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It is shown that the surface photovoltage produced by the photoinjected carriers in a layer can be
split up into two contributions: total amount of charge, and distance between the centers of charge
of the positive and negative carriers. This fact allows us to extract information directly about spatial
charge separation of photoinduced charge and its time evolution from surface photovoltage
transients. Two cases of particular experimental relevance are analyzed in detail to show the
generality of the method: Diffusion photovoltage and tunneling recombination in layers with
thickness less than the screening length, and in layers thicker than the screening length, considering
also the limit case of diffusion in a semi-infinite space. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2361158�

I. INTRODUCTION

The surface photovoltage �SPV� method is a well-
established material characterization technique which relies
on analyzing the illumination-induced charges in the surface
photovoltage.1 SPV is a contactless method, which makes it
extremely attractive for the characterization of a wide spec-
trum of materials, including inorganic semiconductors and
dielectrics,2 porous semiconductors,3 and organic
semiconductors.4,5 One of the multiple variants of this tech-
nique studies the time evolution of SPV after the sample was
illuminated with a laser pulse. This specific method allows
investigation of the carrier diffusion and recombination pro-
cesses in the sample.1–3,6–8

The surface photovoltage �SPV� method is locally sensi-
tive with respect to a charge separation length, in contrast to
other photoelectrical techniques that provide macroscopic
and time-averaged parameters, such as photocurrent mea-
surements. Charge separation plays a crucial role in many
biological, chemical, and physical systems, and time-
resolved SPV can be used to study the charge separation
process in very short distances of the order of nanometers.
Regarding a parallel plate capacitor, a separation of only 1
nm of positive and negative charges with a density of
1012 cm−2 will already lead to a potential difference of the
order of 5 mV, which can be nicely measured by transient
methods. This makes the SPV method interesting for charge
separation studies even on molecular systems which do not
have a space-charge region. In order to facilitate the physical
interpretation, it seems quite interesting to develop a formu-
lation capable of directly relating the SPV signal with the
spatial charge separation.

Young investigated the kinetics of xerographic discharge
by surface charge injection employing a simple method
based on the surface potential.9 He derived several expres-
sions relating the surface potential with the spatial distribu-
tion of carriers. Following an analogous procedure, we show
in this paper that the SPV, normally expressed as the double
integration of the Poisson equation, can also be obtained di-
rectly from the extent of charge separation.

In the case of xerographic process high voltage and car-
rier densities are usually obtained, producing space-charge
limitation, and consequently the diffusion current of the car-
riers is neglected in favor of the drift current that rules the
transport process. In this case the study of the surface poten-
tial decay in insulators is a useful method to determine the
drift mobility.10 We extend this study considering that the
transport of the carriers is governed mainly by diffusion in-
stead of drift of the electrical field. This assumption applies
for the low carrier density and surface potential induced by
light, and the small size �~nm� of the samples. Indeed Wright
studied the mechanism of space-charge-limited current in
solids,11 showing that the drift mechanism becomes predomi-
nant for high voltage, as in the case of the corona discharge
of the xerography, and at large distances. However, in the
thin region near the injection cathode, the transport is gov-
erned by diffusion, and by drift in the remaining volume of
the sample. Additionally, the drift contribution to transport
has been evaluated in the cases that we show in this paper; it
has been observed that it is negligible with respect to diffu-
sion contributions.

The picture of the parallel plate capacitor can be trans-
ferred to photoinduced charge separation, introducing a
charge separation length as the difference between the cen-
ters of positive and negative excess charge. For conventional
semiconductors, this is trivial since the charge separation
length is given by the extension of the fixed space-charge
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region. However, the situation can be completely different,
for example, in systems with very low densities of equilib-
rium charge carriers or very low diffusion coefficients. In
such systems, the charge separation length may change in
time by independent diffusion of excess electrons and holes.

Here, we analyze theoretically the interpretation of the
SPV transients for investigating the charge separation pro-
cess. Specifically we show that the time evolution of SPV
generated by the photoinduced charges can be split up into
the product of the total amount of charge times the charge
separation length, as a consequence of the superposition
principle. This result allows information about spatial charge
separation from transient photovoltage measurements to be
gained directly, making this technique extremely attractive
for the study of charge separation in a wide range of mate-
rials.

In the next section we formulate the problem of interpre-
tation of SPV in more concrete terms. To exemplify the study
of SPV under this new point of view we will consider the
cases of diffusion photovoltage induced by the photoinjec-
tion of carriers in layers with thickness less than the screen-
ing length and in layers thicker than the screening length,
considering also the limit case of diffusion in a semi-infinite
space. The main conclusions of the work will be presented in
the final section.

II. SURFACE PHOTOVOLTAGE AND CENTER
OF CHARGE

Let us consider a simple model system, consisting of a
layer with a sheet of positive charge at the outer surface, x
=0, as schematized in Fig. 1�a�, and a distribution of elec-
trons n�x , t�, in cm−3 units, diffusing into the layer with a
thickness LS, as indicated in Fig. 1�b�. Such a system can be
realized, for example, by injection of electrons from neutral
molecules adsorbed at the surface7,8. The total number of
electrons per unit area at time t,

N�t� = �
0

LS

n�x,t�dx , �1�

is the same as the number of fixed positive charges. The
measured SPV corresponds to the voltage U�t� created by the
separation of charge. The electrical field E=−�U /�x across
the distribution is related to the electron density by Poisson’s
equation

�E

�x
= −

ne

��0
, �2�

where e is the elementary charge, �0=8.85�10−14 F/cm,
and � is the dielectric constant of the layer. With a first inte-
gral of Eq. �2� we obtain �Gauss law�

E�x,t� − E�0,t� = −
e

��0
�

0

x

n�y,t�dy . �3�

We can assume that the electrical field at a certain point
x=LS is zero. Reasons for this may be screening8 or consid-
ering the layer as semi-infinite. From a second integration of
the Poisson equation, the SPV transient is given by

SPV = U�t� =
e

��0
�

0

LS

dx�
0

x

n�y,t�dy . �4�

In most previous work, the SPV has been calculated us-
ing Eq. �4�.12 Now, we aim to obtain an expression that re-
lates U�t� to a first spatial integral of the charge density.

Before an analytical derivation of the SPV expression as
the product of the total amount of charge and the charge
separation length, we show a simple model, based on the
plane capacitor picture, which allows an easy interpretation
and visualization of the problem. An alternative way to Eq.
�4� for the calculation of the photovoltage induced by the
electronic distribution is to take the summation of the voltage
produced for each thin slice of differential charge dq, con-
sidering a plane capacitor with the same amount of charge
dq, but with an opposite sign, situated in the surface at x
=0, and with a separation x between plates; see Fig. 1�b�.
Each slice produces a differential voltage,

dU�t� =
dq

C
=

x dq

��0A
, �5�

where C is the capacity and A is the area. Taking into ac-
count the distribution of electrons,

FIG. 1. �a� Schematic representation of electrons injected from dye mol-
ecules into a material layer. �b� Spatial distribution of electrons considering
that the same total amount of positive charges is fixed at x=0; a thin slice of
dq=e n A dx at x position is indicated. �c� Spatial distribution of positive
and negative charge considering that the total amount of both is equal; a thin
slice of negative, dqn, and positive charge, dqp,at a distances xn and xp,
respectively, is indicated.
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e n�x,t� =
dq

A dx
�6�

the total SPV can be calculated, considering the superposi-
tion principle, integrating Eq. �5�:

SPV�t� =
e

��0
N�t��x��t� , �7�

where �x��t� is the mean position of the electrons, i.e., their
center of charge,

�x��t� =
1

N�t��0

Ls

x n�x,t�dx . �8�

This model, with a sheet of positive charge fixed at the outer
edge, x=0, can be easily extended to a more general model
that takes into account spatial distributions of both positive
and negative carriers in the bulk �see Fig. 1�c��, with the
same total amount of charge of each carrier, which is the case
in SPV measurements.

Now, let us consider that there are total amounts of posi-
tive and negative charge fixed at x=0, which are equal to the
total amount of negative and positive charge in the bulk of
the sample. This is allowed mathematically since the total
amount of charge at x=0 is zero. The negative charge distri-
bution will contribute to SPV by the same quantity as in Eq.
�7�. We can obtain the contribution of the positive charge
distribution in the same way but with opposite sign, obtain-
ing finally

SPV�t� =
e

��0
N�t���xn��t� − �xp��t�� , �9�

where �xn��t� is the center of negative charge as defined in
Eq. �8�, and �xp��t� is the center of positive charge as defined
in Eq. �8� with p�x , t� instead of n�x , t�. We consider the
charge separation length as �xn��t�− �xp��t�. The value of N�t�
is the same for both distributions because recombination re-
duces identically positive and negative charge. Equation �9�
illustrates that the SPV signal is proportional both to surviv-
ing charge and charge separation length.

For an analytical derivation we consider again that the
positive charge is fixed at x=0. The Poisson equation �4� for
the SPV can be expressed as

SPV�t� = �
0

LS

E�x,t�dx . �10�

Integrating by parts,

SPV�t� = xE�x,t�0
LS − �

0

LS

x
�E�x,t�

�x
dx , �11�

which is the same expression obtained by Young.9 In our
case, as it has been pointed out, E�LS , t�=0, and introducing
Eq. �2� in Eq. �11�, we arrive at the same result for the SPV
as the one expressed in Eq. �7�. As before, this result can be
easily extended to the general case where the positive charge
distribution is not localized at x=0, obtaining Eq. �9�. It is
important to remark that this result is valid for any space-
charge distribution and for any possible time evolution, if the

amount of positive and negative charge remains equal, inde-
pendently of the processes that originated this time evolu-
tion. This will allow us to predict and to understand readily
SPV transients, as we show in the next two sections as ex-
amples.

III. DIFFUSION PHOTOVOLTAGE IN LAYERS
WITH THICKNESS LESS THAN THE SCREENING
LENGTH

In this section, in order to show the generality of the
proposed method, we discuss the spatial charge separation
process in an ultrathin layer, i.e., one in which the moving
carriers reach the blocking boundary opposite the injection
surface. We consider that the layer thickness is less than the
screening length, i.e., all the charge diffusing in the sample
contributes to the photovoltage. We also consider the impor-
tant effect of the recombination of injected carriers with the
parent molecules in the charge transport. Recently, we have
shown that the photovoltage transients produced by the dif-
fusion of dye-photoinjected electrons in ultrathin TiO2 lay-
ers, with thickness d can be explained qualitatively consid-
ering a tunneling recombination coupled with a diffusion
process.7 The distribution of the photoinjected electrons can
be obtained integrating the continuity equation,

��n�x,t�
�t

= D
�2�n�x,t�

�x2 −
�n�x,t�

�0
e−2x/a, �12�

where �0 is a phenomenological parameter, the lifetime for
vanishingly small spatial separation, and a is the electrons
Bohr radius. Equation �12� has been solved numerically by
the method of finite differences considering blocking bound-
ary conditions at both the dye/TiO2 and TiO2/substrate inter-
faces ���n /�x�x=0, LS

=0�. The SPV signal dependence on the
electron distribution can be found by integrating the Poisson
equation, Eq. �4�. We will show that Eq. �7� also gives an
accurate description of the SPV transients within the errors
induced by the numerical calculations.

We assume that the distribution of photoinjected elec-
trons at the initial time, t=0, is exponential with a preexpo-
nential factor n0, and with the width controlled by a b
parameter.7,13 Figure 2 shows the results of the numerical
integration of Eqs. �4�, �7�, and �12� for four different diffu-
sion coefficients. Figure 2�a� plots the time evolution of N�t�,
which displays nearly constant values for t��0 and a decay
for t��0 due to the effect of recombination. In Fig. 2�b� the
time evolution of �x��t� is represented. For cases with non-
zero diffusion coefficient there is a progressive increase of
�x��t� with time due to charge separation by diffusion, until
for certain ts, �x��t� reaches a constant value �x�ct. This lev-
eling of the charge separation is originated by the finite na-
ture of the sample. When the center of charge is used to
calculate the surface photovoltage, Fig. 2�c�, it is determined
by the product of the magnitudes plotted in Figs. 2�a� and
2�b�, as indicated by Eq. �7�. As expected, the photovoltage
calculated using the Poisson equation and using the center of
charge present close values, especially for longer times be-
cause the time step used in the numerical integration was the
same in all the time range, inducing higher errors at low
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times. These results indicate that the analysis of the SPV
allows study of the spatial charge separation.

In the case without diffusion there is no significant fea-
ture in the SPV pattern. �x��t� increases with time due to the
fact that the tunneling is spatially dependent and stronger
close to the dye at x=0. But, this increase is not enough to
compensate for the reduction of the SPV due to the diminu-
tion of charge. When a nonzero but low diffusion coefficient
is employed in the simulations, D=10−4 cm s−1, the diffusion
produces an increase of the charge separation, Fig. 2�b�, not
enough in this case to overcome the effect of the charge
reduction by recombination, and only a slight increase of the
photovoltage is observed at low times in comparison with the
SPV obtained for zero diffusion coefficient. Nevertheless, a
characteristic feature is noted in this decay, a shoulder after
which a decrease is observed at tshoulder, faster than in the
case of D=0. This feature is originated by the back diffusion
of the electrons. At the initial time the large gradient origi-
nated by the exponential distribution induced by the injection
produces the diffusion of the injected electrons toward the
back contact, increasing �x��t�, as shown in Fig. 2�b�. The
diffusion tends to transform the initial exponential charge

distribution into a flat distribution without density gradients,
but the high reduction of electrons near x=0 produces a re-
verse density gradient for high times, indicating that �x�ct

saturates for values higher than d /2. This reverse gradient
also produces back diffusion of the electrons to the region
with high recombination probability, originating the fast de-
cay in the SPV observed in Fig. 2�c�, in which the recombi-
nation is assisted by the diffusion.

When a higher diffusion coefficient is employed in the
simulations, D=10−3 cm2 s−1, the diffusion produces an im-
portant increase of the charge separation that partially com-
pensates the effect of the charge reduction by recombination
at low times, obtaining a higher SPV value for low times,
Fig. 2�c�; but, this higher diffusion coefficient also enhances
the back diffusion and consequently tshoulder and the fast SPV
decay are obtained at lower times than for the previously
analyzed diffusion coefficients. For the case of the highest
diffusion coefficient employed, D=10−2 cm2 s−1, the rapid
charge separation is much faster than the recombination. The
increased extent of charge separation overcomes the effect of
reduction of charge and produces the apparition of a SPV
peak at tpeak.

Comparing the time in which �x�ct attained, Fig. 2�b�,
with the time in which the characteristic feature, shoulder or
peak, is observed in the SPV spectra, Fig. 2�c�, the spatial
charge evolution can be extracted from the SPV spectra. This
time allows discrimination between the time region in which
�x��t� increases progressively and that in which �x��t� pro-
gressively saturates to a constant value that depends mainly
on the sample thickness and slightly on the diffusion coeffi-
cient, allowing us to follow qualitatively the spatial charge
separation from the SPV transients.

IV. DIFFUSION PHOTOVOLTAGE IN LAYERS THICKER
THAN THE SCREENING LENGTH

In this section we will analyze the time evolution of
diffusion photovoltage when the layer thickness is larger
than the screening length. Let us analyze, as a first approxi-
mation to the problem, the important and clarifying case of
diffusion without recombination in a semi-infinite space. We
consider an initial �t=0� sheet of electrons �represented by a
delta function� at x=0 that diffuses toward positive values of
x while the positive charge is fixed at x=0. Considering a
blocking boundary condition at the origin x=0, the solution
of the diffusion equation is a semi-Gaussian function,

n�x,t� =
ni

��Dt
exp	−

x2

4Dt

 , �13�

where ni is the number injected electrons per unit of area.
We have previously8 calculated the SPV for the electron

distribution of Eq. �13� by double integration of the Poisson
equation, considering �S as the integration limit LS, where �S

is related to the Debye-screening length,

SPV�t� =
2eni

����0

�Dt	1 − exp	−
�S

2

4Dt


 . �14�

In general the screening length depends on the local car-
rier density. In the present experiments �S is changing with

FIG. 2. Patterns of �a� N�t�, �b� �x��t�, and �c� SPV obtained from the
Poisson equation, obtained from numerical simulation for different diffusion
coefficient, D; the simulation parameters employed are Ls=20 nm, n0

=1016 cm−3, �0=2 ps, a=0.6 nm, and b=2.5 nm. In �c� it is also plotted in
black the SPV obtained from the �x��t� value employing Eq. �7�, with D
=10−4 cm2 s−1, for comparison.
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time at short times, but it will tend to a constant value at long
times. Since in the model of Eq. �14� the screening length
only influences the SPV at long times, �S is taken as a con-
stant parameter. In the case of a semi-infinite space, Eq. �14�
simplifies to

SPV�t� =
2eni

����0

�Dt . �15�

The SPV signal increases in time with a slope of 1/2 in a
log�SPV� vs log�t� representation. The mean position, i.e.,
the charge separation length for the given case, is, using Eqs.
�8� and �13�,

�x��t� =�2D t

�
. �16�

With this expression and taking into account that N�t�=ni in
the semi-infinite case, the SPV can be also calculated from
Eqs. �7� and �16�, obtaining the same result as that in Eq.
�15�.

If we consider the existence of a screening length,8 the
only charge that contributes to the SPV is that placed be-
tween x=0 and x=�S. Then, N�t� becomes time dependent
due to the loss of diffusing charge through the imaginary
surface at x=�S. In this case

N�t� = ni erf	 �S

2�D t

 , �17�

where erf�z� is the error function. The mean position with a
screening length is, using Eqs. �8�, �13�, and �17�,

�x��t� =�4D t

�
	1 − exp	−

�S
2

4Dt


� erf	 �S

2�D t

 .

�18�

It is easy to find that the SPV can also be calculated from
Eqs. �7�, �17�, and �18�, obtaining the same result as that in
Eq. �14�, as expected from the theoretical discussion of the
second section.

Considering the expression �18� as the mean position of
the charge, we are now able to follow the spatial charge
separation as it is shown in Fig. 3. Figure 3�a� plots the time
evolutions of �x��t� for samples with different screening
lengths and the same diffusion coefficient. For low times
�x��t� evolves with a power law with slope 1/2, as in the case
of pure diffusion in a semi-infinite space mentioned above,
until for certain ts, �x��t� reaches a constant value �x�ct

=�S /2. The appearance of this constant value of the extent of
charge separation is due to the finite nature of the region that
contributes to the SPV, in contrast with the semi-infinite case
studied before. ts depends on the screening length, and for
t� ts the electron density �n�x , t� is practically uniform in
the region between x=0 and x=�S producing the saturation
of the �x��t� value to the half of the screening length of the
sample.

Figure 3�b� plots the time evolutions of �x��t� for layers
of the same thickness with different diffusion coefficients.
The value �x�ct=�S /2 is obtained for all the samples inde-
pendently of the diffusion coefficient, indicating that this

magnitude depends only on the screening length, while ts

depends on the diffusion coefficient as well as on the screen-
ing length. The spatial charge evolution can be extracted
from the SPV spectra as shown in Fig. 3�c�. In this case the
SPV spectra presents a peak at tpeak. During t� tpeak, �x��t�
evolves as in the case without screening, Eq. �15�, following
a power law with slope 1/2 in a log�SPV� vs log�t� represen-
tation. For t� tpeak, �x��t� follows this law progressively until
it attains a constant value �x�ct=�S /2. This analysis shows
that the method that has been introduced constitutes a useful
tool to visualize and to study the time evolution of the spatial
charge separation.

V. CONCLUSIONS

The analysis of surface photovoltage transients is a pow-
erful method to study the spatial charge separation phenom-
ena in small-scale systems in a wide window of time. The
SPV can be split up into two contributions: total amount of
charge, and distance between the centers of charge of the
positive and negative carrier distributions.

In samples with thickness less than the screening length,
the layer thickness has a major role in spatial charge separa-
tion, causing the mean position of the charge distribution to
reach a constant position �x�ct for long times, which depends
mainly on the layer thickness and slightly on the diffusion

FIG. 3. Calculated mean position �x��t� for the case of normal diffusion
considering a screening length, ni=1011 cm−2, �0=50. �a� D=10−6 cm2 s−1,
for different �s, the screening length is indicated, in nm, in the graphic with
a number at the same height that �x�ct for each curve. �b� �s=20 nm, for
different diffusion coefficients, indicated in cm−2 s−1. �c� Comparison be-
tween the time evolution of SPV, right vertical axis, and �x��t�, left vertical
axis, considering �s=20 nm and two different diffusion coefficients D
=10−4 cm2 s−1, continuous line, and D=10−7 cm2 s−1, dashed line.
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coefficient. The specific features obtained in the SPV spectra
allow following of the time evolution of space-charge sepa-
ration.

In the case of normal diffusion in a semi-infinite sample
�x��t� evolves with a power law with slope 1/2. If a screening
length is considered �x��t� evolves with the same power law
for low times and attains a constant value �x�ct=�S /2 for
high times. The transition time between these two regimens
can be directly extracted from the tpeak of the SPV spectra.
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