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Abstract

Electronic energy loss of molecular clusters as a function of impact-parameter is less understood

than atomic energy loss. Vicinage effects due to mutual interference between cluster fragments

play a key role in the determination of the cluster electronic energy loss. In this work, we describe

a molecular extension of the PCA (perturbative convolution approximation) energy-loss model,

namely MPCA (molecular PCA), which yields remarkable agreement with first-order Born (SCA)

results. The physical inputs of the model are the oscillators strengths of the target atoms and the

projectile electron density. A very good agreement is obtained with time consuming full first-order

calculations for bare incident molecular clusters for several angles between cluster axis and velocity

direction.

PACS numbers: 34.50.Bw, 61.85.+p, 36.40.-c
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I. INTRODUCTION

Beams of molecules and ionic clusters are useful tools in both fundamental research and

in material science and plasma physics. The effects of a cluster clearly deviate from the sum

of individual effects of each cluster component. In particular, cluster-beam experiments were

reported in mid 70s by Poizat and Remillieux [1] and, not much time after, the first evidence

of the vicinage effect was reported by Brandt et. al.[2]. Since then, it is established that the

cluster energy-loss is different from the sum of energy losses of its separated components. An

increased energy transfer due a cluster may even be used in inertial nuclear fusion processes

[3, 4].

If the ions enter along a principal axis of a crystalline target, their motion will be guided

due the correlated collisions with the target atoms. These ions, then, are said to be chan-

neled. The channeling motion of a molecule (or a cluster) will also depend on the Coulomb

heating phenomenon (i. e., an increased transverse energy of the cluster fragments due to

the mutual Coulomb repulsion), discovered in mid 70s by Caywood et. al. and Poizat et. al.

[5, 6]. Recently, the Coulomb heating was simulated [7, 8] and experimentally determined

in a quantitative way [8].

The cluster stopping power can be theoretically treated by the united-atom model [9, 10],

that describes the cluster as an equivalent single atom, with atomic number and mass being

the sum of atomic number and mass of each component. However, that model is limited to

the very beginning of the interaction between the cluster and the target, therefore, it cannot

be used to understand several channeling key effects, for instance, the Coulomb heating

effect. An important theoretical treatment is the dielectric formalism in a homogenous

electron-gas target [2, 11] (a detailed review about vicinage effect and dielectric formalism

for clusters can be found in ref.[12]) and, to account for the target-core effect, the LDA

model (used for clusters in ref. [13]). However, although successful for homogeneous tar-

gets, the dielectric formalism cannot be used to easily describe the cluster energy-loss under

channeling conditions, where the target cannot be treated as being homogeneous. Then, a

theoretical investigation of the cluster stopping-power under channeling conditions, consid-

ering the Coulomb heating, requires the use of the impact parameter method, as presented

by Jensen, Mikkelsen and Sigmund [14] but for distant collisions only.

This work describes an extension of the PCAmodel [15, 16], based on the impact parame-
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ter method, for molecules and clusters, namely MPCA (molecular perturbative convolution

approximation). MPCA gives the energy loss as a function of impact parameter without

time consuming first-order calculations using a set of thousands of final states for both dis-

tant and close collisions. The starting point of the model is the diatomic molecule. The

physical inputs of the model are the target oscillator strengths, the target electronic density,

the projectile screening function and the molecular alignment angles.

II. MODEL

The MPCA (Molecular Perturbative Convolution Approximation) model is an extension

of PCA model [15, 16] made for cluster projectiles. Here, we present only a short outline of

the PCA method but special attention will be draw to the interference terms that arise from

the sum of all ionic potentials. The electronic energy loss is calculated from the expression

Q(b) =
X
β

¯̄̄
aβ
³
b
´¯̄̄2
(εβ − ε0) (1)

which involves a sum of all final target states with energy εβ (ε0 is the ground-state energy)

and the corresponding calculation of all transition amplitudes aβ for each cluster impact

parameter b. In order to calculate the energy loss due to target ionization and excitation in

a first order perturbation framework, we have to consider the amplitudes for each electronic

transition between the initial state |0i to a final state |βi due to the the cluster with N ions

aβ(b) = −i
+∞Z
−∞

dt ei(εβ−ε0)t hβ|
NX
i=1

Vi
³
r −Ri (t)

´
|0i, (2)

where Vi is the interacting potential between the i-th ion (whose charge is Zi) in the cluster

and the target electron. The i-th ion position in space is R (t) and r is the electronic

coordinate, both relative to the target nucleous. In the first-order treatment the transition

amplitude is only a coherent sum of amplitudes due to each ion of the cluster. If not indicated

otherwise, all calculations throughout this work are in atomic units (h̄ = me = e = 1).

All calculations shall be done for a cluster projectile with impact parameter b with respect

to the cluster center. For a straight-line projectile motion without vibrational and rotational

degrees of freedom, the time dependent position of the i-th projectile nucleous is given by

Ri (t) = bi + vt+ diz, where di is the distance between the molecule center and the i-th ion,
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diz is the z-component of di, bi = b+diρ is the i-th ion impact parameter and v is the cluster

velocity. Figure 1 shows these vectors for a diatomic molecule.

The interacting potential Vi may be one of the following (more details about these po-

tentials are given in ref. [16]):

a) the Coulomb potential, that describes the potential induced by a moving point charge

in vacuum;

b) the Bohr potential, that describes a potential produced by a external point charge

immersed in a homogenous electron gas. The screening parameter (αi) can be obtained

either from the Debye screening length [17] or from the generalization of the Friedel sum

rule for finite velocities derived by Lifschitz and Arista [18];

c) the single-zeta potential, that describes the potential due a projectile carrying one or

two bound electrons (ni = 1, 2) in hydrogen-like 1s orbitals.

It is important to point out that not all ions of the cluster are necessarily generating the

same kind of potential. Due to dynamic capture-loss processes, it is possible to find one

ion of projectile cluster completely ionized, while its neighbors, after capturing an electron

during ion-matter interactions, can have a single-zeta potential. This possibility must be

taken into account in computer simulation codes.

According to the atomic PCA model, in a first step we shall find approximations for Q (b)

(Eq.(1)) that are valid for a limited range of impact parameters and in a second step these

approximations should be linked. At large impact parameters the dipole approximation for Vi

can be used, and thus, an analytical expression [19, 20] for Q (b) may be obtained. Inserting

the cluster interacting potential, we have, for large impact parameters, an expression of the

form

Qdipole
³
b
´
=

NP
i=1

Qdipole
atomic(bi) +

NP
i=1

NP
j>i

Qdipole
int (bi, bj) (3)

where

Qdipole
int

³
bi, bj

´
=
P
β
fβ

2ZiZj
v2
cos

³
ωβ0dijz

v

´∙
2bi·bj
(bibj)

2g⊥ (bi) g⊥ (bj) +
2gk(bi)gk(bj)

bibj

¸
(4)

where, for the Coulomb potential, the functions gk (bi) and g⊥ (bi) read:

gk (bi) =

Ã
ωβ0bi
v

!
K0

Ã
ωβ0bi
v

!
(5)
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and

g⊥ (bi) =

Ã
ωβ0bi
v

!
K1

Ã
ωβ0bi
v

!
(6)

where K0 (x) and K1 (x) are second kind Bessel functions (for the Bohr and single-zeta

potentials, expressions are given in ref. [16]), fβ = 2 |hβ| z |0i|2 (εβ − ε0) are the oscillator

strenghts and dijz = di cos θi−dj cos θj. The first term in Eq.(3) corresponds to the individual
Qdipole

atomic (b) associated to each ion (see expressions in ref.[16]) and the last one is associated

to interference effects (vicinage) . The first interference term in Eq.(4), the one associated

with g⊥, corresponds to the classical sudden approximation. It is important to point out

that the function g⊥ (bi) approaches 1 for small bi and gk (bi) approaches zero.

For small impact parameters, the influence of the target potential can be neglected at

high projectile energies, allowing for an analytical expression for Qclose (b) by replacing the

final target-continuum states by plane waves. Thus, the energy transfer reads

Qclose
³
b
´
=

NX
i=1

Qclose
atomic(bi) +

Z
d2r⊥K

close
int

³
r⊥ − b

´ ∞Z
−∞

dz ρ (r⊥, z) (7)

where again the first term corresponds to a incoherent sum of energy losses due to each ion

from the cluster (already defined in ref [15] ) and

Kclose
int (b) =

2

v2

NX
i=1

NX
j>i

ZjZihint
³
bj, bi

´
(8)

is the interference term with

hint
³
bj, bm

´
= 4v2

1R
0
dq q2×

cos (2vq2dmjz)
n
q
h
J0
³
2vqbj

√
1− q2

´
K0 (2vq

2bm) + J0
³
2vqbm

√
1− q2

´
K0 (2vq

2bj)
i
+

√
1− q2 bj

bj
· bm
bm

h
K1 (2vq

2bm) J1
³
2vqbj

√
1− q2

´
+K1 (2vq

2bj)J1
³
2vqbm

√
1− q2

´i¾
(9)

The function hint
³
b1, b2

´
approaches zero for b1 ¿ 1/v or b2 ¿ 1/v and, for large values

of b (i.e. large values for both b1 and b2), it reaches

hint
³
b1, b2

´
≈ 2 b1 · b2

(b1b2)
2 (10)
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recognized as the interference part of the classical sudden approximation result [20] for a

diatomic molecule.

In what follows, we propose the following general formula, applicable to all impact para-

meters, namely

Q(b) =
Z
d2r⊥KMPCA

³
r⊥ − b

´ ∞Z
−∞

dz ρ (r⊥, z) (11)

where the kernel is defined as

KMPCA

³
b
´
= KMPCA

atomic

³
b
´
+KMPCA

int

³
b
´

(12)

where KMPCA
atomic corresponds to the sum of the energy losses due to each individual ion from

the cluster as presented in ref[15] for a single ion projectile and

KMPCA
int (b) =

P
β
fβ

NP
i=1

NP
j>i

2ZiZj
v2
cos

³
ωβ0dijz

v

´
×"

hint
³
2vbi, 2vbj

´
g⊥ (bi) g⊥ (bj) +

2gk(bi)gk(bj)√
b2i+b

2
min

√
b2j+b

2
min

# (13)

where bmin = 1/v2 is defined in ref [20]. This is the molecular perturbative convolution

approximation (MPCA).

As can be observed the kernel function in Eq.(13) is based on the expression for large

impact parameters (Eq(3)) by replacing the interference term 2bi·bj
(bibj)2

by hint(bi, bj). In this

way, according to Eq.(10), the above energy-loss ansatz interpolates smoothly small and

large impact parameters.

In figure 2, we compare the dipole and close-collision interference terms with the corre-

sponding MPCA term for two bare diatomic molecule orientations. For both orientations, we

can see that MPCA and close-collision interference terms (from Eq.(13) and Eq.(8), respec-

tively) agree with each other for small impact parameters and the same is observed between

MPCA and dipole approximations (from Eq.(13) and Eq.(4) for large impact parameters,

thus reinforcing the validity of our proposed general formula (11). It should be stressed that

the sudden approximation, which was used in ref. [15] to link close and distant collisions for

atomic projectiles, in fact does not link the interference terms for close and distant collisions

properly. This comes from the fact that the classical sudden approximation does not contain

the interference terms due to the phase difference along the z-direction (e.g. the cosine term

in Eq.(4) and in Eq.(9)).
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It is important to point out that Eq. (11) is valid only for a one-electron system. In

the framework of the independent particle model, however, it is possible to use eq.(11)

considering the electronic density and the dipole oscillator strengths for each electron of all

occupied target shells.

In what follows, only an analysis of the interference term will be performed. The corre-

sponding analysis of the monoatomic terms was already done in ref. [15]. The angles θ and

φ shown in figure 1 will fix the diatomic molecular orientation.

III. DISCUSSIONS AND CONCLUSIONS

In fig. 3 we see the results of the present model, for two molecule orientations (where

φ = 0◦), for the impact parameter dependence of the mean energy loss of bare (top) and

single-zeta screened (bottom) H2 molecular projectiles, both at 500 keV/amu, colliding with

atomic H (full line). We compare our results with full first order molecular SCA (semiclassical

approximation, similar to the numerical procedure seen in [21] calculations (squares) and

with full first order SCA for two independent protons with the same screen function and

impact parameters as used in molecular SCA (dashed line). In our tests, the interatomic

distance was set to 2 a. u. (about 1.06 Å).

About 3500 target states were used in SCA calculations, to ensure an adequate number

of partial waves, necessary to calculate Q (b) accurately. Here we have considered two cases.

The first one the molecule has no bound electrons (two protons traveling together, interacting

with Coulomb forces) and the second one where one of the proton has captured one electron

from the medium (H+ and H0 traveling together).

Fig. 3 (on the top panel) shows a fairly good agreement between molecular SCA and

MPCA model. Moreover, it is possible to appreciate the interference terms effect, shown by

the difference between MPCA and independent-protons SCA. For θ = 90◦ and φ = 0◦ (i.e.

, the molecule has its axis orthogonal to its motion and parallel to the impact parameter

direction), the increase of energy loss up to impact parameter about 1 a. u. is due the choice

of the coordinated system. In that orientation and for b =1 a. u., one of the ions (namely

the second) will have a head-on collision with the target. In all orientations, the effect of

interference terms leads to an increase in energy loss of about 50% for distant collisions

and less than 10% for close collisions. That result agrees with the united atom model for
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distant collisions, where the energy loss is proportional to (Z1 + Z2)
2 (4, for H+2 ) and the

independent atom model for close collisions, where Sc is proportional to Z21+Z22 (2, for H
+
2 ).

Fig. 3 (on the bottom panel) shows similar results for a molecule projectile, whose first

ion has a single-zeta screening with α =2 (Zeff = 1). It is pointed out that the interference

between the projectile components is notably reduced, since the characteristic screening

length 1/α is only one quarter of the molecule length. Then, the interaction between the

bare ion and the target electron is much larger than the one from the screened partner.

This explains the significantly reduced difference between molecular SCA and independent

proton SCA calculations for screened projectiles. Qualitatively similar results were found

for different values of φ and for the case of Bohr screening for α = 2 (not shown).

In conclusion, we have developed a simple formula (Eqs.(11-13)) to evaluate the electronic

energy loss as a function of impact parameter for cluster projectiles, valid for high clusters

energies and for a wide range of impact parameters, including the effect of screening. The

input parameters are only the target density and the oscillator strengths, as well as the

projectile screening parameter for all cluster components. This model reproduces the results

of full SCA calculations and is much less time consuming. Thus, the MPCA model is very

adequate for use in computer channeling simulations.
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Figure captions

Figure 1. Representation of the collision geometry, showing the target nucleus, the target

electronic distribution, the projectile nuclei, the impact parameter vectors and the projectile

velocity.

Figure 2. Comparison between the MPCA model (solid lines), close-collision (dotted

lines) and dipole-approximation (dashed lines) interference terms for bare molecules for two

possible molecule orientations. In both orientations, we can see an accordance between

MPCA and close-collision approximations for small impact parameters as well as between

MPCA and dipole approximations for large impact parameters.
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Figure 3. Comparison between MPCA model and full first order SCA calculations for

500 keV / amu bare (on top panel) and single-zeta screened (on bottom panel) H2 projectile

colliding with H target. The full lines stand for energy loss as a function of impact parameter

as given by the MPCA (eq. 11) model. The squares stand for molecular SCA calculations

and, to show the interference effect, the dashed lines stand for independent protons SCA

calculation.
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