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Simplified method to include the tensor contribution in α-cluster model
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We propose a simplified model to directly take into account the contribution of the tensor interaction (SMT) for
light nuclei by extending the α-cluster model. In 8Be, the energy curve with respect to the relative distance between
the two 4He clusters suggests that the cluster structure persists even though the tensor interaction contributes
strongly. In addition to SMT, a simplified method to take into account the strong spin-orbit contribution is
introduced and the coupling effects of these two models is shown to be important in 12C, in contrast to 8Be.
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I. INTRODUCTION

It has been shown for more than four decades that cluster
models succeed in predicting and reproducing various, even
exotic properties of light nuclei [1–3]. In these cluster models,
the nucleon-nucleon interactions adopted have been effective
interactions instead of bare ones, constructed by renormalizing
the short-range core and tensor parts in the central part so
as to be used in model spaces of the cluster models, where
each nucleon is usually described by Gaussian-type wave
functions. However, recently, theoretical investigations for
light nuclei based on realistic nucleon-nucleon interactions
became feasible [4–6]. It is significant that quantum Monte
Carlo calculations have microscopically shown the appearance
of α-α cluster structure in 8Be based on a realistic nucleon-
nucleon interaction. Such systematic calculations based on the
Green’s function Monte Carlo method have been performed
up to 12C.

Despite this situation, it should be mentioned that cluster
models are still useful in describing very exotic cluster struc-
tures [7] or intruder states of excess neutrons [8]. Therefore,
now is the time to further refine the effective interaction
used in conventional cluster models to include the nature
of the original nucleon-nucleon interaction, extending the
model space to describe both exotic cluster and shell-like
structures. One of the key issues is the direct treatment of
the tensor terms. Recently, several attempts of directly taking
into account the tensor part of the interaction in microscopic
cluster models have begun [9–13], and its strong contribution
has been discussed, for example in the 4He nucleus.

The purpose of the present study is to establish a simplified
method to take into account the tensor contribution and show
its applicability to 4He, 8Be, and 12C. In the previous work, we
have developed a simplified method to include the spin-orbit
contribution (SMSO) in the α-cluster model [14], and now we
try to extend this idea for the inclusion of the second-rank
tensor interaction. When the tensor interaction is directly
treated, the central part of the effective interaction has to
be completely modified to remove the renormalized part of

the interaction. Establishing a simple method to take the
tensor interaction into account is also important for making
new interactions, which is the next step of the study.

In this article, we study a fundamental aspect of the
mechanism for the appearance of cluster structure. In the
1960s, a microscopic α-α potential was derived based on
meson theory [15,16], and the appearance of the cluster
structure was explained by saying that the contribution of the
one-pion exchange potential (OPEP) vanishes from the direct
terms when each α cluster is described as a (0s)4 configuration.
This idea has been generalized as a threshold rule and proposed
as a mechanism for explaining the appearance of various
cluster structures [17]. If the α cluster is described as a
simple (0s)4 configuration, neither the spin-orbit nor the tensor
interactions contribute. However, it is important to show that
the picture of “weak interactions” between the two 4He is
still valid, although the model space is extended. The tensor
interaction may not act strongly enough to change the relative
motion between the two 4He nuclei, and cluster structure may
survive.

Furthermore, we focus on the competition between tensor
and spin-orbit contributions. We have previously shown the
breaking up of α cluster(s) resulting from spin-orbit interaction
in 12C, although the α-cluster structure essentially remains in
8Be [18]. In the present analysis, we switch on the tensor
interaction and discuss the difference between the contri-
butions of these two noncentral interactions in 8Be and 12C.

This paper is organized as follows. In Sec. II, the framework
is shown, and in Sec. III, numerical results for light nuclei are
presented. The conclusion is given in Sec. IV.

II. FRAMEWORK

A. Hamiltonian

The Hamiltonian operator Ĥ has the following form:

Ĥ =
A∑

i=1

t̂i − T̂c.m. +
A∑

i>j

v̂ij , (1)
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TABLE I. The parameters of the present interactions. Units of
V c

1 , V c
2 , V ls

0 , V t
1 , V t

2 , and V t
3 are MeV, those of c1 and c2 are fm, and

those of d1, d2, µ1, µ2, and µ3 are fm−2.

V c
1 V c

2 c1 c2 M

−60.65 61.14 1.8 1.01 0.6

V ls
0 d1 d2

2000 5.0 2.778

V t
1 V t

2 V t
3 µ1 µ2 µ3 H1 H2 H3

−16.96 −369.5 1688 0.53 1.92 8.95 0.6723 0.5898 0.5

where a two-body interaction (v̂ij ) includes the central, spin-
orbit, tensor, and Coulomb parts. We adopt the Volkov (No. 2)
interaction [19] for the central part,

Vc = (W − MP σP τ )
2∑

i=1

V c
i exp

( − r2/c2
i

)
, (2)

where W = 1 − M . For the spin-orbit part, we adopt the G3RS
potential [20]

Vls = V ls
0

(
e−d1r

2 − e−d2r
2) �L · �SP (3O), (3)

where P (3O) is a projection operator onto a triplet-odd chan-
nel, the operator �L stands for the relative angular momentum,
and �S is the spin ( �S1 + �S2). In Ref. [21], it is shown that the
α + n and α + α scattering phase shifts are well reproduced
by using the parameters listed in Table I, when each α cluster
is described as a (0s)4 configuration.

In conventional cluster models, the tensor terms are mocked
up by renormalized central terms of the potential. However,
here, we directly include the tensor terms:

Vt =
3∑

i=1

(Wi − HiP
τ )S12V

t
i r2 exp(−µir

2), (4)

where Wi = 1 − Hi and S12 is a standard tensor operator given
as

S12 = 3
(�σ1 · �r)(�σ2 · �r)

r2
− �σ1 · �σ2. (5)

We adopt the Furutani potential [22] parametrized in Table I.
This potential reproduces the tensor part of the OPEP around
the interaction range of 1 ∼ 3 fm, as shown in Fig. 1.

B. Wave function

The total wave function is fully antisymmetrized and is
given by a superposition of the basis states (Slater determinants
{�k}) with coefficients {ck}:

� =
∑

k

ckP
πP J

MK�k, (6)

�k = A[(ψ1χ1)(ψ2χ2) · · ·]k. (7)

Projection onto good parity (P π ) and angular momentum
(P J

MK) are performed numerically (with 163 = 4096 mesh
points for the Euler angle integral) and the coefficients {ck}
are determined by diagonalizing the Hamiltonian matrix after

FIG. 1. The strength of the tensor interaction for the triplet-even
channel without the S12 factor. The solid line and the dotted line
correspond to the Furutani potential and the one-pion exchange
potential, respectively. The dashed line shows the strength of the
Volkov interaction for the even-parity channel.

this projection. Each Slater determinant (�k) consists of A
nucleons and each nucleon function (ψiχi i = 1–A) has a
Gaussian form,

ψi =
(

2ν

π

) 3
4

exp
[ − ν(�r − �zi/

√
ν)2 + �z2

i

/
2
]
, (8)

where {�zi} are complex parameters and {χi} represent the
spin-isospin eigenfunctions. The oscillator parameter is set
equal to ν = 1/2b2, with b = 1.46 fm, which is common for
all nucleons to exactly remove the c.m. kinetic energy.

III. RESULTS

A. Stochastic variational method calculation for 4He

Before introducing our simplified model, we first perform
a calculation for 4He based on the idea of the stochastic varia-
tional method (SVM) [23] to estimate the tensor contribution.
Here, 1000 Slater determinants with a total spin of both Sz = 0
and Sz = 1 are introduced, and in each Slater determinant,
the Gaussian-center parameters for the four nucleons are
randomly generated. The ground 0+ energy of 4He is shown
in Fig. 2 as a function of the number of the Slater determinants
introduced. To reduce the number of basis states, the basis state
is adopted only when the inclusion of this Slater determinant
decreases the sum of the energies of the ground and second 0+
states by more than 0.02 MeV. The energy almost converges
at −37.3 MeV, which is 9.8 MeV lower than that for the
(0s)4 configuration. Here, the expectation value of the tensor
interaction is −16.2 MeV.

However, the tensor contribution here (−16.2 MeV) is
much smaller than in the calculations based on the realistic
nucleon-nucleon interactions. For example, in Refs. [24,25],
the contribution is calculated to be around −68 MeV. There
are mainly two reasons for this difference. One is the tensor
interaction adopted here itself. The tensor term of the Furutani
interaction is determined from an analysis of 3He + p
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FIG. 2. The ground 0+ energy of 4He as a function of the number
of the Slater determinants introduced. In each Slater determinant, the
positions of the Gaussian-center parameters are randomly generated.
The dotted line shows the energy for the (0s)4 model space.

(T = 1) scattering assuming a 3N [(0s)3] + N configuration.
Therefore, there is no guarantee that the interaction works
properly for the T = 0 state of 4He when four nucleons
are treated independently. The other reason is the range of
the central interaction. In the present calculation, the central
interaction used (Volkov) is an effective one, which widely
spreads in space, as shown in Fig. 1, and the interaction range
is much larger than that of the tensor terms. When we multiply
the interaction by r2, the central and tensor parts have the
lowest values at r = 2.0 and 0.8 fm, respectively. Because of
this difference, the relative wave function between nucleons
does not have a large amplitude, where the contribution of the
tensor interaction becomes maximum. However, the effective
interaction derived from the realistic one by solving the
G matrix [26,27] shows the optimal distance between nucleons
at around 1 fm, when multiplied by r2. Therefore, to compare
the tensor contribution with the calculations using the realistic
nucleon-nucleon interactions, it is also necessary to modify
the central part of the interaction completely.

It should be mentioned that when the tensor interaction
is switched on, obtaining a converged solution requires a
large number of basis states. In the SVM calculation here
for 4He, 1000 Slater determinants are prepared, and in total
236 are adopted. Therefore, a simplified model is needed for
the analysis of heavier systems.

B. Introduction of a simplified cluster model to take into
account the tensor contribution

Next, we define our simplified cluster model to take into
account the tensor contribution in 4He. When the α cluster is
described as the simplest (0s)4 configuration, it is a spin-zero
system, and noncentral interactions of either spin-orbit or
tensor type do not contribute. Here, four nucleons (spin-up
proton, and spin-down proton, spin-up neutron, and spin-down
neutron) are described by Gaussian wave functions centered
at the same position. Furthermore, the tensor interaction does

not act attractively even if we break the α cluster with
the (0s)4 configuration to two cluster systems of p + t or
n + 3He. Suppose that the position of the spin-up proton is
shifted from the other three nucleons, which form a triton
(t) cluster. The tensor interaction acts between this spin-up
proton and spin-up neutron in the t cluster, since they have a
deuteron-like S = 1, T = 0 component. However, in the triton
cluster, a spin-down neutron occupies the same spatial orbit as
the spin-up neutron. Thus, the tensor contribution between the
spin-up proton and spin-up neutron is canceled by the presence
of this spin-down neutron, which has the same spatial wave
function as the spin-up neutron but with the opposite spin
direction.

This discussion suggests that we must break the α cluster
not into two clusters as p + t or n + 3He but at least into three
clusters such as p + n + 2H. As for the coordinate system,
the energy surface of the deuteron system [10] suggests that
the tensor interaction acts attractively when a spin-up proton
and spin-up neutron stay along the spin direction. In our
framework, the spin direction is defined parallel to the z axis.
Therefore, one of the promising ways to break the α cluster
centered at the origin is to shift the central position of the
spin-up proton (�zp↑) in the z direction and that of the spin-up
neutron, (�zn↑) in the −z-direction:

�zp↑/
√

ν = d�ez, (9)

�zp↓/
√

ν = 0, (10)

�zn↑/
√

ν = −d�ez, (11)

�zn↓/
√

ν = 0. (12)

Here, p ↑, p ↓, n ↑, and n ↓ express the spin-up proton,
spin-down proton, spin-up neutron, and spin-down neutron,
respectively, and �ez is a unit vector along the z axis. This wave
function corresponds to a deuteron-like two-particle two-hole
(2p2h) excitation of the spin-up proton and neutron from
the (0s)4 core, which is known to be a dominant source of
the tensor contribution in 4He. The central positions of the
spin-up proton and that of the spin-up neutron are shifted by
introducing a parameter d, which, for simplicity, is common
for these nucleons. This d value is changed from 0 to 7 fm
in steps of 0.7 fm, and in total 11 Slater determinants are
generated. Since the tensor interaction contributes mostly
at short relative distances between the proton and neutron
[11,12], we need to superimpose a rather large number of basis
states to improve the description of this part. This model gives
a 0+ energy of −31.03 MeV compared to −27.57 MeV for
the (0s)4 model space. However, it is found that some part of
the tensor correlation between the spin-up proton and neutron
is compensated by the spin-down neutron, which is located
between them with the opposite spin direction.

Therefore, we introduce a more effective model. We remove
the spin-down neutron from the spin-up proton-neutron pair.
The Gaussian-center parameters of the four nucleons (�zi) are
defined as

�zp↑/
√

ν = d�ez, (13)

�zp↓/
√

ν = 0, (14)
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TABLE II. The calculated total (E), kinetic (T), central potential
(V c), Coulomb (V clm), spin-orbit (V ls), and tensor (V t ) energies (in
units of MeV) and r.m.s. radius (in fm) of 4He. The SMT results and
those of the (0s)4 configuration are compared with the experimental
values (Exp.).

E T Vc Vclm Vls Vt r.m.s. radius

SMT −33.83 53.23 −78.10 0.83 0.14 −9.92 1.66
(0s)4 −27.57 43.77 −72.14 0.79 0 0 1.73
Exp. −28.297 1.63 ± 0.03a

1.40 ± 0.05b

aReference [28].
bReference [29].

�zn↑/
√

ν = 0, (15)

�zn↓/
√

ν = −d�ez. (16)

The spin-up proton-neutron pair have the component of
S = 1, T = 0; similarly, the spin-down proton and neutron
have an S = 1, T = 0 component. Here, the spin-down neu-
tron (spin-up proton) does not stay inside the spin-up proton-
neutron pair (spin-down proton-neutron pair), so the tensor
correlation is not disturbed. Hereafter, the transformations in
Eqs. (13)–(16) are called the simplified method to include
the tensor contribution (SMT). Here, 4He is described as the
linear combination of 11 Slater determinants (d = 0–7 fm), and
the calculated 0+ energy E is −33.83 MeV. The 0+ energy is
lower by 6.3 MeV following the inclusion of the tensor terms,
which is a little smaller than the results of Sec. III A and other
more sophisticated calculations [11,12]. However the method
turns out to be a reasonable approximation. In Table II, the
kinetic (T), central potential (V c), Coulomb (Vclm), spin-orbit
(V ls), and tensor (V t ) energies and r.m.s. radius are presented,
together with the results of the (0s)4 configuration and the
experimental values. The tensor interaction contributes within
the present model space by −9.92 MeV, and some part is
compensated for by the increase of the kinetic energy from
the (0s)4 model space. It should be noted that although the d
values employed in our model are rather large (up to 7 fm), the
calculated r.m.s. radius of 4He is smaller than that of the (0s)4

model. Because of this shrinkage effect, the central part of the
potential energy is stronger than that of the (0s)4 model space
by about 6.3 MeV.

The effect of charge projection is discussed in Ref. [11]
and we also estimate it in a simple way. In our model, charge
projection for a two-nucleon subsystem can be performed by
incorporating basis states, in which positions of the proton and
neutron are interchanged. By adding these basis states, these
two nucleons can have the optimal isospin. We prepare the
basis states in which the positions of the spin-up (down) proton
and spin-up (down) neutron are interchanged. Basis states with
the positions of the spin-up proton and neutron and spin-down
proton and neutron simultaneously interchanged are also
generated. By incorporating these basis states, the energy
of 4He becomes −34.12 MeV. This means that the effect of
charge projection contributes by decreasing the energy by
about 300 keV and our original model is a good approximation.
Thus, this projection is ignored in the following calculations.

C. Application to 8Be and 12C

Similarly, for 8Be, our simplified method to include the
tensor interaction (SMT) is adopted. Each 4He nucleus is
described as in Eqs. (13)–(16), and 2p2h excitations (in the
z direction) are taken into account. If we put the centers of
mass of the two 4He on the z axis, the 2p2h excitation in each
4He nucleus is strongly suppressed because of the presence of
another 4He nucleus, and the tensor interaction does not work
strongly. To avoid this problem, the c.m. of each 4He is placed
on the x axis [(R/2)�ex or (−R/2)�ex]. The Gaussian-center
parameters of the α cluster centered at (R/2)�ex are taken as

�zp↑/
√

ν = (R/2)�ex + d1�ez, (17)

�zp↓/
√

ν = (R/2)�ex, (18)

�zn↑/
√

ν = (R/2)�ex, (19)

�zn↓/
√

ν = (R/2)�ex − d1�ez, (20)

and those of the α cluster centered at (−R/2)�ex are taken as

�zp↑/
√

ν = (−R/2)�ex + d2�ez, (21)

�zp↓/
√

ν = (−R/2)�ex, (22)

�zn↑/
√

ν = (−R/2)�ex, (23)

�zn↓/
√

ν = (−R/2)�ex − d2�ez. (24)

Here, R is the relative distance between the two clusters,
and the d1 and d2 values employed are the same as the
d values of 4He. Since each 4He nucleus is described as
a linear combination of 11 Slater determinants, there exist
11 × 11 = 121 Slater determinants for each 4He-4He distance,
and 66 of these are independent after performing the angular
momentum projection. To reduce the number of the basis
states, we only retain the important ones in the same way as
for antisymmetrized molecular dynamics—superposition of
selected snapshots (AMD triple-S) [30]: When the inclusion
of one Slater determinant decreases the sum of the energies of
the ground and second 0+ states by more than 0.05 MeV, this
Slater determinant is adopted.

In Fig. 3, the 0+ energy curves of 8Be are shown as a
function of the distance between the two 4He nuclei. Both

FIG. 3. The 0+ energy curves of 8Be as a function of the distance
between the centers of the two 4He. Both the results of SMT (solid
line) and of the (0s)4 configuration for each α cluster (dotted line) are
presented.
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TABLE III. The total energy, tensor, and spin-orbit expectation
values of the 0+ state of 8Be (in units of MeV). These values for the
(0s)4 model space, SMT, and SMSO are presented, together with the
combined model space (SMSO+SMT).

Total Tensor Spin-orbit

(0s)4 −54.19 0.00 0.00
SMT −62.28 −11.66 0.14
SMSO −54.54 0.08 −0.71
SMSO+SMT −62.66 −11.64 −0.59

the results of SMT (solid line) and of the (0s)4 configuration
for each α cluster (dotted line) are presented, and they show
that the energy difference is large (∼8 MeV) owing to the
tensor contribution. The result also shows that, even though
the tensor interaction contributes strongly, the contribution is
restricted to the inside of each 4He cluster, and the relative
distance between two 4He nuclei is still large enough and the
cluster structure persists. The expectation value of the tensor
interaction is −11.52 MeV at the 4He-4He distance of 4 fm;
however, it decreases to −8.31 MeV at 2 fm. This is explained
by recognizing that the 2p2h excitation of one 4He (in the
z direction) is Pauli-blocked owing to the 2p2h excitation of
the 4He at short relative distances, even if the centers of mass
of the two 4He are placed on the x axis, perpendicular to the
direction of the 2p2h excitation.

When we superimpose states with respect to the relative
distance between the two 4He (from 2 to 5 fm in steps of 1 fm),
the calculated 0+ energy becomes −62.28 MeV, as shown in
Table III. Since 4He has been calculated as −33.83 MeV by
using SMT, the energy of 8Be is a little higher than twice the
4He energy, in contrast to the experimental result. This fact may
suggest the necessity of double projection. In this calculation
of 8Be, only the wave function of the total system is projected
to 0+; however, the wave function of each subsystem (4He) is
not projected to the eigenstate of angular momentum around
its center.

SMT is further applied to 12C. Three α clusters have an
equilateral-triangular configuration on the xy-plane, and here,
for simplicity, only two of them are transformed to take
into account the tensor contribution as in Eqs. (13)–(16).
(Transforming three α clusters is possible but the result does
not change drastically.) In Fig. 4, the 0+ energy curves of 12C
as a function of the distance between each 4He-4He pair are
presented. The difference between SMT (solid line) and the
(0s)4 configuration for each α cluster (dotted line) is large
(∼6 MeV) owing to the tensor contribution. The result also
shows that the relative distance between two 4He is still large
enough to prevent the cluster structure from being washed out
by the tensor interaction. As shown in Table IV, the energy of
the 0+ ground state of 12C is calculated to be −93.21 MeV by
using SMT when we superimpose the states with the 4He-4He
distances of 2, 2.5, and 3 fm. This is lower than that of the
(0s)4 model space by 6.5 MeV, and here the expectation value
of the tensor interaction is −7.18 MeV. However, the spin-orbit
interaction, which plays an important role in 12C [18], gives a
small contribution for this model space (0.07 MeV).

FIG. 4. The 0+ energy curves of 12C with the equilateral triangular
configuration of 3α as a function of the distance between the centers
of two 4He. Both the results of SMT (solid line) and of the (0s)4

configuration for each α cluster (dotted line) are shown.

We have previously shown that the breaking up of the α

cluster(s) to take into account the spin-orbit interaction is
important in 12C [18]; however, this is not described within
SMT. Therefore, here, in addition to SMT, SMSO [14] is
introduced, and the interference between these two model
spaces is examined. As shown in Ref. [14], using SMSO,
we can prepare a basis state, in which one of the α clusters
is broken up into four independent nucleons owing to the
spin-orbit interaction. In SMSO, two α clusters with the (0s)4

configuration are placed at R/2 and −R/2 on the z axis,
and the last one is placed at

√
3R/2 on the x-axis so that

they form an equilateral-triangular configuration. Next, the
Gaussian centers of nucleons in the last α cluster on the x axis
are changed from

√
3R/2 �ex to

√
3R/2 (�ex + i
�ey) for the

spin-up nucleons as

�z/√ν = (
√

3R/2)(�ex + i
�ey) (25)

and to
√

3R/2 (�ex − i
�ey) for the spin-down nucleons as

�z/√ν = (
√

3R/2)(�ex − i
�ey), (26)

where, �ex and �ey are unit vectors for the x and y directions and 


is an “order parameter” of cluster dissolution. By introducing
these imaginary parts to the Gaussian centers, we can mimic
the spherical harmonics. Namely, when 
 is equal to 1, the
wave functions for the spin-up nucleons, which are excited to
the p shell owing to the Pauli principle, correspond exactly
to the shell-model wave function of (x + iy) exp[−νr2] ∼
rY11 exp[−νr2], and those for the spin-down nucleons
correspond to (x − iy) exp[−νr2] ∼ rY1−1 exp[−νr2], at the
limit of R → 0. Since the directions of the spin and orbital
parts of the angular momentum become parallel, the spin-orbit
interaction acts attractively.

The expectation values for the 0+ state of 12C with SMSO
(R = 2 fm) are shown in Fig. 5. The contributions of the tensor
interaction (solid line), spin-orbit interaction (dotted line), and
kinetic energy (dashed line) are represented as functions of the

 value. The kinetic energy is shifted to zero at 
 = 0. The
dotted line shows that the spin-orbit interaction acts attractively
with increasing 
 value, and the kinetic energy with the
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FIG. 5. The expectation values of the tensor interaction (solid
line), the spin-orbit interaction (dotted line), and the kinetic energy
(dashed line) for the 0+ states of 12C with SMSO. The relative distance
of 4He-4He is 2 fm. The kinetic energy curve is shifted so as to be at
zero at 
 = 0.

opposite sign also increases as shown by the dashed line.
The total energy becomes lowest at around 
 = 0.3 owing to
the cancellation of these two components. Here, it is important
that the expectation value of the tensor interaction (solid line)
is 2.4 MeV, which partially cancels the attractive spin-orbit
interaction. A mechanism to explain the repulsive tensor
effect between such j-upper protons and j-upper neutrons has
recently been proposed by Otsuka et al. [31].

Mixing these two models of SMT and SMSO is important.
As shown in Table IV, the energy becomes −96.70 MeV
after coupling these model spaces, which is lower than the
energy for the (0s)4 configuration for each α cluster by
about 10.0 MeV. Here, the spin-orbit and tensor interactions
contribute −8.42 MeV and −5.80 MeV, respectively. The
4He-4He distances employed are 2, 2.5, and 3 fm for both
models, and the 
 values for SMSO are from 0 to 0.4 in steps
of 0.1.

This strong coupling between SMT and SMSO is a
significant feature of 12C. However, in 8Be the spin-orbit
interaction does not act strongly as we have already discussed
in Ref. [18]. To quantitatively estimate this effect, we apply
SMSO to 8Be: One α cluster with the (0s)4 configuration is
centered at the origin and the other one is centered at R on the
x axis. Next, the Gaussian centers of nucleons in the second α

cluster are changed from R �ex to R (�ex + i
�ey) for the spin-up

TABLE IV. The total energy, tensor, and spin-orbit expectation
values of 12C (in units of MeV). These values for the (0s)4 model
space, SMT, and SMSO are presented, together with the combined
model space (SMSO+SMT).

Total Tensor Spin-orbit

(0s)4 −86.68 0.00 0.00
SMT −93.21 −7.18 0.07
SMSO −91.19 1.42 −11.43
SMSO+SMT −96.70 −5.80 −8.42

nucleons as

�z/√ν = R(�ex + i
�ey) (27)

and to R (�ex − i
�ey) for the spin-down nucleons as

�z/√ν = R(�ex − i
�ey). (28)

The adopted 
 values are from 0 to 0.4 in steps of 0.1, and the
R values are changed from 2 to 5 fm in steps of 1 fm. As shown
in Table III, the expectation value of the spin-orbit interaction
of 8Be is very small in both the results of SMSO (−0.71 MeV)
and SMSO + SMT (−0.59 MeV). This is because the optimal
distance between the two 4He nuclei (∼3.5 fm) is much larger
than the interaction range of the spin-orbit interaction. Thus,
the contribution of the spin-orbit interaction for the relative
motion between the two 4He nuclei is not significant in 8Be,
in contrast to 12C. However, owing to the large distance
between two 4He, the contribution of the tensor interaction
(−11.64 MeV) is larger than that in 12C (−5.80 MeV). This is
because the 2p2h excitation of any one of the α clusters is not
blocked by the other α cluster.

IV. CONCLUSION

We have proposed a method (SMT) to directly treat the
contribution of the tensor force for the α-cluster model in
a simplified way. In 8Be, the results show a large increase
in the binding energy (∼8 MeV) from the (0s)4 model space
owing to the tensor contribution. However, even though the
tensor interaction contributes strongly, the contribution is
restricted to the inside of each 4He cluster, and the relative
distance between the two 4He nuclei is large enough for the
cluster structure to remain. Next, SMT has been applied to
12C and similar factors appear to be important. In 12C, not
only the tensor interaction but also the spin-orbit interaction
contributes strongly, and SMSO is introduced to incorporate
the spin-orbit contribution. The mixing of SMT and SMSO
is important: When coupling these model spaces, the energy
becomes −96.70 MeV, 10.0 MeV lower than the result of the
(0s)4 model space.

From these analyses, two roles of tensor contributions have
been clarified. One role is to bind the 4He cluster. The tensor
interaction acts strongly inside each 4He nucleus; however, it
is not strong for the relative motion between 4He nuclei. The
tensor interaction contributes to increase the binding energy of
each 4He; however, the cluster structure persists. The other role
of the tensor interaction is to give a correct spin dependence
for the motion of the single particles rotating around the core
nucleus. This tensor contribution is relatively weak compared
to the first one, but it acts repulsively between the j-upper
proton and neutron (attractive between the j-upper proton
and j-lower neutron). To take these two effects of the tensor
interaction into account, coupling the two model spaces of
SMT and SMSO is necessary.

As a next step, it is necessary to modify the central part
of the effective interaction and remove the renormalized part
of the tensor interaction for a quantitative understanding of
these nuclei. Also, the strength of the spin-orbit interaction
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should be corrected when the tensor contribution can be taken
into account, as suggested in Ref. [12]. After modifying these
interactions, we will study a long-standing problem of the
α-cluster model. When we use the effective interaction that
reproduces the binding energy of the 3α system, the 4α

system becomes over bound by about 20 MeV. In contrast,
if the binding energy of 4α is reproduced, the 3α system
becomes underbound by about 10 MeV. We have previously
discussed the lack of full reproducability of the experimental
binding energy difference between 12C and 16O, even if we
utilize a finite-range and density-dependent interaction [32],
when the model space is restricted to α clusters. Now it is
shown that by incorporating the α-breaking component, the
binding energy of 12C becomes deeper by about 10 MeV owing

to the spin-orbit and tensor contributions. It is worthwhile
to investigate whether these noncentral interactions are the
important keys to resolve this long-standing problem.
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Phys. Rev. C 67, 051306(R) (2003).
[8] N. Itagaki, S. Okabe, and K. Ikeda, Phys. Rev. C 62, 034301

(2000).
[9] T. Neff and H. Feldmeier, Nucl. Phys. A713, 311 (2003); A738,

357 (2004).
[10] R. Roth, T. Neff, H. Hergert, and H. Feldmeier, Nucl. Phys.

A745, 3 (2004).
[11] S. Sugimoto, K. Ikeda, and H. Toki, Nucl. Phys. A740, 77 (2004).
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