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1. Abstract

The possibility of doping and Fermi Level pinning of CuInS2 thin layer solar cell absorbers

caused by the diffusion of Cd into the absorber during junction formation via chemical bath

deposition was investigated. The analysis of thin CdS layers deposited on CuInS2 showed

the amount of deposition-induced band bending on the CuInS2 surface (position of the Fermi

Level in the respective band gaps) was not experimentally reproducible. However, the value

of the valence band offset between the two materials was reproducible between different de-

positions within the error of the measurement. Thus, the deposition of the CdS does not lead

to a consistent pinning position of the Fermi Level in the CuInS2/CdS heterojunction. The

removal of the CdS layers with HCl left a thin Cd-containing layer on the CuInS2 surface

and it was shown that this surface was not doped by the remaining Cd. Furthermore, the

influence of the HCl of the CuInS2 was explored and found to form a reproducible surface

richer in Cu than CuInS2 etched in potassium cyanide solution.

2. Introduction

Cu(In,Ga)S2 (CIGS) is a promising absorber material for thin layer solar cells having the

structure n+-ZnO/i-ZnO/CdS/absorber/Mo/glass. With efficiencies reaching almost 13%

this technology has already found its place in the PV market [1, 2], although the efficiency

can be highly dependent on the method of production [3, 4, 5]. Although laboratory scale

CIGS cells can have open circuit voltages above 800 meV, higher than similar cells from the

low band gap selenide-absorber system (Cu(In,Ga)Se2), the sulfide-based cells cannot pro-

duce a Voc corresponding to their 1.6 eV band gap [2, 6]. This is also the case for the simpler

CuInS2 (CIS) system and its 1.5 eV band gap and Voc of ∼750 meV [5, 6]. The result is that
1
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the selenide-based cells far out perform their sulfide-based counterparts in efficiency [7].

The junction between the CIS absorber and the CdS buffer layer is an extremely critical

point of the solar cell and is not yet fully understood. In contrast to Cu(In,Ga)Se2-based

solar cells which are often described as having a spike alignment between the conduction

bands of the absorber and the CdS buffer layer (absorber conduction band nearer to the

Fermi Level than the buffer conduction band) [8], the conduction band alignment between

the absorber and buffer layer in the sulfide-based solar cells is thought to be a cliff when

analyzing solar cell grade materials (absorber conduction band further from the Fermi Level

than the buffer conduction band) [9, 10, 11]. The cliff leads to increased interface charge car-

rier recombination because the Fermi-Level is at mid-band gap at the interface, allowing for

relatively large hole and electron populations in a region of high defect density [8, 12]. The

consequences of a non-optimized conduction band alignment can be alleviated somewhat if

the absorber surface is inverted at the interface resulting in lower recombination velocities

of photo-generated minority charge carriers which become majority charge carriers at the

interface [8]. An inverted absorber surface in a semiconductor junction can be achieved in

several ways. These include doping of the absorber surface via diffusion of an element from

one layer into the other or interface states with proper charge pinning the Fermi-Level [13].

In this cell, the p-material is the CIS absorber itself, while the corresponding n-type ma-

terial is the CdS. The p-n junction must, therefore, exist in the immediate vicinity of the

CIS/CdS metallurgical junction, otherwise one would see large decreases in the short-circuit

current density, jsc [14]. It is not known, however, exactly where the p-n junction is located

in this cell. One possibility is that Cd diffuses into the CIS and causes a type-inversion of the

absorber surface from p to n-type which is present in the finished solar cell [15, 16, 17, 18] or

that the intrinsic band bending on the CIS surface is increased by the deposition of the CdS

through a pinning mechanism caused by band gap states created during deposition [13]. In

this case the buried p-n junction would actually be a homo-p-n junction as opposed to the

normally discussed “heterojunction” used to describe both the metallurgical and p-n junc-

tions in this solar cell. Therefore, it is the goal of this investigation to determine whether
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the Cd which is on the CIS surface or has diffused a short distance into the CIS results in

an inverted CIS surface caused by pinning or doping.

Apart from the optimization of electronic positions on either side of the CIS/CdS interface,

the open circuit voltage of a solar cell is first and foremost determined by the splitting of the

quasi-Fermi Levels in the absorber which is, in turn, limited by the total amount of band

bending in the space charge region [19]. This is also referred to as the built-in potential,

Vbi. One can see then, why the enlarged band gap, Eg, should increase Voc because the total

amount of band bending cannot exceed the band gap Eg [20]. Thus, in the limit T → 0◦C

we have

(1) Voc .
Eg

q

although in real solar cells at working temperatures a more realistic rule of thumb is [21]:

(2) Voc ∼
2

3

Eg

q

and we should expect a Voc of at least 1000 mV from the CuInS2-based solar cell (Eg =

1.5 eV ) instead of ∼750 mV [5].

In this investigation, initial measurements on the CIS/CdS heterojunction to determine

the valence band offset, ∆Evb, resulted in constant values while the measured binding en-

ergies of the bands was not reproducible. When considering samples made with the same

chemical bath (the shortest deposition times were 40 sec corresponding to a layer thickness

of less than a nm) the measured position of the Fermi Level in the CIS and CdS band gaps

which corresponds to the total amount of band bending on the CIS surface was often, but

not always, the same and was largely independent of deposition time. Furthermore, there
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seemed to be no correspondence between Fermi Level positions in samples stemming from

different chemical baths. This suggests conclusions about the ability of the Cd to dope or

pin the CIS surface and also means that the position of the Fermi Level in the CIS and CdS

band gaps may depend not only on the actual CdS deposition but also on the measurement

method, XPS and UPS, if they cause a surface photovoltage in samples with CdS [22, 23, 24].

In addition, the effect of the HCl etching on the CIS absorber surface which was often

used during sample preparation is also considered.

3. Experimental

In order to remove the CuS2−x secondary phases on the surfaces of all CIS samples formed

as a consequence the layer production method, the absorbers were etched in 5% aqueous

potassium cyanide (KCN) solution for three minutes before further treatment, including

those used as references.

The CdS buffer layers were then deposited via chemical bath deposition (CBD) onto sev-

eral different CIS absorbers grown by rapid thermal processing (RTP) [5]. The CBD was

performed at 60◦C for varying times and followed a standard recipe of 15 mL of 0.0165M

Cd acetate dihydrate (Cd(C2H3O2)2 • 2H2O) in 25% NH3 solution and 0.372M thiourea

(H2NCSNH2) in 100 mL water. These were deposited into a double-walled glass container

and filled to a final volume of 200 mL which led to final concentrations of 0.0012M Cd acetate

dihydrate and 0.186M thiourea. The CIS absorbers were then dipped into the solution and

left for varying times in order to obtain the desired thicknesses which are noted with each

sample. After preparation the samples were transported in Ar to the UHV chamber. Contact

with air was not avoided, although we attempted to limit this through the use of the inert gas.

After performing band offset measurements with X-ray and ultraviolet photoelectron spec-

troscopy (XPS, UPS) as described in [11, 25, 26], the CdS layers were removed through etch-

ing in 8% HCl. This process removed the entire CdS layer and left a Cd-containg layer on
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the CIS surface which will be referred to as CIS:Cd [27, 28]. After HCl etching the samples

were measured anew with XPS and UPS. Thus, it was possible to determine the difference

in positions of the valence band and Fermi Level on the CIS surface both in the CIS/CdS

junction and after CdS removal.

In addition, the stoichiometry and phase of the sample surfaces were investigated with

XPS, UPS and Near-edge X-ray Absorption Spectroscopy (NEXAFS). The errors in both

the UPS valence band edge measurements, which were evaluated by linearly extrapolating

the band edge to the background, and the XPS core level binding energy measurements are

±0.10 eV. Errors of other measurements are noted in the text. The quantitative XPS mea-

surements were calculated by integrating the measured peaks after background removal and

normalizing by the number of scans, ionization cross-section [29], photoelectron mean free

path [30] and the transmission function of the electron analyzer [31]. XPS core level binding

energies are with reference to Au 4f7/2 at 83.8 eV and UPS valence bands with reference to

the Fermi Level determined with freshly Ar-sputtered Au.

4. Results and Discussion

Chemical Bath Deposition-Induced Band Bending and Fermi Level Pinning

Fig. 1 shows UPS valence band spectra of several CIS samples after CdS depositions of

duration 40 sec, 1 min, 2 min and 7 min, corresponding to layer thicknesses of about 0.7, 1, 2.5

and 35 nm, respectively, determined using the Lambert-Beer Law for absorption in matter.

The electron absorption length was obtained from the reciprocal value of the electron mean

free path (1.76 nm) calculated using the program Quases-Tourgaard [30] for electrons in CdS

with a kinetic energy of 844 eV and corresponds to the Cd 3d5/2 core level excited with Mg

Kα radiation. The layer thicknesses must be viewed as averages when considering the rough

morphology of the CIS surface [32]. All CdS layers were made using different chemical baths.

The samples have different CdS thicknesses and the same samples were later etched in HCl

as it was of interest whether CdS deposition time had any effect on the CIS surface after
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CdS removal.

Figure 1: He I UPS valence band spectra of CdS on CIS substrates from different chemical
bath depositions. The non-reproducibility of the positions of the band edges can be clarified
through differing amounts of band bending on the underlying CIS surface.

The CdS spectra have each been multiplied by a separate factor in order to compare the

measurements in a single figure, especially in the energy range 1.5-3.5 eV. In this region all

spectra have a similar appearance apart from a decrease in signal intensity with deposition

time at binding energies below the valence band edge. This corresponds to energies between

about 1.5 and 2.5 eV and is denoted by a black arrow in the figure. The change is due to

increasing CdS layer thickness leading to increased absorption and, therefore, attenuation of

the signal from the underlying CIS. Also noticeable are the different positions of the band

edges which can be clarified through differing amounts of band bending on the CIS surface

occurring in different CdS depositions: a change in the amount of band bending on the CIS

surface corresponds to a change in the Fermi Level position in the CIS band gap and also in

the CdS band gap. This can be ascertained because no band bending in the CdS layer was

observed with increased deposition time and the valence band offset, ∆Evb, is constant as

will be shown later. However, we note here that we found no correlation of this effect when
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studying the secondary electron edge from the UPS measurements.

The band bending can be seen indirectly with XPS through a change in the CIS and CdS

core level energies and the assumption that the energy difference between the valence band

edge and the core levels of the substrate is fixed. There is no correspondence between the

valence band position and CdS deposition time and will be discussed further below as part

of the results of this experiment.

The samples with the 0.7 nm and 1 nm CdS layers have valence band edges at 2.20 eV and

2.25 eV, respectively, while the other two samples are shifted noticeably away from these

values. The sample with 2.5 nm CdS layer has a band edge at 2.45 eV and the sample with

35 nm CdS, the thickest layer, is at 1.90 eV. By using the core levels measured on the CIS

substrate before and after CdS deposition the additional band bending on the CIS surface

can be ascertained and the band offset estimated with the equation

(3) ∆Evb = Evb,CdS − Evb,CIS − Ebb

where the ∆Evb is the valence band offset, Evb,CdS and Evb,CIS the measured positions of

the valence band edges of CdS and CIS, respectively, and Ebb the change in core level binding

energy on the CIS surface due to the additional CBD-induced band bending. We will assume

in all cases that the valence band position of the CIS before the CdS is at Evb,CIS=0.85 eV as

measured on the KCN etched reference shown in the following section on doping. Although

this is slightly higher than the normally observed value of Evb,CIS=0.70-0.75 eV for CIS, it

would add only 0.10 eV to the calculated band offset. This and another assumption that

the valence band edge and core levels shift in parallel during CdS deposition are indeed

critical and are discussed in [11], as well as references therein, along with other aspects of
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this method.

For the samples with 0.7 nm, 1 nm and 2.5 nm CdS layer thicknesses the results for ∆Evb

in table 1 are found when the other values in the table are inserted into the corresponding

terms in eq. 3.

Table 1: Measured values of the CdS and CIS valence band edges, Evb,CdS, and Evb,CIS,
resepctively, as well as the band bending on the CIS surface induced by the CdS deposition,
Ebb. The valence band offsets, ∆Evb, calculated using eq. 3 are also presented.

Sample Evb,CdS (eV ) Evb,CIS (eV ) Ebb (eV ) ∆Evb (eV )
0.7 nm 2.20 0.85 0.15 1.20
1 nm 2.25 0.85 0.15 1.25

2.5 nm 2.45 0.85 0.40 1.20

The term Ebb was not only investigated by the CIS core levels, but also by looking at the

positions of the Cd core levels in the different CdS layers. The correspondence between the

shifts in Cd core levels and the Cu and In core levels supports band bending with the binding

energies given in table 2. It must be noted that the core level shifts of Cu from the sample

with the 2.5 nm CdS layer are smaller than expected. We cannot explain this deviation but

believe it to be the result of a chemical shift in addition to band bending which has been

seen in literature [33]. At the same time, the Cd 4d levels of this sample show a large shift

with the direction supporting band bending. The results are supported by literature on solar

cell quality CIS absorbers [9, 10, 11].

The sample with the 7:00 min CdS deposition time, at 35 nm layer thickness, was so thick

that the underlying CIS core levels could no longer be measured and is, therefore, a little

trickier to evaluate. However, if we look at the difference in Cd core levels between this

sample and the other three samples (table 2) and compare them to the difference in the

corresponding valence band edges, we find that although there is a small discrepancy the

shifts are similar (table 3). All binding energies of the 35 nm sample were smaller than those

of the other samples and such differences are defined here to be positive.
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Table 2: Core level binding energies in eV from the KCN-etched sample and the samples
after CdS deposition.

Core Level KCN 0.7 nm CdS 1 nm CdS 2.5 nm CdS 35 nm CdS
Cu 2p3/2 931.05 931.20 931.20 931.15
Cu 3p1/2 76.85 77.05 77.00 77.00
Cu 3p3/2 74.40 74.55 74.55 74.60
In 3d5/2 444.15 444.25 444.25 444.40
In 3p3/2 665.35 665.30 665.50
In 4d3/2 18.55 18.70 18.65 18.90
In 4d5/2 17.65 17.80 17.80 18.05
Cd 3d5/2 404.75 404.80 405.05 404.30
Cd 3p3/2 617.50 617.60 617.90 617.15
Cd 4d3/2 11.55 11.60 12.25 11.10
Cd 4d5/2 10.95 11.00 11.60 10.50

Table 3: Values for the differences between electronic positions of the sample with 35 nm CdS
deposition time and the other three samples in fig. 1 as noted in the column on the left. The
binding energies of the 35 nm sample were always smaller than those of the other samples.
The differences in valence band positions are denoted by δEvb = Evb,CdS(x) − Evb,CdS(35 nm),
the differences in core level positions with δEcore = Ebb(x) −Ebb(35 nm) with x = 0.7 nm, 1 nm
and 2.5 nm.

Sample δEvb δEcore

0.7 nm 0.30 eV 0.40 eV
1 nm 0.35 eV 0.45 eV

2.5 nm 0.55 eV 0.80 eV

This parallel shift in levels again points to a shift in the position of the Fermi Level in the

CIS band gap as seen in the other samples, although again, chemical shifts may be present.

The sample with the thickest CdS layer, therefore, also follows the trend of a reproducible

∆Evb and varying position of Ef .

Examining the values more closely, the position of the valence band edge of the thickest

CdS layer, being at 1.90 eV, means that the valence band position on the CIS surface in this

junction can be at a maximum of 0.70 eV in order to keep the 1.20 eV band offset, implying

band bending toward a more p-type surface when compared to the value of 0.85 eV for the

KCN-etched CIS reference found in fig. 4. This was the only observation of this trend in

the present investigation. Of course, assuming a CIS valence band position of 0.85 eV on
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this CIS surface (i.e. no deposition-induced band bending), the band offset of 1.05 is still

inside of the error of these measurements of ±0.20 eV. This rather low value of ∆Evb can be

explained at least partially in terms of deposition times: this sample has the thickest CdS

layer and we are comparing the electronic states on the CdS surface after 7 min of deposition

time with those after 40 sec, 1 min and 2.5 min. Chemical shifts may be expected between

these samples due to time dependent changes in concentrations in the chemical bath arising,

for example, from the high vapor pressure and, therefore, continual loss of NH3.

However, a more thorough explanation of the deviation of ∆Evb and the binding energies

of the 35 nm sample from those of the other samples can be obtained by considering other

experimental details as well as surface photovoltage (SPV).

XPS has already been shown to cause an SPV, or charging, in samples containing a

pn-junction [22, 23, 24] and, as can be seen in fig. 2, the same is the case in the CIS/CdS

junction. An SPV is due to the creation of minority carriers in the space charge region which

reduce the amount of band bending, exactly the same as in the solar cell under illumination

[20]. In contrast to charging in XPS measurements where the sample is poorly contacted

and leads to a depletion of negative charge and increased apparent binding energies of the

electronic levels, the process here reduces the binding energy of the electrons through pro-

duction of electron-hole pairs in the CIS. The hole population on the CIS surface, which was

originally depleted (n-type surface, p-type bulk), increases under illumination and reduces

the band bending and, therefore, the energy between the Fermi Level and the valence band

edge. In fig. 2, XPS measurements at differing X-ray fluxes are shown for the Cd 3d5/2

core level from a ∼35 nm CdS layer deposited on CIS. This is not the same ∼35 nm sample

as discussed above but the CdS deposition times and calculated thickness were equal. The

total shift of just under 250 meV toward smaller binding energies caused by an SPV in the

sample is evident between the highest and lowest incident fluxes which are loosely denoted

by the photoelectron count rates.
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Figure 2: XPS measurements of the Cd 3d5/2 core level from a ∼35 nm CdS layer deposited
on CIS at four different X-ray fluxes denoted by the photoelectron count rates. The total
shift of ∼250 meV caused by an SPV in the sample is evident between the measurements
with the highest and lowest incident fluxes.

Fig. 3, on the other hand, shows the results of a similar measurement done on a CIS

absorber with a ∼1 nm CdS top-layer. This is a different ∼1 nm sample than is discussed

in the rest of the investigation. In this case it was possible to measure the Cd 3d5/2 core

level and the In 3d5/2 core level from the substrate. Here there is a much smaller shift only

noticeable in the measurement with the lowest incident flux. The shift of ∼0.10 eV is less

than the error of the measurement (±0.10 meV).

Similar experiments were conducted using UPS which covered about 2 orders of magnitude

in photoelectron count rates. No dependence of the valence band position on intensity was

observed although the UPS radiation contains a high amount of visible light. One reason

for this is that any SPV caused by UV illumination is already present at incident photon

fluxes much lower than those attainable with the UVS 10/35 UV source from Specs used in

this investigation. The lowest power needed to ignite the plasma in the UV lamp produces a

strong intensity in contrast to the XPS measurements which can be made at arbitrarily low

incident photon fluxes. Other investigations of the valence bands measured with UPS and
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(a) (b)

Figure 3: XPS measurements of the (a) Cd 3d5/2 and (b) In 3d5/2 core levels from a ∼1 nm
CdS layer deposited on CIS at four different X-ray fluxes denoted by the photoelectron count
rates. There is a minimal shift of ∼0.10 eV between the sample measured with the lowest
incident flux and the other three.

XPS (not shown) indicate, furthermore, that at normal operation fluxes the resulting SPV

in the CIS/CdS junction is higher with XPS.

The discrepancy between δEvb and δEcore in table 3 can, then, be compensated for by

considering charging effects caused by sample illumination. Beginning with the 2.7 nm and

35 nm samples, the difference between δEvb and δEcore of 0.25 eV is nearly compensated for

by the core level shifts in figs. 2 and 3, where the core levels of the thicker layer shows a

nearly 0.2 eV shift over the thinner layer so that the valence band edges and core levels of

these samples do indeed shift in parallel. If we assume that there is also an SPV present

during the UPS measurements, larger in the thicker CdS sample than the thinner, this would

clarify not only the difference in positions of the valence band edge but also the rather small

∆Evb observed in the 35 nm sample or, alternatively, a CIS surface apparently becoming

more p-type after junction formation.
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Although the 0.7 nm and 1 nm samples are similar, the core levels in these samples are also

shifted slightly due to an SPV during the XPS measurements and the discrepancy between

δEvb and δEcore in table 3 is, therefore, reduced to 0.10 eV. Looking at the valence band

edges, there may be a small SPV due to the UV illumination in these two samples as well.

The reason for considering the 2.5 nm CdS sample as being free of an SPV, at least in the

UPS measurements, is that the valence band edge is at 2.45 eV which is equal to the band

gap of the material. If this position was due to an SPV the CdS would be degenerate n-type

in the dark.

The discrepancies in the band offset measurements and CBD-induced band bending on

the CIS surface seem, then, to be a consequence of several factors related to both charging

and to the CBD process. The measured binding energies in the junction are a result of the

SPV induced in each junction during measurement and the SPV is dependent on the dy-

namic equilibrium which exists in each sample, i.e. on the rate at which the photo-generated

charge carriers are swept out of the space charge region. Although most of the samples

showing a large SPV similar to that of the 35 nm sample in fig. 1 had thick (>30 nm)

CdS layers, this was not always the case: some measurements on samples with thick CdS

top-layers led, without corrections for charging, to band offsets and absolute positions of

the CdS valence band edge and core levels which were in agreement with measurements

of samples with thinner layers. At the same time, thinner layers also occasionally showed

small values of ∆Evb, also presumably due to the SPV. Therefore, the dynamic equilibrium

in each junction which leads to the SPV is not strictly dependent on layer thickness. This

can be explained in terms of a thin interface layer between the CIS and CdS which is re-

sponsible, at least in part, for the rate at which the photo-generated charge carriers are

removed from the space-charge region. This could be, for example, a consequence of the

properties of the CIS surface after KCN etching immediately before CdS deposition leading

to junctions with different properties or of the non-reproducibility of the chemical bath itself.

We conclude then that although the valence band offset between CIS and CdS is the same

for every individual CdS deposition within experimental error, the Cd, or more generally, the
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CdS deposition process, does not pin the Fermi Level at a specific electronic position on the

CIS surface which is critical for solar cell functionality. If this were the case, the observed

band bending on the CIS surface and, therefore, the position of the Fermi Level in the CdS,

would be reproducible.

Cd as Dopant in CuInS2

In fig. 4, the differences between the KCN-etched CIS reference layer and the other CIS

layers after removal of the CdS can be clearly seen. The samples found in fig. 1 are also

shown here, with the exception of the 35 nm sample, after the CdS layers were etched away

with 8% HCl. The figure also contains a spectrum from an absorber etched in KCN and

then in HCl without prior CdS deposition. The samples subjected to CdS deposition before

the HCl etching contain a CIS:Cd layer on the surface as found in [27, 28]. The spectra have

been normalized to enhance comparability between the individual valence band edges in the

range 0.5-1.5 eV

In contrast to the KCN-etched CIS surface, the UPS measurements show the HCl etched

surface to be highly reproducible. This is supported by the binding energies and surface

stoichiometries measured with XPS on the same samples as will be discussed shortly. In

addition to the samples discussed here, many other CIS absorbers etched with HCl after

KCN etching had not only very similar valence band positions, 0.40 eV< Ef −Eb <0.50 eV,

but also possessed valence bands whose entire forms were the same. This should be com-

pared to the routinely seen spread in the measurements of the KCN-etched CIS samples:

0.55 eV< Ef − Eb <0.90 eV

The HCl-etched CIS surface shows a strong feature at 3 eV which is much weaker and at

a slightly different energy in the spectra of the KCN-etched samples. These are the Cu 3d

electrons, also visible in [26], here more prominent due to the increased Cu concentration on

the CIS surface. Quantitative XPS measurements using Cu 2p3/2, In 3d5/2 and S 2p showed

surface Cu-concentrations higher than on KCN-etched CIS. [Cu]/[In] ratios were routinely
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Figure 4: He I UPS valence band spectra of the same CIS absorbers found in fig. 1, without
the 35 nm sample, after the removal of CdS with 8% HCl. Reference measurements are also
shown from a KCN-etched as well as a KCN- and then HCl-etched (no CdS) absorber. The
prominent Cu 3d peak at 3 eV is evidence for a Cu-richer surface after HCl etching.

between 0.53 and 0.62 for HCl-etched samples while this ratio was between 0.25 and 0.30 for

KCN-etched samples. While the latter ratio is quite low, Cu-poor surfaces are also found

in literature [34, 35, 36]. The amount of Cu therefore increased significantly after the HCl

etching and, as discussed in [37, 38], the increased Cu concentration leads to an increased

repulsion between the S 3p and Cu 3d states (p-d repulsion) and, therefore, to the shift of

the valence band edge toward the Fermi Level. Due to contact with air we also considered

the elemental ratios using the Cu 3p, In 4d and S 2p core levels. Their kinetic energies are

similar making signal dampening from an adsorbate layer much less critical than with the

core levels used above. These levels confirmed the trend of a Cu-richer surface after HCl

etching with the [Cu]/[In] ratio for the KCN-etched sample increasing up to 0.35.

The observed change in stoichiometry can also be expected from the etching processes

undertaken on the CIS layer. The first etch step in amphoteric KCN will remove oxides
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from the sample surface and due to the strong ability of CN− to form complexes, the Cu+

will be preferentially removed from the surface, reflected in the Cu-poor CIS surface. In air

the Cu-poor surface will form overwhelmingly indium oxides which will be removed by the

subsequent HCl etch, leading to a Cu enrichment [39]. In addition, band bending can be

likely ruled out as the main explanation for the shift in the position of the valence band edge

after HCl etching by reviewing the core level positions between KCN and HCl etched CIS

surfaces (table 4). Although a slight overall shift of core levels may be possible, it is not

comparable to the shift in valence band edge of ∼0.40 eV after the HCl-etch.

Table 4: Core level binding energies in eV from the KCN, KCN-HCl-KCN and KCN-HCl-
etched sample surfaces

Core Level KCN KCN-HCl-KCN HCl
Cu 2p3/2 931.05 931.15 931.10
Cu 3p1/2 76.85 76.85 76.80
Cu 3p3/2 74.40 74.40 74.35
In 3d5/2 444.15 444.10 444.05
In 3p3/2 655.15 665.10
In 4d3/2 18.55 18.45 18.35
In 4d5/2 17.65 17.60 17.50
S 2p1/2 162.60 162.55 162.55
S 2p3/2 161.40 161.35 161.30

S 2s 225.65 225.60 225.60

Because the forms of the valence bands and their edge positions are the same for HCl-

etched samples with and without previous CdS deposition, the former containing a surface

CIS:Cd layer, it is concluded that the Cd does not n-dope the CIS surface. In fact, the move-

ment of the valence band edge toward Ef , when compared to KCN-etched samples, supports

a more p-doped surface, although this is likely an effect of the Cu-richer HCl-etched surface.

The absence of any observed doping does not stand in contrast to Cd incorporating itself

into the CIS lattice and forming a CIS:Cd surface. For example, one may alter the commonly

discussed doping mechanism of Cd replacing Cu by also including the compensating effect of

Cd occupying In lattice positions [40]. The effect of Cd on both lattice sites is also discussed
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in [41].

Returning to the HCl-treated surfaces, [Cu 2p3/2]/[S 2p] ratios determined with XPS also

increased through the HCl etch step to between 0.25 and 0.33, compared with 0.18 for KCN-

etched samples (or 0.25 when considering [Cu3p]/[S 2p]). This leads to the conclusion that

In is preferably removed by HCl etching, at least at first, with perhaps some S following

resulting in some phase of Cu2−xS on the surface.

To investigate this, UPS valence band measurements were carried out in the following

along with NEXAFS measurements which are very sensitive to some phases of CuS.

Figure 5: Cu L3 absorption edges (blue is X-ray fluorescence, red is total electron yield) on
unetched, KCN-etched and KCN-HCl-etched CIS samples. The large feature at 930 eV in
the unetched spectrum (black arrow) is due to the CuS and CuO phases on the surface of
the sample with a Cu 3d94s0 valence structure. The HCl etching, although it produces a
Cu-richer CIS surface than found on KCN-etched CIS, produces no phase with a Cu 3d94s0

valence structure. The spectra are normalized to the peak at 932 eV following the pre-edge
feature and are shifted vertically for clarity.

Fig. 5 shows several Cu L3 absorption edges from unetched and KCN-etched absorbers as

well as an absorber etched in KCN and then in HCl (KCN-HCl-etched). The very prominent

pre-edge feature at 930 eV (black arrow) in the unetched sample is caused by the presence of
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a phase with a partially empty Cu 3d orbital (Cu 3d94s0) [42], the empty 3d state being in

the conduction band. Even very small amounts of this phase on the surface can contribute a

large pre-edge feature to the absorption spectrum due to the high oscillator strength between

the Cu 2p and Cu 3d states. These phases can include any compound with Cu bound as Cu

(II) such as Cu(II)O and some kinds of Cu2−xS where there is at least a partially open 3d

orbital [42, 43].

Therefore, when looking at the other two spectra in fig. 5, it can be seen that neither

the KCN-etched CIS nor the KCN-HCl-etched CIS contains any amount of this Cu 3d94s0

phase on the surface in concentrations corresponding to anything but slight contaminations,

probably from oxidation during sample transport and loading.

Several other features in the spectra in fig. 5 are noteworthy. The reduced and/or absent

pre-edge feature at 930 eV in all three spectra with fluorescence signal can be explained by

the different information depths of the two signals. The relatively bulk-sensitive nature of

X-ray fluorescence detects proportionally less of the Cu(II)-containing phase compared to

total electron yield because this phase is not present in the bulk of the absorber. Also, the

slight deviation in the position of the absorption edges measured by fluorescence and total

electron yield on each sample shows a slight change in the energy between the Cu 2p core

level and the final state of the absorption event (Cu-d and -s states) when moving deeper

into the sample bulk and supports the well-known concentration gradients found in solar

cell-grade chalcopyrites [34, 35, 36].

Further investigation of the HCl-etched surface was performed with UPS valence band

measurements of several samples.

Fig. 6 shows the valence band edges of an unetched CIS sample, a KCN-etched sample,

a KCN-HCl-etched sample and a sample etched in KCN, then HCl and then again in KCN

(KCN-HCl-KCN-etched). The spectra have been normalized for comparability of the main

features. The unetched sample with presumably CuO, CuS and Cu2S phases on the surface
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clearly has a metallic nature as can be seen from the small Fermi Level at 0 eV (inset). In this

spectrum as well, a somewhat washed-out Cu 3d feature is visible at 3 eV. While Cu2−xS is

known to be metallic for some values of x [44, 45], the resistivity values can vary over several

orders of magnitude and depend on the purity of the material. Metallicity is, therefore, not

a direct criterion for the existence of Cu2−xS with specific x values. Additionally, the prob-

lem of ascertaining the value of x is exacerbated because the Cu2−xS phase is on a CuInS2

substrate making it difficult to determine how much of the Cu and S signals come from the

substrate and how much from the Cu2−xS.

Figure 6: UPS valence band measurements of unetched, KCN-etched, KCN-HCl-etched and
KCN-HCl-KCN-etched CIS absorbers. The metallic nature of the unetched sample can be
clearly seen (Fermi Level, inset) as well as the effect of the KCN etching when it follows HCl
etching. The measurement of the KCN-HCl-KCN sample lies between that of the KCN and
KCN-HCl samples.

At the other extreme, having a valence band edge at 0.85 eV, is the valence band edge of a

KCN-etched CIS absorber (this is the same spectrum as in fig. 4). As usual, the Cu 3d peak

is rather weak and shifted to slightly higher binding energies due to the Cu-poorer surface.

In between these two extremes are spectra from samples etched in HCl, one after the re-

moval of a CdS buffer layer which, therefore, contains a CIS:Cd surface layer, and one having
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been subjected to no previous CdS deposition. The measurement on the KCN-HCl-KCN

sample is also found here. It can immediately be seen, as in fig. 5, that the surface created

by the HCl etch step is not the same as the unetched surface as the valence bands look very

different. However, the valence band edge of the KCN-HCl-KCN-etched sample looks very

similar to the valence band of the CIS sample etched only in KCN. If the Cu-rich phase

produced by the HCl were indeed CuS, it must be removable by a further KCN etch step

and the valence band should return to one similar to the KCN-etched sample as seen here.

The KCN-HCl-KCN sample has a valence band edge at 0.70 eV, very typical for KCN-

etched CIS, and the Cu 3d peak at 3 eV is also very similar to that of KCN-etched CIS.

Because the KCN-etched CIS sample measured here showed slightly anomalous values (see

previous section), it is possible that after a subsequent HCl and KCN etch step, the surface

does not return to its exact original form, but rather to one which is more representative of

KCN-etched CIS in general.

Therefore, it seems that the HCl etching produces a nonmetallic Cu2−xS phase on the CIS

surface with a closed d-shell because the pre-edge feature at 930 eV in fig. 5 is not found

after HCl etching. A Cu2−xS phase is further supported by the valence band spectrum of

the HCl-etched sample after a subsequent KCN etch step which returns to a form similar

to that of a sample etched solely in KCN. This indicates a layered surface-near region of

HCl-etched CIS, for example: Cu2−xS/CuInS2(Cu-richer)/CuInS2(Cu-poorer).

A KCN, HCl and subsequent second KCN etch step may be a method to achieve repro-

ducible CIS surfaces.

5. Conclusion

Analysis of the electronic structure of the CuInS2/CdS heterojunction showed that al-

though the valence band offset, ∆Evb, has a value of 1.25 eV±0.20 eV in all samples, the

measured energy between the Fermi Level and the CIS valence band edge, Ef −EV B,CIS, on
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the CIS surface after CdS deposition is not reproducible. This is due both to differences in

the CdS CBD process as well as surface photovoltage effects caused by the XPS and UPS

measurement methods themselves. After removal of the CdS layers with HCl etching, the

electronic structure of the valence band of the CIS surfaces with and without a surface Cd

layer are the same. Therefore, the CdS deposition does not pin the Fermi Level at a position

in the CIS/CdS junction crucial to the functionality of the solar cell, nor does the Cd dope

the CIS surface. These results support the importance of the n+−ZnO window layer in

determining the final band structure of the solar cell because the reproducibility of solar cell

characteristics implies the similarity of band alignments in individual solar cells. Further-

more, although Cd is not responsible for an inverted absorber surface layer, inversion could

still be achieved after application of the ZnO due to the intrinsic band bending present on

the nearly inverted KCN-etched absorber surface. The HCl etching used in this study leads

to a reproducible CIS surface which is Cu-richer than KCN-etched CIS surfaces, possibly

the result of a CuS2−x surface layer with a closed d-shell. A subsequent KCN etch returns

the HCl-etched surface to one resembling a surface etched only in KCN.
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Materials and Solar Cells 67, 151-158 (2001)

[33] N. G. Dhere, A. A. Kadam, A. H. Jahagirdar, S. S. Kulkarni, L. Weinhardt, D. Groß, C. Heske, E.

Umbach, J. Phys. and Chem. of Solids 66, 1872-1875 (2005)

[34] I. Lauermann, Ch. Loreck, A. Grimm, R. Klenk, H. Mönig, M. Ch. Lux-Steiner, Ch.-H. Fischer, S.

Visbeck, T. P. Niesen, Thin Solid Films 515 6015-6019 (2007)

[35] H. Mönig, Ch.-H. Fischer, R. Caballero, C.A. Kaufmann, N. Allsop, M. Gorgoi, R. Klenk, H.-W. Schock,

S. Lehmann, M.C. Lux-Steiner, I. Lauermann, Acta Materialia, 57, 3645-3651 (2009)

[36] K. Müller, R. Scheer, Y. Burkov, D. Schmeißer, Thin Solid Films, 451, 120-123 (2004)

[37] J. E. Jaffe, A. Zunger, Phys. Rev. B 27, 5822-5847 (1983)

[38] J. E. Jaffe, A. Zunger, Phys. Rev. B 28, 5822-5847 (1983)

[39] CRC Handbook of Chemistry and Physics 67th Edition, R.C. Weast, Ed., CRC Press, Inc, Florida, USA

(1986-87)

[40] H.-W. Schock, private communication, 2011

[41] D. Liao, A. Rockett, J. Appl. Phys. 93, 9380-9382 (2003)

[42] M. Grioni, J.B. Goedkoop, R. Schoorl, F. M. F. de Groot, J.C. Fuggle, Phys. Rev. B 39, 1541-1545

(1989)

[43] R. Bacewicz, A. Wolska, K. Lawniczak-Jablonska, Ph. Sainctavit, J. Phys.: Condens. Matter 12, 7371-

7379 (2000)

[44] K. Okamoto, S. Kawai, R. Kiriyama, Jap. J. Appl. Phys. 8, 718-724 (1969)

[45] H. Nozaki, K. Shibata, N. Ohhashi, J. Solid State Chem. 91, 306-311 1991



24B. JOHNSON, J. KLAER, A. VOLLMER, I. LAUERMANN HELMHOLTZ-ZENTRUM BERLIN, ALBERT-EINSTEIN-STR. 15 12489 BERLIN, GERMANY

Figures

Fig. 1: He I UPS valence band spectra of CdS on CIS substrates from different chemical

bath depositions. The non-reproducibility of the positions of the band edges can be clarified

through differing amounts of band bending on the underlying CIS surface.

Fig. 2: XPS measurements of the Cd 3d5/2 core level from a ∼35 nm CdS layer deposited on

CIS at four different X-ray fluxes denoted by the photoelectron count rates. The total shift

of ∼250 meV caused by an SPV in the sample is evident between the measurements with

the highest and lowest incident fluxes.

Fig. 3: XPS measurements of the (a) Cd 3d5/2 and (b) In 3d5/2 core levels from a ∼1 nm

CdS layer deposited on CIS at four different X-ray fluxes denoted by the photoelectron count

rates. There is a minimal shift of ∼0.10 eV between the sample measured with the lowest

incident flux and the other three.

Fig. 4: He I UPS valence band spectra of the same CIS absorbers found in fig. 1, without

the 7:00 min sample, after the removal of CdS with 8% HCl. Reference measurements are

also shown from a KCN-etched as well as a KCN- and then HCl-etched (no CdS) absorber.

The prominent Cu 3d peak at 3 eV is evidence for a Cu-richer surface after HCl etching.

Fig. 5: Cu L3 absorption edges (blue is X-ray fluorescence, red is total electron yield)

on unetched, KCN-etched and KCN-HCl-etched CIS samples. The large feature at 930 eV

in the unetched spectrum (black arrow) is due to the CuS and CuO phases on the surface

of the sample with a Cu 3d94s0 valence structure. The HCl etching, although it produces a

Cu-richer CIS surface than found on KCN-etched CIS, produces no phase with a Cu 3d94s0

valence structure. The spectra are normalized to the peak at 932 eV following the pre-edge

feature and are shifted vertically for clarity.

Fig. 6: UPS valence band measurements of unetched, KCN-etched, KCN-HCl-etched and
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KCN-HCl-KCN-etched CIS absorbers. The metallic nature of the unetched sample can be

clearly seen (Fermi Level, inset) as well as the effect of the KCN etching when it follows HCl

etching. The measurement of the KCN-HCl-KCN sample lies between that of the KCN and

KCN-HCl samples.


