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Abstract

The knowledge of the energy-loss distribution in a single ion-atom collision is a prerequisite for sub-

nanometric resolution in depth-profiling techniques such as Nuclear Reaction Analysis (NRA) and Medium

Energy Ion-Scattering (MEIS). The usual Gaussian approximation specified by the stopping power and en-

ergy straggling is not valid for near surface regions of solids, where subnanometric or monolayer resolution

can be achieved. In this work we propose an analytical formula for the line shape to replace the usual

Gaussian distribution widely used in low-resolution ion-beam analysis. Furthermore, we provide a simple

physical method to derive the corresponding shape parameters. We also present a comparison with full

coupled-channel calculations as well as with experimental data at nearly single collision conditions.

PACS numbers: 34.50.Bw , 61.85.+p, 34.50. Fa, 79.20.Rf.
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I. INTRODUCTION

Research of advanced materials as for example new gate oxides in metal-oxide-semiconductor

(MOS) structures requires characterization tools in the subnanometer scale. Medium energy ion

scattering (MEIS) and narrow nuclear resonant reaction profiling (NRP) are well established ion-

beam characterization techniques with subnanometric depth resolution capabilities. In connection

with ultra high vacuum conditions they allow for surface and near-surface investigations [1] and

give complementary characterization to the results obtained by techniques using electrons or pho-

tons as incident particles.

During the last years the improved experimental conditions have allowed for energy-resolved

spectra that can lead close to monolayer resolution, using medium energy ion scattering (MEIS)

[2], Rutherford backscattering (RBS) [3] and also recoil detection analysis (ERDA) [4]. The fun-

damentals for monolayer resolution analytics using the energy loss of ionic projectiles is, besides

the high energy filter resolution, grazing incidence or detection conditions (only few degrees with

respect to the surface), because the ratio of the energy loss straggling to the mean energy loss

decreases for increasing projectile pathlength. Recently, individual atom layers [5] (adatom and

adlayers as well [6]) have been observed by backscattered measurements. In these experiments

the interpretation of energy spectra is still an open question because this requires a detailed knowl-

edge on the energy-transfer distribution, which cannot be simply approximated by a Gaussian

distribution.

The differential excitation/ionization probability for each subshell in a single collision is the

important quantity in this case, since generally only few collisions are involved. Thus, standard

energy-loss theories or semi-empirical methods based on Gaussian energy-loss distributions can-

not be used successfully. Instead, an atomistic description of the electronic excitation process and

its impact parameter dependence have to be taken into account in a stochastic approach which

leads, in general, to an asymmetric line shape.

In most used ion-beam techniques (RBS, MEIS, ERDA, NRA,..) [7], the energy scale has to

be converted to depth and the measured yield to elemental concentration. In this way, the ac-

curate knowledge of the projectile energy-loss distribution and charge-states are of fundamental

importance. Not only the stopping forces are needed but also the energy straggling (Gaussian or

non-Gaussian) as a function the projectile charge-state have to be accurate, at a few % level, for

some applications, as for example the ones involving ion therapy [8]. Furthermore, the accurate
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knowledge of the instrumental function as well as the Doppler effect due to target thermal vibra-

tions are of ultimate importance to understand the asymmetric energy-loss distributions in future

ultra-high resolution experiments.

In this work, using ab-initio calculations of the electronic energy-loss [9, 10] as a benchmark,

we will propose a simplified model for the asymmetric energy-loss distribution found in high-

resolution ion-beam experiments. As it will be shown, the understanding of this asymmetry and

its correct modeling is crucial to put forward the ion-beam analysis into subnanometric regions

near the surface.

II. CURRENT ENERGY-LOSS DISTRIBUTIONS

The use of Gaussian distributions for the electronic energy loss in IBA has been widely used

in the literature not only because its simplicity but also because after some collisions the energy-

loss distribution does tend to be a normal distribution according to the central limit theorem (for

additional conditions see ref[11]).

Differently from other ion-beam techniques, the nuclear reaction profiling technique (NRP)

does not assume Gaussian energy-loss distributions. Instead many self-convolutions are deter-

mined numerically for an approximate single collision spectrum. The nuclear-reaction probability

is then obtained by considering Poisson statistics of collisions, the resonant-reaction cross-section,

the beam spread and Doppler effect. Then, the experimental excitation curves are fitted using trial

concentration profiles. In this way, highly accurate depth profiles of light isotopes have been ob-

tained with remarkable depth resolution [12], though the electronic excitations for the ion-nucleus

nuclear reaction is also important for an improved depth resolution in ultra-thin films [13].

The asymmetry in the energy-loss distribution may arise from the statistics of collisions, which

are uncorrelated in amorphous materials and correlated in crystals. On the other hand, collisions

with very small impact parameters, as the backscattering collision, may be responsible for very

large energy-loss asymmetries, since inner-shells are likely to be ionized [9]. This is of high

importance for the cases where there are collisions with high inner-shell ionization probability and

large binding energy. Moreover, the inner-shell binding energy has to exceed the projectile energy

straggling due to soft collisions, while the experimental resolution must have a FWHM smaller

than (or comparable to) the inner-shell binding energy. This scenario is realized, for instance, in

surface and near-surface investigations using typically protons of a few hundred keV or helium in
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MEIS experiments [6]. In the following, we will first describe a simple physical ansatz for the

determination of the energy-loss shape parameters (moments) and afterwards we will use these

results within a simple mathematical description of the final energy-loss distribution.

III. SIMPLE MODEL FOR A NON-GAUSSIAN ENERGY-LOSS DISTRIBUTION

A. Determination of shape parameters

The first ingredient of a description of the electronic energy-loss distribution is the mean

energy-loss value as a function of the impact parameter Q(b). In recent works [14, 15] we have

proposed a simple formula for Q(b) (called Perturbative Convolution Approximation- PCA and

Unitary Convolution Approximation - UCA) realized by the CasP Program [16]. This formula

reproduces first-order Born results for all impact parameters for bare and also for screened projec-

tiles (in the PCA mode) and contains some higher-order terms, reproducing the Bloch formula [17]

at high velocities (in the UCA mode). The UCA model can also be seen as the impact-parameter

realization of the Bloch formula and resembles the Binary model of Sigmund and Schinner [18].

The following simple formula (in atomic units)

Q(b) =
∫

d2rT K(~b− ~rT )
∫

dz ρ(~rT , z) (1)

with

K(b) =
2Z2

v2b2
× h(2vb/η)×∑

i

fi g(
ωib

v
) (2)

joins smoothly all regions of impact parameters b for which two-body ion-electron (small b) and

dipole (large b) approximations are valid.

The function h(2vb) (see ref.[14]) approaches zero for b ¿ 1/v (relative impact parameter

smaller than the electron de Broglie wavelength in the projectile frame) and it reaches 1 for large

values of b. The first two product terms in Eq.(2) resemble the classical energy transfer to a

statistical distribution of electrons at rest and describe violent binary collisions. The last term,

involving the g function (see ref.[14]) and the oscillator strengths fi, accounts for the long ranged

dipole transitions. With the parameter η equal to one, this formula mimics the first-order Born

approximation very well [14] and it is denoted PCA (perturbative convolution approximation). For

increasing projectile-charge first order calculations (on which PCA is based) break down. They

do not take into account, for instance, that each electron transition gives rise to an increased final-

state population and a corresponding reduction of the initial state population. It is clear that the
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ionization probability cannot increase indefinitely with the strength of the perturbation (leading to

the so-called saturation effect). Since these ionization processes come mostly from small impact

parameters, we have introduced in ref. [15], a scaling parameter η in the function h that enforces

unitarity in accordance with the Bloch model [17]. However, the UCA model, as most other

stopping-power models [19, 20], determines the mean electronic energy loss only.

Using the mean energy loss Q(b) calculated from the UCA model, we can determine the mo-

ments of the energy-loss distribution by assuming the following model.

In the framework of the independent electron model, the energy-loss distribution per electron

has two parts. A no-loss part, represented by a delta function at zero energy transfer, and a loss

part (floss), separated from the no-loss part by an energy gap corresponding about to the binding

energy,
dP

d∆E
= (1− a)δ(∆E) + afloss(∆E). (3)

For given loss part, the coefficient a is determined as a function of the impact parameters from the

mean energy loss Q(b) per electron from the UCA model. The second and the third moments of

the distribution from Eq.(3), related to the standard deviation and skewness respectively, are then

given by assuming a floss ≈ 1/∆E2 power law, starting from the sub-shell binding energy value

Ib (excitations below the vacuum level are of minor importance) up to the maximum classical

energy transfer for a electron at rest 2mv2 (m is the electron mass and v the projectile velocity).

Deviations from the 1/∆E2 power law are well known and are attributed to the contribution of

long-range dipole transitions as well as to the Compton profile.

This procedure is used as long as a single electron is concerned. Within the framework of the

independent-particle model, the final energy-loss distribution is given by the convolution of all

single-electron energy-loss distributions. Thus, the effect of all electrons is determined by adding

the moments (relative to the 1st moment) according to the additivity rule found in convolutions of

probability distributions.

Fig.(1) displays the results of this simple model for the standard deviation (σ0) of the electronic

energy loss spectrum as a function of the atomic number of the target, for impinging 100 keV

protons at an impact parameter close to zero (near central collision). The results are compared to

coupled-channel results [9, 10, 21]. In general the agreement is very good despite the crudeness

of the present model. However, for the skewness parameter γ0 (related to the third moment of

the energy-loss distribution, see figure caption), the results of the present model, depicted as a

solid line in Fig.(2), underestimate the coupled-channel ones in most cases (mainly for K). By
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FIG. 1: Standard deviation σ0 for the electronic energy-loss distribution in a single collision for impinging

protons at 100 keV and b = 0 as a function of the atomic number of the target. The model indicated by a

solid line is discussed in the text.

using somewhat more advanced loss part functions (including the effect of dipole transitions) we

have observed the well-known sensitivity of the skewness parameter, but without any significant

improvement over the simple power law 1/∆E2. Thus, we simply rely on this simple loss part

function that should be sufficiently accurate to be used in MEIS or other ion-beam technique as a

step forward to avoid Gaussian distributions. The parameters σ0 and γ0 are available at [16] for

any element and ion energy.

B. Simple line shape

The coupled-channel calculations have also been used to search for simple analytical formulas

for an approximate description of the electronic energy-loss distribution, thereby replacing the

Gaussian distribution for the cases, where the asymmetry cannot be neglected.

In Fig.(3) two analytical formulas for the energy-loss distribution are compared with coupled-

channel results for 100 keV protons colliding with an Y atom at b = 0. These analytical de-
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FIG. 2: The same as in Fig.1 but for the third moment of the distribution γ0 =< ∆E− < ∆E >>3 /σ3
0

.

scriptions are the asymmetric Gaussian (two Gaussian functions linked at the same point - the

absolute maximum - with different standard deviations below and above this common point), used

to analyze some MEIS experiments[22, 23] and the more realistic basic lineshape, proposed here

f(∆E) = α exp(−α∆E)Θ(∆E) ∗ gauss(∆E, σ)

=
α

2
exp

(
−α

2
(2∆E − σ2α)

) (
1 + erf

(
∆E − σ2α√

2σ

))
, (4)

where ∗ stands for the convolution operation, σ is the experimental resolution (σ =

FWHM/2.355) and α = 1/σ0 (σ0 from Fig.(1) ) quantifies the effect of the single collision

contribution. In Fig.(3) all curves have the same standard deviation, but only the proposed curve

(the basic line shape) has a good overall agreement with coupled-channel calculations. We have

also tested other simple analytical curves but no other was yielding a reasonable agreement with

the coupled-channel results for Y as well as for some other targets [9, 10, 21].
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FIG. 3: Coupled-channel results for 100 keV protons colliding with Y at an impact-parameter close to

zero in comparison with two analytical line shapes. All results have been convoluted with the experimental

resolution of 240 eV

IV. EXAMPLE

A realistic energy loss model for a single collision is mandatory for investigations of surface

and near-surface interfaces as will be seen in the following example.

In Fig.(4) we show MEIS results (the symbols) and the corresponding simulations (the solid

lines) line for Hf1.06Zr0.1O2 oxide with different thicknesses (see Fig.(4) caption) taken with 100

keV protons [24]. The total fluence of protons was about 10 µC for all recorded spectra. Here,

the simulations, noted as standard ones, are based on a pure Gaussian-shape of the energy-loss

distributions, with the mean energy-loss value from the SRIM code[25] and the straggling value

from the Chu formula [26]. As can be observed from the upper panel in the figure, the agreement

is very poor, if a homogenous oxide layer with the quoted thickness is assumed. Moreover, the

simple Gaussian ansatz for the line shape yields results that are in severe contradiction with the

integrated line intensities [24].

On the other hand, as can be observed in lower panel of Fig.(4) , if the energy-loss straggling
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FIG. 4: MEIS spectra taken with 100 keV protons backscattered form Hf in thin films of HfO2 (with small

amount of Zr). The nominal thicknesses of the films are 0.2 (full circles), 0.5 (full squares), 1 (up triangles)

and 2nm (down triangles). The solid curves are simulations using analytical line shapes (see text).

due to the backscattering collision is included, a very good agreement is obtained. The experi-

mental oscillations for the thickest film may be attributed to instrumental effects in the conversion

from angle and energy 2D spectrum to energy 1D spectrum [24]. Here we have used the basic

lineshape from Eq.(4) to describe the energy-loss distribution in a single, violent collision, re-

sponsible for the backscattering. The exponential decay α was obtained from Fig. (1) for Hf,

and amounts 1/217 eV−1. In this case the assumed experimental resolution of about 100 eV that
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is much smaller than the one used in the upper panel of Fig.(4) because of the extra broadening

arising from the backscattering collision. In addition, the total Hf quantity as a function of the film

thickness is a linear function that crosses the origin [24].

V. CONCLUSIONS

We have proposed a simple model with physical boundary conditions for the energy-loss mo-

ments in a single violent collision. The results for the standard deviation σ0 agree well with

coupled-channel calculations for typical energies of MEIS and NRP experiments. However, higher

deviations for the corresponding skewness parameter are observed. Furthermore, we have also

used coupled-channel results as benchmarks for simple analytical line shapes for the energy-loss

distribution. It was shown that a simple exponential function was able to successfully replace the

standard Gaussian distribution. Thus, this so-called basic line shape can be considered as a step

forward for near surface ion-beam analysis.

The energy loss in a single violent collision (as the backscattering collision in RBS or MEIS)

leads to a broadening of the scattering spectra. In fact, the usually reported analyzer resolutions

in high-resolution experiments are probably often smaller, due to the additional backscattering

broadening that is usually neglected. In general, protons or He ions incident at a few hundred keV

involve substantial additional broadening when scattered by heavy elements (RBS and MEIS),

while this effect is not so important for techniques involving light elements, such as resonant

nuclear reaction profiling.

Finally, as observed in the example given in sec. IV, the correct modeling of the energy-loss

distribution has been shown as a mandatory requirement for reliable depth profiles near the sample

surface, having central implications in several research areas, such as, characterization of advanced

materials for future generation electronic devices. Thus, we hope that the proposed basic lineshape

together with reasonable estimates for the moments of the energy-loss distribution can be useful

to achieve clear and unequivocal subnanometric depth resolution in ion-beam analysis of solids

based on measured energy-loss spectra.
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