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Abstract 

We report evidence for an enhanced desorption of hydrogen atoms from a Si(100) surface 

bombarded by 30 keV Xeq+ (q = 6-22) ions. The measured desorption yield amounts to 0.76 

and 2.2 hydrogen atoms per incident Xe10+ and Xe18+ ion, respectively. For understanding the 

behaviour of hydrogen desorption from Si, another experiment was carried out to see the 

hydrogen signals as a function of time for about 140 minutes after deliberately introducing 

hydrogen into the target chamber and then shut off the valve. The results are discussed in the 

light of potential sputtering which essentially dominates for ions at higher charge states and 

the interpretation is supported by theoretical estimates.  
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1. Introduction 

 

Various new effects occur during the bombardment of solid surfaces with highly-charged ions 

(HCI), for example, an increased erosion of the surface caused by the large potential energy 

carried by the incident HCI and the formation of hollow atoms [1-6]. In particular, the so-

called potential sputtering rather than the usual kinetic sputtering is presently attracting 

considerable interest [7] for its possible applications in technology related to delicate sputter 

cleaning, fabricating nano-structures or material modifications in nano-scale domain [8]. The 

field is also promising for its importance in understanding fundamental mechanism of highly 

charged ion interaction with solid surfaces [9]. The Si surface with hydrogen is a unique 

combination for the investigation of adsorption and desorption of molecules from 

semiconductor surfaces. Hydrogen on Si at low coverage forms monohydrate and keeps the Si 

surface protected from other contaminations. The characteristics of thermal desorption of 

hydrogen show interesting features [10] that have attracted more researches [11-14] on it. It is 

known that atomic hydrogen adsorbs readily on Si by saturating the dangling bonds and 

forming Si-H bonds, but the sticking co-efficient of molecular hydrogen is extremely low; as 

low as ~10-9 at room temperature [15]. It is likely, therefore, that the desorbed hydrogen from 

Si is mostly comprising of the molecular component. There are reports on the desorption 

studies of hydrogen from Si by a number of methods. Soukiassian et al. [11], in their scanning 

tunneling microscopy study, showed that atomic-scale desorption of hydrogen from Si(100)-

(2×1) surface follows a power law with tunnel current in the STM where inelastic electron 

channels are more effective. Extensive studies on hydrogen desorption are carried out by Tok 

et al. [12]. Burgdörfer et al. [13] reported potential sputtering of protons by highly charged 

ions from relatively thick hydrocarbon layers where substrate properties can be neglected. 

Their theoretical investigation on the desorption yield as a function of charge states was based 

on the classical over-barrier model and they formulated a scaling law of the yield Y ~q4...6 and 

predicted a saturation yield with charge states. Kuroki et al. [14] carried out an experiment on 

the charge state dependence of potential sputtering of proton from hydrogen terminated 

Si(100) surface bombarded by Xe ions (kinetic energy ≤ 5 keV and q = 4 - 12) and found an 

enhancement of sputtering yield independent of the surface conditions as well as projectile 

incident angle on the surface. 
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From the reviews of the above works and considering potential importance of highly charged 

ion interactions with insulator surfaces, we feel more experimental investigations are 

necessary to shed light on the mechanism of strange phenomena occurring from the surface 

under highly charged ion-irradiation at low energy. With this idea, we report here an 

experimental investigation of the desorption of hydrogen atoms from a silicon surface induced 

by impact of highly-charged xenon ions. We find evidence for a considerable enhancement of 

the desorption rate as a function of the incident projectiles charge. To our knowledge the 

present report may be the first result on hydrogen atom (as compared to proton) 

desorption/sputtering due to HCI impact. 
 

2. Experimental 

 

The experiment was performed using the 14.5 GHz ECR ion source at the Ionenstrahl-Labor 

(ISL) of the Hahn-Meitner-Institut in Berlin [16]. The ion source provides projectiles with 

kinetic energies up to 20q keV, where q is the charge state of the projectile. Projectiles with 

low kinetic energies were transported by keeping the beam line at high negative potential and 

by decelerating the ions prior to the entrance of the target chamber, thereby keeping the target 

chamber at ground potential.  

 

The ion beam entered the target chamber through an opening of 3 mm diameter and was 

directed onto a Si(100) target which was sputter-cleaned by ion bombardment for several 

hours prior to the measurements. Typical beam currents during the experiment were about 1 

particle nA. The target was placed on a simple x-y-z-φ manipulator inside an ultra-high 

vacuum chamber (base pressure 1.5 × 10-10 mbar, and 4.7 × 10-10 mbar with the valve to the 

ion beam line open); it was rotated 45° with respect to the incident beam. A quadrupole mass 

spectrometer was used to check the composition of the background gas. The spectrum gives 

the partial pressures of residual gases present in the chamber. The major part of the spectrum 

consists of H+, H2
+, C+, N+, O+, O2

+, OH+, H2O+, OH3
+, CO+ and CO2

+ positive ions, which 

are attributed to H2, H2O, CO, CO2, O2, and N2 molecules. Apart from these we also found 

signals from C2+ and O2+. Estimated partial pressures of the dominant H2 and H2O

components obtained from the spectrum are 1×10-10 mbar and 2×10-11 mbar, respectively. 
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Optical spectra resulting from the bombardment of Si(100) by Xeq+ ions were taken with an 

optical spectrograph and recorded with an intensified CCD camera having 756 × 581 pixels 

(pixel width and height 11 µm each). The spectrograph was equipped with 3 different gratings 

of 100 lines/mm, 300 lines/mm and 1200 lines/mm; with the 100 lines/mm grating it was 

possible to record a wavelength regime of up to 400 nm simultaneously. The observation 

angle was 90° with respect to the incident beam and 45° relative to the surface normal. 

 

3. Results and Discussion 

 

A typical spectrum recorded during the bombardment of Si(100) by 30 keV Xeq+ (q = 10, 18,

22) is displayed in figure 1. The prominent lines result from sputtered Si atoms, which leave 

the surface in an excited state. At first glance surprising is the occurrence of several hydrogen 

Balmer (Hα, Hβ) lines. In comparison with the lines from sputtered Si, a pronounced charge-

state dependence of the hydrogen lines is observed. This is illustrated in Fig. 1 by comparing 

the spectra taken for different incident charge states q = 10, 18, and 22. It is quite apparent 

from the figure that the hydrogen line intensity increases strongly compared to the silicon 

lines.  This behaviour becomes more evident from figure 2 that displays the ratio of the Hα

line relative to the Si 252 nm line (open circles). A dramatic increase of that ratio by more 

than one order of magnitude is observed when the charge state is varied from q = 6 to 22. The 

results displayed in figures 1 and 2 provide evidence for enhanced desorption of hydrogen 

atoms by highly-charged ions of moderate energy. Sputtering of silicon atoms is not expected 

to be significantly influenced by the incident charge state according to the results obtained by 

Sporn et al. [17] for total desorption yields of Si induced by highly charged ions.  

 

We have measured the desorbed hydrogen atoms by optical spectroscopy, which can only 

detect excited atoms. In this measurement process, complexity may arise by the fact that 

atoms desorbed from the surface in their ground state can be excited by secondary electron 

showers via gas-phase excitation. Also hydrogen (protons) desorbed by HCI interaction with 

surface could be neutralised in the gas-phase by secondary electrons to generate excited-state 

hydrogen. This is of course very unlikely, because electron capture is always related to three-

body collisions requiring a second proton or hydrogen atom in the collision volume or the 

simultaneous emission of a photon (this is the radiative electron capture process, abbreviated 

as REC) to account for energy and momentum conservations during the electron capture. Such 
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consequences have been discussed by Liu et al. [18] for the desorption of alkali metal atoms 

from alkali halide surfaces. For desorption of hydrogen from Si, the cross-section for electron-

stimulated desorption (ESD) process has been measured by a number of authors [19,20] and 

they found that the cross section of ESD is on the order of ~ 10-20 to 10-19 cm2 when the 

incident primary electron energy is varied from 50 to 300 eV. We may assume that most of the 

secondary electrons liberated from Si as a result of highly charged Xe-ions impact remain at 

much lower energies, as discussed recently also by Tona et al. [21]. Approximately 105 fast 

electrons would be required for ESD of a single hydrogen atom (H) from Si using the surface 

atomic density and the above cross section. Considering a realistic electron energy-

distribution, the corresponding number of protons (H+) is expected to be much smaller. On 

this argument, we can neglect the ESD process induced by secondary electrons liberated from 

Si surface with the impact of highly charged Xe-ions at a working pressure in the range of 10-5 

to 10-10 mbar. It can, therefore, be concluded that desorption of hydrogen atoms takes place as 

a result of primary process of the HCI interaction with Si surface. This includes of course 

atomic collision cascades (nuclear sputtering) [22], ion-induced electronic desorption 

processes as well as the possible influence of hot surface electrons on the degree of atomic 

excitation of desorbed particles [9]. 

 

In order to investigate the adsorption and desorption dynamics of the hydrogen atoms, we 

have performed a second experiment where hydrogen gas was admitted to the target chamber 

through a needle valve. Hydrogen gas was introduced into the target chamber to change the 

partial pressure of hydrogen from which the arrival rate of hydrogen could be known. This 

could facilitate the process of adsorption and desorption of hydrogen apart from hydrogen 

desorbed from Si at relatively clean condition. The elevated pressure measured with an 

ionisation gauge taking the correction factor for molecular hydrogen into account was 1 × 10-5 

mbar and lasted for about 140 min. Spectra were taken immediately before and after the 

hydrogen gas was turned off. Figure 3 shows the time (fluence) dependence of the hydrogen 

Balmer (Hα) line when the target is irradiated with either a 30 keV Xe10+ or Xe18+ beam at 

current densities of 36 and 8.5 particle nA/cm2, respectively. Here the Hα line intensity has 

been normalized to the incident ion intensity. It is evident that the hydrogen signal falls off 

with increasing fluence before it levels off at about 30-50% of its maximum value. 
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The hydrogen adsorption on the target surface is governed by the arrival rate of hydrogen 

molecules ΦH multiplied by the constant sticking coefficient cs and the removal rate of 

hydrogen atoms from the surface by sputtering (sputtering coefficient SH). It is reasonable to 

assume that the sticking coefficient cs is independent of the hydrogen coverage for less than a 

monolayer. The time dependence of the hydrogen coverage θ (in terms of the clean surface 

atom density) is, hence, determined by the rate equation [23-25]     

 
s

sH
sHH

s n
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+Φ+Φ−= + θθ )(1 (1) 

where Φ+ is the incident ion flux density and ns = 1.18 × 1015 atoms/cm2 is the surface-atom 
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Eq. (1) has the general solution 

( )[ ] 















Φ+ΦΦ−Φ+Φ+Φ

Φ+Φ
= ++

+

tcScScc
cS

t sHHsHHsHsH
sHH

)(
n
1-exp1)(

s
0θθ , (3)  

 

where θ0 = θ(t=0). Combining Eqs.2 and 3, we finally get 
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With the help of Eq. (4) it is possible to analyse the time dependence of the measured 

hydrogen signal, if we assume that the hydrogen Balmer line intensity is proportional to the 

time dependent coverage θ(t) by hydrogen. While the hydrogen coverage may in principle 

influence the excitation probabilities of desorbed atoms due to changes in the surface density 

of states, such an influence is expected to be small for highly excited n-states (n=3 in the 

present case) that do always have a considerable overlap with conduction-band states at small 

ion-surface distances. 

 

Performing a non-linear least squares fit of Eq. 4 to the data, we obtain the unknown 

quantities (Φ+SH +ΦHcs)/ns and θ0/θeq. To eliminate the hydrogen flux contribution to the 

surface we are reminded that molecular hydrogen does not stick on a Si(100) surface [15]. The 

dominant contribution to the surface coverage, hence, stems from water molecules present in 

the residual gas. The flux density ΦM of a particular molecule M to a surface is given as 
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where p is the partial pressure, k the Boltzmann constant, T ≈ 300 K the temperature, and m is 

the molecular mass. Using the known partial pressure of water pH2O = 2×10-11 mbar (see 

above) and taking into account that each water molecule carries 2 hydrogen atoms, we 

estimate a relevant flux density of hydrogen atoms ΦH = 1.4 ×1010 cm-2s-1. We use this 

number together with a sticking coefficient cs of unity in the analysis of the data shown in 

figure 3. For the sputtering yield we obtain from the Xe10+ data in figure 4, a value of Φ+SH =

(1.81 ± 0.18) × 1011 cm-2 s-1. Using the known ion flux density of Φ+ = 2.37 × 1011 cm-2 s-1 we 

obtain, for 30 keV Xe10+ incident at 45 degrees, a sputtering yield SH = 0.76 ± 0.08 hydrogen 

atoms per incident ion. Similarly, from the Xe18+ data in figure 4, we obtain a value of SH =

2.2 ± 0.4 hydrogen atoms per incident ion. Here the error bars represent the statistical errors 

only, to which an absolute error of ± 30% has to be added. The trend, which is indicated by 

these numbers, is shown by the closed symbols in figure 4. These yields appear to be rather 

large, in particular, if we consider the low bombarding velocity and the inefficient kinetic 

energy transfer between silicon atoms, which constitute the major part of the collision 

cascade, and the hydrogen atoms at the silicon surface. This is further supported by a 

simulation based on the TRIM code [22] which yields SH = 0.018 hydrogen atoms per incident 

Xe10+ ion for chemisorbed hydrogen. We therefore believe that the major mechanism for 

hydrogen desorption is potential sputtering induced by the high charge state of the incident 

Xeq+ ion, rather than kinetic sputtering within the binary collision model [22]. 

 

Figure 4 displays the absolute desorption yields derived from the results in figure 3 together 

with the relative photon-emission yields from figure 2 (i.e., the normalised Hα line intensity). 

Our plotted charge-state trend of the relative photon-emission yields due to H* production in 

Fig. 4 may be fitted by a q2.6±0.2 dependence. It has to be kept in mind, however, that these 

relative yields are normalized to the Si* photon-emission yields and not to the projectile 

current. One cannot completely exclude a possible charge-state dependence of the Si* yield 

for our relative yields. Tona et al. [21] reported a q1.4 charge-state dependence for sputtering 

of Si+ ions at higher Xe projectile charge-states and a weak (roughly q0.5) dependence for 

projectiles slightly above q=16. For q<9 Aumayr et al. found no q dependence at all [7]. 

Theoretical estimates using adiabatic ion-atom scattering-potentials in the local-density model 
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[26] point also to a very weak dependence (q0.2) of the nuclear energy-loss cross-section and 

to the nuclear sputtering yield, respectively. Hence, when correcting our relative data for an 

assumed weak q-dependence (q0.2±0.2) of the Si* production, we find an excited atomic 

hydrogen yield Y(H*) ~ q2.8±0.3. This exponent is only somewhat lower than the one in the q3.4 

dependence found by Tona et al. [21] for H+ emission. In this context, it can be stated that 

desorption/sputtering of protons and desorption/sputtering of excited hydrogen atoms need not 

to have the same q-dependence. Charge-state distributions of desorbed atoms depend on the 

surface-density-of-states as well as on the level structure of the desorbed atom. 

 

Let us now consider the two data points (for q= 10 and 18) with solid symbols in Fig. 4. The 

values of SH = 0.76 and 2.2 hydrogen atoms per incident ion exceed the absolute proton yields 

measured by other groups by about two orders of magnitude. This means neutral-particle 

ejection dominates the desorption process. Such a behaviour is common for many materials. It 

suggests that the charged-particle yield Y(H+) may be written as 

 ( ) ),(),(),(),(),(),(),( 00 pHYpHfpHYpHYpHYpHfpHY ×≈++×= +−+++ , (6) 

where f(H+) is the small positive charge-state fraction and the parameter p shall indicate any 

possible dependence on the projectile state (speed, charge state, incident angle, …). One may 

immediately guess that an interpretation of Y(H+) will be difficult, because it is a product of 

the total sputtering yield and the positive charge-state fraction which both depend on the 

projectile properties. We assume furthermore that the hydrogen exited-state population 

discussed above is also only a small fraction of the total sputtering yield. 

 

Comparison of the trends given by the solid (absolute desorption yields) and the open symbols 

(relative H-alpha light intensity) allows to extract a rough charge-state dependence of the 

excited-state fraction f(H*) = Y(H*)/Y(H0). From the ratio of the two types of data we derive 

a q1.0±0.8 dependence. Correcting for the assumed weak Si* dependence as above, we estimate 

f(H*)~ q1.2±0.8. Using f(H+) @ Y(H+)/Y(H0) = f(H*)·Y(H+)/Y(H*) ~ q1.8 ±0.9, the positive 

charge-state fraction f(H+) might be even slightly more sensitive to the projectile charge state 

than the excited-state fraction f(H*). 

 

The solid line of fig.4 displays the total potential projectile energy from Hartree-Fock-Slater 

calculations arbitrarily divided by 185 eV to fit the data. As can be seen there is reasonable 

agreement between experimental data and the potential energy curve. In the desorption 
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process, mainly hydrogen atoms from the topmost surface layers come into play. Since 

charge-state equilibration of the projectile appears up to a few layers below the surface, only a 

certain fraction of the potential energy can be converted into desorption. Therefore we can 

state, the experimental desorption yield is found to be proportional to the potential energy of 

the projectile. Furthermore, this proportionality points to very unspecific excitation processes 

being not sensitive to the projectile level-structure. 

 

4. Conclusion 

In conclusion, while the sputtering of silicon atoms by highly-charged ions of medium energy 

(30-100 keV) appears to be dominated by the kinetic sputtering mechanism, we believe to 

have found evidence that the desorption of surface hydrogen atoms is significantly influenced 

by potential sputtering. Previous studies [13,14,21] (measuring secondary ion emission) have 

mainly focussed on proton desorption from hydrogen terminated or hydrocarbon covered Si 

surfaces and reported a scaling of the proton sputtering yield with charge state q as qn with 3 < 

n < 5. In this work two different experimental approaches were used: 

(a) Hydrogen Balmer-alpha light emission from desorbed (excited) hydrogen atoms (relative 

to light emission from sputtered excited silicon atoms) is studied as a function of Xeq+ 

projectile charge state 6 ≤ q ≤ 22. 

(b) The dependence of the hydrogen Balmer alpha line intensity on ion fluence was 

determined for two different projectile charge states  (after hydrogen was admitted to the 

chamber for several hours). Using a model for the time/fluence dependence of the hydrogen 

coverage and several assumptions (e.g. on sticking coefficients for H2 and H2O molecules on 

Si) sputtering yields of 0.76 H atoms per Xe10+ ion and 2.2. H-atoms per Xe18+ ion were 

determined.  These sputtering yields should be compared to the proton yields reported [21] 

(typically 10-3 protons/Xe12+ ion and 0.8 protons/Xe50+ ions). Such a large difference between 

secondary ion emission and neutral sputtering yield is common in literature and shows the 

importance of neutral particle desorption due to potential sputtering. This enhanced desorption 

yield might also have some consequences for applications that rely on low surface-hydrogen 

concentrations.  
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Figure Captions: 

 

Figure 1: Light-emission spectrum following 30 keV Xeq+ (q = 10, 18, and 22) bombardment 

of Si(100). The wavelengths of some optical transitions from neutral silicon and neutral 

hydogen (Hα, Hβ) are indicated. Note the pronounced increase of the Hα and Hβ lines with 

increasing projectile charge. 

 

Figure 2: Measured ratio of the Hα line to the Si(252 nm) line (open circles) versus incident 

charge state q. Note that the ratios have not been corrected for a dependence of the desorption 

rate on the ion beam current. 

 

Figure 3: Fluence dependence of the hydrogen Balmer (Hα) line after hydrogen was admitted 

to the chamber for several hours (see text). 

 

Figure 4: The desorption yield of atomic hydrogen deduced from figure 3 (closed symbols) 

versus incident charge state q. Also shown is the (normalized) ratio of the Hα line to the 

Si(252 nm) line (open circles). The solid curve represents the charge-state dependence of the 

potential energy of the projectile (see text). 
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