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Magnetization measurements were performed on the (CuxMn1−x)3[Cr(CN)6]2·zH2O molecule-based magnets
where x = 0.0, 0.2, 0.25, 0.3, 0.35 0.4, 0.6, 0.8 and 1.0. Both the Curie temperature and saturated magnetization
at first decrease with increasing value of x reaching the minimal value of TC = 49.7 K and 0.17 µB for x = 0.2 and
then increase with substitution. The pronounced hysteretic behavior between zero-field cooled and field cooled
regimes was observed for all samples. Magnetization changes the sign of magnetic polarization in zero-field cooled
magnetization curve at the compensation temperature Tcomp = 16 K for sample with x = 0.4. Our results indicate
that the system behaves as mixed-ferri-ferromagnetic system.

PACS numbers: 75.30.Kz, 75.30.Cr

1. Introduction
Prussian blue analogues (PBA) are subject of increas-

ing interest mostly because of the possibility to produce
molecule — based magnets working at room tempera-
ture and because of sensitivity of their magnetic prop-
erties on different types of external stimuli. PBA build
a large family of cubic systems with face-centered (fcc)
crystal structure [1, 2]. The magnetic coupling in these
systems is determined by super-exchange interaction be-
tween metal ions A2+ and BIII mediated through three
dimensional network of C–N bridges, resulting in 3D
magnetic ordering with transition temperatures TC up
to 376 K depending on the nature of metal ions [2]. In
relation to the Goodenough–Kanamori rule [3] two mech-
anisms should be taken into account for superexchange
interactions: kinetic exchange mechanism (JKE) medi-
ated directly via overlapping orbitals and potential ex-
change mechanism (JPE) mediating interaction between
orthogonal magnetic orbitals. The JKE leads to antipar-
allel spin ordering via cyanide covalent bond i.e. anti-
ferromagnetic interaction JAF. The JPE leads to a par-
allel spin ordering that means ferromagnetic interaction
JF. This model has been already successfully tested on
TM2+

3 [CrIII(CN)6]2·zH2O, where TM2+ is 3d ion, with
the simplification that only the superexchange interac-
tions between the nearest neighbour metal A and B ions
have to be considered [2, 4]. Magnetic properties of
mixed ferro-ferrimagnet (NixMn1−x)3[Cr(CN)6]2·zH2O
and pole inversion at the compensation temperature
Tcomp for different values of x were first reported
in [5]. The possibility that the spontaneous magneti-
zation might change sign at particular Tcomp was envis-
aged by Néel in the classical theory of ferrimagnets [6].
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Recently we reported on magnetic structure, magnetic
properties and effect of pressure on magnetization in
mixed ferro-ferrimagnet (NixMn1−x)3[Cr(CN)6]2·zH2O
in [7, 8]. In our paper we study magnetic properties of
the (CuxMn1−x)3[Cr(CN)6]2·zH2O molecule-based mag-
nets, where x = 0.0, 0.2, 0.25, 0.3, 0.35 0.4, 0.6, 0.8
and 1.0. In this special case CrIII in anion [CrIII(CN)6]3−
has (t2g)3 orbitals and there are 6 ferromagnetic and 9
antiferromagnetic pathways with (t2g)3(eg)2 orbitals of
Mn2+ leading to overall JAF. On the other hand, (t2g)3
orbitals of CrIII have 3 ferromagnetic pathways with (eg)1
orbitals of Cu2+ leading to overall JF. Mn and Cu ions
are both high spin with SMn = 5/2 and SCu = 1/2.
Cr ion is in low spin state with SCr = 3/2.

The compounds were prepared from an aqueous solu-
tion. Concentrated solutions of K3[Cr(CN)6] have been
added into the solutions containing MnCl2 and CuCl2
salts in molar ratios according to the desired composi-
tions. In a few seconds, precipitates of the target com-
pounds appeared. Prepared complexes have been fil-
trated and fully washed with distilled water. Expected
crystal structure fcc space group Fm-3m was confirmed
for all samples. Lattice parameters decrease nearly lin-
early with substitution of Cu for Mn: a = 10.51909 nm,
10.49812 nm, 10.50418 nm, 10.49833 nm, 10.4887 nm,
10.3851 nm for x = 0.2, 0.25, 0.3, 0.35, 0.4 and 1.0,
respectively. The lattice parameter a = 10.7538 nm of
Mn3[Cr(CN)6]2·nH2O [2] does not fit to this linear de-
pendence and is much higher. Number of water molecules
n ≈ 16 was estimated from thermo-gravimetric measure-
ments. Chemical structure was verified by infrared spec-
trometry.

2. Results and discussion
The typical temperature dependences of magnetiza-

tion µ(T ) which were measured in zero field cooled
(ZFC) and field cooled (FC) regimes are shown in
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Fig. 1. Temperature dependence of magnetization
measured in ZFC and FC regimes on the sample with
x = 0.2.

Fig. 2. Temperature dependence of magnetization
measured in ZFC and FC regimes on the sample with
x = 0.4. Arrow points on the compensation tempera-
ture.

Fig. 1 for a sample with the lowest value of saturated
magnetization µs. Very large hysteretic behaviour be-
tween ZFC and FC curves is a typical feature of the
whole set of the samples. Magnetic susceptibility of
(Cu0.2Mn0.8)3[Cr(CN)6]2·zH2O follows the Curie–Weiss
law above 120 K with the effective magnetic moment
µeff = 685 µB and the paramagnetic Curie temperature
θ = 40 K. The positive value of θ indicates that JF is
dominant in the compound which is the opposite situ-
ation with e.g. (Ni0.38Mn0.62)3[Cr(CN)6]2·zH2O mixed
ferro-ferrimagnet system with dominant JAF coupling.
The Curie temperature of the investigated compound
TC = 49.7 K, determined as inflection point in µ(T )
curve, is smaller than those of Mn3[Cr(CN)6]2·zH2O
(TC = 66 K), additional substitution increases TC reach-
ing the value of about 60 K for Cu3[Cr(CN)6]2·zH2O.
The values of another magnetic characteristic quantities
like µeff and θ decrease with substitution in comparison
with both Mn- or Cu-parent compound. ZFC magne-

tization curve regime of (Cu0.4Mn0.6)3[Cr(CN)6]2·zH2O
reaches zero value at Tcomp (Fig. 2). The compensation
temperature can be observed in ZFC curve because alge-
braic sum of µ(T ) or Mn2+–N≡C–CrIII subsystem and
CrIII–C≡N–Cu2+ subsystem is zero at Tcomp [9].

Fig. 3. Magnetization hysteresis loops of sample with
x = 0.2 measured at 1.8 K. The inset shows details of
the magnetization curve at low magnetic fields.

In conclusion our magnetization measurements per-
formed on the (CuxMn1−x)3[Cr(CN)6]2·zH2O molecule-
-based magnets indicate that this system behaves as
mixed ferro-ferrimagnetic system and the compensation
temperature can be observed. The dominant coupling of
the system is JF which is opposite coupling than was ob-
served on (Ni0.38Mn0.62)3[Cr(CN)6]2·zH2O mixed ferro-
-ferrimagnetic compound.
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