
EPICS V4 EXPANDS SUPPORT TO PHYSICS APPLICATION, DATA 
ACSUISITION, AND DATA ANALYSIS* 

L. Dalesio, Gabriele Carcassi, Martin Richard Kraimer, Nikolay Malitsky, Guobao Shen,  
Michael Davidsaver, BNL, Upton, Long Island, New York, U.S.A 

Ralph Lange, Bessy, Berlin, Germany 
Matej Sekoranja, Cosylab, Ljubljana, Slovenia 

James Rowland, Diamond Light Source, Oxfordshire, England 
Greg White, SLAC, Menlo Park, California, U.S.A. 

Timo Korhonen, PSI, Villigen, Switzerland

Abstract 
EPICS version 4 extends the functionality of version 3 

by providing the ability to define, transport, and 
introspect composite data types. Version 3 provided a set 
of process variables and a data protocol that adequately 
defined scalar data along with an atomic set of attributes. 
While remaining backward compatible, Version 4 is able 
to easily expand this set with a data protocol capable of 
exchanging complex data types and parameterized data 
requests. Additionally, a group of engineers defined 
reference types for some applications in this environment. 
The goal of this work is to define a narrow interface with 
the minimal set of data types needed to support a 
distributed architecture for physics applications, data 
acquisition, and data analysis.  

INTRODUCTION 
Version 3 of EPICS [1] consisted of three key 

components: the narrow client interface that presented 
channels of various scalar data types with metadata for 
display and control, a robust and high performance 
network protocol for these data types, and a process 
database that allowed the definition of control logic to 
achieve steady state control. Many clients were developed 
to provide batch, SCADA, and DCS capabilities to 
physics research facilities. Version 3 offered little to help 
develop application for data acquisition, model based 
control, or experiment control. Many facilities developed 
monolithic programs with some general libraries to build 
toolsets to accomplish these functions. Version 4 of 
EPICS, features an extended data type definition and a 
protocol that can serialize and de-serialize these data 
types to extend the narrow interface to develop services 
above the instrumentation level to support these 
functions. This paper will explore the extended interface 
that is being presented to the services and clients to 
support this functionality and the middle layer services 
that are planned to work in this protocol to support a 
modular architecture to support data acquisition, 
experiment control, and model based control. 

VERSION 3 CHANNEL TYPES 
The version 3 channel types included the basic scalar 

data types along with metadata to make the value useful 
in a process control system. These meta data included a 

time stamp, information that allowed the channel to be 
displayed, alarmed, or controlled. The time stamp is the 
primary mechanism for identifying when the value was 
read. This enables us to look for correlations between 
various system parameters. It also included an alarm 
severity that identified a channel that was not valid, or in 
an alarm condition. The metadata also included 
information to inform a client how to display a value with 
either display limits, display ranges and engineering units 
for analog type values, state labels for discreet signals, 
and dimensions for strings or array [2]. It also included 
information to understand the limit of control for analog 
settings and discreet outputs. These types provided 
reasonable functionality for device integration. They 
provided little to no support for data acquisition, model 
based control, and experiment control where the channels 
needed to be more complex and dense. Version 4 core 
allows the definition of any data structure to be serialized 
and transported [3]. This version defines a set of general 
and specific normative types to support these functions. 
This paper will discuss this set of normative types and 
their application in the middle layer services that are 
being developed to support this new scope. 

VERSION 4 MIDDLE LAYER USE CASES 
When we study the physics toolkits that have been 

developed such as SDDS [4], Matlab Middle Layer 
Toolkit [5], and XAL [6], it becomes clear that several 
utilities are always available. There is always a 
description of sets of EPICS Process Variable that are 
predefined for lists of channels that need to be operated 
on or displayed. This is specified as two services in 
version 4: Directory Service and Gather Service. These 
tools also have need to acquire information from a static 
data store for alignment data, magnet mapping data, and 
other static data that is in a relational database. These sets 
of data fall into several categories: named value pairs, or 
sets of values such as coefficients. In addition, data 
acquisition and model based control required large 
vectors of data or multidimensional arrays, or images. 
Data over large periods of time are also useful in this 
environment. It is these use cases, that drive the creation 
of the extended set of data types that will be exposed 
through the version 4 PVAccess API In addition to the 
extension of the data types to support these functions, The 
version 4 PVAccess server has been connected to the 

FRBHMULT06 Proceedings of ICALEPCS2011, Grenoble, France

1338C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing



EPCIS version 3 database to serve this data on the version 
4 protocol as the first set of General Normative Types: 

NTFloat, NTDouble, NTEnum, NT String, etc. See 
Figure 1. 

 
 

Figure 1: An EPICS Version 4 architecture drawing showing the new middle layers services that can be done with this 
extended set of data types. Many of these tools are being presented in this conference. 

 

VERSION 4 NORMATIVE TYPES 
Several normative data types have been defined to 

extend the set supported under EPICS version 3. All of 
the following normative types include a definition for 
time stamp called: NTTimeStamp , and alarm information 
called: NTAlarm. The general normative types are: 

 NTPVList, NTTimeArray, NTFreqArray, 
NTHistogramArray, NTMultiChannelArray,  
NTNDArray. NTStatisticalSamples, NTImage, and 
NTTable,     
 

NTPVList 
The PVList is a data structure that contains a list of 

process variables. In addition to the list of process 
variable names, this channel contains information needed 
to connect to this channel and provide the group as an 
order list. The fields may include connection information 
such as IP Address, port, priority, and an indication if it is 
currently available on the network. The field to create an 
ordered list could be the physical position along a beam 
line or storage ring. 

 
NTTimeArray, NTFreqArray, NTHistogram 

The arrays types need to be different as they represent 
very different data. The type informs the clients what 
types of information they present and the operations that 
can be done on them. NTTimeArray is from a digitizer 
and must have the time between samples to understand 
how it relates to other waveforms taken relative to it. 
NTFreqArray is an FFT of a NTFreqArray that requires 
the delta frequency between samples. The NTHistogram 
is an array of counts for different ranges of a scalar. This 
array can count values on either a linear distribution or 
log distribution.. 

NTMultiChannelArray 
The multichannel array is a container for aggregating a 

set of scalar values into a single vector that is typically 
from the same time such as an orbit, or vacuum profile. 

Proceedings of ICALEPCS2011, Grenoble, France FRBHMULT06

Distributed computing 1339 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



NTNDArray 
An N dimensional array is used to transport a vector of 

data taken over time or a two dimensional array taken 
over time. This extends to an N dimensions. 

NTStatisticalSample 
A statistical sample is used to compress the data being 

sampled at a higher time frequency, into a lower 
frequency into a statistical sample that includes: high 
value, low value, mean, time of first sample, first sample, 
time of last sample, last sample, standard 
deviation,:number of samples and the or’d alarm severity 
of all of the samples. This data type is useful for reducing 
data from a longer period to a shorter period such as: raw 
bpm data samples at 10 KHz and reported at 1 Hz or 
record data being sampled at 10 Hz and being archived 
once every minute. It can also be used to compress a very 
long range of data coming back from the data archiver 
where the browser only has 500 pixels for displaying the 
data. Compression on the server side would greatly 
reduce the amount of network traffic and data transfer 
time. 

NTImage 
An image is a multi-dimensional array that needs 

additional information to know how to display it or do 
math operations on it. The NTImage must know the 
encoding and compression to be able to integrate, perform 
background subtraction, or display the image.  

NTTable 
A table is a fine way to collect a set of named 

parameters that are of a different type. This is a way to 
catch any arbitrary set of named elements that have a 
fixed number of values. If there is only 1 value (or row), 
it is a set of named value pairs. If there is more than 1 
row, it is a set of named vectors. This can be used to 
capture a set of configuration parameters such as: 
experimenter name, company name, camera used, shutter 
speed, focus, etc… It can also be used to return the Twiss 
parameters for a set of magnets, where each column is 
one of the elements of the TWISS parameters and each 
row is a magnet. 

 

CONCLUSION 
PVData in Version 4 presents a set of normative types 

that can be aggregated, displayed, and archived. This 
include the version 3 normative types along with a server 
connected to version 3 databases. This set can be used to 
create general purpose servicers such as a directory 
service or a time synchronous vector from a distributed 
set of scalar values. PVAccess supports the serialization 
and de-serialization of PVData so that no changes are 
needed in this code to extend the set normative data types. 
More complicated services can collect the data needed 
from middle layer services as collections of these types 
and serve the results to high level applications or other 
middle layer services that will use them to create other 
results that may be served in turn to other clients or 
middle layer services.  

This infrastructure along with this set of normative 
types are being used to develop the high level physics 
application environment for NSLS II in collaboration with 
the NSLS II control group, the NSLS II physics group, 
the SLS Control Application group and the Diamond 
Beam line Control Group. Early results show good 
performance. However, it remains to be demonstrated that 
this approach works and improves the overall 
development and maintenance of high level applications. 
 

REFERENCES 
[1] L. Dalesio, Kraimer, et. al., “EPICS Architecture”, 

invited talk at the ICALEPCS, Tsukuba, Japan, 1991. 
[2] J. Hill, et. al., “Channel Access Reference Manual”, 

URL: http://www.aps.anl.gov/epics/base/R3-14/12-
docs/CAref.html,, 2009. 

[3] M. Kraimer, et. al., “pvAccess, pvData, pvIoc, 
pvService overview and status”, EPICS Collaboration 
Meeting, Villigen, Switzerland, 2011. 

[4] M. Borland, “SDDS Information”m URL: 
http://www.aps.anl.gov/Accelerator_Systems_Divisio
n/Accelerator_Operations_Physics/SDDSInfo.shtml, 
2001. 

[5] G. Portmann, J. Corbett, A. Terebilo, “Middle Layer 
Software Manual for Accelerator Physics,” LBNL 
Internal Report, LSAP-302, 2005. MATLAB 
MIDDLE LAYER TOOLKIT 

[6] XAL, http://neutrons.ornl.gov/APGroup/appProg/ 
xal/xal.htm 

 
 

 

FRBHMULT06 Proceedings of ICALEPCS2011, Grenoble, France

1340C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing


