an increase in chalcogen pressure increases the velocity of the �lm growth.

If the rate determining step is the di�usion in the �lm, a parabolic rate law is observed [116] where

dx

dt
=
k

x
. (4.4)

This equation was originally developed in a detailed analysis of transport during oxidation.2

If:

a) equilibrium exists at the interfaces;

b) equilibrium conditions are locally achieved at every point in the MeX �lm;

c) the stoichiometry deviations in the MeX �lm are small;

1Chalcogens are the chemical elements belonging to the group 16 of the periodic table, i.e O, S, Se, Te etc.
2The parabolic law can also be obtained using Fick's �rst law

−→
j = D

−−→
gradC . Considering that the �ux of the

rate determining species contributes to the increase of �lm's thickness, ~j can be replaced by (dx/dt)~x. On
the other hand the concentration gradient of this species can be linearized by taking the concentrations at the

boundaries:
−−→
gradC = (∆C/x)~x. Therefore dx/dt ∝ x−1.
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 Cu2-δO(s) Cu(s)  O2(g)
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Figure 4.3.: Steady state oxidation of Cu from [109]. (i) and (ii) represent the Cu/Cu2−δO and
Cu2−δO/O2 interfaces respectively. During the growth of the oxide �lm a constant
cation vacancy gradient is established.

d) the MeX �lm is thicker than ∼100nm (for thinner �lms a logarithmic law is observed[101]);

then the parabolic rate constant is

k =
1

2

ˆ piiX2

piX2

{
zcat
zan
·DM +DX

}
dlnPX2 . (4.5)

Here D stands for the di�usion coe�cients in the MeX �lm of the metal and chalcogen ions, z for
their valence and pX2 for the pressure of the chalcogen at the interfaces (i) and (ii). Equation 4.5
shows that the growth of the �lm is driven by the concentration gradient of the chalcogen. At the
interface (i) the chalcogen pressure (interpreted as an activity) equals the dissociation pressure
of the metal. At the interface (ii) the chalcogen pressure is �xed by the working pressure. The
matter transport is determined by the di�usion coe�cients: if DM>�> DX , growth is supported by
the out di�usion of the cations. In this case and for a p-type MeX �lm where DM is independent
of the chemical potentials, Schmalzried[109] shows that

k ∝ pνX2
(4.6)

with ν > 0. This means that increasing the chalcogen pressure increases the velocity of the �lm
growth.

In this model local thermodynamic equilibrium is achieved at every point in the �lm. Therefore
local defect concentrations are coupled. A gradient in the chalcogen activity imposes a gradient of
in the concentration of other defects. Figure 4.3 shows the charged cation vacancy concentration
during the oxidation of Cu[109] where growth is controlled by the di�usion of Cu cations. In this
case a chalcogen gradient imposes a cation vacancy gradient.

In sulfurizing pure copper metallic �lms, the sulfur pressure �xes the rate determining step[11]. If
the pressure is low, the rate determining step is the sulfur o�er (linear growth rate). If the pressure
is high, the rate determining step is the cationic di�usion. This leads to a parabolic growth.

4.2.2. Theory of the sulfurization of metallic alloys

Chalcogenization of an A-B alloy is a process that depends on[109, 85, 101]:

1. Alloy composition;
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2. Number and type of A-B-X compounds;

3. Chemical potentials of the A, B and X species in all A-B-X compounds;

4. Di�usion coe�cients of the A, B and X species in all A-B-X compounds;

5. Stability of the interfaces;

6. Porosity of the layers.

No general solution for the alloy chalcogenization problem is available and each case must be
looked at individually. Concerning the sulfurization two approaches can be underlined:

� A thermodynamic approach[43, 44, 45];

� A kinetic approach[84, 85, 86, 87].

4.2.2.1. Thermodynamic approach

This approach is the extrapolation of the analysis made for pure metals. In the steady state3

sulfurization, a local thermodynamic equilibrium is achieved. The chemical potential, or pressure,
of sulfur evolves from that imposed at the surface (interface (ii) of Fig. 4.3) to that imposed at the
interface alloy/sul�de (interface (i) of Fig. 4.3). The sulfur pressure at the alloy/sul�de interface
is �xed by the equilibrium

Alloy + S2 
 Sulfide(s) . (4.7)

Gesmundo et al.[44] propose that a phase diagram chalcogen pressure vs. composition describes
the chalcogenization. The analysis of such a diagram gives the possible reaction paths for the
steady state sulfurization, i.e. the combination of sul�des that satisfy all transport equations and
equilibrium conditions. When the points 1 - 6 listed at the beginning of this section are known
the reaction path can be calculated[110].

No chalcogen pressure vs. composition diagram is available in the literature for the Cu-In-S
system. Such a diagram would be very helpful to understand the layer sequence formation during
sulfurizations of Cu-In thin �lms.

4.2.2.2. Kinetic approach

This approach is based on experimental observations done by Mrowec[85]. He �nds that:

� When the sul�des form a solid solution, a compact �lm of AxB1−xS is formed, independent
of alloy composition. The growth occurs via the out di�usion of cations. This is the case
for Fe-Ni alloys.

� When the sul�des form solid solutions within limited concentration ranges or when they
form spinels, a bilayered �lm is formed. This �lm is composed of: a compact layer of the
less stable sul�de on the surface covering a layer of mixed sul�des or of the ternary spinel
phase. The underlying layer is compact if the outer layer deforms plastically with increasing
thickness. If not, an inner porous layer is observed. In both cases the growth occurs via the
out di�usion of cations. This is the case of Ni-Cr alloys.

3Steady state means that the �uxes (ionic, electronic) and that the intensive variables (p,T) are independent of
time.
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4.2. Sulfurization of the metallic alloy

� When sul�des are insoluble and do not form spinels, the �lm consists of two layers: a compact
layer of the less stable sul�de covering a porous layer containing both A and B sul�des. In
this case the growth of the outer �lm is supported by the out di�usion of cations and that
of the inner porous layer by the in-di�usion of sulfur. This is the case of Cu-Zn alloys.

Most of the cases studied by Mrowec presented a parabolic growth kinetic, the rate determining
step being the di�usion of the slowest ion through one of the sublayers.

Mrowec[85] and Brueckmann[19] propose the free energy of formation as a kinetic criterion to
justify faster growth rates and the formation of an exclusive surface sul�de layer. In the majority
of the sul�des the cation sublattices are more defective than the anion sublattices. Hence, growth
is supported by the di�usion of cations. The more defective the sublattice the faster the growth.
Because the free energy of formation is a measure of the energy needed to pull an atom or ion out
of its lattice point, it is also an indicator of the lattice defectiveness. Mroweck[85] postulates that
sul�des, having lower absolute free energies of formations grow faster than their oxides analogues.

Table 4.1[40] gives the standard free energies of formation of the principal sul�de phases in the
Cu-In-S system. The CuS phase presents the lowest absolute free energy of formation.

Table 4.1.: Free standard formation energies of the principal sul�des in the Cu-In system[40].

Compound −4G0
298K(kJmol−1)

CuS 73
Cu2−xS 114
α-InS 154
CuInS2 275
β-In2S3 404
CuIn5S8 1133

4.2.3. Sulfurization of Cu-In alloy thin �lms

Klopmann et al.[69], Rudigier[104] and Mainz[76] study by means of in situ experiments the sulfu-
rization of Cu-In-(Ga) thin �lms in the low sulfur pressure regime where ps<10−3mbar. Klopmann
et al. �nd that in the Cu-rich case and under 425°C, a temperature gradient is needed to support
growth of a sul�de layer. They attribute this to a stress-induced growth. Based on the reported
di�usion coe�cients (see Table 4.2) they postulates that the growth determining step is the di�u-
sion of cations through the CuInS2 �lm and that at lower temperature this is only possible through
crack formation. Di�usion of cations to the surface and reaction to CuInS2 without intermediate
phases is also postulated by Neisser[89] and con�rmed by Mainz. Alvarez-Garcia et al.[4] show
that during the sulfurization of Cu-In thin �lms at low chalcogen pressures (p<10−4 mbar) the
reaction front is at the surface and the growth of CuInS2 is supported by the out di�usion of
cations.

Rudigier also studied the formation of the Cu-Au ordering (see Section 2.3 of Chapter 2 for
the de�nition of this cation ordering) during sulfurization of thin Cu-In �lms. She observes the
transition Cu-Au ordering to chalcopyrite ordering starting at 400°C and assisted by secondary
Cu-S phases on the surface.

Mainz is the only author that addresses the sulfur o�er dependence of the growth. He controls
the sulfur o�er by controlling the time when the temperature of an external sulfur source achieves
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Table 4.2.: Di�usion coe�cients of Cu and In in CuInS2. For comparison the di�usion coe�cient
of S in CuGaS2 is also given.

Cu In S ( in CuGaS2)

D / cm2sec−1 5.3 x 10−5 - 3.3 x 10−7 1 x 10−9- 3.2 x 10−7 2 x 10−12

Temperature / K 298 923 700

Reference [65] [143] in [89]

190°C. If sulfur is o�ered early, with respect to the sample temperature, he observes the formation
of a binary Cu2−xS phase together with the CuInS2 formation. In this case he observes the
formation of an intermediate CuIn5S8 phase that is consumed at the top temperature. If sulfur
is o�ered late, with respect to the sample temperature, he observes the exclusive formation of
CuInS2.

Barcones et al. address the growth of Cu-rich CuInS2 from an rapid thermal sulfurization process
(RTP) by means of break-o� experiments[9]. In RTP the sulfur pressure evolves from ∼10−3mbar
to ∼10mbar at the top temperature (see Section 3.1). Barcones et al. postulate that in this
case CuIn5S8 forms as an intermediate phase. She supposes the formation of a CuS phase at the
surface from the beginning of the sulfurization. Contrary to Rudigier, Barcones et al. observe a
Cu-Au ordering → chalcopyrite ordering transition that is not correlated to the presence of Cu-S
phases. These experimental evidences point to di�erent growth mechanisms when sulfurizing at
low (ps<10−3mbar) or high (ps> 1mbar) sulfur pressures. The growth models that have been
developed by Pietzker, Neisser and Rudigier cannot be translated to the case of the high pressure
sulfurization.

The sul�de layer sequence and its morphology has important consequences for the performance of
the thin �lm. Section 5.2 of Chapter 5 will present that the stack formation during the sulfurization
of a Cu16In9 alloy is a function of the temperature and the sulfur pressure. A general approach to
reconstruct the layered stacks will be presented. This will be based on the thermodynamic and
kinetic approaches presented in this section.

4.3. Reaction of the sul�des

Jost[55] has identi�ed three sul�de reactions when sulfurizing Cu-In thin �lms. These are labeled
A, B and C in Table 4.3 where the standard reaction free energies4 based on the data of Appendix B
are also shown. Reactions D and E were identi�ed during this thesis and are given for comparison.

The 2Cu2S + CuIn5S8 → 5CuInS2 reaction (B in Table 4.3) was identi�ed in this thesis as
being the most relevant sul�de reaction for the rapid thermal process as described in Section 2.6
of Chapter 2.1 because it consumes the secondary CuIn5S8 phase that may appear during the
sulfurization of the metallic alloys. On one hand, a kinetic investigation gives the velocity of its
consumption. On the other, the structural relations between the CuIn5S8 phase and the CuInS2

phase can indicate if texture manipulation of the �lms is possible by controlling the educt phase.
Such a manipulation was already reported for the selenium system[27].

No kinetic or structural investigations concentrate on the reactions listed in Table 4.3. Kim
et.al.[58, 59, 60, 61] investigate the kinetics of some reactions in the Cu-Se/In-Se system. Table 4.4

4The free energies of reactions indicate the energy gain by the system after the reaction has occurred.
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summarizes the selenide reactions together with the activation energies that they obtain. A usual
approach to obtain the kinetics of a solid state reaction is to use Avrami's overall transformation
equation.

Table 4.3.: Possible sul�de reactions and their free energy of reaction at 298 K from the dataset
of Appendix B.

Label Reaction ∆G298K / kJmol−1

A CuS + InS → CuInS2 -47

B 2Cu2S + CuIn5S8 → 5CuInS2 -13

C Cu2S + 2InS + S → 2CuInS2 -117

D Cu2S + 3In2S3 → CuInS2 + CuIn5S8 -80

E 2CuS + 5In2S3 → 2CuIn5S8 + S -107

Table 4.4.: Selenide reactions from bilayered thin �lms and their activation energies from [59, 58].

Reaction Ea /kJmol−1

2CuSe+ In2Se3 → 2CuInSe2 + Se 162±5
CuSe+ InSe→ CuInSe2 66

4.3.1. Avrami's overall transformation kinetics

Avrami derives an equation that describes the kinetics of a solid state transformation as a function
of temperature and time[7, 8] (see also[52]). To derive the Avrami's equation the concept of
extended volume, V ψ

ext, must be introduced. The extended volume is de�ned as the volume of the
transformation product ψ formed after a time t, without taking into account the consumption of
the total volume. The in�nitesimal evolution of the real volume of the transformation product
V ψ is equal to the in�nitesimal evolution of the extended volume times the probability of �nding
untransformed regions:

dV ψ = dV ψ
ext · (1−

V ψ

V
) . (4.8)

This equation can be integrated into

α(t) =
V ψ

V
= 1− exp(−V

ψ
ext(t)

V
) = 1− exp(−(kpt)

n) (4.9)

which is called the Avrami equation, where α is the fractional reaction, kp the thermally activated
transformation constant, and n the Avrami exponent. kp can be written as kp = kp0exp(−Ea

kT
)

where k is the Boltzmann constant, kp0 is the preexponential factor and Ea is the activation
energy. kp and n fully describe the kinetics of the reaction, whereas Ea characterizes the mechanism
through which the reaction occurs.
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Table 4.5.: Avrami's exponents for site saturation or constant nucleation, for linear of parabolic
growth rates, and for one, two and three dimensioned geometries of the growing phase.

Site saturation Constant nucleation

Linear growth Parabolic growth Linear growth Parabolic growth

3D 3 3
2

4 5
2

2D 2 1 3 2

1D 1 1
2

2 3
2

The kinetics of the transformation depends on the nucleation rate, the growth rate, and the
geometry of the growing volume. The time exponent n in Avrami's equation re�ects the interaction
between these contributions. Table 4.5 summarizes the Avrami exponents for the cases of zero
(site saturation) and constant nucleation rate, linear and parabolic growth and one, two and three
dimensioned geometries. These are obtained by the analysis of the evolution of the extended
volume with time under the given growth and nucleation conditions. Table 4.5 shows that the
Avrami exponents takes the same values for di�erent cases. The mechanism of growth cannot be
unambiguously identi�ed from a kinetic analysis alone.

Even though kinetic and structural information concerning all of the reactions of Table 4.3 is
missing and should be addressed in the future, the reaction 2Cu2S + CuIn5S8 → 5CuInS2 was
identi�ed as being the most relevant sul�de reaction in the rapid thermal sulfurization of Cu-In thin
�lms. This reaction consumes the secondary CuIn5S8 phase that may appear during sulfurization.
The kinetic parameters of this reaction are essential for any process design that includes a step
where both ternary phases coexist. The possible structural relationship between the CuIn5S8 and
the CuInS2 phases can justify further studies that attempt to manipulate the texture in these
�lms. These two points will be addressed in Section 5.3 of Chapter 5.

4.4. Thin-�lm recrystallization

Gottstein[47] de�nes primary recrystallization as the formation of a new microstructure charac-
terized by the nucleation and growth of nuclei from a plastically deformed bulk metal or alloy.
Thompson[128] de�nes recrystallization of thin �lms of semiconductors in a similar manner leaving
out the necessary condition of the plastic deformation. In the literature concerning thin semicon-
ducting �lms[133, 131, 50, 71], the term recrystallization is used to describe the formation of a
new microstructure characterized by an increase in domain and grain size. This relaxation in the
de�nition of the recrystallization of thin �lms is due to the fact that this mechanism is monitored
in most cases via the apparent grain size and no conclusion are made (or can be made) concerning
new nucleation, grains size distributions or dislocation densities.

Through out this thesis the term �thin-�lm recrystallization� is used to describe the formation of a
new microstructure accompanied by an increase in grain size.

This de�nition of thin-�lm recrystallization covers mechanisms like primary recrystallization, nor-
mal and abnormal grain growth as de�ned by Gottstein[47] for bulk materials5. Furthermore, a

5Gottstein de�nes normal grain growth as the self-similar growth of grains where the grain size distribution
remains unchanged, and abnormal grain growth as the growth of particular type of grains accompanied by a
splitting of the grain size distribution.
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possible healing of structural defects by dislocation movement (or recovery as de�ned by Gottstein
[47]) can also be included in the formation of a new microstructure. Clearly, it is a relaxed de�ni-
tion of the recrystallization and shows that that these mechanisms are not easily discernible and
that in the case of chalcopyrite thin �lms they have not been well studied.

In contrast to this, the thin-�lm recrystallization is a mechanism that has a major impact on the
�nal microstructure. The average grain size profoundly a�ects the chemical, physical and electrical
properties of polycrystalline thin semiconducting �lms[129]. For example grain sizes lower than the
thickness of the �lm deteriorate the performance of CdTe/CdS solar cell devices[78]. Linear and
planar structural defects may act as recombination centers for charge carriers. The thin-�lm recrys-
tallization is exploited in a whole range of fabrication techniques to produce Cu(In,Ga)(Se,S)2 ma-
terials for solar cells including: thermal evaporation methods[112], electrodeposition plus thermal
treatment[135], spray-based deposition[71], ink-based deposition[48] and sulfurization of metallic
�lms[89]. However, no report has isolated and studied the recrystallization of chalcopyrite thin
�lms. Therefore the questions of the driving forces, prerequisites and enhancement factors are not
often treated in the literature.

As de�ned, the thin-�lm recrystallization mechanism includes the growth of some grains at ex-
penses of others. Therefore the movement of the grain boundaries between growing grains and
shrinking grains are at the microscopical basis of this mechanism. This section begins with the
theory of grain boundary motion. This is followed by the microscopical models that were proposed
to account for experimental observations of new microstructure formation and grain growth.

4.4.1. Theory of grain boundary motion

The movement of a grain boundary is supported by the reduction of the free energy, GGibbs, of the
polycrystalline material when the boundary moves covering the volume dV . This driving force f
is de�ned as:

f = −dG
Gibbs

dV
. (4.10)

The driving force can have di�erent origins resumed in Table 4.6.

The driving force for the motion of the grain boundaries determines the mechanism for the growth
of the grains. As an example, normal grain growth as de�ned by Gottstein[47] is driven by the
reduction of the overall grain boundary energy. This is achieved by the suppression of grain
boundaries. The driving force is in this case:

fnormal =
2γGB
R

(4.11)

where γGB is the grain boundary energy per unit area and R the mean radius of curvature. For
the primary recrystallization as de�ned by Gottstein[47] the driving force is the reduction of the
dislocation density introduced during deformation:

fPrim.Recrystallization =
ρ ·G · b2

2
(4.12)

where ρ is the dislocation density, G the shear modulus and b the burgers vector. For a highly
defective microstructure (high deformation state) the forces for primary recrystallization are gen-
erally larger than those for normal grain growth[6]. This is why recrystallization is observed prior
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Table 4.6.: Driving forces for grain boundary motion.

Force Origin De�nition Remarks

Deformation[47] f = ρ·G·b2
2

ρ:Dislocation density
G: Shear Modulus
b: Burgers vector

Stacking faults f = n · γSF n:Stacking fault
density

γSF : Stacking fault
energy

Grain boundary
energy and
curvature[47]

f = 2γGB
R

γGB:Grain boundary
energy

R: Mean grain radius

Elastic[47] f = σ2

2
( 1
E2
− 1

E1
) σ:Stress

E:Young's moduli of
growing and

shrinking grain

Electrochemical
f =

∑
i

kT (ci2ln(
ci2
ci0

)− ci1ln(
ci1
ci0

)) +

Ze(ci2ϕ2 − ci1ϕ1)
ci:Concentration of
the ith species in
growing and

shrinking grain
ϕ:Electrical potential

in growing and
shrinking grain

Z: Oxidation State
e: Elemental charge

to normal grain growth in deformed metals and alloys. However it must be noted that the growth
processes may overlap.

The velocity v at which the grain boundaries move is

v = m · f (4.13)

where m is called the mobility of the boundary. Grain boundary mobilities have been quanti�ed in
the case of normal grain growth as de�ned by Gottstein[47] in pure and impure metallic systems[6].
It is accepted that:

m = mo · exp(−
QG

kT
) (4.14)

where QG is the activation energy for grain boundary movement and m0 a preexponential factor
that depends very weakly on temperature. The expression for the velocity of the grain boundary
movement is
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dr

dt
= mo · exp(−

QG

kT
) · f (4.15)

where r is average grain radius. Enhancement of grain growth means that, following Equation
4.15, annealing at the same temperature during the same time yields larger grain sizes. This can
be achieved by: reducing the activation energy, increasing the driving force or the preexponential
factor of the mobility, mo.

In a simpli�ed microscopic approach for single phase pure systems[47], the movement of the grain
boundary is supported by self-di�usion processes. In this case the activation energy for grain
boundary motion coincides with the activation enthalpy of self di�usion QSD. The Bugakov-van
Liempt rule states that the activation enthalpy of self-di�usion is linearly proportional to the
melting point[81]. According to this rule single phase pure materials with lower melting points
should present enhanced grain boundary motion.

4.4.2. Thin-�lm recrystallization of semiconductors

Thin-�lm recrystallization of semiconductors can be enhanced by controlled doping and/or con-
trolled annealing[131]. Three microscopical approaches attempt to explain the experimental ob-
servations concerning the formation of a new microstructure and the grain growth of thin �lms of
semiconductors:

� The liquid phase approach: a liquid phase placed between the grains is capable of dissolving
the primary phase and serves as a growth accelerator. This model is analogous to the V-L-S
(vapor-liquid-solid) theory of crystal growth, where the liquid phase serves as a dissolving and
transfer agent of all the species transported by the gas phase while the solid phase grows only
in contact with the liquid one. Ni and Pa enhance WS2 crystal growth through intermediate
liquid Ni-S and Pa-S phases[20]. Brunken et al. �nd that the liquid phase is necessary for
the onset of the thin-�lm recrystallization of WS2. Klenk et al.[68] use this approach to
explain the grain growth of Cu-rich Cu(In,Ga)Se2 material. However, they is careful in not
making any hypothesis concerning an eventual nucleation. Nishiwaki et al. �nds that when
depositing CuGaSe2 in Cu and Se excess conditions, CuxSe phases are found between the
resulting CuGaSe2 grains[92]. Such observations could support this approach for the thin-
�lm recrystallization of Cu(In,Ga)Se2 materials. The consequences for the microstructure
of CuInS2 �lms, if the recrystallization occurs following this model, should be twofold: i) if
there is new nucleation in the liquid phase, the preferred crystallographic orientation may
change ii) secondary phases may remain within the �lm creating possible paths of preferred
electronic transport.

� The topotaxial approach: This model was proposed for CuInSe2 thin �lms and is also
based on the growth of grains supported by a secondary phase, in this case solid Cu2-xSe.
Wada et al.[136] propose that CuInSe2 grows through a topotaxial reaction between Cu2-xSe
and CuInSe2. A three-dimensional relationship between the Se anion sublattices of both
phases supports cation transport. The cubic Cu2−xSe phase that is lattice matched to
the chalcopyrite phase enhances transport of cations from a liquid phase into a growing
grain, while the anion sublattice remains unchanged. In the second step of this approach
the unordered cations reorganize to form the stable chalcopyrite structure. Abou-Ras[1]
proposes that a zero lattice mismatch between the Cu2-xSe phase and the Cu(In,Ga)Se2
phase correlates with larger grains. The consequences for the microstructure of CuInS2

�lms if the recrystallization occurs following this mechanism are threefold: i) a structural
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relation between the secondary Cu2−xS and the CuInS2 phase should correlate with the same
degree of recrystallization; ii) preferred orientation of grains should be similar before and
after growth of grains; iii) Cu2-xSe phases should remain within the �lm creating paths of
preferred electronic transport.

� The bulk di�usion approach: the mobility of the grain boundary is correlated to di�usion
processes in the bulk of the material. Increasing the mobility of the di�using species en-
hances the movement of the grain boundaries and the thin-�lm recrystallization. Vacancy
formation and migration supports self-di�usion in pure crystals (mainly because other di�u-
sion mechanisms have higher activation energies[47]). The addition of dopants, or change in
the molecularity determines the point defect concentrations. Increasing the concentration of
defects that are relevant for the di�usion enhances the grain boundary mobility. This model
predicts a compensation e�ect when doping n and p at the same time. This compensation
was observed for secondary recrystallizations (as de�ned by Gottstein[47]) in CdS �lms[50]
and for normal grain growth (as de�ned by Gottstein[47]) in Si thin �lms[57].

4.4.3. Recrystallization of CuInS2 thin �lms

Neisser[89] addresses the recrystallization of CuInS2 thin �lms based on the liquid phase approach
described above. He proposes a recrystallization front consisting of the cubic Cu2-xS phase that
leaves behind a large-grained material. He presents no experimental evidence to this approach. In
contrast to this hypothesis CuS segregates on the surface during deposition of Cu-rich CuInS2 thin
�lms. No secondary Cu-S phase has been observed within or underneath the matrix phase[120,
108, 106].

Silver has been introduced in CuInS2 because it was supposed that it could enhance the thin-
�lm recrystallization. This stems from the fact that AgInS2 has a melting point ∼210K lower
than CuInS2[16]. On one hand the �rst results[142] of Ag alloying were discouraging because no
observable microstructural changes were detected and an increase in the resistivity of the �lm was
observed. On the other hand, recent investigations on Cu(In,Ga)Se2[39] thin �lms revealed for the
�rst time a decrease in the microstructural disorder when alloying with Ag. It remains unclear
if the alloying with a cation with high mobility like Ag enhances the recrystallization of CuInS2

thin �lms.

Concerning the recrystallization of CuInS2 thin �lms, no experimental evidence supports the
liquid phase approach, the topotaxial approach or the bulk di�usion approach presented above.
Therefore it is not clear what are the prerequisites, driving forces and enhancement factors of this
mechanism. This lack of knowledge has limited the possibilities of controlling this mechanism.
These questions are addressed in Section 5.4 of Chapter 5.

4.5. Sul�de interdi�usion

When two phases that present a limited solubility range within each other or that can form a mixed
phase are in contact, an interdi�usion process at the interface is observed. Smith[121] describes
the possible morphologies of the interfaces between the two phases in question. A particular case
is the dissolution of one phase by another due to asymmetrical solubilities.

The dissolution proceeds by solid-state di�usion across the interface. This is a process that
depends among others on time and temperature. The interdi�usion of the CuInS2-Cu2−xS couple
is considered in the following. Neisser[89] estimates the solubility of CuInS2 in Cu2S at 1 mol %
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at 500°C. He does not consider the pressure dependence of the Cu2−xS stoichiometry. There is
practically no solubility of Cu2S in CuInS2 (see Figure A.7 of the Appendix A). This is a clear
case of asymmetrical solubilities where the Cu2−xS is capable of dissolving the CuInS2 phase.

The question if the dissolution of CuInS2 by Cu2−xS a�ects the performance of the solar cells has
not been addressed in the literature. Evidence of this dissolution and the possible parameters that
control it will be given in Section 5.5 of Chapter 5.

4.6. Summary and unresolved issues

The breakdown of the complex sulfurization of Cu-In thin �lms in independent mechanisms allows
a sequential description of the microstructure formation. The mechanisms are: the alloying of the
metals, the alloy sulfurization, the reaction of the sul�des, the thin-�lm recrystallization and
the sul�de interdi�usion. Regarded as independent mechanisms each one has an impact on the
microstructure of the CuInS2 �lms. Their interaction determine the �nal microstructure of the
�lm after a sulfurization process. Chapter 5 addresses the following unresolved issues concerning
each mechanism:

1. Alloying of the metals: the possible opposite strains between the metals and the sul�de �lms
caused by the solid solution of In in Cu.

2. Alloy sulfurization: the formation of the sul�de layered-stack during sulfurization as a func-
tion of temperature and pressure.

3. Sul�de reaction: the kinetics of the 2Cu2S + CuIn5S8 → 5CuInS2 reaction and the struc-
tural relationship between the CuIn5S8 and the CuInS2 phases.

4. Thin-�lm recrystallization: the description of this mechanism together with its prerequisites
and enhancement factors; the enhancement of this mechanism by Ag.

5. Sul�de interdi�usion: the proof of the dissolution of CuInS2 by Cu2−xS.

These issues are investigated by means of the in situ EDXRD method presented in Chapter 3
and by complementary characterization methods including scanning and transmission electron
microscopy (SEM and TEM) and energy-dispersive X-ray spectroscopy (EDS). The main exper-
imental e�orts concern the sulfurization of a metallic alloy, the reaction between Cu2−xS and
CuIn5S8 and the thin-�lm recrystallization.
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Mechanisms

This chapter presents experimental results that address the unresolved issues and the open ques-
tions concerning the growth mechanisms exposed in Chapter 4. This was done (except for the
sul�de interdi�usion) by means of the in situ EDXRDmethod described in Chapter 3. Each section
begins with the details on the experimental procedures, followed by the presentation of the results
and a discussion in terms of their impact on the microstructure. Paths for the exploitation of these
mechanisms to purposely modify the microstructure of the CuInS2 �lms are proposed. The focus of
the experimental e�orts was placed on the alloy sulfurization, the 2Cu2S +CuIn5S8 → 5CuInS2

reaction and the thin-�lm recrystallization. The latter is a process that was monitored for the
�rst time in situ for any chalcopyrite thin �lm. Its investigation led to a thin-�lm recrystallization
model. The model is relevant for every fabrication process that includes a step where both ternary
CuIn5S8 and CuInS2 phases are present as a mixed nanocrystalline layer.
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5.1. Alloying of the metals

This section is dedicated to the metal alloying in Cu-In �lms. During heating, Cu and In react
to form alloy phases following the phase diagram from Bolcavage (Fig. A.2 of Appendix A).
The phase formation path was given in Section 4.1 of Chapter 4. It includes two transitions:
CuIn2(s) → Cu11In9(s) + In(l) and Cu11In9(s) → Cu16In9(s) + In(l). If the Cu-rich metals
become Cu richer by the consumption of Cu and In in equal amounts, the phases Cu7In3 and a solid
solution of In in Cu may also appear. The Cu(In) phase will expand and contract proportionally
to the In content[124]. This can lead to opposite strains between the solid solution and the sul�de
�lm.

The expansion of the solid solution Cu(In) is the focus of the following investigations. To expose
this e�ect, the particular case of an incomplete sulfurization of a copper-rich Cu-In thin �lm
was studied. This corresponds to an extreme case where the sulfur pressure is very low. If the
incomplete sulfurization forms CuInS2, the metals become Cu richer as the sulfurization proceeds.
The Cu(In) solid solution should form if enough metallic Cu and In remain. The expansion or
contraction of the Cu(In) phase should be triggered by the migration of In.

To obtain the incomplete sulfurization, a Cu-In thin �lm was heated in a closed reactor that was
not previously cleaned by a high temperature step. This means that the rest sulfur inside the
reactor is enough to start the sulfurization but not su�cient to �nish it.

5.1.1. Cu enrichment of a metallic alloy studied by means of in situ

EDXRD

Mo/Cu/CuIn2 �lms on soda-lime glass were obtained by DC magnetron sputtering of 500nm of
Mo, 692nm of Cu and 655nm of In and subsequent room temperature storage. Considering the
nominal thicknesses and densities, this precursors were Cu-rich with [Cu]/[In]≈2.3. Figure 5.1
presents the evolution of the energy-dispersive X-ray di�raction spectra during heating. In this
�gure the normalized di�raction intensity is color coded. In this case the sulfurization occurs by
means of the rest sulfur present in the reactor. The phase evolution can be followed in the �gure:

� At room temperature the layer stack is Mo/Cu/CuIn2. The re�ection at ∼46keV results
from the overlapping of the CuIn2 202 and the Cu 111 re�ections. The formation of CuIn2

from pure Cu and In thin �lms is known to happen at room temperature[89]. During heating
both peritectic transitions take place forming Cu11In9(s) and Cu16In9(s) .

� Sulfurization starts consuming Cu and In in similar amounts to form CuInS2.

� At nominally 280°C a re�ection appears at ∼44.3keV. This re�ection was identi�ed by
Mainz[76] and Djordjevik et al.[32] as the Cu7In3 phase. This phase shares re�ections with
the Cu16In9 phase. The formation of this phase coincides with an increase in the intensity
of Cu 111 signal. The alloy becomes more Cu-rich during the formation of CuInS2.

� Between 390°C and 434°C the Cu 111 intensity presents a strong increase accompanied by a
shift to lower energies (larger lattice constants), whereas the Cu16In9 re�ection decreases in
intensity. This is coherent with a continuous copper enrichment of the metallic alloy. The
copper phase increases in volume and accommodates increasing amounts of In in its lattice.
Note that three intermetallic phases are identi�ed in this temperature range: Cu16In9, Cu7In3

and Cu(In). This outlines the fact that thermodynamic equilibrium conditions are not
achieved during this heating.
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Figure 5.1.: Time-resolved EDXRD spectra of the alloying of a Mo/Cu/CuIn2 ([Cu]/[In]∼2.3)
bilayer during an incomplete sulfurization. Two peritectic reactions are identi�ed:
CuIn2(s) → Cu11In9(s) + In(l) and Cu11In9(s) → Cu16In9(s) + In(l). As sulfur-
ization continues, the alloy becomes more Cu rich forming Cu7In3 and Cu(In). The
latter phase presents large volume expansions and contractions depending on the In
content.
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� The Cu-enrichment continues until the Cu16In9 and Cu7In3 phases have disappeared. Then
the Cu signal shifts in the reverse direction (smaller lattice constants). This means that the
In that was dissolved in the Cu lattice leaves it to form further CuInS2. The shift corresponds
to a lattice contraction of 1.4%. Such a contraction opposes the thermal expansion of the
CuInS2 phase. In the same temperature range CuInS2 expands 1.6 x 10−2%. This can
introduce stresses during growth of the CuInS2 �lm and may result in cavity formation
between the metals and the sul�de �lm.

5.1.2. Conclusions

The Cu-In phase diagram (see Fig. A.2 of Appendix A), with inclusion of the CuIn2 phase, can
be used to understand the phase formation during Cu-In alloying even if this takes place out
of the thermodynamic equilibrium. There are two reactions that liberate In in the liquid state.
This should be kept in mind when heating such samples. When sulfurizing a Cu-In alloy, the
composition of the alloy may change. If the sul�de is pure CuInS2, a Cu-rich alloy becomes
more Cu-rich during sulfurization. The phase transitions Cu16In9(s) to Cu7In3(s) to Cu(In)(s) are
observed as expected from the phase diagram. The presence of a solid solution of In in Cu may
result in volume contractions or expansions depending on the In content. These can be up to
100 times the expansion of the CuInS2 phase and can be deleterious for the growing sul�de �lm.
Therefore, it would be desirable to design sulfurization processes that avoid the formation of the
Cu(In) solid solution in the metallic alloy.

52



5.2. Sulfurization of the metallic alloy

5.2. Sulfurization of the metallic alloy

This section treats the sulfurization of a Cu-In alloy. The sulfurization leads to a layer system
of sul�des stacked on top of each other. The composition of the alloy, the temperature and the
sulfur pressure determines the sul�de layer sequence (in the following referred as layer sequence)
and its morphology. A general approach to the sulfurization of Cu-In alloys will be developed.
Such an approach can explain and predict the layer sequence formation during the steady state
sulfurization1 at di�erent pressures and temperatures. This sulfurization approach is founded on:

a) the mass conservation of the cations (Cu and In);

b) the experimental results concerning the steady state sulfurizations of a Cu16In9 thin �lm;

c) the thermodynamic and kinetic approaches to the sulfurization presented in Section 4.2 of
Chapter 4. For the thermodynamic approach a sulfur pressure vs. composition phase diagram
is necessary. This was calculated with the software CHEMSAGE[38] for T= 330°C and T=
500°C. Appendix B gives the parameter set and the results of the calculations. The e�ects of the
temperature on the phase diagram are twofold:

� The equilibrium pressures increase with temperature.

� At 330°C there is a two-phase region (CuIn5S8 and metals) that is absent at 500°C.

Neglecting the second point (that is not relevant for these studies) and keeping in mind a trans-
lation in the pressure axis with increasing temperature, the overall form of the phase diagram
remains unchanged. Figure 5.2 shows a schematic sulfur pressure vs. Cu composition phase dia-
gram at 330°C. The vertical lines separate regions of two condensed phases: 1) CuIn5S8-CuS, 2)
CuIn5S8-CuInS2, 3) CuInS2-CuS, 4) CuInS2-Cu2−xS, and 6) Cu2−xS and α-Cu(In). Region 5) is
composed of at least 3 subregions.

The alloy/sul�de equilibrium (noted as equilibrium 4.7 of Chapter 4) should be de�ned in region 5)
of Figure 5.2. However, the de�nition of this equilibrium was not possible through the calculations
because the thermodynamic data of the intermetallic phases was estimated (see Appendix B).
Equilibrium

Cu16In9 +
25

4
S2 
 9CuInS2 +

7

2
Cu2S (5.1)

is assumed as the relevant alloy/sul�de equilibrium of region 5) in Figure 5.2 because the growth of
CuInS2 from a Cu16In9 alloy was observed in the literature[98] and during low pressure (pS<10−5mbar)
annealings during this work.

At higher pressures the equilibrium

5CuInS2 + S2 
 4CuS + CuIn5S8 (5.2)

is clearly identi�ed.

1Steady state means that the �uxes (ionic, electronic) and that the intensive variables (p,T) are independent of
time.
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Figure 5.2.: Schematic pS vs. composition phase diagram at 330°C based on equilibrium calcu-
lations made with the software CHEMSAGE[38]. The input data are given in Ap-
pendix B. The numbers indicate regions of two condensed phases: 1) CuIn5S8-CuS,
2) CuIn5S8-CuInS2, 3) CuInS2-CuS, 4) CuInS2-Cu2−xS, and 6) Cu2−xS and α-Cu(In).
Region 5 is composed of three sub regions.

5.2.1. Sulfurizations of a Cu16In9 alloy at 175°C, 330°C and 530°C
studied by means of in situ EDXRD

Precursor �lms were deposited on soda-lime glass by DC magnetron sputtering in the following
order: 500nm Mo, 529nm Cu and 648nm In. Considering the nominal thicknesses and densi-
ties, this precursors �lms were Cu-rich with [Cu]/[In]≈1.8. In a second step the precursors were
annealed in a vacuum chamber (base pressure <10−5mbar) for 10 min at nominally 450°C. At
this temperature (higher than 389°C, see Figure A.2 of Appendix A) the Cu16In9 alloy should be
present in the stable η′ hexagonal phase. Figure 5.3 shows an energy-dispersive X-ray di�raction
spectrum of the layer stack after the vacuum annealing step together with the di�raction lines
expected from the JCPDS cards 42-1475 (Cu16In9-hexagonal), 26-0523 (Cu16In9-orthorhombic)
and 26-0522 (Cu16In9-orthorhombic). The main re�exions correspond to the hexagonal Cu16In9

indicating that this phase is the main intermetallic phase in the �lm. However, some lines that
do not correspond to the hexagonal phase (indicated by the arrows). This indicates that a small
volume percentage of the orthorhombic Cu16In9 phase remains in the sample. The shoulder at
∼44,7 keV also indicates the presence of the Cu7In3 phase (see Figure 5.1). No traces of the
Cu11In9 or CuIn2 phases are visible.
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Figure 5.3.: Energy-dispersive X-ray di�raction spectrum (10 min integration time) of a Cu16In9

alloy �lm precursor for the sulfurization experiments.

To achieve the steady state sulfurization conditions, a controllable and constant sulfur o�er is
necessary. To do this, two sources that separate sulfur o�er and substrate temperature were
installed in the in situ chamber presented in Figure 3.1 of Chapter 3: an internal and an external
one.

� The internal source contains pure sulfur and forms together with the reaction box a closed
volume. The source itself is shielded from the lamps and can be heated separately to 210°C.
In the ideal case of no condensation, the pressure inside the volume (source plus reaction
box) corresponds to that of the saturated sulfur vapor at 210°C, i.e. ≥1 mbar (see Fig. A.1
of Appendix A). This source has the disadvantage that no complete separation of the sulfur
o�er and the samples is achieved and therefore can only be used in a low temperature range.
It was used for the sulfurizations at 175°C and 330°C (see Table 5.1).

� The external source contains pure sulfur and is heated to 190°C. The sulfur vapor leaves the
source through a 2mm ori�ce, �lls the vacuum chamber and is pumped by the main pumping
system. This con�guration has the advantage that a complete separation of sulfur o�er and
sample temperature can be achieved by the use of the valve that separates the reaction box
from the vacuum chamber. It has the disadvantage that the sulfur pressure is lower than
10−3mbar. This source was used for the sulfurization at 530°C (see Table 5.1).

Figure 5.4 presents schematically both sulfur sources. Table 5.1 summarizes the sulfurization
experiments: their names, the sulfur sources, the estimated pressures and the annealing temper-
atures.

a) b)

Figure 5.4.: Representation of the a) internal and b) the external sulfur source for the sulfurizations
under a controlled atmosphere.
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Table 5.1.: Sulfur sources, estimated pressures and temperatures of the sulfurization experiments.

Experiment Name Alloy Sulfur source Pressure / mbar Temperature / °C

Alloy175°C Cu16In9 Internal ∼1 175
Alloy330°C Cu16In9 Internal ∼1 330
Alloy530°C Cu16In9 External < 1x10−3 530

Sulfurization at 175°C

Figure 5.5 presents the sulfurization of the Cu16In9 precursor alloy (see Figure 5.3) at 175°C using
the internal sulfur source, i.e. experiment Alloy175°C of Table 5.1. Sulfurization starts before the
steady state conditions are reached (assumed between markers (a) and (b)) with the formation
of a CuS phase. Sulfurization continues with the formation of α−InS. The alloy is completely
consumed by the formation of CuS and InS. The inset of Figure 5.5 presents the evolution of the
intensities of the CuS 103 line, the α−InS 110 line and of the metallic alloy phase (labeled as
Cu16In9 102). Assuming no texture e�ects are present, these intensities can be used as a measure
of the volume of the di�racting phase (see Equation 3.4 of Chapter 3). The inset of Figure 5.5
shows that both the CuS and InS intensities evolve linearly and with the same time constants.
This reaction can be written as

Cu16In9 +
25

x
Sx → 16CuS + 9InS . (5.3)

Reaction 5.3 also occurs when sulfurizing Cu/CuIn2 stacks with [Cu]/[In]≈1.6 at 150°C in the
external source con�guration. In this case the stack reacts �rst to Cu/Cu11In9 + In(l) before it
transforms to CuS and InS in a similar manner as that shown in Figure 5.5. Figure 5.6 shows
an SEM image and mappings of the In L and Cu L �uorescence lines of such a �lm. An almost
complete separation of the Cu and In species is observed. The CuS is situated at the surface of
the sample covering the underlying α−InS layer.

If the sulfur pressure is low (pS<10−3mbar), reaction 5.3 does not occur at the same velocity.
Low-pressure sulfurizations while heating at constant rates of 30Kmin−1 realized during this thesis
showed no presence of CuS or InS. Pietzker[98] and Mainz[76] report on low pressure sulfurizations
done with constant heating rates of 24Kmin−1 and 18Kmin−1 without the appearance of CuS or
InS. On the other hand, high pressure sulfurizations (alloy in contact with liquid sulfur) reported
by Jost[55] show a reaction to CuS and InS below 250°C while heating at a rate of 48Kmin−1.

CuInS2 thin �lms were fabricated from the CuS/InS bilayers resulting from this type of sulfur-
ization. To achieve this, the bilayers similar to the one presented in Figure 5.6 were heated in a
closed volume to 500°C. The layers presented as a general rule an inhomogeneous, small-grained
and porous morphology. Pinholes of large dimensions were present through out the �lm. Figure
5.7 presents an example of such a morphology.
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Figure 5.5.: Time-resolved EDXRD spectra of the sulfurization of a Cu16In9 �lm at 175 °C by
means of the internal sulfur source. Marker (a) indicates the point where steady
state sulfurization conditions are achieved, marker (b) the time where the metals
have disappeared. The inset shows the evolution of the metallic re�ection intensity
at ∼44keV and of the CuS 103 and InS 110 re�ection intensities.
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Figure 5.6.: CuS and InS after sulfurization at pS<10−3mbar and T=150°C. On the left a cross-
section of the sample. On the right energy-dispersive X-ray �uorescence mappings of
the In L and Cu L lines.

Figure 5.7.: CuInS2 obtained by sulfurization of Cu-In metals. The characteristic of this sulfur-
ization was that the �lm completely reacted to CuS and InS at 200°C before reacting
to CuInS2 at higher temperatures (Tmax=550°C). The morphology of the �lm is very
perturbed with large pinholes and pores and presents small grains.
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Sulfurization at 330°C

Figure 5.8 presents the sulfurization of the Cu16In9 alloy (see Figure 5.3) at 330°C using the
internal sulfur source, i.e. experiment Alloy330°C of Table 5.1. Sulfurization starts before the
steady state conditions are reached (marker (a)). The shift to higher energies of the 220 Cu2−xS
re�ection (indicated as red markers at approximately 48.5keV in the �gure) indicates that the sulfur
pressure is still increasing before marker (a)2. In the steady state (assumed between markers (a)
and (b)) sul�de phases are CuInS2, CuIn5S8 and CuS. The re�ection attributed to the metallic
alloy is slightly shifted to lower energies indicating the presence of the Cu7In3 phase. From break-
o� experiments of sulfurizations that followed the same reaction path and EDS (energy-dispersive
spectroscopy) analysis of the corresponding cross-sections, it was concluded that the CuS phase
forms a closed layer on the surface of the �lms. The In L signals disappear at the surface layer
where the Cu L signals are continuous and more intense. Such break-o� experiments are analyzed
in detail in Chapter 6.

Sulfurization at 530°C

Figure 5.9 presents the sulfurization of the Cu16In9 alloy (see Figure 5.3) at 530°C using the
external sulfur source, i.e. experiment Alloy530°C of Table 5.1. No sulfurization takes place before
the steady state conditions (assumed between markers (a) and (b)) are reached. This was achieved
by opening the valve of the reaction box at marker (a). During the steady state sulfurization the
only sul�de detected is CuInS2. The growth follows a linear rate (see the linear �t of the CuInS2

112 re�ection at the the beginning of the sulfurization in the inset of Figure 5.9). The metallic
alloy enriches in Cu. The alloy reacts following the schema depicted in Section 5.1: �rst to Cu7In3

and then to a solid solution of In in Cu. Cu2−xS forms at the end of the reaction when the only
metallic phase present is Cu.

Figure 5.10 presents the morphology in cross-section of the sample sulfurized at 530°C. The �lm
is characterized by the presence of grains of approximately 1µm in dimensions and by a poor
adhesion to the Mo.

2A shift to higher energies means a contraction of the lattice constants (see Equation 3.7 of Chapter 3). The
lattice constants of this phase contract with increasing sulfur pressures[102].
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Figure 5.8.: Time-resolved EDXRD spectra of the sulfurization of a Cu16In9 �lm at 330 °C by
means of the internal sulfur source. Markers (a) an (b) indicate the possible time
frame of the steady state conditions.
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Figure 5.9.: Time-resolved EDXRD spectra of the sulfurization of a Cu16In9 �lm at 530 °C by
means of the external sulfur source. Markers (a) an (b) indicate the possible time
frame of the steady state conditions. The inset shows the evolution of the metallic
intensity at ∼44keV and of the CuInS2 112 re�ection. The latter is well �tted by a
line (in red) at the beginning of the sulfurization.
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Figure 5.10.: Scanning electron microscope morphology of the Cu16In9 alloy sulfurized at 530°C.

5.2.2. Layer sequences of the sulfurizations

The experimental results show that the layer sequence formation during the sulfurization of a
Cu16In9 alloy depends critically on the temperature and on the sulfur pressure. Figure 5.11
gives a simpli�ed representation of the observed layer sequences as a function of temperature and
pressure.
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Figure 5.11.: Summary of the layer sequences observed during the steady state sulfurizations of a
Cu16In9 alloy as a function of temperature and pressure.
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5.2.3. Kinetic, thermodynamic and semithermodynamic approach to
the layer sequence formation

Based on the experimental results (summarized by Figure 5.11) and on the kinetic and ther-
modynamic approaches presented in Section 4.2 of Chapter 4, a general approach for the layer
sequence formation is proposed in this section. This is based on the hypothesis that steady state
conditions are achieved (constant pressure, temperature and �uxes) between the markers (a) and
(b) of Figures 5.5, 5.8 and 5.9 and on the constancy of the number of cations (Cu and In). The
general sulfurization approach is based on the division of the sulfurization in three modes whose
applicability depend on the temperature:

1. A sulfurization purely governed by kinetics;

2. A sulfurization purely governed by thermodynamics;

3. A sulfurization where both kinetics and thermodynamics play a role.

Sulfurization governed by kinetics

At low temperatures (below 250°C) the sul�de formation depends on the growth velocity of the
individual phases and not on their thermodynamic stability. Figure 5.5 shows the formation of
CuS and InS from the Cu16In9 alloy. These two phases are not expected at equilibrium at any
sulfur pressure (see calculated phase diagram 5.2). CuS is the most unstable sul�de in the whole
system (see Table 4.1). If only kinetics and not thermodynamics are governing the sulfurization,
the CuS nuclei (that grow faster than others[85, 19], see also Section 4.2.2.2 of Chapter 4) are
expected to form a closed surface layer. Further growth of the CuS layer occurs thanks to the
di�usion of Cu through the CuS layer to the surface. However, the di�usion is not the rate limiting
step because a linear growth is observed (see inset of Figure 5.5). In analogy to chalcogenization
of pure substances it is the reaction at the CuS/Sx interface or at the alloy/CuS interface. The
most probable rate limiting step is the reaction at the CuS/Sx surface. This explains that the
sulfurization is slower at lower pressures and that In sulfurizes to α-InS with the same time
constants.

Sulfurization governed by thermodynamics

At high temperatures (higher than 400°C3) the sul�de formation depends on the local thermo-
dynamic stability of each phase. The sulfur activity decreases within the �lm from the value
imposed by the working pressure at the surface (interface (ii) of Figure 4.2 of Chapter 4)4 to the
value at the alloy/sul�de interface (interface (i) of Figure 4.2 of Chapter 4). The latter is �xed by
equilibrium Cu16In9 + 25

4
S2 
 9CuInS2 + 7

2
Cu2S. Under this approach, the layer sequence can

be read in a S pressure (understood in this case as activity) vs. composition phase diagram [44].

The following steps can be used to reconstruct the layer sequence in the case of a thermodynamic
sulfurization:
3Raman measurements reported by Rudigier[104] and recrystallization experiments reported in this thesis, show
that at least 400°C are necessary to transform the metastable CuAu- ordered CuInS2 in the stable chalcopyrite
phase. It is reasonable to postulate that this is a characteristic temperature of the Cu-In-S system where the
system can achieve the thermodynamic equilibrium.

4The value of the sulfur pressure imposed at the surface is correlated but not equal to the working pressure. Indeed
Appendix B shows that the calculated equilibrium sulfur pressure values are orders of magnitude lower as that
of the usual working pressures (10−4 to 10mbar). The e�ective surface sulfur pressure depends on adsorption,
dissociation and evaporation processes (steps 1 and 2 of the sulfurization steps) and on the temperature[121].
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1. Placing the working coordinates (surface pressure, pS, and the alloy composition, x) in the
pS vs. composition phase diagram. They can fall in a two-phase region.

2. Identifying the sul�de with the highest absolute free energy. This sul�de grows at the surface.

3. Identifying the underlying sul�des. They must be stable at sulfur pressures lower than the
one imposed at the surface, and must satisfy the mass conservation of the cations. Possible
composition variations of the metallic alloy must be taken into account.

Following these steps, the layer sequence during the steady state sulfurization at low pressure
(pS<10−3mbar) and 530°C shown in Figure 5.11 can be reconstructed. The experiment showed
that:

a) The only sul�de is CuInS2: it can be deduced that the working coordinates fall in the CuInS2

- CuxS region (regions 3 or 4 from Fig. 5.2). The absolute free energy of formation of the CuInS2

phase is larger than that of the Cu-S phases. This justi�es a posteriori (following the step 2 of
the layer sequence reconstruction) that the surface layer is CuInS2.

b) The metals react to Cu-richer phases during sulfurization. This is indeed the only possibility
to satisfy mass conservation without the formation of another sul�de.

Note that the equilibrium Cu16In9 + 25
4
S2 
 9CuInS2 + 7

2
Cu2S imposes the presence of Cu2S at

the interface alloy/sul�de (interface (i) of Figure 4.2). This phase can be present at the interface
but is no longer present within the �lm (it is not detected in the X-ray spectra). This leads to
the important conclusion:

� equilibrium 5.1 does not imply considerable volume percentage of the Cu2S phase at the
interface (i).

Figure 5.12 shows the reconstructed layer sequence. The possible working coordinates are marked
as a cross. In the steady state, the layered stack is composed of a Cu-enriched alloy and a CuInS2

�lm. The arrow indicates the increasing sulfur activity (pressure). Under this approach there
exists a strong sulfur activity gradient within the �lm. This gradient supports the di�usion of
cations as described for pure metallic systems in Section 4.2.1 of Chapter 4.

The rate limiting step is not the cation di�usion itself but the reaction at the surface given the
linear evolution of the CuInS2 intensity in the inset of Figure 5.9. In analogy to the sulfurization
of Cu, it can be expected that increasing the S pressure should lead to a crossover, where the
rate limiting step becomes the di�usion of the cations. However if the S pressure is increased
above the pressure of equilibrium 5CuInS2 + S2 
 4CuS + CuIn5S8 other sul�de phases are
expected. Indeed, following the phase diagram in Figure 5.12 it is expected that at 530°C and
sulfur pressures high enough to enter the CuIn5S8-CuS region, the thermodynamic sulfurization
leads to a layer sequence where CuIn5S8 grows at the surface. This prediction should be veri�ed
in the future with an experimental setup that allows to study this sulfurization conditions.
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Figure 5.12.: Layer sequence formation during the steady state sulfurization of Cu16In9 at 530°C
and low sulfur pressures. The layer stack is composed of a Cu-enriched alloy and a
CuInS2 �lm. The cross indicates the possible working coordinates and the arrow in-
dicates the increasing sulfur activity (pressure) in the stack. The arrow goes through
the di�erent layers in the idealized stack: from the metallic alloy to the surface of
the CuInS2 phase.

Semithermodynamic sulfurization

At intermediate temperatures, a pure thermodynamic approach does not describe the steady
state sulfurization. The following hypothesis are used in this semithermodynamic mode of the
sulfurization:

� The surface sul�de layer is determined by the fastest growing sul�de between those of the
relevant two-phase region.

� The underlying sul�des are at local thermodynamic equilibrium and can be read in a pS vs.
composition phase diagram.

� The sulfur activity (pressure) decreases from the surface of the stack (interface (ii) of Figure
4.2 of Chapter 4) to the alloy/sul�de interface (interface (i) of Figure 4.2 of Chapter 4)
determined by equilibrium 5.1. As pointed out in the previous paragraph, this does not
imply the presence of considerable amounts of Cu2S at the interface (i).

Given these working hypothesis, the ps vs. composition phase diagram shown in Fig. 5.2 serves
to identify possible layer sequences. The following steps can be used to reconstruct the layer
sequence in the case of a semithermodynamic sulfurization:

1. Placing the working coordinates (surface pressure, pS, and the alloy composition, x) in the
S pressure vs. composition phase diagram. They can fall in a two-phase region;
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2. Identifying the sul�de with the lowest absolute free energy. This sul�de will grow at the
surface.

3. Identifying the underlying sul�des. They must be stable at sulfur pressures lower than the
one imposed at the surface, and must satisfy the mass conservation of the cations. Possible
composition variations of the metallic alloy must be taken into account.

Following these points, the layer sequence during the steady state sulfurization at high pressures
(pS>1mbar) and 330°C shown in Figure 5.11 can be reconstructed. The experiment shows that
the steady state sul�de phases are CuInS2, CuIn5S8 and CuS. CuS forms a closed layer at the
surface (see break-o� experiments of Section 6 of Chapter 6). From this it is deduced that the
working coordinates fall in the CuIn5S8- CuS region (region 1 from Fig. 5.2).

CuS is more unstable than CuIn5S8. This justi�es a posteriori the fact that it forms the surface
layer (because it is expected to grow faster [85, 19], see also Section 4.2.2.2 of Chapter 4). At a
certain point within the stack the phases CuIn5S8, CuS and CuInS2 must be stable according to
equilibrium 5.2. Both CuInS2 and CuIn5S8 are stable at continuously decreasing sulfur pressures
and may grow side by side as the sulfur activity decreases within the �lm.

Figure 5.13 shows the reconstructed layer sequence in the S pressure vs. composition diagram
of the steady state sulfurization at 330°C and high pressures (pS>1mbar). The possible working
coordinates are marked by a cross. In the steady state, the layered stack is composed of a Cu-
enriched alloy, a CuInS2-CuIn5S8 mixed layer whose composition cannot be de�ned through this
approach (the possible coexistence is represented by the hatched area in the �gure), and a closed
CuS layer on the surface. The arrow indicates the increasing sulfur activity within the layered
�lm.
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Figure 5.13.: Layer sequence formation during the steady state sulfurization of Cu16In9 at 330°C
and high sulfur pressures. The layer stack is composed of a Cu enriched alloy, a
mixture of CuInS2 and CuIn5S8 whose composition is unde�ned (represented by the
hatched area) and a CuS �lm on the surface. The cross indicates the possible working
coordinates, and the arrow indicates the increasing sulfur activity (pressure) within
the stack. The arrow goes through the di�erent layers in the idealized stack: from
the metallic alloy through a mixed CuInS2-CuIn5S8 layer to the surface of the CuS
phase.

5.2.4. Conclusions

In the Cu-In-S system two characteristic temperatures, TD and TC , separate three steady state
sulfurization modes: a kinetic, a semithermodynamic and thermodynamic one.

� Below a decomposition temperature TD, around 220°C and 250°C, the layer sequence for-
mation is determined by the growth rate and not by the thermodynamic stability of the
phases. A criterion for a fast growth rate is a low absolute free energy of formation. The
CuS phase presents the lowest free energy of formation and therefore is expected to form
the surface layer during this type of sulfurizations. This process will decompose the alloy
through the formation of CuS and InS. If this process is not avoided the �nal CuInS2 �lm
resulting from the reaction between CuS and InS will present a small-grained and porous
morphology. Such a morphology makes the CuInS2 �lm inadequate for its use as a solar cell
absorber.

� Above a critical temperature TC , between 330°C and 500°C (probably around 400°C), the
local thermodynamic stability of the phases control the sulfurization. This approach is
based on the hypothesis that the sulfur activity decreases from the surface of the �lm to
the sul�de/alloy interface. The layer sequence during steady state sulfurization can be
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reconstructed based on the sulfur pressure (interpreted as activity) vs. composition phase
diagram shown schematically in Figure 5.2.

� Between both temperatures a cross over between a sulfurization governed by kinetics and
one governed by thermodynamics is expected. It was proposed that the pS vs. composition
phase diagram can be used to predict the layer sequence also above TD. Between TD and
TC , a lower free energy of formation can be used as a criterion to determine which of the
sul�des of the relevant two-phase region grows at the surface.

This general approach is a tool to understand and reconstruct the sul�de layered-stack that forms
during the sulfurization of a Cu-In alloy. Future investigations should, based on this qualitative
approach, attempt to quantify the thickness of the layers and their eventual compositional gradi-
ents. A particular case of this layered stack formation is observed when sulfurizing at T∼330°C
and high S pressures (higher than 1mbar). In this case an intermediate layer where both ternary
phases CuInS2 and CuIn5S8 coexist is formed. The CuIn5S8 phase must be consumed to obtain
�lms containing only CuInS2 (and eventually Cu-S phases on the surface that can be removed
by a chemical etching treatment). The consumption of CuIn5S8 phase by the solid state reaction
with the Cu2−xS phase will be analyzed in the next section.
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5.3. Sul�de reaction: 2Cu2S + CuIn5S8 → 5CuInS2

The reaction

2Cu2S + CuIn5S8 → 5CuInS2 (5.4)

(reaction B of Table 4.3 of Chapter 4) is of particular interest for any CuInS2 fabrication process
that includes a step where both ternary phases may coexist. The CuIn5S8 phase can be consumed
through this reaction. The kinetics of this reaction and the possible structural relationship between
the CuIn5S8 and the CuInS2 phases will be studied in this section.

5.3.1. In-S / Cu-S thin-�lm reactions studied by means of in situ

EDXRD

To study the mechanism and kinetics of Reaction 5.4, precursors consisting of a In-S/Cu-S bilayer
were deposited by means of thermal evaporation on soda-lime glass coated with 500nm of Mo.
The two steps of the evaporation deposition were:

� the evaporation of In (source temperature 920°C) under constant sulfur o�er (source tem-
perature 190°C) at a substrate temperature of 300°C and p<10−4mbar;

� the evaporation of Cu (source temperature 1410°C) under constant sulfur o�er (source tem-
perature 190°C) at a substrate temperature 100°C and p<10−4mbar.

Figure 5.14 shows an angle-dispersive X-ray spectrum of such a bilayer. According to the JCPDS
�les listed in Table 3.4 the phases present in the precursors corresponded to β−In2S3 and CuS.
Figure 5.15 presents the SEM cross-section of the precursor bilayer. From these measurements
the total thickness of the bilayer was approximately 2.7µm. Two morphologically di�erent layers
are visible in the cross-section: a small-grained compact β−In2S3 layer and a pyramidal, compact
CuS layer phase. From the measured thicknesses and the reported densities (ρCuS = 4.7gcm−3

and ρβ−In2S3 = 4.9gcm−3) the Cu to In ratio of the �lms was estimated to be: 1< [Cu]/[In]<1.3.
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Figure 5.14.: Angle-dispersive X-ray spectrum of the Mo/β-In2S3/CuS precursor stack.

The precursors were annealed in vacuum conditions (p<10−3mbar) in the in situ chamber (see
Figure 3.1 of Chapter 3). The annealing programs included an annealing step of 2 minutes at
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Figure 5.15.: Scanning electron microscope cross-section of the Mo/β-In2S3/CuS precursor stack.

nominally 40°C to assure the same starting conditions for all experiments. Energy-dispersive X-
ray di�raction spectra were recorded with an exposure time of 5 seconds. For the data treatment,
20 to 100 consecutive spectra were added depending on the total transformation times. This led
to e�ective integration times between 1.6 and 8.3 minutes. This procedure implied loosing in
time resolution but gaining in the accuracy of the intensity determination by the �tting procedure
mainly because the noise to signal ratio was reduced (see Figure 3.13 of Chapter 3). The intensity
of the di�raction signals was obtained by �tting the data with Gaussian pro�les exclusively. Table
5.2 summarizes the experiments names, the processing parameters and the e�ective integration
times.

Table 5.2.: Experiments names, layer stacks, annealing parameters and e�ective integration times
for the EDXRD data collection for the kinetic investigations of reaction 2Cu2S +
CuIn5S8 → 5CuInS2. Experiment Texture320 included a more complex heating pro-
gram in presence of elementary sulfur depicted in Figure 5.21.

Name Stack Pressure/mbar Temp./ °C Integration time / min

Binary300 Mo/β−In2S3/CuS < 1x10−3 300 ∼8.3
Binary325 Mo/β−In2S3/CuS < 1x10−3 325 ∼4.2
Binary340 Mo/β−In2S3/CuS < 1x10−3 340 ∼1.6
Texture320 Mo/β−In2S3/CuS - 320 0.08

Evolution of the Mo, CuIn5S8 and CuInS2 re�ections

Figure 5.16 shows the evolution of the energetic position of the Mo 110 re�ection during experi-
ments Binary300, Binary325 and Binary340. During the annealing at 40°C, all signals coincided at
approximately the same energy position. The signals shifted to lower energies (larger lattice con-
stants) as the samples were heated and annealed. Once the annealing temperature was achieved,
the signals remained at a constant energetic position.
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Figure 5.16.: Energy position of the Mo 110 re�ection during annealing experiments Binary300,
Binary325 and Binary340. At 40°C the position of the re�ections coincide. During
annealing the position shifts to lower energies (higher lattice constants). The �nal
position depends on the annealing temperature. Due to the constancy of the energetic
position during annealing other possible strain relaxation e�ects are neglected.

The nominal temperature does not coincide with the temperature of the �lm. The temperature
of the �lm was approximated by temperature of the Mo thin �lm. This can be estimated by the
evolution of the energetic position of the Mo 110 re�ection. Table 5.3 gives the energetic positions
at room and annealing temperatures of the Mo 110 line and the resulting estimated temperatures
from these analysis, TCal. This calibration is based on equation 3.10 of Chapter 3, and on the
supposition of an isotropic expansion of the Mo layer, αMo equal to 5x10−6K−1[93].

Table 5.3.: Temperature calibration for the annealing experiments based on the energetic position
of the Mo 110 re�ection.

Experiment ET=40°C
Mo 110/ keV ETMo 110/keV TCal/°C

Binary300 42.293 ±0.001 43.253 ±0.001 220 ±15
Binary325 42.292 ±0.001 43.244 ±0.001 260 ±15
Binary340 42.292 ±0.001 43.234 ±0.001 299 ±15

Figure 5.17 shows the evolution of the energy-dispersive X-ray di�raction spectra during annealing
at nominally 300°C (experiment Binary300 of Table 5.2). In this �gure the normalized di�raction
intensity is color coded and the re�ections corresponding to the di�erent phases are labeled. The
transition CuS to Cu2−xS occurs during heating. It correlates with the formation of CuIn5S8 and
CuInS2. The identi�cation of CuIn5S8 is not straight forward. Figure 5.18 presents the normalized
sum of all spectra taken at room temperature and the normalized sum of all spectra taken within
three minutes after the annealing temperature was achieved in the energy range 45.5 to 47.5keV.
The energetic shift translates in a lattice contraction from the room to the annealing temperature.
This is used to distinguish between the β−In2S3 and CuIn5S8 phases.5 In the next step, the

5The main re�ections of the CuIn5S8 and β−In2S3 phases overlap. The two phases present the same spinel
structure and can coexist in a wide temperature range (see Figure A.7 of Appendix A). However, there is a clear
evolution of the signals corresponding to the spinel phase before and after the CuS to Cu2−xS transformation. It

71



5. Investigations on the Growth Mechanisms

intensities of the CuInS2 phase increase steadily. In contrast, those corresponding to the CuIn5S8

phase decrease steadily.

Figure 5.17.: Time-resolved EDXRD spectra during the heating and annealing of a
Mo/β−In2S3/CuS stack (experiment Binary300 of Table 5.2). The CuS to Cu2−xS
transition is coupled to the formation of CuIn5S8 and CuInS2. The formation of
further CuInS2 from the consumption of CuIn5S8 is observed starting from t=10min.

corresponds to a contraction of the lattice constants. The energy positions are used to calculate the contraction
of the (511) lattice planes of the spinel phase despite the low intensity of the re�ections. It results that the
lattice parameter of the (511) planes of the spinel phase contracted of 0.4% whilst the sample temperature had
increased from the room to the annealing temperature. This contraction can be explained with the β−In2S3
to CuIn5S8 phase transformation. The contraction between the (511) lattice parameter of the β−In2S3 phase
at room temperature and the (511) lattice parameter of the CuIn5S8 phase at 200°C (or 240°C) is of 0.4%(or
of 0.5%). This con�rms the formation of CuIn5S8 from β−In2S3. To do this calculation, an isotropic thermal
expansion coe�cient of 1.6x10−5 K−1[69] for the CuIn5S8 phase was assumed. The room temperature lattice
parameters were taken from the JCPDS �les listed in Table 3.4 of Chapter 3.
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Figure 5.18.: β-In2S3 to CuIn5S8 transformation during experiment Binary300 of Table 5.2. The
symbols correspond to the normalized sum of the spectra taken: at 25°C (�lled)
and within three minutes after nominally 300°C were achieved (empty). The lines
correspond to Gauss �ts. The energetic positions indicate a contraction of 0.4%.

Figure 5.19 presents the expected energetic positions of the CuInS2 and CuIn5S8 phases from the
given JCPDS �les. The largest CuInS2 re�ection that does not overlap with a CuIn5S8 one is
the 204/220 re�ection. Figure 5.20a) shows that the CuInS2 204/220 intensity correlates linearly
with the CuIn5S8 400 intensity during the experiment Binary300. The 400 re�ection was chosen
because it does not overlap with CuS or CuInS2 re�ections (see also Table 3.4 of Chapter 3).
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Figure 5.19.: JCPDS �les of the chalcopyrite CuInS2 and the spinel CuIn5S8 phases. The strongest
CuInS2 re�ection (112) overlaps with a CuIn5S8 one. The second strongest CuInS2

re�ection is the combination of the 204 and 220 ones. This double re�ection is used
for further analysis.

Figure 5.20b) presents the CuInS2 204/220 intensity normalized to Mo Kα during experiments
Binary300, Binary325 and Binary340 together with the imposed temperature.
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Figure 5.20.: a) Correlation between the CuInS2 204/220 and the CuIn5S8 400 intensities during
the annealing experiment at nominally 300°C; b) CuInS2 204/220 intensity evolution
during annealing at nominally 300°C, 325°C and 340°C.

Formation of CuInS2 from a precursor showing a preferred orientation

The growth of CuInS2 through the reaction 2Cu2S + CuIn5S8 → 5CuInS2, where the CuIn5S8
precursor presented a preferred orientation, was studied in experiment Texture320. One step
deposition of In and S at lower nominal temperatures and subsequent Cu and S deposition at
T∼100°C yielded a textured β-In2S3/CuS precursor stack. Figure 5.21 shows the program used to
heat this bilayer in the closed volume (see closed volume description in paragraph 3.1 of Chapter
3). Figure 5.22 shows the energy-dispersive X-ray spectra of the points indicated in Figure 5.21.
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Figure 5.21.: Heating program for the growth of CuInS2 with a preferred orientation. The points
indicate the time and temperatures of the EDXRD spectra presented in Figure 5.22.
The heating was done in a closed volume in presence of elementary sulfur. Short
before c) the valve was opened and the sulfur vapor removed by the main pumping
system.
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Figure 5.22.: Formation of CuInS2 from a textured precursor, i.e. experiment Texture320 of Table
5.2. The heating pro�le and the time where the spectra were taken are shown in
Figure 5.21. In a �rst step (heating with excess sulfur) the β-In2S3 to CuIn5S8

transition is observed. Opening the valve (spectrum b to c) induces the CuS to
Cu2−xS transition (characterized by the disappearance of the CuS lines). This is
accompanied by the formation of CuInS2. In a next step the CuIn5S8 phase is
consumed following the reaction 2Cu2S + CuIn5S8 →5CuInS2. To complete the
reaction the sample was heated shortly to 500°C.

Re�ections of both the β-In2S3 and the CuS phases are missing in Figure 5.22a) (at T=30°C).
The sample was then heated in the presence of excess sulfur to nominally 320°C. This lead to
the formation of the ternary CuIn5S8, still showing a preferred orientation. The absence of a 440
re�ection and the presence of a strong 222 re�ection are underlined. No CuInS2 was formed in
this step. Once the temperature was stable, the transition CuS to Cu2−xS was induced by opening
the valve of the reaction box (see Section 3.1 of Chapter 3), leading to a strong decrease of the
sulfur pressure. This was accompanied by the growth of the CuInS2 phase that continued with
time at expenses of the CuIn5S8 phase (evolution of the di�raction signal at ∼31keV in spectrum
c to d of Figure 5.22. After heating the sample rapidly to 520°C the only phase observed was a
strongly textured CuInS2. The absence of a 204/220 re�ection and the presence of a strong 112
re�ection are underlined.

5.3.1.1. Reaction kinetics

De�nition of the fractional reaction

To address the kinetics of this reaction, a fractional reaction α, with
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α(t) =
V CuInS2
formed at t

V CuInS2
formed at t=∞

(5.5)

must be identi�ed. In energy-dispersive X-ray di�raction the intensity of one CuInS2 re�ection is
proportional to the volume of the di�racting grains whose lattice planes are parallel to the sample
normal. For the following it is supposed that orientation e�ects are negligible. This is based on
two points:

1. In the next paragraph it will be shown that preferred orientation is transferred, meaning
that the reaction does not favor the growth of grains with a particular orientation.

2. If orientation e�ects were present, a non-linear correlation between random re�ections of
the consumed and the formed phase could be expected. Figure 5.20 shows the correlation
between the CuInS2 204/220 intensities and the CuIn5S8 400 intensity during annealing at
300°C. The CuIn5S8 400 re�ection does not overlap with a chalcopyrite one (see Fig. 5.19).
Clearly there is a linear correlation between the CuInS2 204/220 intensity and the CuIn5S8

400 intensity.

As a consequence, the 204/220 intensity is interpreted as being proportional to the overall volume
of CuInS2 formed from the CuIn5S8 phase.

Figure 5.23a) presents the correlations between the CuInS2 204/220 intensity and the CuIn5S8

400 intensity during annealing at nominally 300°C, 325°C and 340°C. The linear extrapolation of
the CuInS2 204/220 intensity at zero CuIn5S8 400 intensity is used to de�ne V

CuInS2
formed at t=∞. Figure

5.23b) presents the evolution of the fractional reaction α obtained by means of this normalization.

The fractional reactions exceed 1.0 in Figure 5.23b). This is interpreted as a e�ect of the re-
crystallization of the thin �lm. Recrystallization implies the formation of a new microstructure
and the growth of grains at expenses of others. Depending on the driving forces and on the mi-
crostructure of the �lms it is possible that some orientation e�ects appear or that an increased
crystalline quality (or consumption of X-ray amorphous regions) enhances the intensity of an
X-ray di�raction signal during recrystallization. Any of these two e�ects can explain the over
shooting of α. A clear separation between the reaction and the recrystallization is not possible.
However, for the following it is assumed that the recrystallization only starts once the reaction
2Cu2S + CuIn5S8 → 5CuInS2 has come to an end. This assumption is valid if the consumption
of the CuIn5S8 is a prerequisite for the recrystallization. This is indeed one conclusion of section
5.4. Based on this assumption, α values higher than 0.95 are excluded from further analysis.
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Figure 5.23.: a) correlation between the CuInS2 204/220 intensity and the CuIn5S8 400 intensity
during annealing at 300°C, 325°C and 340°C and b) the respective fractional reac-
tions. With increasing temperatures the fractional reactions exceed 1.0. This is
interpreted as a recrystallization e�ect.

Determination of the kinetic parameters

The kinetic parameters of the reaction 2Cu2S +CuIn5S8 → 5CuInS2 were determined following
Avrami's approach described in Section 4.3 of Chapter 4. Avrami's equation was modi�ed to:

α(t) = 1− exp(−(kp(t− τ))n) (5.6)

where t − τ is the time that corresponds purely to the annealing at the constant temperature.
Plotting ln(−ln(1−α)) against ln(t−τ) must give a straight line with a slope equal to the Avrami
exponent n, and a cut at the origin equal to nln(kp). Figure D.1 of Annexe D presents the data
and the procedure used to extract the Avrami exponents and the reaction constants.

The reaction constant kp was plotted in an Arrhenius plot to obtain the activation energy of the
reaction (kp can be written as kp = kp0exp(−Ea

kT
), where k is the Boltzmann constant, kp0 is the pre-

exponential factor and Ea is the activation energy). The temperatures used were those obtained
by the Mo-calibration. The temperature incertitude introduces an error in the determination of
the activation energy. This is taken into account by graphically determining the maximal and
minimal slope that �ts all data points and error bars. For the determination of the activation
energy two approaches were explored, a physical and an empirical one.

� The physical approach: the Avrami exponents presented in Table 4.5 of Section 4.2 are based
on physical models of nucleation and growth rates. The kinetic data taken at nominally
300°C and 325°C are well �tted by an Avrami coe�cient of 0.84. An Avrami exponent n = 1
corresponds to a model with: site saturation and 1D linear growth or site saturation and 2D
parabolic growth. Plate-like growing grains satisfy both growing geometries. In both cases
there is no new nucleation taking place: the grains available at the beginning of the reaction
grow further. Assuming that this is valid for the three temperatures studied, the activation
energy is 66 (-16 +34)kJmol−1.

� The empirical approach: an Avrami exponent of 0.84 �ts at best the data at 300°C and
325°C. Assuming that this value (n = 0.84) is valid for the three temperatures studied, the
activation energy is 68 (-11 +32)kJmol−1.

Figure 5.24 presents the kp values in an Arrhenius plot for both approaches. Table 5.4 shows the
corresponding activation energies. The values are similar in both cases. The activation energy is
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expected to fall between the extreme values, i.e. between 50 and 100kJmol−1 (or 0.52 and 1.0eV).
This activation energy is coherent with those obtained for the solid state reaction of selenides
(Table 4.4 of Chapter 4).
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Figure 5.24.: Arrhenius plot of the reaction constant kp(sec) for the determination of the activation
energy from the kinetic data of the reaction 2Cu2S + CuIn5S8 → 5CuInS2.

Table 5.4.: Activation energy of the reaction 2Cu2S + CuIn5S8 →5CuInS2 for a physical (n=1)
and an empirical (n=0.84) approach.

Avrami exponent Activation energy / kJmol−1 (eV) Extreme values / kJmol−1 (eV)

0.84 68 (0.70) 57...100 (0.59 ... 1)

1 66 (0.68) 50...100 (0.52 ... 1)

Reaction 2Cu2S + CuIn5S8 → 5CuInS2 is much faster than the direct metallic sulfurization to
produce CuInS2 at low pressures (ps<10−3mbar) even if the reaction free energy of the latter is
larger: ∼-500 kJmol−1 (from the thermodynamic data of Appendix B) compared to -13kJmol−1.
It would seem that the free energies of activation are large enough so that the reaction free
energies play no determining role in the reaction velocity. Figure 5.10 shows that at nominally
530°C the formation of ∼2µm of CuInS2 takes place in approximately 12.5min through a direct
sulfurization. Figure 5.23 shows that at nominally 340°C the formation of ∼2µm of CuInS2 takes
place in approximately 12min through reaction 2Cu2S + CuIn5S8 → 5CuInS2 . Extrapolating
the kinetic data to 550°C results in total reaction times of tens of seconds. This is an upper limit
for the fabrication rate of processes that include in one of their steps both CuInS2 and CuIn5S8

as intermediate phases.

5.3.1.2. Structural relationship between CuIn5S8 and CuInS2

Figure 5.25 presents the sulfur sublattices of the chalcopyrite CuInS2, the sphalerite CuInS2 and
the spinel CuIn5S8 structures. The sulfur anions are organized in a face-centered cubic sublattice
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5.3. Sul�de reaction: 2Cu2S + CuIn5S8 → 5CuInS2

in the three structures.

Figure 5.25 reveals the structural equivalences between the three sublattices. They are made
visible by choosing 4 unit cells of the chalcopyrite structure, 8 of the sphalerite structure and 1 of
the spinel structure. The simpli�ed structure of the chalcopyrite CuInS2 phase is the sphalerite
structure with a cubic unit cell so that 2aCuInS2

Sphalerite ∼ 1.1nm (see Figure 2.2 of Chapter 2 for a
representation of both structures). In this structure the splitting of the 204 and 220 re�ection
disappears simplifying to 220 and the 112 re�ection simpli�es to 111. This is due to the fact that
the cations are statistically distributed in the cation sublattice and that the unit cell is cubic (see
Section 2.3 of Chapter 2). The spinel CuIn5S8 structure belongs to the cubic system and presents
a lattice parameter aCuIn5S8

cubic ∼ 1.1nm. In the spinel structure the cations occupy octahedral
and tetrahedral sites of the anion sublattice. The elementary cell is twice that of the sphalerite
CuInS2 one, but the anion sublattice is similar (see Figure 5.25). Figure 5.25 shows that the 111
and 220 lattice planes of the sphalerite structure are equivalent to the 222 and 440 of the spinel
one respectively.

Figure 5.25.: Sulfur sublattices in the CuInS2 chalcopyrite, CuInS2 sphalerite and CuIn5S8 spinel
structures obtained with the software POWDERCELL[70]. The sublattices are pro-
jected to reveal the lattice planes that contribute to the 220 and 112 re�ections of
the chalcopyrite, the 220 and 111 re�ections of the sphalerite and the 440 and 222
re�ections of the spinel structure. The 220 chalcopyrite, 220 sphalerite and 440 spinel
are equivalent, as are the 112 chalcopyrite, 111 sphalerite and 222 spinel ones.

Figure 5.22 presents the reaction of a CuIn5S8 precursor showing a strong 222 re�ection and the
absence of the 440 re�ection. The resulting CuInS2 product presents a strong 112 re�ection and
no 220 re�ection. In the simpli�ed structure this corresponds to the 111 and 220 re�ections.
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In this experiment (Texture320) the reaction product (CuInS2) preserves the initial preferred
orientation of the CuIn5S8 phase. This means that the anion sublattice remains qualitatively
with the same orientation throughout the reaction 2Cu2S + CuIn5S8 →5CuInS2. On the basis of
these results it is reasonable to postulate that the reaction is supported by the di�usion of cations
through a relatively rigid sulfur matrix. This is coherent with the slower mobility of the anions
as compared to that of the cations (see Table 4.2 of Chapter 4).

5.3.2. Conclusions

The formation of CuInS2 from a β−In2S3/CuS bilayer was studied. The chalcopyrite formation
can be divided into two reactions:

1. Cu2S + 3In2S3 → CuInS2 + CuIn5S8(reaction D of Table 4.3 of Chapter 4);

2. 2Cu2S + CuIn5S8 → 5CuInS2(reaction B of Table 4.3 of Chapter 4).

The �rst reaction is very fast and occurs together with the CuS to Cu2−xS transition. This
transition is sulfur pressure dependent. The second reaction is slower. The kinetic analysis yielded
an activation energy of between 50 and 100kJmol−1 (between 0.5 and 1 eV). The kinetic data �t
acceptably well a site-saturated, one-dimensional linear growth rate or a two-dimensional parabolic
growth rate model. Plate-like growing grains satisfy both geometries. Site-saturated means that
there is no new nucleation taking place and that existing grains or nuclei, those formed through
the �rst reaction, grow further. The studies of the reaction of a precursor showing a preferred
orientation revealed that the resulting CuInS2 phase preserves the preferential orientation of the
CuIn5S8 one. This indicate that the formation of CuInS2through reaction B of Table 4.3 is
supported by the di�usion of Cu and In cations through a relatively rigid sulfur matrix.

The reaction 2Cu2S + CuIn5S8 →5CuInS2 plays a major role in the fabrication of CuInS2 thin
�lms because it ensures, even at low pressures (ps<10−3mbar), high CuIn5S8 consumption and
CuInS2 growth rates. Once the CuIn5S8 phase is consumed, the recrystallization of the single
phase thin-�lm material can take place. This will be analyzed in the next section.
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5.4. Thin-�lm recrystallization

5.4. Thin-�lm recrystallization

This section treats the recrystallization of CuInS2 thin �lms. This mechanisms is understood as
the formation of a new microstructure accompanied by an increase in grain size. It will be shown
that the thin-�lm recrystallization ensures grain sizes of the order of the �lm thickness (∼2µm)
and a good crystalline quality. With crystalline quality is understood a low density of linear and
planar structural defects and a long range cation ordering in the stable chalcopyrite structure.
The driving forces, prerequisites and enhancement factors of this mechanism will be addressed.
The question if Ag enhances recrystallization of the CuInS2 thin �lms will be answered.

5.4.1. Recrystallization of CuInS2 thin �lms studied by means of in situ

EDXRD

To study the thin-�lm recrystallization bilayers composed of

� Cu-poor CuInS2 and

� CuS

were prepared by means of thermal evaporation. The deposition sequence consisted in three steps:

1. evaporation of indium in a sulfur atmosphere on a Mo-coated soda-lime glass heated to
275°C;

2. evaporation of Cu during a heating ramp to 580°C. Evaporation of Cu was made until
the stoichiometry of the sample was [Cu]/[In]∼0.9 (measured separately by means of X-ray
�uorescence analysis). The nominal thickness of the Cu-poor CuInS2 �lm was of ∼1.7µm;

3. evaporation of Cu at a substrate temperature of 100°C in presence of sulfur.

Figure 5.26 shows a transmission electron micrograph (TEM) of the bilayers. An energy-dispersive
X-ray spectrum of the samples revealed the phases: CuInS2, CuIn5S8 and CuS. The CuS phase
is on the surface of the �lm and the ternary phases coexist in the bottom layer. CuInS2 has a
restricted range of stability on the Cu-poor side of the Cu2S- In2S3 pseudo-binary tie line (see
Figure A.7 of Appendix A). If the �lm is richer in In the CuIn5S8 phase segregates. In the TEM
image it is not possible to distinguish between CuIn5S8 and CuInS2 grains. However, regions of
lamellar morphology were found evenly distributed through out the sample. Figure 5.27 presents
the evidence of such regions within the CuInS2-CuIn5S8 layer. Cattarin et al. [22] report on
CuInS2 lamellae (made of nanocrystals) separated by the CuIn5S8 phase. It is possible that this is
also the case in the regions of lamellar morphology. The volume fraction of CuIn5S8 in the bottom
layer was estimated from the X-ray di�raction spectrum to be 10%. No cation ordering re�ection
(see Figure 2.3 of Chapter 2 for the expected positions of this type of re�ection) can be detected
by the energy-dispersive X-ray di�raction setup. Highly resolved ex situ angle-dispersive X-ray
di�raction spectra showed only traces of the Cu-Au ordering in the bottom layer.
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Figure 5.26.: Transmission electron microscope cross-section of the Cu-poor CuInS2/CuS bilayer.
The [Cu]/[In] ratio of the bottom layer is approximately 0.9. The volume percentage
of the CuIn5S8 phase is to be 10% in this layer. The overall [Cu]/[In] ratio of both
layers is approximately 1.4.

Figure 5.27.: Lamellar regions (indicated by the arrow) in the CuInS2-CuIn5S8 layer.
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Together with the Cu-poor CuInS2/CuS bilayers also Cu-poor CuInS2/Cu and Cu-poor CuInS2/Ag
bilayers were prepared by evaporating pure metals on similarly deposited Cu-poor CuInS2 �lms.

The bilayered �lms were heated at a constant rate of 1.44Kmin−1 to 500°C and passively cooled
down in the in situ reaction chamber (see Figure 3.1 of Chapter 3). The time resolution of the
in situ energy-dispersive X-ray di�raction experiments was of 2min/spectrum. The experimental
setup allowed to investigate three pressure conditions during heating. These were:

i) Heating in vacuum where the sulfur pressure was determined by the chamber pressure (p
<10−3mbar);

ii) Heating in a closed volume without any sulfur;

iii) Heating with an internal sulfur source (see Section 5.2 for the description and Figure 5.4 for
the schematic representation).

These three pressure conditions are named in the following as: vacuum, closed volume and closed
volume with sulfur source respectively. Table 5.5 summarizes the names, the layer sequences,
their stoichiometry (determined from SEM analysis, assuming the CuIn5S8 phase occupies 10%
of the volume of the Cu-poor layer and taking as densities ρCuInS2 = 4.75gcm−3and ρCuIn5S8 =
4.86gcm−3) and the pressure conditions used in the di�erent experiments.

Table 5.5.: Layer sequences, stoichiometry and pressure conditions for the recrystallization exper-
iments of CuInS2 thin �lms. The Cu-poor CuInS2 layers are equivalent to those shown
in Figures 5.26 and 5.27.

Name Layer Seq: [Cu]/[In]
Pressure
Conditions

a CuInS2 0.9±0.1 Closed Volume

b CuInS2/CuS 1.4±0.2 Vacuum

c and d CuInS2/CuS 1.4±0.2
Closed Volume,
Sulfur Source

e CuInS2/Cu 1.9±0.3 Vacuum

f and g CuInS2/Cu 1.1±0.2
Vacuum,

Closed Volume

h CuInS2/Ag ([Cu]+[Ag])/[In]=1.8±0.3 Vacuum

For the recrystallization experiments careful attention was given to the evolution of the di�rac-
tion line at ∼30keV of the CuInS2 phase. In this range the re�ections of the CuInS2, CuIn5S8,
CuS and Cu2-xS phases overlap. The Cauchy contribution to the broadening of this re�ection
was extracted via a multiple line �t, combined with the method proposed by Dehlez et al.[29].
Appendix E summarizes this methodology. The Cauchy contribution to the broadening of the
CuInS2 112 re�ection (in the following just Cauchy-breadth) was used to monitor the thin-�lm
recrystallization.
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Monitoring the thin-�lm recrystallization

Figure 5.28 shows a TEM image of a bilayered Cu-poor CuInS2/CuS sample after heating to 500°C
at a 1.44Kmin−1 rate in the closed volume pressure conditions, i.e. experiment c of Table 5.5.
Large CuInS2 grains with dimensions of about 2µm are visible. Some crystals present twinning
(indicated by the arrow in the TEM image) but there are large regions with no evident stacking
faults and/or dislocations. A secondary phase, CuS, segregates at the surface of the sample
forming islands that do not cover completely the underlying CuInS2. CuS aggregates are also
present at the bottom of the �lm. After removal of the Cu-S phases by KCN etching, pinholes are
made visible in complementary SEM analysis proving that Cu-S phases were present throughout
the thickness of the �lms.

Figure 5.28.: Transmission electron microscope cross-section of the bilayer shown in Figure 5.26
after heating to 500°C with a 1.44Kmin−1 rate. Large CuInS2 grains with possible
twinning (indicated by the arrow) are revealed. CuS segregates at the surface as
islands, but also at the back of the �lm. The delamination of the �lm from the Mo
occurred during the preparation of the sample.

Figure 5.29 presents the evolution of the microstructure during the recrystallization of Cu-poor
CuInS2 thin �lm as function of copper excess. The �gure presents EBSD quality mappings of
a cross-section of a sample similar to that shown in Figure 5.26 but where the CuS layer was
removed partially by means of KCN etching. The resulting �lm is seen schematically on the left
of Figure 5.29. The �lm was then heated to 500°C under the same conditions of experiment c of
Table 5.5. The �gure shows that the thin-�lm recrystallization is characterized by the formation
of a new microstructure and the growth of some grains at expenses of others.

Figure 5.30 presents the evolving energy-dispersive di�raction spectra during the heating of a
sample similar to that shown in Figure 5.26 and that lead to the sample shown in Figure 5.28,
i.e experiment c of Table 5.5. In this �gure the normalized di�raction intensity is color coded
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5.4. Thin-�lm recrystallization

Figure 5.29.: Lateral thin-�lm recrystallization of a Cu-poor CuInS2 ([Cu]/[In]≈0.9) where excess
copper (so that [Cu]/[In]≈1.4) was assured by means of a thin CuS layer that was
deposited only to half of the sample. The �lm schematically shown on the left of the
�gure was heated to 500°C. The polished cross-sections on the right side of the �gure
correspond to quality maps of EBSD measurements that reveal the evolution of the
microstructure within the sample in the case where the sample had no Cu excess
(top cross-section), in the case where the Cu excess was approximately 1.4 (bottom
cross-section) and in the transition zone.
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and the re�ections corresponding to the di�erent phases are labeled. The evolution of the CuInS2
112, 200/004, 204/220, the CuIn5S8 400, 511, 440, CuS 102, 110 and the Cu2-xS 220 re�ections
are plotted against time together with the imposed temperature (top of the graph). The pressure
dependent CuS to Cu2−xS phase transition (see Section A.3.2 of Appendix A) takes place at 280°C.
The re�ections corresponding to the CuIn5S8 phase disappear during heating. The re�ections
corresponding to the CuInS2 phase are always present. Of particular interest is the appearance
of a re�ection at ∼39keV at 300°C and its disappearance at expenses of another re�ection at
∼39.5keV at 400°C. This e�ect will be treated in detail in the paragraph 5.4.1.3 (cation ordering).

Figure 5.30.: Time-resolved EDXRD spectra during the heating of a Cu-poor
CuInS2([Cu]/[In]≈0.9) layer covered with a CuS layer (overall [Cu]/[In]≈1.4).
In the bottom layer the ternary CuIn5S8 phase is present. This phase disappears
after the CuS to Cu2−xS transition and before the decrease of the breadth of the 112
re�ection (at ∼30keV) observed between t=200min and t=250min. At t=200min a
re�ection appears at ∼39keV that is attributed to the Cu-Au ordering of CuInS2.
This re�ection vanishes and gives rise to a re�ection at ∼39.5keV that is attributed
to the chalcopyrite ordering of CuInS2.

86



5.4. Thin-�lm recrystallization

Monitoring the domain and grain growth by means of X-ray di�raction

The evolution of the Cauchy-breadth with temperature can be used to monitor the domain and
grain growth during the recrystallization of CuInS2 thin �lms (see Appendix E). This was done
for the �rst time for a chalcopyrite thin �lm thanks to the in situ method described in Chapter 3.

Figure 5.30 shows how the breadth of 112 re�ection of the CuInS2 phase (∼30keV) evolves with in-
creasing temperature between t=200min and t=250min. Figure 5.31 presents the energy-dispersive
X-ray spectra in the energy range 28.5keV to 32.5keV at 30°C and at 500°C of this experiment.
The multiple-line �t made to extract the Cauchy-breadth, βC , following the procedure described
in Appendix E is also shown.
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Figure 5.31.: EDXRD spectra and multiple-line �t before (a) and after (b) heating to 500°C. The
broadening of the CuInS2 re�ection decreases considerably, the low intensity CuIn5S8

re�ections disappear, and the CuS re�ections are replaced by the Cu2−xS one.

Figure 5.32a) presents the evolution of the Cauchy-breadth and a phase existence plot6 of an
experiment where a similar Cu-poor CuInS2 layer as that shown in Figure 5.26 but without the
top CuS layer was heated to 500°C at a rate of 1.44Kmin−1 under the close volume pressure
conditions, i.e. experiment a of Table 5.5. No detectable changes in the width of the re�ection are
observable in this case. Figure 5.32b) shows the evolution of the Cauchy-breadth with temperature
together with a phase existence plot during the thin-�lm recrystallization shown in Figure 5.30,
i.e. experiment c of Table 5.5. In this case (heating with a top CuS layer) the Cauchy-breadth
decreases steadily from 0.8 keV to ∼0keV in the temperature range 250°C < T < 400°C. The
CuS to Cu2−xS phase transition occurs at 280°C and the CuIn5S8 phase disappears before the
Cauchy-breadth has fallen below 0.6keV. These two experiments correspond to the heating of a
Cu-poor CuInS2 with or without a CuS layer shown in Figure 5.29. The resulting microstructures
correspond to those presented by the uppermost (no CuS layer) and the lowermost (CuS layer)
cross-sections of of this �gure.

6For the phase existence plots the intensities of the CuInS2 re�ections were corrected for their expected decline
with increasing temperature (see Section 3.2 of Chapter 3). To do this, the measurements were corrected by a
factor that was determined by the linear interpolation of the calculated intensities ratios at room temperature
and at 500°C. These ratios are given in Table 3.3 of Chapter 3.
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Figure 5.32.: Phase existence plot and Cauchy-breadth evolution of heating experiments without
(a) and with (b) a CuS layer. Without the CuS no signi�cant changes are observed
in the X-ray di�raction spectra. With a CuS top layer: the CuS to Cu2−xS transi-
tion is observed, the CuIn5S8 phase is consumed and the CuInS2 �lm recrystallizes
(Cauchy-breadth βC falls from 0.8keV to 0keV and 211 chalcopyrite cation ordering
line emerges above 400°C). The CuInS2 intensities were corrected to account for the
expected temperature decrease (see 3.3 of Chapter 3).

5.4.1.1. Sulfur pressure dependence

The in�uence of the sulfur pressure on the thin-�lm recrystallization was studied by monitoring
the heating of the same type of bilayers as the one shown in Figure 5.26 (Cu-poor CuInS2 with
a top CuS layer so that the overall [Cu]/[In]≈1.4) under di�erent sulfur pressure conditions, i.e.
experiments b, c and d of Table 5.5.

Table 5.6 presents the temperatures of the CuS to Cu2−xS transition, the temperatures where the
intensity of the 440 CuIn5S8 falls below 20% of its maximum value and the temperatures where the
Cauchy-breadth equals 0.4keV as a function of the sulfur pressure conditions. The sulfur pressure
increases from the vacuum (experiment b), to the closed volume (experiment c), to the closed
volume with sulfur source pressure conditions (experiment d). This is con�rmed by the transition
temperatures of the CuS to Cu2−xS transition. Table 5.6 shows that:

a) the temperature where the Cauchy-breadth equals 0.4keV is always preceded by the disappear-
ance of the CuIn5S8 phase;

b) the temperature where the Cauchy-breadth equals 0.4keV does not correlate with the CuS to
Cu2-xS phase transformation;

c) in presence of the Cu2-xS phase, sulfur pressure shifts the temperature where the Cauchy-breadth
falls below 0.4keV to lower temperatures;

d) in the case of the highest sulfur pressure conditions, the Cauchy-breadth falls below 0.4keV
before the CuS to Cu2−xS phase transformation.
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Table 5.6.: Temperatures of the CuS to Cu2−xS phase transformation, of the consumption of the
CuIn5S8 phase (de�ned as the temperature where the intensity of the 440 CuIn5S8
re�ection falls below 20% of its maximum) and of the fall of the Cauchy-breadth
(βC=0.4keV) as a function of the increasing sulfur pressure conditions (experiments b,
c, and d of Table 5.5).

Pressure Conditions T(CuS-> Cu2−xS ) / °C T(ICuIn5S8=20%Imax) /°C T(βC=0.4keV) /°C

Vacuum 245 325 349
Closed Volume 281 302 323
Sulfur Source 391 373 387

5.4.1.2. Cu excess dependence

The e�ect of copper excess on the recrystallization of CuInS2 thin �lms was studied by monitoring
the heating of a Cu-poor CuInS2 with a top Cu layer so that the overall [Cu]/[In] ratio was
approximately equal to 1.1 or 1.9. This was done under the vacuum pressure conditions, i.e.
experiments f and e of Table 5.5.

Figure 5.33 shows the evolution of the Cauchy-breadths of both experiments. The bilayer with the
higher Cu excess ([Cu]/[In]≈1.9) presented the secondary chalcocite phase Cu2S during heating
until T∼250°C and the digenite Cu2-xS phase at higher temperatures. No binary phase could be
detected in the experiment with lower Cu excess conditions ([Cu]/[In]≈1.1). Figure 5.33 shows
that whereas the temperature where the Cauchy-breadth equals 0.4keV remains qualitatively un-
changed, the onset and the velocity of the transition change signi�cantly with the copper excess.
In the case where the nominal [Cu]/[In] ratio is ≈1.9, the transition starts at 410°C and ends at
440°C and in the case of [Cu]/[In]∼1.1 the transition starts at 375°C and does not come to the
detection end (Cauchy-breadth ∼0keV) before the top temperature is achieved (500°C). Figure
5.34 shows that grain sizes (after passive cooling) are di�erent in both �lms.
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Figure 5.33.: Cauchy-breadth evolution during heating of a Cu-poor CuInS2 layer with a pure Cu
layer on top so that the overall [Cu]/[In] ratio was ≈ 1.1 or 1.9. For the �lm with the
[Cu]/[In] ratio ≈1.1 the transition starts at 375°C and does not come to a detection
end at T= 500°C. For the �lm with the [Cu]/[In]≈1.9 the transition starts at 410°C
and ends at 440°C.

For the SEM image presented in Fig. 5.34 the sample with [Cu]/[In]≈1.9 was etched to remove
secondary Cu-S phases. The image reveals grain sizes of at least 1µm. The CuInS2 �lm is closed,
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even and presents no pinholes. The �lm with nominally a [Cu]/[In]≈1.1 presents a much lower
average grain size of the order of 160nm.

Figure 5.34.: Scanning electron microscope cross-sections of the samples with a [Cu]/[In]≈1.9 on
the left (the Cu-S phases were etched with KCN and for the SEM analysis the sample
was kipped 20° to reveal the surface) and [Cu]/[In]≈1.1 on the right. These cross-
sections correspond to the thin-�lm recrystallization experiments of Figure 5.33.

5.4.1.3. Cation ordering

This section will show that the cation ordering makes part of the thin-�lm recrystallization. Figure
2.3 of Chapter 2 showed calculated angle-dispersive X-ray di�raction spectra of the chalcopyrite
ordering and the Cu-Au ordering of CuInS2. The �gure outlines the 211 re�ection of the chal-
copyrite and the 201 re�ection of the Cu-Au ordering. Each re�ection mirrors a particular cation
ordering. If no ordering is present, sphalerite type structure, the re�ections vanish (see Section
2.3 of Chapter 2).

Figure 5.35 shows the evolution with temperature of the energy-dispersive X-ray di�raction spectra
during heating of a Cu-poor CuInS2 layer with a top CuS layer (experiment c of Table 5.5) in the
energy range 37keV-42keV, together with the evolution of the Cauchy-breadth already presented
in Figure 5.32. The continuous and dashed lines correspond to the calculated energetic positions
of the chalcopyrite 211 and Cu-Au ordering 201 lines in this energy range on the basis of the
energetic position of the CuInS2 112 re�ection7. Figure 5.35 shows:

� a low intensity re�ection that can be attributed to the Cu-Au ordering 201 between 300°C
and 400°C;

� an emerging chalcopyrite 211 re�ection at T > 400°C.

7The expected energetic position of a re�ection E2 based on a re�ection E1 can be obtained if the corresponding
lattice constants d are known at room temperature:

E1(T )− E2(T )

E1(T )
=
d2(T )− d1(T )

d2(T )
=
d2(RT )− d1(RT )

d2(RT )
= const .

This assumes an isotropic thermal expansion coe�cient. See Section 3.10 of Chapter 3 for the validity of this
supposition.
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Figure 5.35.: Cu-Au ordering to chalcopyrite ordering transition during the thin-�lm recrystalliza-
tion of a Cu-poor CuInS2 layer with a top CuS layer with an overall [Cu]/[In]≈1.4.
The continuous and dashed lines correspond to the expected positions of the chal-
copyrite and Cu-Au cation ordering on the basis of the energy position of the CuInS2
112 re�ection �tted to extract the Cauchy-breadth βC .
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Figure 5.36.: Expected chalcopyrite 211 and Cu-Au 201 cation ordering re�ections during thin-
�lm recrystallization experiments with [Cu]/[In]≈1.1 and di�erent sulfur pressure
conditions: a) vacuum; b) closed volume. The sulfur pressure is higher in the closed
volume conditions. The thin-�lm recrystallization of the Cu-poor CuInS2, charac-
terized by the decrease of the Cauchy-breadth βC , is shifted to lower temperatures
with the increased sulfur pressure. The fall of the Cauchy-breadth is coupled to the
appearance of the chalcopyrite 211 ordering re�ection. This ordering is not achieved
in the vacuum annealing (left).
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Figure 5.36 presents the evolution with temperature of the energy-dispersive X-ray di�raction
spectra during heating of Cu-poor CuInS2 layers with a top Cu layer (experiments f and g of
Table 5.5) in the energy range 37 to 42keV, together with the evolution of the Cauchy-breadth of
the CuInS2 112 re�ection. The heatings were done under di�erent sulfur pressure conditions: under
vacuum conditions in experiment f (Fig. 5.36a) and under closed volume pressure conditions in
experiment g (Fig. 5.36b). No cation ordering re�ection emerges for the sample processed under
the vacuum conditions and the Cauchy-breadth achieves 0.2keV at 500°C. For the sample heated
in the closed volume no intermediate Cu-Au ordering re�ection is detected and a chalcopyrite 211
re�ection emerges at 450°C . The Cauchy-breadth achieves negligible values at 500°C in this case.

5.4.1.4. Ag assisted thin-�lm recrystallization

The question if silver enhances the recrystallization of CuInS2 thin �lms was addressed by the fol-
lowing experiment. A Cu-poor CuInS2 layer with a top Ag layer was prepared so that ([Cu]+[Ag])
/ [In] ≈ 1.8. The sample was then heated in vacuum conditions with a heating rate of 1.44K/min,
i.e. experiment h of Table 5.5. Given the similar ratio of group I to group III atoms (1.9 and 1.8),
this Ag triggered thin-�lm recrystallization can be compared to the Cu triggered one (experiments
h and e of Table 5.5).

Figure 5.37 presents the evolution of the energy-dispersive X-ray di�raction spectra together with
the re�ection indexing in the energy ranges 28.5keV to 31.5keV and 39keV to 47keV during heating
of the Ag-containing bilayer. The energetic positions of the 112 re�ections of CuInS2 and of
(Cu1-xAgx)InS2 are marked by the black cross-markers at ∼30keV. These energetic positions were
obtained after applying the �tting procedure described in Appendix E and assuming two possible
chalcopyrite re�ections. The evolution of the spectra with temperature can be divided into �ve
stages whose limits are marked by a, b, c and d in Figure 5.37:

� After the deposition of the silver layer at room temperature, Ag-S phases were detected
visually as small brown spots on the sample. They correspond to the α-Ag2S monoclinic
phase whose re�ection signals (present in Fig. 5.37 at ∼39keV) grow steadily until T=160°C
where the phase transition to the body-centered cubic β-Ag2S[33, 18] is observed (the ex-
pected transition temperature at normal pressure is T=178°C[117]).

� Between (a) and (b) the Ag signals decrease considerably. At (a) a shoulder appears at
energies lower as the CuInS2112 re�ection and shifts continuously to lower energies. This can
be attributed to a 311 (Cu1-xAgx)In5S8 or a 112 (Cu1-xAgx)InS2 re�ection that shifts to lower
energies (larger lattice constants, see Bragg's equation 3.7 in Chapter 3) with increasing Ag
content. At (b) all other re�ections of the spinel (Cu1-xAgx)In5S8 structure vanish (mainly
visible at 35.9keV), and the re�ection at 29.5keV can be unambiguously attributed to 112
(Cu1-xAgx)InS2.

� Between (b) and (c) the 112 (Cu1-xAgx)InS2 re�ection shifts to higher energies (smaller
lattice constants) and its breadth decreases. Note also that the intensity of the pure CuInS2
decreases and vanishes in this temperature range. In the same period a light increase of the
intensities of the β-Ag2S phase are observed.

� At (d) the face-centered cubic Ag1.2Cu0.8S phase appears. This phase disappears during cool
down.

Figure 5.37 shows that a (Cu1-xAgx)InS2 phase appears before a decrease of the breadth of the
CuInS2 112 has taken place. In a next step, the breadth the 112 re�ection of the (Cu1-xAgx)InS2
phase decreases in presence of the body-centered cubic β-Ag2S whilst the pure CuInS2 phase is con-
sumed. This is identi�ed with the thin-�lm recrystallization observed for the case of pure CuInS2.
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Figure 5.37.: Time-resolved EDXRD spectra during the heating of a Cu-poor CuInS2 layer plus
a Ag layer. The overall ([Ag]+[Cu])/[In]≈1.8. The thin-�lm recrystallization can
be monitored through the re�ections at ∼30keV. The energetic positions of these
re�ections (cross-markers) reveal that the (Cu1-xAgx)InS2 grows at expenses of the
pure CuInS2phase. The decrease of the (Cu1-xAgx)InS2 re�ection's breadth occurs
at 270°C and in presence of the body-centered cubic β-Ag2S phase.

This process comes to the detection end (no further change in the broadening) at T=270°C. This
is a much lower temperature in comparison to the case where pure Cu was deposited as a top
layer (experiment e of Table 5.5 shown in Figure 5.33), i.e. T= 440°C.

93



5. Investigations on the Growth Mechanisms

5.4.2. Modeling the thin-�lm recrystallization

From the TEM investigations (Figs. 5.26 and 5.27) it can be inferred that the recrystallization
of the thin-�lm is characterized by the formation of a new microstructure. The unrecrystallized
�lm presents grain sizes of some tenths of nanometers and lamellar regions. These are completely
replaced by large grains of some micrometers in dimensions of good crystalline quality (large
regions with no clear presence of dislocations) presenting the chalcopyrite cation ordering (see
Figure 5.30). The EBSD investigations of a laterally recrystallized thin �lm (see Figure 5.29)
show that: a) the microstructure Cu-poor CuInS2 is not maintained and b) the growth of the
grains occurs homogeneously throughout the �lm.

The di�raction pro�les (Fig. 5.31) coupled to the TEM and EBSD investigations (Figures 5.26
and 5.29) show that a large Cauchy-breadth (0.8keV) corresponds to grain sizes of the order of
tenths of nanometers in magnitude and negligible Cauchy-breadths correspond to grain sizes larger
than 500nm. Even if the Cauchy-breadth is known to be inversely proportional to the domain size
of coherent scattering (see Section 5.4.1 of Chapter 4) these experimental results show that it in
this case it can also be correlated to the grain size.

Therefore, the decrease of the Cauchy-breadth is taken as a measure of the increase in domain and
grain size during the thin-�lm recrystallization.

This may also include the healing of structural defects by movement of dislocations (recovery
as de�ned by Gottstein[47]). This mechanism cannot be distinguished by purely monitoring the
Cauchy-breadth. Therefore, eventual healing of structural defects also makes part of the thin-�lm
recrystallization as was presented in Section 4.4 of Chapter 4.

On the basis of the experimental results the prerequisites, the driving forces, and the enhancement
factors for the recrystallization of Cu-poor CuInS2 thin �lms will be discussed and a model that
describes this mechanism will be presented.

5.4.2.1. Prerequisites

A necessary condition for the thin-�lm recrystallization is the consumption of the CuIn5S8 phase.
The CuIn5S8 phase is always consumed before the Cauchy-breadth has achieved 0.6 keV, i.e. be-
fore signi�cant increase in domain size. If the CuIn5S8 phase is stabilized by stabilizing the CuS
phase the recrystallization will be delayed (see Figure A.8 of Appendix A for the thermodynam-
ical prediction of such a stabilization and Figures 5.21 and 5.22 of the previous section for the
experimental proof of the stabilization of the CuIn5S8 phase by an increase in the sulfur pressure).

5.4.2.2. Driving force and activation energy

The analysis of the driving force concentrates on the domain and grain growth monitored by
means of the evolution of the Cauchy-breadth. This analysis is based on the following hypothesis:

� The microstructure of the thin �lm can be described by domains of coherent scattering;

� The smallness of the domain sizes is responsible for a Cauchy contribution of the breadth[13,
29];

� The strain e�ects fall purely in the Gauss contribution of the breadth[13, 29].

The TEM cross-section in Figures 5.26 and 5.27 expose the defective microstructure of the Cu-
poor CuInS2 material. Grain boundaries are visible in the CuS phase at the surface but are not
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clear within CuInS2 �lm. Co-existence of both ternary CuInS2 and CuIn5S8 phases in a plate-
like morphology can explain the periodic linear structures shown in Figure 5.27. A large density
of stacking faults could also explain such structures. The Cu-poor CuInS2 presents no Cu-Au
or chalcopyrite cation ordering re�ections. This indicates that no signi�cant long range cation
ordering is present within this layer and stresses the structural disorder of such �lms.

In analogy to equation 4.15 of Chapter 4 the evolution of the domain sizes, Dd, can be written as:

dDd

dt
= md

o · exp(−
Qd

kT
) · f (5.7)

where Qd is the apparent activation energy for domain boundary movement, and md
0 the pre-

exponential factor of the domain boundary mobility. The pre-exponential factor also accounts for
constant geometrical factors. The physical meaning of Qd changes if the domain size is equivalent
to the grain size or not. If this is the case then Qd = Qg. If not, Qd is the activation energy for
the di�usion of the slowest of the species involved in the motion of the relevant lattice defects. If
f is assumed to be constant, equation 5.7 integrates to[26]

Dd(T )−Dd(25°C) =
f ·md

o

ϕ

ˆ T

0

exp(−Qd

kT
)dT ≈ f ·md

o

ϕ
· k · T

2

Qd

exp(−Qd

kT
) (5.8)

for constant heating rate experiments (ϕ = dT
dt
). The Scherrer formula (Equation E.6 in Appendix

E) relates Cauchy-breadth and domain size. Combining these two equations gives:

βC(T ) =
1

1
βC(25°C)

+ 2·sinθ
kScherrer·h·c ·

f ·mdo
ϕ
· k·T 2

Qd
exp(−Qd

kT
)
. (5.9)

This equation was used to �t the temperature evolution of the Cauchy-breadth during heating
of the Cu-poor CuInS2/CuS bilayer with [Cu]/[In]≈1.4 under vacuum conditions, i.e. experi-
ment b of Table 5.5. Figure 5.38 presents the result of this procedure. The �t was made for the
Cauchy-breadths of the CuInS2 re�ection once the CuIn5S8 had disappeared (T>600 K). There
are two sources of error in this �tting procedure: the Scherrer constant, kScherrer , and the tem-
perature measurement. On one hand, kScherrer does not signi�cantly a�ect the determination of
the activation energy because it is situated in the pre-exponential factor. On the other hand,
the temperature does introduce a large error in the determination of the activation energy. To
account for the inaccuracy of the temperature measurement, the �t was done for temperatures
shifted ±20°C with respect to the measured values. This assumes that the real temperature of
the sample might be shifted, but evolves linearly with the imposed nominal temperature. This
assumption is valid because the expansion of the CuInS2 112 re�ection evolves linearly with the
imposed temperature (see Fig. 5.35). The �t yielded an apparent activation energy Qd between 3
and 3.4eV.

Figure 5.38 also shows the �t of the data assuming a driving force that is inversely proportional
to the domain size (as is the case of normal grain growth as de�ned by Gottstein[47]). The �gure
shows that a constant driving force yields a better �t of the experimental data.
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Figure 5.38.: Analytic modeling of the evolution of Cauchy-breadth during the annealing of a Cu-
poor CuInS2 layer covered with a CuS layer so that the overall [Cu]/[In]≈1.4. The
annealing was done in vacuum with a heating rate of 1.44Kmin−1. The continuous
line corresponds to the �t of the data (after the consumption of the CuIn5S8 phase)
with equation 5.9. Taking into account the large uncertainty in the temperature
measurement, the activation energy extracted from the �t falls between 3 and 3.4eV.
The dashed line corresponds to the best �t under the assumption that the driving
force is not constant but inversely proportional to the domain size (as is the case for
normal grain growth de�ned by Gottstein[47]).

The conclusions of this analysis are twofold:

a) The driving force for the domain and grain growth is well described by a constant. It could be
supposed that the driving force is the density of linear and planar defects in the �lm, given the
defective microstructure shown in Figures 5.26 and 5.27. However, other types of driving forces
may also contribute to the domain and grain growth. The overall driving force is probably better
described by the sum of the driving forces given in Table 4.6 of Chapter 2. These driving forces
all tend to minimize the free energy of the thin �lm. Future investigations should focus on a clear
identi�cation of the driving force.

b) The activation energy for the domain and grain growth during the thin-�lm recrystallization
measured by in situ X-ray di�raction was found to be between 3 and 3.4 eV. This indicates that
the microscopical mechanism supporting the domain and grain growth is clearly di�erent from
the one supporting the evolution of the 2Cu2S + CuIn5S8 → 5CuInS2 reaction for which the
activation energy was found between 0.5 and 1 eV.

5.4.2.3. Enhancement

This analysis concentrates of the enhancement of the domain and grain growth monitored by
means of the evolution of the Cauchy-breadth. Enhancement means that the temperature of the
growth is shifted to lower values or that the velocity of the transition is increased. This can be
achieved by:

� Increasing the sulfur pressure in presence of the Cu2-xS phase: this was the case for the
heating in presence of Cu-S phases with di�erent sulfur pressure conditions (see Table 5.6
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for the vacuum and close volume conditions) and was con�rmed by experiment f and g
of Table 5.5 shown in Figure 5.36. In these experiments the Cauchy-breadth pro�les are
qualitatively similar but shifted to lower temperatures (around 25K) when the pressure con-
ditions increased from the vacuum to the closed volume one. Figure 5.9 shows the theoretical
Cauchy-breadth temperature pro�les from equation 5.9 as a function of the activation energy.
With increasing activation energy the transition is shifted to higher temperatures but the
pro�le remains qualitatively unchanged. Therefore it is postulated that the sulfur pressure
reduces the activation energy Qd for the domain and grain growth. This indicates that do-
main and grain growth are controlled by bulk di�usion processes. Enhancement of di�usion
processes by increased chalcogen pressure was found by Matsushita[80] in AIBIIISe2 thin
�lms. He measured a decreasing melting point with increasing Se pressure. Triboulet[131]
also observed an enhanced grain growth of ZnS �lms by increasing the sulfur pressure during
annealing.
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Figure 5.39.: Cauchy-breadth pro�les from equation 5.9 as a function of the activation energy Qd.
An increase in the activation energy of 0.4eV shift the domain and grain growth
∼80K to higher temperature. This shift is qualitatively observed when the trigger
for the recrystallization is pure Cu (βC(420°C)=0.4keV from Figure 5.33) or a CuS
layer (βC(340°C)=0.4keV from Figure 5.38) in vacuum conditions.

� Increasing the [Cu]/[In] ratio: Figure 5.33 shows that Cu excess controls the velocity of the
growth. Accepting the validity of equation 5.9, Cu excess may not only a�ect the apparent
activation energy but also the pre-exponential factor md

0. An increase in both the activation
energy and the pre-exponential factor could explain the same transition temperatures but
the shorter transition times with increasing Cu content. The [Cu]/[In] ratio may also a�ect
the driving force f . For all of the analysis presented here this force was assumed to be
constant. However, as discussed in the previous section, the driving force is not clearly
identi�ed and it may have a contribution of chemical nature.

� Increasing the cation mobility: Cation mobility can be enhanced by alloying with Ag. In this
case the domain and grain growth occur at temperatures as low as 270°C. The mobility of the
cations can be qualitatively compared by looking at the melting points of the ternary sul�des:
AgInS2, CuInS2, and CuGaS2 have melting points of 871°C, 1079°C, and 1200°C respectively.
Correspondingly domains and grains of (Ag,Cu)InS2 grow at lower temperatures compared to
CuInS2 ones (see Figure 5.37) and Cu(In,Ga)S2 grains remain smaller than CuInS2 ones[76,
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89] at temperatures around 500°C. This indicates once again that domain and grain growth
are controlled by bulk di�usion processes.

5.4.2.4. Microscopical approach

This section will evaluate the applicability of the microscopical approaches exposed in Section
4.4.2 of Chapter 4 to explain the recrystallization of CuInS2 thin �lms.

1. Liquid phase approach: there are two points that question the validity of the liquid phase
approach.

a) The temperature of the transition CuS to Cu2−xS does not correlate with the enhance-
ment of this mechanism, see Table 5.6. This is expected if the pseudo-liquid phase is
necessary for growth.

b) The presence of Cu-S phases within the �lm is not always given. Figure 5.28 shows
that it is possible that CuS phases segregate within the �lm, but �gure 5.34 shows that
recrystallization may occur without this being a necessary consequence (no pinholes
were revealed after etching of the Cu-S phases).

2. The topotaxial approach: the prerequisites of the topotaxial approach include the presence
of a face-centered cubic phase that is lattice matched to the chalcopyrite phase. There are
two points that do not support this hypothesis:

a) Domain and grain growth of (Cu1-xAgx)InS2 was observed in presence of a body-
centered cubic β-Ag2S phase.

b) Domain and grain growth has started short before the CuS to Cu2-xS phase transition
in the case of the heating with a sulfur source, see Table 5.6.

3. The bulk di�usion approach: the bulk di�usion approach can explain the experimental
observations. The last paragraph showed that the cation vacancy concentration and the
cation mobility are capable of enhancing the domain and grain growth processes. This
indicates that di�usion and point defects in the material are the key to this mechanism. A
main conclusion of this work is that the domain and grain growth of Cu-poor CuInS2 thin
�lms is supported by the bulk di�usion of the cations.

The bulk di�usion approach

Wissmann[143] studied the bulk di�usion of cations in the CuInS2 phase. He states that In is the
slowest di�using cation and �nds that di�usion of In is coupled to the di�usion of Cu. He postulates
that in the stable chalcopyrite structure di�usion of In occurs via Cu vacancies. Figure 5.35 shows
that the �lms presented no long range cation ordering before recrystallization (within the detection
limits of the instrumentation). Highly resolved ex-situ X-ray di�raction measurements show only
traces of Cu-Au ordering. In a random cation con�guration (sphalerite structure, see Section 2.3 of
Chapter 2) no formation of antisite is necessary to support the di�usion of In. Only the formation
of vacancies should be relevant. In a neutral defect model, cation vacancy concentration increases
with increasing S activity[143]. In the CuInS2 thin �lms presenting the sphalerite structure excess
S could create cation vacancies that support di�usion of cations, and in particular of In cations.
These vacancies can be created at the surface and must di�use through the entire �lm to support
domain and grain growth. The Cu2−xS phase on the surface may accelerate the cation vacancy
formation at the surface. This phase is known to enhance the incorporation of sulfur in the CuInS2

phase[119, 103].
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5.4.2.5. Model of the recrystallization of CuInS2 thin �lms

A qualitative model for the recrystallization of a �lm composed of CuIn5S8 and CuInS2 and in
presence of excess copper in a secondary Cu-S phase was developed. Figure 5.40 presents the
morphology change and Figure 5.41 presents the model in a diagram free energy of the system vs.
transition coordinate. The model consists of three steps:

1. Consumption of the CuIn5S8 phase: no signi�cant growth of CuInS2 domains will take place
as long as the ternary CuIn5S8 phase is present within the �lm. This blockade is represented
as an energy barrier for the system in Figure 5.41. This barrier is controlled by the presence
of the CuS phase. Once the transition 2CuS → Cu2S + S occurs, the barrier will be
removed and the CuIn5S8 phase will be consumed following the reaction studied in detail
in the previous section of this Chapter, i.e. 2Cu2S + CuIn5S8 → 5CuInS2. This reaction
is thermally activated with a free energy barrier GR

a . The driving force for the reaction is
∆GR (free energy of reaction). The result of this reaction is a defective (in terms of point,
linear and planar defects) phase. In particular the cations present no long range ordering
and the domains of coherent X-ray scattering are of the order of some tens of nanometers.

2. Domain and grain growth: this includes the healing of structural defects and the growth
of the domains and grains. After this step the cations are found in the metastable Cu-Au
ordering. The driving force for the domain and grain growth is well described by a constant,
f . This can be the large density of structural defects in the �lm but contributions from
other forces that minimize the free energy cannot be discarded. If V is the volume of the
system, the small-grained and defective state is at an energy level f × V lower than the
large-grained state. To achieve this level the system must overcome an energy barrier GRX

a .
This process is supported by the di�usion of cations. This means that the anion sublattice
remains, in �rst approach, unmodi�ed. The di�usion of cations can be enhanced by:

� Increasing the concentration of cation vacancies, VCat. Increasing S pressure during
processing results in the creation of cation vacancies at the surface of the sample that
can di�use into the bulk of the material. The presence of a Cu2−xS phase on the surface
may accelerate the creation of cation vacancies at the surface of the CuInS2 �lm because
it enhances the incorporation of S in the CuInS2 lattice. The experimental results lead
to the supposition that an increased cation vacancy concentration yields a decrease in
the energy barrier GRX

a ;

� Increasing the overall cation mobility. This can be achieved by alloying with more
mobile cations like Ag.

3. Cu-Au to chalcopyrite cation ordering transition: cations re-order to achieve the stable chal-
copyrite structure (abbreviated as CH in Figure 5.41). The driving force for this transition
is ∆GCuAu→CH , and the free energy barrier is GCuAu→CH

a .

The color-coded arrows in Figure 5.41 represent possible paths for the recrystallization.

� Path A: This corresponds to the case where the system goes completely through each step
as temperature increases. This is achieved in the sulfurizations where the sulfur pressure
is low so that the 2CuS → Cu2S + S occurs at a temperature lower than the domain and
grain growth one. The latter will take place at higher temperatures followed by the copper-
gold to chalcopyrite ordering transition. This corresponds to Figures 5.32b) and 5.35, i.e.
experiment c of Table 5.5.

� Path B: This path corresponds to the case where the cation vacancy concentration is low.
This can be achieved by reducing the S activity in the �lm considerably. After the CuIn5S8
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phase is consumed the energy barrier GRX
a is so large that, at a given temperature, the

system can skip the metastable state where the cations are organized in the Cu-Au ordering
and will achieve the state where the cations are organized in the chalcopyrite ordering and
the domains and grains are large. This corresponds to the thin-�lm recrystallization shown
in Figure 5.36b), i.e. experiment g of Table 5.5.

� Path C: This path corresponds to the extreme case where there is no 2CuS → Cu2S + S
transition. This can be achieved by increasing considerably the sulfur pressure. In this
case the CuIn5S8 phase will be consumed by the proposed reaction 4CuS + CuIn5S8 →
5CuInS2+S2. The temperatures required for this are probably so high that the consumption
of the CuIn5S8 phase, the domain and grain growth and the Cu-Au to chalcopyrite ordering
transition will occur simultaneously. This path has to be con�rmed in the future in an
experimental setup that allows the separate heating of the samples and a high sulfur pressure.

These exemplary paths are the basis for process design that include a thin-�lm recrystallization
step. For example, a �lm that does not present important amounts of the Cu-Au ordering (path
B) during growth may have lower concentration of point defects of the type CuIn or InCu than a
�lm that completely transforms into the Cu-Au ordering before achieving the chalcopyrite ordering
(path A) (assuming this last transition is incomplete). Attempting to achieve path C by increasing
considerably the sulfur pressure could be deleterious for the homogeneity of the �lm. At high
temperatures, a locally induced 2CuS → Cu2S + S transition would trigger an inhomogeneous
domain and grain growth. This becomes even more critical when the secondary CuS phase does
not completely cover the underlying CuInS2 �lm. It is known that CuS tends to form very large
grains with an Island-like morphology on top of the CuInS2 �lms (see Figure 5.28). On the other
hand, path C could be interesting if a laterally-evolving recrystallization front is desired. This
would have the advantage of a clear division between the precursor stage and the recrystallized
stage. This recrystallization front could be monitored optically (via the 2CuS → Cu2S + S
transition).

A further important point is the cation mobility. Alloying with a more mobile cation like Ag
increases the velocity of the transition. This can result in a clear reduction of the thin-�lm
recrystallization temperature (including consumption of the CuIn5S8 phase, domain and grain
growth and transition to the chalcopyrite ordering of the cations): from 440°C to 270°C in case
of the experiments e and h of Table 5.5. The increase in the overall cation mobility is di�cult
to represent in the free energy vs. transition coordinate diagram of Figure 5.41. However, the
increase in cation mobility has a similar e�ect as an increase in the temperature and can be
translated in the diagram of Figure 5.41 with such an analogy.

The last question to be addressed is the role of the secondary Cu-S phases. First, the 2CuS →
Cu2S+S transition plays a very important role in the thin-�lm recrystallization (see Figure 5.41).
On one hand it triggers the consumption of the CuIn5S8 phase, and on the other it liberates S
that can be incorporated in the CuInS2 lattice creating cation vacancies and lowering GRX

a . The
Cu2−xS may also enhance the further incorporation of S from the gas phase, introducing further
cation vacancies. However, this phase is not absolutely necessary for the domain and grain growth
in the �lm (as was proposed by Klenk[68] and Wada[136] for the Se system). If the CuIn5S8 phase
is not present and if enough cation vacancies are available, domain and grain growth may take
place. In this case the domain and grain growth can be enhanced by other means other than the
Cu2−xS-supported cation-vacancy creation; for example by increasing the cation mobility.

The Cu2−xS phase can also be deleterious for the CuInS2 thin �lm if it does not remains at the
surface. It can be responsible for the creation of pinholes in the �nal device (see Figure 5.28). One
way to block the mobility of this phase is to reduce the sulfur pressure. Indeed, when working
at low sulfur activity (bringing the copper excess on the Cu-poor CuInS2 thin �lms as a pure
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Cu layer) the secondary Cu-S phases remain at the surface of the CuInS2 �lm as a closed layer
and no pinholes are formed (see Figure 5.34). It seems that the presence of Cu-S phases within
the �lm is a pure consequence of the high cation mobility both in the CuInS2 and in the Cu2−xS
phases. The experimental results indicate that the secondary Cu2−xS phase enhances, but is not
directly involved in the domain and grain growth of the CuInS2 �lms (step 2 of the thin-�lm
recrystallization model of Figure 5.41).

Figure 5.40.: Morphology evolution during the recrystallization of defective Cu-poor CuInS2 thin
�lms in presence of copper excess.

101



5. Investigations on the Growth Mechanisms

Figure 5.41.: Model for the thin-�lm recrystallization of defective Cu-poor CuInS2 thin �lms in
presence of copper excess in the free energy vs. transition coordinate diagram. The
model is divided in three steps: the consumption of the CuIn5S8 phase controlled
by the 2CuS → Cu2S + S transition, the domain and grain growth of the CuInS2

phase and the transition from the Cu-Au to the chalcopyrite cation ordering. GR
a ,

GRX
a , and GCuAu→CH

a stand for the free energies of activation and ∆GR, f × ∆V ,
and ∆GCuAu→CH for the driving forces for each step. GRX

a can be reduced by in-
creasing the cation vacancy concentration [Vcat]. This enhances domain and grain
growth. An increased cation mobility (for example through Ag alloying) enhances
the complete thin-�lm recrystallization mechanism. An increase in the mobility has
a similar e�ect as an increase in the temperature. The color-coded arrows repre-
sent the possible thin-�lm recrystallization paths. Path A represents a step-by-step
transition as temperature increases under constant sulfur pressure conditions, path
B represents a transition that skips the Cu-Au ordering by lowering the S activity in
the �lm and path C represents a transition where the consumption of the CuIn5S8

phase, the domain and grain growth and the Cu-Au to the chalcopyrite cation or-
dering transition occur almost simultaneously. This can be achieved by increasing
the sulfur pressure to stabilize the CuS phase.
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5.4.3. Conclusions

The recrystallization of a Cu-poor CuInS2 thin �lm was monitored in real time thanks to the
in situ EDXRD setup. This is the �rst time that this mechanism that can be isolated and
investigated for any AIBIIIXV I

2 chalcopyrite compound. The conclusion of these investigations
are summarized by the model proposed in Figure 5.41. This model serves as a basis for the design
of fabrication processes that include a thin-�lm recrystallization step. Two concrete consequences
for the fabrication of CuInS2 thin �lms emerge from these investigations.

� The sulfur activity plays a determining role in the recrystallization of Cu-poor CuInS2 thin
�lms: it can delay it by means of the 2CuS → Cu2S+S transformation and it can enhance
domain and grain growth by increasing the cation vacancy concentration.

� The recrystallization of the thin �lm can be induced at low temperatures (as low as 270°C)
and without having to segregate Cu-S phases within the �lm. To do this the �lm must
contain only one ternary phase and the cation mobility must be enhanced. A clear increase
in the cation mobility can be achieved by alloying with Ag.

The activation energy for the domain and grain growth step was estimated to be between 3 and
3.4eV. This is more than three times the activation energy of the reaction 2Cu2S + CuIn5S8 →
5CuInS2 (between 0.5 and 1eV) studied in the previous section and that constitutes the �rst
step of the model. This indicates that microscopical processes supporting both mechanisms are
fundamentally di�erent.

Once the �lms have recrystallized, the CuInS2 and Cu2−xS phases can interdi�use. This can a�ect
the surface of the CuInS2 grains and will be discussed in the next section.
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5.5. Sul�de Interdi�usion

The interdi�usion between Cu2−xS and CuInS2 cannot be probed by the bulk X-ray di�raction
methods used during this work. The proof of dissolution of CuInS2 by Cu2−xS is done by means
of morphological consideration of �lms containing both phases.

5.5.1. Dissolution of CuInS2 by Cu2S

Figure 5.42a) presents an SEM plane view of a sample that was processed in the same way as
that described for experiment b of Table 5.5 of the previous section, i.e. recrystallization of a Cu-
poor CuInS2 thin �lm in presence of Cu2−xS (heating rate of 1.44 Kmin−1 under closed volume
pressure conditions). Figure 5.42b) presents the plane view of a sample heated with increased
sulfur pressure, i.e. experiment d of Table 5.5. Figure 5.42c) and d) presents the plane view of
the same Cu-poor CuInS2 /CuS bilayers after heating in vacuum with rates of 1.44Kmin−1 and
46Kmin−1 respectively. All samples were etched with KCN to remove the Cu-S phases. Figure
5.42a) corresponds to the cross-section presented in Figure 5.28, but without the CuS sul�de
phases that are seen as islands on the surface of the CuInS2 in the TEM image.

The CuInS2 grains are evenly distributed in every case. There are pinholes, encircled in the �gures,
that may traverse the whole �lm. This means that Cu-S phases were also present between CuInS2

grains. On the top of some grains, indicated by an arrow in the �gure, irregular structures are
identi�ed. This structures occupy larger areas and, qualitatively, penetrate deeper in the CuInS2

grains in the case of increased sulfur pressure (plane view b with respect to plane view a) and in
the case of slower heating ramps (plane view d with respect to plane view c).

Controlling the dissolution

Given the asymmetrical solubilities, it is expected[121] that Cu2−xS dissolves CuInS2 while it
advances in the direction of the CuInS2 grains. Therefore, etching of the samples reveals the
irregular penetration of the Cu2−xS phase in the CuInS2 grains. Because there is no chemical
reaction, interface growth is probably limited by the di�usion indium in the Cu2−xS matrix. Based
on the ionic radii, Mansour[79] proposes that In may occupy Cu sites in the Cu1.8S phase. Based
on this criterion the same can be hypothesized for the cubic Cu2−xS phase. Rau[100] and Pareek et
al.[95] propose that Cu vacancy concentration in Cu2−xS increases with sulfur pressure. Therefore
increasing the sulfur pressure may enhance the di�usion of In in this phase. To summarize, the
evolution of the interface between Cu2−xS and CuInS2 depends on:

� Temperature, it determines the solubility of CuInS2 in Cu2−xS;

� Sulfur pressure, it determines the copper vacancy concentration in the Cu2−xS phase;

� Time.

Figure 5.43 proposes the moving interface during the interdi�usion as well as the direction of the
di�using In cations. A plausible hypothesis is that when using the same times and temperatures
a variation in the sulfur pressure could lead to di�erent point defect concentrations (related to
In) near the surface of the CuInS2 �lms. This because the di�usion of In in the Cu2−xS phase
is probably enhanced by increasing the sulfur pressure. This e�ect should be investigated in the
future by more sensitive and space-resolved methods.
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Figure 5.42.: Scanning electron micrographs in plane view of a CuInS2 sample after a recrystalliza-
tion in presence of Cu2−xS. The samples were etched with KCN to remove the Cu-S
phases. They correspond to: a) closed volume conditions, heating rate 1.44Kmin−1,
b) sulfur source conditions, heating rate 1.44Kmin−1, c) vacuum conditions, heating
rate 46.1Kmin−1, d) vacuum conditions, heating rate 1.44Kmin−1. For the descrip-
tion of the pressure conditions see Section 5.4.

Figure 5.43.: Schematic representation of the dissolution of CuInS2 by the Cu2−xS phase. The in-
terface moves in direction of the CuInS2 phase. The interface movement is supported
by the di�usion of In in the Cu2−xS phase.
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5.5.2. Conclusions

The interdi�usion of two phases is a process that occurs when there is a range of solubility of one
phase in the other, or when a mixed phase can be formed. Cu2−xS does dissolve CuInS2. This
process depends on time, temperature and sulfur pressure and may a�ect the defect concentration
at the surface of the CuInS2 grains that are covered by the secondary Cu2−xS phase. This is of
high relevance for the fabrication of solar cell absorbers because the surface of the �lm determines
the band alignment at the heterojunction with the CdS bu�er layer. If the time is reduced (for
example in RTP fabrication) such e�ects are restricted to a narrow range near the surface of
the �lms. These e�ects should be studied in the future with surface-sensitive and space-resolved
techniques.
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5.6. Summary

The sulfurization process consists of heating metallic precursors in presence of sulfur vapor. This
chapter studied �ve mechanisms whose interaction determines the microstructure of the resulting
CuInS2 when using such a process. Figure 5.44 summarizes the di�erent mechanisms and the
temperature ranges where they are relevant.
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Figure 5.44.: Active mechanisms during the sulfurization in a closed space of Cu-In thin �lms and
their relevant temperature ranges.

The sulfur pressure controls the majority of the mechanisms. For example, the presence of inter-
mediate sul�des will be avoided if sulfur is o�ered at low pressures (pS<10−3mbar) only once the
metals have reached 500°C. In this case the risk of a deleterious enrichment in Cu of the metallic
phases (initially Cu-rich) increases and a bad adhesion of the �lms is always observed. If sulfur is
o�ered at low temperatures (T< 220°C) and for su�cient times (depending on the sulfur pressure),
the alloy will decompose in CuS and InS. This two intermediate phases lead to a CuInS2 �lm that
is unusable as a solar cell absorber. Sulfurizing at high pressures (pS∼1mbar) and intermediate
temperatures (T∼330°C) leads to the presence of an intermediate step where defective CuInS2

and CuIn5S8 coexist. The CuIn5S8 phase must be consumed to obtain a pure CuInS2 �lm (with
eventual Cu-S phases that can be removed by a chemical etching procedure). This can be done at
high rates (12min at ∼340°C and low pressures pS<10−3mbar) if the Cu2−xS phase is available.
The thin-�lm recrystallization (meaning healing of structural defects, growth of domain and grain
sizes and the Cu-Au to chalcopyrite cation ordering transition) of the CuInS2 phase follows. This
mechanism is at a great extent controlled by the sulfur activity (see the thin-�lm recrystalliza-
tion model in Figure 5.41). In the last step the sulfur activity will probably modify the defect
concentration near the surface of the �lms through the interdi�usion between the CuInS2 and the
Cu2−xS phases.

These are some selected examples of the importance of the sulfur pressure on the processing of
the Cu-In thin �lms. They make clear that the focus of this process must be widened to cover not
only the time and the temperature (as was done until now, see Section 2.6 of Chapter 2) but also
the sulfur pressure. If this is made, deliberate microstructure engineering can be aimed at using
the qualitative and quantitative information gathered in this chapter. These facts and models
constitute a toolbox necessary for further microstructure improvement. A known de�ciency of
these �lms is the void formation near the Mo back contact (see Figure 1.1 of Chapter 1). This
problem was addressed during this work using the breakdown of the sulfurization as proposed in
Figure 5.44. The next chapter presents a new rapid thermal sulfurization process that bypasses
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this void formation.
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Increased Adhesion

In this chapter a new rapid thermal sulfurization process will be presented. This sulfurization
solves the problems of bad adhesion of the CuInS2 �lms due to the presence of voids between the
�lm and the Mo back contact (see Figure 1.1 of Chapter 1). This sulfurization was monitored
in situ by means of the EDXRD method presented in Chapter 3. The mechanisms exposed in
Chapter 5 are active during this rapid thermal sulfurization and will be exposed in detail.

The sulfurization process

The precursor �lms consisted of bilayers of Cu and In sputtered on Mo-coated soda-lime glass with
a [Cu]/[In]≈1.6. After some days of storage the precursor �lm stack transformed to Mo/Cu/CuIn2.
Figure 6.1 presents the morphology of the precursor �lm. The CuIn2 phase is distributed in a
mountain-valley morphology on top of the Cu �lm.

Figure 6.1.: Precursor Mo/Cu/CuIn2 �lm before the rapid thermal sulfurization. The CuIn2 phase
has a mountain-valley-like morphology.

The precursor �lm was heated in the in situ chamber (see Section 3.1 of Chapter 3) together with
6mg of elementary sulfur inside of the reaction box. The overall S to In ratio was 3.3. The total
heating time was restricted to 4.6min. During the sulfurization the temperature was recorded by
a thermocouple placed in contact with one of the �lms. This temperature measurement does not
give the exact temperature of the �lm but can be taken as a rough indicator of its evolution. The
sulfur pressure pro�le was optimized by means of the valve that seals the reaction box (see Figure
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3.1 of Chapter 3). To do this, the position of the valve was �xed so that it remained slightly
opened during the lower temperature regime and closed at higher temperatures. Complementary
RTP sulfurizations (and solar cell results) showed that an adequate time to seal completely the
reactor by means of the valve is t∼2.8min. A more precise determination of the sulfur pressure
is not possible in the con�guration of the RTP chamber shown in Figure 3.1 of Chapter 3. A
controlled sulfur pressure pro�le and its measurement belongs to the future developments of the
RTP sulfurization technology.

Figure 6.2 presents the phase sequence evolution during the sulfurization together with the mea-
sured temperature. This was obtained by �tting the indicated re�ections by Gaussian pro�les and
by plotting their normalized intensities against time. The evolution of the metallic and of the
sul�de phases is separated in the graph (top and bottom respectively).
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Figure 6.2.: Phase existence plot during the rapid thermal sulfurization of a Mo/Cu/CuIn2 lay-
ered stack. The data corresponds to the intensities of the indicated X-ray re�ections
normalized to the MoKα signal. The temperature corresponds to the measurement
of a thermocouple placed in the vicinity of the samples. The dashed lines indicate the
times of the break-o� experiments.
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Growth mechanisms

The formation of the microstructure of the resulting CuInS2 can be understood if the process is
broken down into the �ve mechanisms depicted in Chapter 5 and if their interaction is analyzed.

1. Alloying of the metals: between the process-start and t=2.8min the metals react and form
Cu11In9 then Cu16In9 and then Cu7In3. This follows the same reaction schema of Figure 5.1
of Chapter 5. A �rst reaction, CuIn2(s) → Cu11In9(s) + In(l), liberates In in the liquid
state. This is of relevance because In can be lost in form of the volatile In2S(g) phase. An
coating (β-In2S3) is usually found in the walls of the reaction box after RTP processing
indicating such a loss. The second reaction that can liberate In is the Cu11In9 to Cu16In9

transition. In this case the sulfurization has already started and a closed CuS layer on the
surface inhibits further In loss. It is concluded that indium loss can be avoided if the starting
alloy is Cu11In9. The second important issue of the intermetallic alloying is the formation
of a solid solution of In in Cu. If this phase appears, large opposite strains between metals
and sul�des are possible (see Section 5.1 of Chapter 5). Figure 6.2 shows that no Cu(In)
phase was detected at high temperatures. This is the result of an optimization of the rapid
thermal processing parameters.

2. Sulfurization of the metallic alloy: the sulfurization starts at t=1.5 and ends at t=2.8 with
the consumption of the metals. The �rst detectable sul�des are CuS and CuInS2. A break-
o� experiment at marker a) of Fig. 6.2 exposes the morphology at the beginning of the
sulfurization. At this point the �lm is composed of a closed CuS layer on the surface, a
porous intermediate layer and a continuous metallic layer at the bottom. Ex-situ X-ray
di�raction revealed that the porous intermediate layer contained both CuInS2 and CuIn5S8.
Figure 6.3 presents the cross-section of the break-o� experiment at marker a). The �gure also
shows a plane view of the porous layer. This was obtained by etching away the CuS phase
with KCN. This layer is composed by very small grains. Plate-like structures are identi�ed
through out the plane view. At a later stage in the sulfurization the same con�guration is
maintained. Figure 6.4a) presents the cross-section of a �lm that resulted from a break-o�
experiment at t=2.5. Figure 6.4b) shows the mapping of the Cu �uorescence line in the
same cross-section. This mapping serves to distinguish the phases within the �lm. In this
case, both ternary CuInS2 and CuIn5S8 phases were clearly identi�ed in the in situ and in
the ex situ X-ray di�raction spectra. The cross-section is characterized by a closed CuS
layer (the CuS stems from the Cu2−xS phase at high temperatures present in Figure 6.2), an
intermediate porous layer and of metallic phases in form of islands (characterized by a higher
Cu �uorescence signal) near the back Mo �lm. The intermediate porous layer is qualitatively
thicker than the one shown in Fig. 6.3. The Cu �uorescence line shows a Cu depletion near
the CuS. This can be understood as a predominance of the CuIn5S8 phase near the Cu-S
phases during sulfurization. The layer sequence Mo/metals/CuInS2-CuIn5S8/CuS is typical
of high sulfur pressure sulfurizations (pS∼1mbar) at intermediate temperatures.
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Figure 6.3.: Break-o� experiment at marker a) of the RTP sulfurization shown in Figure 6.2 . The
layer sequence is metals/porous CuInS2-CuIn5S8/CuS. The plane view was taken after
removing the CuS phase with KCN and reveals small grains in a plate-like morphology.

Figure 6.4.: Break-o� experiment at marker b) of the RTP sulfurization shown in Figure 6.2: a)
morphology and b) Cu L �uorescence mapping.
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3. 2Cu2−xS + CuIn5S8 → 5CuInS2 reaction: between t=2.8 and t=3.2 CuInS2 forms at
expenses of the Cu2−xS and CuIn5S8 phases. This corresponds to the reaction whose kinetic
was studied in Section 5.3 of Chapter 5. This reaction consumes the CuIn5S8 phase that
coexists with the CuInS2 one.

4. Thin-�lm recrystallization: this process could not be clearly resolved by the in situ measure-
ment. A possible explanation is that this mechanism does not occur homogeneously through
out the whole �lm. The accurate measurement of a re�ection broadening becomes also more
di�cult for high noise to signal ratios (of the order of ∼50% as was shown in Figure 3.13 of
Chapter 3) typical of the beginning of the sulfurization in fast experiments (short integra-
tion times). The cross-sections of Figure 6.4a) and Figure 6.5 serve as a concluding proof
that domain and grain growth does take place. In the �nal �lm the only phases present
are CuInS2 and CuS. The CuS phase is evenly distributed on the surface of the �lm. The
CuInS2 is divided into two layers: a large-grained ∼1 µm thick layer that lies on top of a
small-grained layer1. There are two possibilities that explain this bilayered morphology:

Figure 6.5.: Morphology of a rapid thermally processed CuInS2 �lm. The small grain size near
the back contact increases the adhesion of the �lm. The large grains near the surface
assure a good electrical performance.

a) a sulfur activity gradient: from Section 5.4 of Chapter 5 it resulted that the sulfur ac-
tivity can reduce the activation energy for the domain and grain growth in the thin-�lm
recrystallization. The sulfur activity, on its turn, decreases with depth when sulfuriz-
ing metallic �lms. In the idealized case of the steady state sulfurization (Figure 5.13
of Chapter 5), a sulfur activity gradient within the �lm supports growth and explains
the observed layer sequence (metals/CuInS2+CuIn5S8/CuS). If the porous intermediate
layer presents a strong sulfur activity gradient, it is possible that the domain and grain
growth will be inhomogeneous throughout the thin �lm. The grains near the sulfur
source (the Cu2−xS phase at the surface) are expected to grow at lower temperatures
compared to those near the back contact.

1The presence of a small-grained layer does not a�ect the solar cell device signi�cantly, since this layer is far from
the heterojunction situated at the surface. In contrast to this, the layer does improve signi�cantly the adhesion
to the Mo �lm as compared to a mono-layered CuInS2 �lm (see Fig. 5.10 of Chapter 5 for an example of such
morphology).
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b) presence of the CuIn5S8 phase throughout the porous intermediate layer: there is a
In enrichment near the Cu-S phases at the surface of the intermediate porous layer
(see Fig. 6.4). The In enrichment can be shifted with growing CuInS2 grains towards
the back of the layer. This might stabilize the CuIn5S8 and block progressively the
recrystallization near the back of the �lm.

5. Sul�de interdi�usion: at high temperature a dissolution of CuInS2 by the Cu2−xS phase is
possible. This a�ects the stoichiometry of the �lm near the surface. However, this cannot
be resolved by bulk X-ray di�raction methods. Proof of this can be make in the future by
analyzing the defect concentrations at the surface of the �lms.

Figure 6.6 shows a representation of the microstructure evolution through the rapid thermal
sulfurization shown in Figure 6.2. An important observation is that the intermediate porous layer
that results from the alloy sulfurization has small grains and contains both the CuInS2 and the
CuIn5S8 phases. The �nal CuInS2 layer is formed from this mixed layer after the subsequent thin-
�lm recrystallization that includes the 2Cu2S + CuIn5S8 → 5CuInS2 reaction. This happens
inhomogeneously leading to the bilayered morphology.

The thin �lms that resulted from this sulfurization were used to fabricate solar cells. This proce-
dure was done following these steps[120]:

� KCN etching to remove Cu-S phases;

� 50nm CdS deposition;

� 100 intrinsic and 500nm doped ZnO deposition;

� Ni/Al grid �ngers deposition.

The current-voltage characteristic of the best 0.5cm2 solar cell are shown in Figure 2.1 of Chapter
2. The solar cell has an e�ciency of 9.1%. This re�ects that the microstructure that was obtained
by this RTP sulfurization is susceptible of delivering good solar cell results with enhanced adhesion
properties. This also con�rms the capability of the in situ method to deliver information relevant
for solar cell fabrication.

This chapter serves as an example of the description of the microstructure formation during RTP
processing through the �ve mechanisms proposed in Chapter 4 and investigated in Chapter 5.
It was emphasized that the sulfur pressure plays a key role in the alloy sulfurization and in
the thin-�lm recrystallization. An optimization of the sulfur pressure pro�le (done by means of
the valve that closes the reaction box shown in Figure 3.1 of Chapter 3) yields a two-layered
CuInS2 morphology where large grains lie on top of a small-grained layer. To achieve this the
sulfur pressure must be high enough at low temperatures to achieve the formation of the CuIn5S8

intermediate phase, but not so high that it decomposes the alloy in CuS and InS. This bilayered
morphology improves signi�cantly the adhesion of the �lm to the Mo back contact.
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Figure 6.6.: Evolution of the microstructure during the rapid thermal sulfurization to produce
CuInS2 presenting an enhanced adhesion to the Mo. The high pressures at inter-
mediate temperatures are responsible for the layer sequence: metals/porous CuInS2-
CuIn5S8/CuS represented in step b) (see the section 5.2 of Chapter 5). The recrystal-
lization of the CuInS2 thin �lm starts near the Cu-S phases and is not homogeneous
through the �lm as seen in step c). The result is a bilayered CuInS2 �lm with smaller
grains near the Mo (step d).
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7. Conclusions

This thesis makes two contributions to the rapid thermal sulfurization technology:

� An in situ energy-dispersive X-ray di�raction method to monitor the microstructural changes
of a thin �lm during solid state transitions or reactions. The method can be used to monitor
rapid thermal sulfurizations of metallic precursors under industrially relevant processing
conditions. It is also suited to investigate and quantify isolated solid state mechanisms.

� The breakdown of the sulfurization process into �ve growth mechanisms. The qualitative and
quantitative information concerning these mechanisms clari�es the microstructure formation
during the growth of the CuInS2 thin �lm and lays the ground for new process design. These
growth mechanisms were studied by means of the in situ method. The most outstanding
results concerning the individual mechanisms are summarized in the following:

1. Alloying of the metals: the possible strain caused by the solid solution of In in Cu must
be considered as a possible source of stress and pore formation. The contraction or
expansion of this phase can be up to 100 times the expansion of the CuInS2 phase. It
would be desirable to avoid the formation of the Cu(In) solid solution.

2. Sulfurization of the metallic alloy: the formation of di�erent sul�de layered-stacks dur-
ing the sulfurization of a metallic alloy was monitored as a function of pressure and
temperature. The sulfurization mode depends on the temperature. At low temper-
atures (T<250°C) the layer formation depends on the growth rate of the individual
phases. This sulfurization leads to the formation of CuS and InS. At high tempera-
tures (T>∼400°C) the sulfurization depends on the local thermodynamic stability of
the sul�de phases. The thermodynamic stability depends on the local sulfur activity.
The sulfur pressure (interpreted as activity) vs. composition phase diagram serves to
understand the formation of the stack of sul�de layers during the steady state sulfur-
ization. At intermediate temperatures, a crossover is observed. In the case where the
sulfurization occurs at 330°C and the sulfur pressure is ∼1mbar, the layer sequence is
CuxIny/CuInS2-CuIn5S8 /CuS.

3. Reaction of the sul�des: the reaction 2Cu2−xS + CuIn5S8 → 5CuInS2 was identi�ed
as being important for the rapid thermal sulfurization because: a) the CuIn5S8 phase
was identi�ed as a possible product of the sulfurization mechanism under rapid thermal
processing conditions, and b) through this reaction CuInS2 thin �lms can be obtained
with rates of the order of ∼0.1µmsec−1 at 550°C. The activation energy for this reaction
was estimated to be between 0.5 and 1eV. It was found that the product of this reaction,
CuInS2, preserves the initial preferred orientation of the CuIn5S8 educt.

4. Thin-�lm recrystallization: this mechanism ensures grain sizes of the order of the thick-
ness of the �lms, low structural defect densities and the stable chalcopyrite ordering
of the cations. A model for the thin-�lm recrystallization was proposed. The model
consists of three steps: a) the consumption of the CuIn5S8 phase, b) an increase in do-
main and grain sizes: the activation energy was estimated to be between 3 and 3.4eV,
c) the Cu-Au ordering to chalcopyrite ordering transition. The sulfur pressure pro�le
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7. Conclusions

can be used to control the recrystallization of CuInS2 thin �lms. Decreasing the sulfur
activity at low temperatures can delay the transition so that the metastable Cu-Au
ordering does not appear. Increasing the sulfur activity at lower temperatures can
delay the recrystallization of the thin �lm by stabilizing the CuIn5S8 phase. Domain
and grain growth in the CuInS2 thin �lms is controlled by the cation mobility and the
cation vacancy concentration. The sulfur activity enhances domain and grain growth
by increasing cation vacancy concentration. The secondary Cu2−xS phase enhances the
cation vacancy creation but is not necessary to trigger the domain and grain growth.
Under this perspective the Cu2−xS phase does enhance, but it is not a necessary con-
dition for grain growth. Alloying with Ag increases the cation mobility and enhances
domain and grain growth. The use of Ag makes possible the fabrication of thin �lms
with large grains at temperatures as low as 270°C.

5. Sul�de interdi�usion: the Cu2−xS can dissolve the CuInS2 phase and may a�ect the
In-related defect concentration near the surface of the thin �lm.

The objective of future investigations must be the controlled microstructure modi�cation of CuInS2

�lms using these tools. This includes avoiding the Cu-Au ordering through a controlled thin-�lm
recrystallization (see the thin-�lm recrystallization paths proposed in Figure 5.41 of Chapter 5).
The creation of pinholes can also be strongly reduced if the thin-�lm recrystallization is triggered
without the presence of a secondary Cu-S phase. Innovative paths to enhance the cation mobility
must be explored to achieve this. Optimizing the defect concentration near the surface of the
CuInS2 �lm by controlling the sulfur pressure at the highest temperature should also be addressed.
When attempting to incorporate other elements in the CuInS2 �lms via the sulfurization of metallic
precursors, careful attention should be given to the sulfurization mode. The sulfur pressure and
temperature do determine the resulting layered-stack and its morphology. The stack of sul�de
layers may change if an alloy (or dopant) -containing sul�de phase is more stable at higher sulfur
activities or if the free energies of formation vary with the addition of the alloying (or doping)
element. Furthermore, if the alloying (or doping) element forms a very fast growing sul�de careful
attention shall be given in avoiding an uncontrollable exclusive sulfurization at low temperatures.
The analysis of the free energies of formation and the sulfur activity vs. composition diagrams
should be part of the preliminary work when designing sulfurization processes.

The rapid thermal sulfurization of Cu-In �lms is a process that must be looked at in the three-
dimensioned parameter �eld: time, temperature and sulfur pressure. A restricted control of the
sulfur pressure inside an RTP reactor can be achieved by a valve similar to the one presented in
Figure 3.1 of Chapter 3. However, a controllable sulfur source should be designed and fabricated
for future processing. As for the measurement of the process pressure, no reliable sulfur pressure
gauge for the 10−3 to 10mbar range is available. To address this issue a pressure gauge was
conceived during this work. It was designed for the rapid thermal sulfurizations or selenizations
of thin �lms and is subject to a German patent claim. Appendix F describes the measuring
principle and a possible technical description of such a sensor. A controlled sulfur supply and a
measurement of the process pressure must be the next two steps of the sulfurization technology.
With these, a directed modi�cation of the microstructure is possible.
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A. Thermodynamics of the Cu-In-S

system

A.1. De�nitions

A thermodynamic system is completely de�ned by a set of state variables. These are extensive
(for example the volume) and intensive (for example the temperature). Functions of state use
state variables to describe the system. The Gibbs free energy G is a function of state de�ned as:

G = U + pV − TS = H − TS (A.1)

where U is the internal energy, H is the enthalpy, T the temperature, p the pressure and S the
entropy. The total di�erential is

dG = V dp− SdT (A.2)

in a closed system (no mass transfer). At equilibrium the temperature and pressure are constants
and no work is extracted. Then dG = 0. This means that G is at a minimum (a maximum of G
implies an unstable equilibrium).

In a system with di�erent atomic species found in φ di�erent compounds, the minimization prob-
lem of Gibbs free energy can be expressed as

min(G =
∑
φ

NφGφ) (A.3)

where, Nφ is the molar quantity of the compound φ and GGibbs
φ its free energy. The closed system

imposes the constancy of the number of atoms of each species. The Gibbs free energy of a
compound as a function of temperature is

GT
φ = H298

φ +

T̂

298

Cpφ(x)dx− T

S298
φ +

T̂

298

Cpφ(x)

x
dx

 (A.4)

where Cp is the heat capacity at constant pressure, and H0 and S0 are the standard enthalpy and
standard entropy. The temperature dependence of Cp is well described by

Cp = a+ bT + cT 2 + dT−2 (A.5)

where a,b,c,d are empirical parameters that are tabulated for a large quantity of compounds.
CHEMSAGE[38] is a computer program that, based on a, b, c, d, H0 and S0, calculates the
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A. Thermodynamics of the Cu-In-S system

equilibrium compositions by solving equation A.3. To solve equation A.3 in the ideal mixture
model (IDMX) of CHEMSAGE, the pressure dependence of the Gibbs energy of the condensed
phases is neglected. The pressure dependence of the gas phases is taken into account through the
equation of state for the ideal gas

piV = NiRT (A.6)

with

p =
∑
i

pi (A.7)

where pi and Ni are the partial pressures and molar quantities of the i component of the gas phase,
and p the total pressure in the system. Phase diagrams of the �rst (intensive vs. intensive) and
of the second (intensive vs. extensive) kind were calculated with CHEMSAGE. The dataset and
details on the calculations are given in Appendix B.

A.2. Sulfur vapor

Sulfur of 99.9995% purity was used in this work for the fabrication of the CuInS2 �lms. Saturated
sulfur vapor is composed of Sx(x=2..8) molecules. Figure A.1a) shows the saturated vapor pressure
as a function of temperature[96] and the partial pressure of the molecules [31]1.

In a closed volume with a limited amount of sulfur, the sulfur pressure, and its composition,
corresponds to the saturated vapor if a liquid phase is present. If the temperature rises further,
so that only a gas phase is present, both composition and pressure of the gas phase deviate from
the saturated pressure curve. Figure A.1b) shows thermodynamical calculations made with the
software CHEMSAGE (see Appendix B for the dataset) of the pressure and composition of the
vapor phase in a closed volume (107cm3) containing 1 mg of solid S at room temperature. Figure
A.1 also shows the total pressure evolution when using 32mg of solid S in the same volume. The
temperature where the pressure deviates from the saturated vapor pressure is higher compared to
the case of 1mg.

1The high vapor pressure of sulfur makes its direct measurement di�cult. Operating under sulfur pressures Sop
requires a sensor temperature of at least the temperature corresponding to the same pressure in the saturated
vapor curve, TSV . Lower temperatures imply condensation of the sulfur in the sensor.
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A.2. Sulfur vapor
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Figure A.1.: a) Saturated vapor pressure of sulfur[96] and its composition[31], b) CHEMSAGE[38]
calculation of the total pressure and the partial pressures inside a closed volume (107
cm3) containing only sulfur.
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A. Thermodynamics of the Cu-In-S system

A.3. Binary systems

The binary systems will be brie�y described. For further information see [98].

A.3.1. Cu-In

The Cu-In system (see Figure A.2) presents four intermetallic phases at room temperature:
(δ)Cu7In3, (η)Cu16In9, (φ)Cu11In9 and CuIn2. The latter phase is not reported in the phase
diagram[17] but is observed in thin �lms up to temperatures of 148°C[98].

Figure A.2.: Cu-In phase diagram [17].

A.3.2. Cu-S

Figure A.3 presents the phase diagram of the Cu-S system. Cu-S crystallizes in the cubic digenite
(Cu2−xS) phase at high temperatures and in the orthorhombic or hexagonal chalcocite at lower
temperatures. The more S-rich phase is the hexagonal covellite (CuS). The phase transition

2CuS(s)→ Cu2−xS(s) +
1

2
S2(g) (A.8)

is sulfur pressure dependent. Figure A.4 presents the p-T phase diagram of the Cu-S system[11].
Lower S pressures shift transition A.8 to lower temperatures.

Djurle[34] shows that the lattice constant of the Cu2−xS phase decreases with increasing non-
stoichiometry (x). Rau[100] proposes that the cation vacancy concentration (neutral, charged and
a complex of both) increases with increasing S2 pressure. Pareek et al.[95] observe the same trend.
Their main conclusion is that the changes in stoichiometry are driven by addition or removal of
copper vacancies and that the sulfur sublattice remains nearly unchanged.
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A.3. Binary systems

Figure A.3.: Cu-S phase diagram [23].

Figure A.4.: p-T phase diagram of the Cu-S system from [11].
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A. Thermodynamics of the Cu-In-S system

A.3.3. In-S

Figure A.5 shows the binary In-S phase diagram. The β-In2S3 phase crystallizes in the cubic
system presenting a spinel structure[118]. This is composed of a cubic face-centered cubic sulfur
sublattice with In cations occupying partially tetrahedral and octahedral voids. This phase is
relevant for the fabrication of CuInS2 by physical vapor deposition methods and is currently used
as an alternative bu�er layer in Cu(In,Ga)Se2 devices[99]. A volatile compound, In2S(g), forms
when exposing pure In to sulfur at low pressures[35]. This compound is responsible for In loss
during CuInS2 processing.

Figure A.5.: In-S phase diagram from [94].
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A.3. Binary systems

A.3.4. Cu-In-S system

Figure A.6 shows a ternary phase diagram of the Cu-In-S system from [37]. The ternary phases
stable at room temperature are chalcopyrite CuInS2 and the spinel CuIn5S8.

Figure A.6.: Cu-In-S phase diagram from [37].

Figure A.7 shows the quasi-binary Cu2S-In2S3 cut. The homogeneity range is larger in the In-rich
side of the chalcopyrite phase and can be read directly in the quasi-binary phase diagram. β-In2S3

and CuIn5S8 form a solid solution and share the same structure.

Figure A.8 shows the pressure dependent equilibrium phases calculated with CHEMSAGE for a
Cu to In ratio of 1.6. For the calculation the elementary amounts were �xed and the volume of
the virtual reactor was varied to obtain the desired pressure. The sulfur pressure corresponds to
the sum of the partial pressures of all sulfur species, from S2 to S8. According to the calculations
the In-richer CuIn5S8 phase can be stabilized by increasing the sulfur pressure even if the overall
stoichiometry is Cu-rich. Free energies of formation used for the calculation are listed in Appendix
B.
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A. Thermodynamics of the Cu-In-S system

Figure A.7.: Quasi-binary Cu2S-In2S3 phase diagram from [12].
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Figure A.8.: Pressure dependent equilibrium phases calculated with CHEMSAGE for a Cu to In
ratio of 1.6.
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B. Chemsage calculations

The software CHEMSAGE[38] was used to calculate phase equilibria. The ideal mixture model
(IDMX) was used for the minimization of the free energy.

The input data for all simulations are given in the Figure B.1. For the Cu-S and In-S binary
compounds the data were taken from [10]. The data for the ternary compounds were calculated
by Villora[134] from the equilibrium reactions:

Cu2S + In2S3 
 2CuInS2 (B.1)

and

1

2
Cu2S +

5

2
In2S3 
 CuIn5S8 . (B.2)

The Cu7In3, Cu16In9, Cu11In9, CuIn2 enthalpy, entropy, and heat capacity coe�cients were esti-
mated by Villora[134].

B.1. Sulfur pressure vs. Cu-In composition phase diagrams

The pressure-dependent phase equilibria were calculated at 500°C and at 330°C using the following
input:

� Cu-rich: 1 to 5 mol Cu, 1 mol In, 100 mol S

� Cu-poor: 1 to 5 mol In, 1 mol Cu, 100 mol S

� The total pressure was imposed between 10−18 and 10−4 bar.

The calculated phase equilibria (presented in Figure B.2) served as a base to estimate the pS2

vs. composition phase diagram of the Cu-In-S system in the 300°C-500°C range. To do this the
following hypotheses were made:

� The total pressure corresponds to S2(g). The pressure inside the virtual reactor is dominated
by the S2 species for both temperatures. At 500°C the S2 pressure deviates the most from
the total pressure. Figure B.3 presents the S2 pressure as a function of the composition
for the imposed total pressures (on the right). At low pressures and low Cu contents, the
deviation is of maximal 10%. For intermediate and higher pressures and in the Cu rich case
the deviation is negligible.

� The data for the Cu-In metallic phases is regarded with precaution. The data was estimated
because no values are reported in the literature and is therefore subject to inaccuracies.
Therefore the Cu7In3 regions should be interpreted as being any of the metallic CuxIny
phases, or even a mixture of intermetallic phases.
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B. Chemsage calculations

Phase Compound H0 S0 a b c d Temperature

Gaz Cu 339066 166.368 22.474634 -0.0030139 1.29e-06 -85813 3000

Cu2 485344 241.718 37.388 0.000741 0 -9200 3000

In 246304 173.719 22.679748 0.0023634 0 -237932 2500

InS 233160 251.662 37.2554 7.53e-05 0 -2093 2000

In2S 138138 318.397 59.94352 0.0012558 0 -8372 2000

In2S2 93347.8 313.95 82.979078 0.00012977 0 -513204 2000

S 272090 167.817 24.232754 -0.0041107 1.34e-05 -59022.6 2000

S2 128594 228.179 35.061936 0.00282 0 -293020 2000

S3 138862 269.5 53.781 0.004351 0 -649000 2000

S4 145798 310.601 79.877252 0.003277 0 -1.18003e+06 2000

S5 109380 308.592 106.935556 0.0010591 0 1.57687e+06 2000

S6 99710.5 354.094 132.13109 0.00050232 0 -1.841e+06 2000

S7 111515 407.675 155.120602 0.0024488 0 -2.03816e+06 2000

S8 98245.4 430.321 180.316136 0.00172246 0 -2.24286e+06 2000

Condensed Cu 0 33.1238 24.116802 0.0053711 -8.23e-07 -107329 1357

Cu 13.27 31.395 0 0 0 2846

Cu7In3 -20511.4 44.8321 17.60213 0.019808 0 0 700

Cu16In9 -19381.8 44.8614 17.087252 0.01985 0 2511.6 700

CuIn2 -38929.8 148.603 79.9526 0.02093 0 0 421

Cu11In9 -349950 885.339 564.2728 0.094185 0 0 580

CuInS2 -232742 142.324 94.68732 0.027942 0 53622.7 1256

CuIn5S8 -993756 468.832 399.51184 -0.068985 0 -4.186e+06 1358

CuS -73255 66.5574 44.3716 0.011051 0 0 1000

Cu2S -79534 117.208 52.82732 0.078739 0 0 376

Cu2S 3851.12 112.05922 -0.030767 0 0 717

Cu2S 1201.38 84.64092 0 0 0 1402

In 0 57.8087 10.958948 0.039838 0 -346894 430

In 3.26 57.8087 29.86711 -0.00089078 0 0 900

In2S3 -355810 163.673 128.9288 0.0032651 0 -10465 660

In2S3 108.84 97.8268 0.055423 0 0 1100

In3S4 -503157 234.416 94.1855 0.12139 0 0 1113

In5S6 -774410 374.647 256.6018 0.05986 0 -1.06743e+06 1043

S 0 34.3252 14.793324 0.024074 0 71162 368

S 400.98 17.55898 0.019607 0 0 388

S 1723 45.032988 -0.016635 0 0 717

Figure B.1.: Standard formation enthalpies, H0 in Jmol−1(and eventual transformation enthalpies
HT ), entropies S0 in JK−1mol−1, Cp coe�cients according to Equation A.5, together
with the temperatures ranges (in Kelvin) of validity of the phases in the Cu-In-S
system.
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B.1. Sulfur pressure vs. Cu-In composition phase diagrams
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Figure B.2.: Total pressure and composition dependent phase equilibria at 330°C and 500°C in
the Cu-In-S system. The markers indicate the phases that are stable at the given
pressures and compositions. The schematic sulfur pressure vs. composition Cu-In
shown in Figure 5.2 of Chapter 5 was extracted from these phase equilibria.
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B. Chemsage calculations
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C. De�nition of XRD pro�ling functions

2w and β stand for full width at half maximum and integral breadth.

C.1. Gauss

y(x) = a1exp(−
(x− a2)2

2a2
3

) (C.1)

with

2w = 2
√

2ln2a3 and β =
√

2πa3.

C.2. Cauchy

y(x) =
a1

1 + (2(x−a2)
a3

)2
(C.2)

with

2w = a3 and β = a3
π
2
.

C.3. Simpli�ed Pearson VII

y(x) =
a1[

1 + (x−a2)2

2a4a23

]a4 (C.3)

with

2w = 2a3

√
2a4(2

1
a4 − 1) and β =

a3
√

2πa4Γ(a4− 1
2

)

Γ(a4)
, where Γ stands for the gamma function.
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D. Determination of the kinetic

parameters for the consumption of

CuIn5S8

Figure D.1 presents the data used for the determination of the Avrami kinetic parameters of the
reaction:

2Cu2S + CuIn5S8 → 5CuInS2 . (D.1)

In a), c) and e) the �gure presents the best �t for the Avrami exponent and the corresponding
χ2 value as a function of τ (see Equation 5.6 of Chapter 5). In b) and d) the �gure presents the
fractional reaction data together with the best �t for n and τ for the experiments Binary300 and
Binary325 described in Table 5.2 of Chapter 5. Experiment Binary340 (listed in the same table)
presents fractional reaction values higher than 0.75. The corresponding χ2 of the �tting procedure
presents no minimum as a function of τ . In this case the fractional reactions are at best �tted for
low τ , with a clear increase in the Avrami exponent.
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D. Determination of the kinetic parameters for the consumption of CuIn5S8

Figure D.1.: Determination of kinetic parameters using the Avrami model. Figures a),c) and e)
show the best �t for the Avrami exponent n as a function of τ , together with the χ2

value that mirrors the quality of the �t. Figures b) d) and f) show the �ts at the n
and τ values given in each �gure. Such linear �ts are used to extract kp for the three
annealing experiments.
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E. Extraction of the Cauchy-breadth

from EDXRD spectra

One way to evaluate the microstructure of a thin �lm is to quantify the broadening of its X-
ray di�raction lines1. To the structural broadening of a di�raction line contribute principally:
dislocation and stacking fault density, twinning, microstrain, chemical heterogeneity and crystallite
size. These e�ects (other than twinning which is not considered in the following) can be separated
in strain and size e�ects. In a �rst approach the strain-induced broadening is proportional to
the microstrain and the size-induced broadening is inversely proportional to the average length of
coherent scattering (measured in the direction of the scattering vector[13]). The latter correlation
is called the Scherrer formula and will be described in Section E.3.

The length of coherent scattering, or domain size Dd, can be identi�ed with the average size of
the grains when considering crystallites of perfect quality separated only by grain boundaries. In
this idealized case the domain sizes, Dd, are equivalent to the grain sizes, Dg. However, in general
it is valid that

Dd 6 Dg . (E.1)

E.1. Cauchy-breadth and domain size

Dehlez[29] proposes a procedure to separate strain and crystallite size e�ects. It is based on
the separation of Gauss and Cauchy contributions to the breadth. Birkholz[13] proposes that
the Gauss contribution is proportional to the strain, and the Cauchy contribution is inversely
proportional to the average crystallite size. The proportionality constant depends on crystallite
shape, size distribution and de�nition of crystallite size (see Scherrer formula below).

To obtain Gauss (βG) and Cauchy (βC) contribution to the breadth from a pro�le with full width
at half maximum 2w and integral breadth β the following relations are used[29]:

βC

β
= 2.0207− 0.4803(

2ω

β
)− 1.7756(

2ω

β
)2 (E.2)

and

βG

β
= 0.6420 + 1.4187(

2ω

β
− 2

π
)
1
2 − 2.2043(

2ω

β
) + 1.8706(

2ω

β
)2 . (E.3)

The measured pro�le is the convolution of the microstructural pro�le and the instrumentation
pro�le. From the relations of Section 3.2.1.5 of Chapter 3, it follows that

1Ungar[132] lists the possible aberrations of an X-ray di�raction line.
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E. Extraction of the Cauchy-breadth from EDXRD spectra

βCMicrostructre = βCMeasured − βCInstrumentaion ≈ βCMeasured (E.4)

because the Cauchy contribution to the breadth of the instrumentation pro�le is negligible. Under
this assumptions, the Cauchy-breadth of a di�raction line of the EDXRD setup described in
Chapter 3 is:

a) a measure of domain size and

b) an indicator of the lower limit of grain size

E.2. Extraction of the CuInS2 112 Cauchy-breadth by

multiple-line �t

Section 5.4 of this thesis presented results based on a multiple-line �t in the energy range 28.5-32.5
keV of EDXRD spectra recorded at the EDDI beamline. The suppositions of this �t concerned

� the re�ection pro�les: a Gaussian pro�le was assumed for the CuIn5S8 311 and 222, the CuS
100, 101, 102 and the Cu2-xS 111 re�ections and a Pearson VII-type pro�le was assumed for
the CuInS2 112 re�ection;

� the re�ection positions: the positions of the CuIn5S8 311 and 222 re�ections were �xed by
the position of the CuIn5S8 400 re�ection according to the JCPDS card 24-0361. The latter
line was �tted independently (∼35keV). The positions of the CuS 100, 101 re�ections were
�xed by the position of the CuS 102 re�ection according to the JCPDS card 78-2121. The
latter re�ection was �tted independently. The position of the Cu2-xS 111 re�ection was �xed
by the position of the Cu2-xS 220 according to the calculated values. The latter re�ection
�tted independently (∼49keV) ;

� the re�ection intensities: A �xed intensity ratio was assumed in the case of the 100, 101, 102
CuS re�ections according to the JCPDS card 78-2121. The intensity ratio for the CuIn5S8
311 and 222 was taken to be 1 as it was found for a thin �lm reference of this phase. The
intensities of the CuIn5S8 lines in the �t range introduce the greatest uncertainty in the
extracted CuInS2 pro�le parameters;

� the re�ection widths: The widths of the CuS and CuIn5S8 re�ections were �xed at 0.2 keV
and 0.3 keV respectively, by iteratively optimizing the �t at room temperature. The width
of the Cu2-xS 111 was kept between 0.2 keV and 0.3 keV and given free for �tting when
possible;

� The background determination: the background was determined for the spectrum taken at
500°C and assumed constant for every other temperature.

The �tting procedure was programed in IGOR Pro V5.0 that uses a built-in Levenberg�Marquardt
algorithm. From the �tting procedure the full width at half maximum 2w and integral breadth
β of the CuInS2 112 were extracted. These were used to extract the Cauchy contribution of the
breadth.
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E.3. Scherrer formula

E.3. Scherrer formula

The Scherrer formula is

βθ =
kScherrer · λ
L · cosθ

(E.5)

where β is the breadth of a re�ection, L the crystallite size, λ the wavelength and kScherrer the
Scherrer constant. kScherrer takes di�erent values depending on

� the exact de�nition of breadth;

� the crystallite shape;

� the size distribution of the crystallites.

Langford[73] summarizes the kScherrer values in the most common cases. L refers to a volume-
weighted crystallite size. This di�ers from the mean crystallite size that can be measured from
a cross-section[29, 13]. The correlation between volume- and area-weighted sizes depends on the
crystallite shape and on the size distributions.

Taking the breadth as an incertitude on the angle θ and di�erentiating the Bragg equation (Equa-
tion 3.3 of Chapter 3), the Scherrer formula is written as

βE =
kScherrer · hc
2 · L · sinθ

(E.6)

in the energy-dispersive case, where βE is an incertitude in the energy scale. Usually βE is
interpreted as the integral breadth[36, 42].
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F. High temperature pressure gauge for

rapid thermal chalcogenizations

A gauge for the measurement of the sulfur (or eventually selenium) pressure in the range from
10−2 to 10mbar inside an RTP reaction box was designed during this thesis. This design is the
subject of a German patent (DE: 102008029028 B3). The pressure gauge ful�lls the following
requirements:

� Measurement range: from ∼10−2mbar to ∼10mbar;

� No condensation of sulfur (or selenium). This imposes a minimal temperature at the mea-
suring gauge of 300°C if the maximal sulfur pressure is 50 mbar (500°C if the maximal Se
pressure is 50mbar). This temperature corresponds to the temperature of the vapor pressure
curves for the given maximal pressure;

� Acquisition and processing time are adequate for its application in rapid thermal processing;

� Uncoupled from the processing temperature.

A pressure gauge that ful�lls these requirements did not exist. The design of such a high tem-
perature pressure gauge was based on the decoupling of the measurement of the pressure and
the process itself. The pressure measurement was realized in a measuring head that was shielded
form the radiation of the lamps. This measuring head could be heated separately to the desired
temperature Tg in function of the gas and maximal expected pressures. The measuring head was
connected to the reaction box via a transfer channel that was heated to the same temperature
Tg. During RTP sulfurizations, the S gas molecules build a pressure pΣSx in the reaction box.
The number of molecules passing through the transfer channel to the measuring head depend on
this pressure. The measuring head was designed to measure the number of the molecules. Via a
calibration, the pressure pΣSx during processing can be recorded.

In the measuring head a sensor must be mounted. This can be of the capacitive type or, as
realized in the prototype, of the resistive type (Pirani type). A heated W �lament is the heart of
the sensor. Its resistance changes as a function of the heat transfer from the �lament to the walls
of the measuring head. This is a function of the heat conductivity of the medium between both:
the incoming process gas.

A �rst prototype of such a high temperature gauge was realized with the following characteristics:

� Measuring head temperature: 300°C;

� Sensor: 20 µm thick, 1 cm long W �lament;

� Filament temperature in vacuum: 450°C;

� Wheatstone bridge based electronics;

� Transfer channel 8mm in diameter and 290mm long.

This prototype pressure gauge was compared to a full range pressure gauge from Balzers. Form this
comparison a calibration curve for dry nitrogen was obtained. Figure F.2 shows this calibration.

141



F. High temperature pressure gauge for rapid thermal chalcogenizations

Figure F.1.: Representation of a pressure gauge for sulfurization (or selenization) processes in a
closed volume. The measuring head is kept at a constant temperature Tg higher
than the condensation temperature of the chalcogen at the maximal pressure and is
decoupled from the processing temperature imposed by the lamps. The measuring
head probes the gas in the reaction box.
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Figure F.2.: Calibration of the high temperature (300°C) Pirani-type gauge that was developed
during this thesis. This gauge is capable of the pressure measurements in the range
of ∼10−2 to 10mbar during rapid thermal sulfurizations.

The �gure proofs that the protoype gauge is adequate to measure pressure in the 10−2 to 10mbar
range. Furthermore it ful�lls the requirements listed at the beginning of the appendix. Therefore,
this prototype is suited to measure the pressure inside the reaction box during rapid thermal
processes.
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