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Abstract: We have previously identified a Hand1 transcriptional enhancer that drives expression
within the septum transversum, the origin of the cells that contribute to the epicardium. This en-
hancer directly overlaps a common exon of a predicted family of long non-coding RNAs (lncRNA)
that are specific to mice. To interrogate the necessity of this Hand1 enhancer, as well as the impor-
tance of these novel lncRNAs, we deleted the enhancer sequences, including the common exon
shared by these lncRNAs, using genome editing. Resultant homozygous Hand1 enhancer mutants
(Hand1∆ST/∆ST) present with no observable phenotype. Assessment of lncRNA expression reveals
that Hand1∆ST/∆ST mutants effectively eliminate detectable lncRNA expression. Expression analysis
within Hand1∆ST/∆ST mutant hearts indicates higher levels of Hand1 than in controls. The generation
of Hand1 compound heterozygous mutants with the Hand1LacZ null allele (Hand1∆ST/LacZ) also did not
reveal any observable phenotypes. Together these data indicate that deletion of this Hand1 enhancer
and by consequence a family of murine-specific lncRNAs does not impact embryonic development
in observable ways.

Keywords: HAND1; transcription; heart; epicardium; septum transversum; cardiac morphogene-
sis; lncRNA

1. Introduction

The epicardium, the outer covering of the developing heart is a dynamic structure that
contributes to cardiac myofibroblasts, coronary smooth muscle, adipocytes and possibly
some coronary endothelium within the mature heart [1]. Epicardial cells originate from an
embryonic structure termed the proepicardial organ (PEO), which itself is derived from
cells that originate within the anterior portion of the septum transversum (ST) [2–4]. The ST
is a transient embryonic structure that arises from a folding of the lateral mesoderm caudal
to the developing heart in mammals and gives rise to structures that physically separate
the abdominal and thoracic cavities [5]. In mouse E9.0 embryos, cells that originate from
the anterior ST undergo epithelial to mesenchymal transition (EMT), move into the PEO,
and begin to migrate over the outer surface of the developing heart giving rise to the
epicardium. By E10.5 the developing heart is completely covered by epicardial cells. At
E12.5, a subset of epicardial cells undergo a successive round of EMT and move into the
underlying myocardium and it is these epicardial derived cells which differentiate further
into cardiac myofibroblasts, coronary smooth muscle, cardiac adipocytes, and possibly
coronary endothelial cells [6–9].

The basic helix loop helix (bHLH) transcription factors HAND1 and HAND2 are
required for cardiogenesis and have been implicated in epicardial formation. [10–12]. Lin-
eage trace analysis reveals that Hand1-lineage marks cells within the anterior ST, PEO,
epicardium and its secondary EMT derivatives; however, Hand1 expression is only de-
tectable within the anterior ST [13]. Hand2 expression is observed within the PEO and
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epicardium [13]. Deletion of Hand2 using WT1ERT2Cre [14], which is expressed specifically
in the epicardium during development, results in a similar phenotype as the deletion of
Hand2 within the Hand1-lineage, malformed coronaries [13].

Interrogation of the conserved non-coding DNA regulatory elements upstream of the
Hand1 transcriptional start site has identified an enhancer element that drives LacZ reporter
expression within the anterior ST [15]. Interestingly, a family of predicted murine-specific
lncRNAs overlaps this ST enhancer. A common exon shared within this lncRNA family
resides within the ST enhancer sequences. To determine the function of this Hand1 enhancer
and the possible role of these novel predicted lncRNAs in the formation of the PEO and
epicardium, we employed CRISPR/Cas9 to delete the ST enhancer and subsequently the
lncRNAs. Results show that we obtained 6 Hand1∆ST lines of insertion-deletion (indels)
which span a range of 1795 to 1786 base pairs of deletion. The largest deletion (1795 bp)
was bred to homozygosity-producing viable mice and used for all subsequent experiments.
Hand1 expression is observed to be elevated within the heart; however, assessment of
PEO, epicardial and epicardial derivative marker gene expression reveal no significant
changes supporting the observation that epicardium and epicardial derived structures
appear normal. Compound intercross of the Hand1∆ST with the Hand1LacZ null allele [11]
did not introduce any notable phenotypes. Expression analysis confirms that the lncRNA
family expression is compromised within Hand1∆ST/∆ST embryos. Thus, although this
Hand1 enhancer drives ST-specific expression, it is not necessary for the formation of the
PEO or epicardium nor does it reduce expression within the ST, suggesting additional
unidentified enhancers can compensate for its loss. Finally, the novel murine-specific
lncRNAs, when deleted do not reveal an observable functional role.

2. Materials and Methods
2.1. Mouse Strains and Genotyping

Hand1∆ST mice were generated using CRISPR/Cas9 by the Washington University
Genome Engineering (St. Louis, MO, USA) and iPSC core in the FVB background. 6
founder lines were screened for enhancer knockout. Lines with spurious insertions were
identified by PCR isolating, TOPO cloning, and sequencing the enhancer region. The largest
knockout without artifact (1795 bp deletion) was used for subsequent experiments. For
controls, FVB mice were maintained as a separate line for Hand1+/+ controls. Genotyping
was carried out using Southern blots as previously described [16]. BamHI genomic DNA
digestion produces an RFLP of 1.6 kb for the Hand1∆ST allele and 3.6 kb for the wildtype
allele. Homozygous Hand1∆ST/∆ST mice were used for timed matings.

2.2. Histology

Embryos were fixed in 4% paraformaldehyde, dehydrated, embedded, sectioned, and
hematoxylin and eosin (H and E) stained as described [16].

2.3. Cloning

Southern blot probe for the Hand1∆ST allele was amplified and cloned from genomic
DNA obtained from FVB mice using Forward 5’-TCGCTGGTTTCTAGCTGTGA-3′ and Re-
verse 5′-CAGCCCAAATTGCCAGACAC-3′primer sequences. PCR products were cloned
into a pCRII-TOPO backbone (ThermoFisher, Waltham, MA, USA). Plasmids were se-
quenced, digested with EcoRI, gel purified, and radiolabeled with α32P dCTP using Prime-
a-Gene Labeling System (Promega, Madison, WI, USA) to use as probe for Southern blots.

2.4. In-Situ Hybridization

Section in-situ hybridizations (ISH) were performed on 10-µm paraffin sections as
described previously [16,17]. Whole mount in-situ hybridizations were performed using
E10.5 day embryos as described previously [16]. Antisense digoxygenin-labeled riboprobes
were synthesized using T7, T3, or SP6 polymerases (Promega) and DIG-Labeling Mix
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(Roche, Basel, Switzerland) using the following plasmid templates: Hand1, Tbx18, Tcf21,
and Postn.

2.5. Quantitative Real Time PCR

Total RNA was isolated from E9.5 hearts or torsos not including the heart, or E10.5
hearts alone using the High Pure RNA Isolation Kit (Roche). RNA was used to synthesize
cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Waltham, MA, USA). For qRT-PCR, cDNA was amplified using TaqMan Probe-Based
Gene Expression Assays (Applied Biosystems) to quantify Hand1, Tcf21, and Tbx18 ex-
pression in E9.5 hearts and torsos. Custom primers specific to ST enhancer sequence
and putative lncRNAs were synthesized by Integrated DNA Technologies (IDT) P1[F]5’-
TGCCGCCGCACGTCTCTAAT-3′ P1[R]5’-ATCCACAGGGCTGCCCTATC-3′ P2[F]5’-
AGCTCCTTGAGGCCAGGGAG-3′ P2[R]5’-TAATAGGCAGGAGGTCAATCCCTC-3′ P3[F]5′-
AGCAGAGTCTCACTGAACCATACTCCACC-3′ P3[R]5′-AGAGTTGGTTGACCATGTG
AGTTATGTGTGAACC-3′. cDNA in E10.5 day hearts was assayed using PowerUp Sybr-
Green Master Mix (ThermoFisher). qRT-PCR reactions were run on the QuantStudio 3
Real-Time PCR System (ThermoFisher). Normalization to Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used to determine relative gene expression and statistical
analysis was automatically applied by the instrument software. Significance of qRT-PCR
results was determined by a two-tailed student’s t-test followed by post hoc Benjamini–
Hochberg FDR correction as automatically calculated by the QuantStudio 3 qRT-PCR
thermal cycler software analysis package.

2.6. ATAC-Seq

Assay for Transposase-Accessible Chromatin by sequencing was done as previously
described [18]. In brief, timed matings were used to generate E10.5 embryos. Hearts were
excised in PBS, and single-cell suspension was obtained using the Wheaton tight douncer,
and 50,000 cells collected. Cells were lysed in 10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2
and 0.1% IGEPAL CA-630 for 5 min on ice. Nuclei were pelleted and 50 µL tagmentation
reaction and subsequent sequencing carried out as per manufacturer’s recommendations
(Illumina, San Diego, CA, USA).

3. Results
3.1. CRISPR/Cas9 Mediated Deletion of the ST Enhancer

Previous work has identified a putative cis-regulatory enhancer element 34 kb up-
stream of transcriptional start site of Hand1 coding sequence marking the ST at embryonic
day (E)10.5 (Figure 1A, red box) [15]. ATAC-seq (Assay for Transposase-Accessible Chro-
matin by sequencing) in E10.5 hearts shows accessible chromatin at this genomic locus at
this time point. In order to further characterize this enhancer, we used CRISPR/Cas9 medi-
ated deletion of the 1.8 kb element located at genomic region chr11:57,678,478-57,680,329
(mm9). Guide RNAs (Figure 1A, green bars) were designed for this region and 6 founder
lines were generated. These lines were screened for deletion size, and presence of spurious
insertions at the locus by PCR amplification, TOPO cloning of insert, and sequencing. The
largest deletion without artifact was selected for further breeding. This line, with a 1795 bp
deletion, generated viable, phenotypically normal, homozygous Hand1∆ST/∆ST mice as
determined by Southern blotting (Figure 1B). These mice were maintained on an FVB
background and control Hand1+/+ mice were generated by breeding wildtype FVB mice.
Hand1+/+ wildtype allele was detected as a 3.6 kb fragment, and the Hand1∆ST/∆ST enhancer
knockout allele was a 1.6 kb fragment on the Southern blot (Figure 1B). Hand1∆ST/∆ST

mice were bred to homozygosity and did not show any apparent phenotype. Neonates
were obtained at expected ratios and histological analysis of post-natal day 1 Hand1∆ST/∆ST

hearts did not show any defects when compared to Hand1+/+ controls (Figure 1C). ClustalW
alignment across mammals, comparing mouse sequence to human, rat, cow, and dog
shows regions of conservation in consensus transcription factor binding sites (Figure 1D).
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Figure 1. CRISPR/Cas9 mediated deletion of ST enhancer. (A) Mammalian conservation track at the mouse Hand1 locus.
Conserved non-coding regions with spatial and temporal specific activity are boxed. ST enhancer is boxed in red. Close up
region of OFT and ST enhancer are indicated with overlying ATAC-seq from E10.5 hearts. Bars in green represent guide RNA
sequences designed for CRISPR/Cas9 mediated deletion of ST enhancer. The largest deletion line used for further analysis
with 1795 bp deletion is shown. Representative BamH1 digest sites for Southern blot analysis are indicated. Location of
Southern blot probe is indicated. (B) Southern blot analysis for genotyping Hand1∆ST/∆ST. Wildtype Hand1+/+, Heterozygote
Hand1∆ST/+, and Homozygote Hand1∆ST/∆ST are shown. The Hand1+ allele is 3.6 kb in length and the Hand1∆ST allele
is 1.6 kb in length. (C) Post-natal day 1 hearts from Hand1+/+ Hand1∆ST/∆ST mice. 10µm wax sections are stained with
hemotoxylin and eosin. Scale bar 100 µm. (D) ClustalW pile up for core conserved region of ST enhancer comparing mouse,
rat, human, cow, and dog sequences. Consensus DNA sequence for transcription factor binding sites is indicated. LV, left
ventricle; OFT, outflow tract; PA, pharyngeal arches; SG, sympathetic ganglia; ST, septum transversum; ATAC-seq, assay for
transposase-accessible chromatin using sequencing.
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3.2. Loss of a Hand1 Allele over the ST Enhancer Knockout Doesnot Lead to Embryonic Lethality

Since Hand1∆ST/∆ST mice do not demonstrate any observable phenotype, we crossed
homozygous Hand1∆ST/∆ST to the Hand1LacZ/+ mouse [11] to determine if loss of one func-
tional Hand1 allele resulted in a more deleterious phenotype. Embryos from the resulting
cross were subjected to whole mount in-situ hybridization (WISH) at E10.5 to determine
spatial or qualitative changes in Hand1 gene expression levels. Comparison of Hand1+/+

controls to Hand1∆ST/LacZ or Hand1∆ST/∆ST embryos showed no appreciable difference in
Hand1 expression (Figure 2A–C). Since the OFT/PA enhancer is directly 3′ of the ST en-
hancer [15], we carefully examined PA expression of Hand1 within Hand1∆ST/∆ST embryos.
Results reveal that Hand1 PA expression is maintained within Hand1∆ST/∆ST embryos
(arrow, Figure 2B) as well as within Hand1∆ST/LacZ embryos (arrow, Figure 2C). We also
examined expression within the umbilical region just caudal to the heart and observed no
significant changes in Hand1 expression (arrows, Figure 2A’–C’) Analysis of mendelian
ratios from breeding Hand1∆ST/∆ST and Hand1LacZ/+ mice (n = 40) show Hand1∆ST/LacZ pups
are encountered at expected frequency when genotyped at postnatal day 10, and these
mice are viable and fertile (Figure 2D).
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Figure 2. Loss of a Hand1 Allele over the ST Enhancer knockout does not lead to embryonic
lethality. (A–C) Whole mount in-situ hybridization (WISH) at E9.5 for Hand1 mRNA in Hand1+/+,
Hand1∆ST/∆ST, and Hand1∆ST/LacZ embryos showing no qualitative or spatial change in Hand1
mRNA levels. Arrows indicating pharyngeal arch expression of Hand1 in Hand1∆ST/∆ST and
Hand1∆ST/LacZ embryos. N = 5 embryos for all genotypes. pa, pharyngeal arches; h, heart; fl,
forelimb; hl, hindlimb; u, umbilicus. (A’–C’) Umbilicus region expression of Hand1 in WISH embryos.
(D) Table showing expected and recovered genotypes at postnatal day 10 from Hand1∆ST/∆ST and
Hand1LacZ/+ parental crosses.
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3.3. ST and PEO In Hand1∆ST/∆ST Embryo

In order to carefully identify the ST and PEO within Hand1∆ST/∆ST embryos, we in-
terrogated expression of transcription factor Tbx18. Tbx18 expression marks the ST, the
PEO, and epicardial cells laminating over the cardiac surface at E9.5 (Figure 3A,E,I) [19,20].
Hand1 is expressed within the ST but not the PEO (Figure 3C,G) [13]. To test if ST and/or
PEO development within Hand1∆ST/∆ST embryos is affected by loss of the ST enhancer,
E9.5 embryos were transverse sectioned and serial sections used for ISH to detect Hand1
and Tbx18 mRNA. Analysis of mRNA expression in Hand1∆ST/∆ST embryos shows Tbx18
expression within the ST of Hand1∆ST/∆ST embryos is similar to that observed in Hand1+/+

controls (Figure 3A,B). Surprisingly, Hand1 expression within the ST appears indistinguish-
able when comparing Hand1∆ST/∆ST and Hand1+/+ embryos (Figure 3C,D), suggesting that
Hand1 expression within the ST is regulated by redundant enhancers.
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Figure 3. ST And PEO In Hand1∆ST/∆ST Embryo. (A–P) Section in-situ hybridization at E9.5 for Tbx18 and Hand1 mRNA in
Hand1+/+ and Hand1∆ST/∆ST embryos. Arrowheads indicate Tbx18 expressing cells migrating over the heart to form the
epicardium. Arrows indicate Hand1 expression in the outflow tract. st, septum transversum; peo, proepicardial organ;
rv, right ventricle; lv, left ventricle; oft, outflow tract. n=6 for all genotypes. Scale bar 100µm. (Q) Representation of E9.5
embryo showing planes of section indicated at rows: 1 (st), 2 (peo), 3 (four chamber heart), 4 (developing outflow tract). (R)
qRT-PCR at E9.5 for Hand1 and Tbx18 expression in heart, and torso (dissected to exclude the heart, but with PEO and ST
intact) in Hand1+/+ and Hand1∆ST/∆ST embryos. n = 9 embryos, pooled. Significant increase in Hand1 (* indicates p ≤ 0.01,
# indicates p ≤ 0.05) and Tbx18 (* indicates p ≤ 0.01) are observed. Error bars represent the high and low range of replicate
cycle reads within each primer set.
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Cells within the PEO are identified by Tbx18 expression and their characteristic
rounded cellular morphology at E9.5 as they migrate to envelop the developing heart
(Figure 3E) [21]. Hand1 expression is not observed within the PEO, as has been previously
reported (Figure 3G) [13]. In Hand1∆ST/∆ST embryos at a similar plane of section, we ob-
serve PEO cells that express Tbx18 (Figure 3F). In both Hand1+/+ control and Hand1∆ST/∆ST

embryos, Tbx18 expressing cells are observed laminating over the heart to give rise to
the epicardium (arrowheads, Figure 3I,J). Hand1 expression within the left ventricle (LV)
and outflow tract (OFT) appear unchanged within Hand1∆ST/∆ST embryos compared to
Hand1+/+ controls (Figure 3K,L,O,P arrow). In order to quantify any changes in gene ex-
pression, Hand1+/+ and Hand1∆ST/∆ST embryos at E9.5 are dissected to separate the heart
from the torso and are pooled for qRTPCR using Taqman probes against Hand1 and Tbx18.
Surprisingly, results show that Hand1 expression within Hand1∆ST/∆ST hearts is significantly
upregulated (4.935 fold, p = 0.001) as compared to Hand1+/+ controls (Figure 3R). Hand1
expression levels within the torso, excluding the heart, but including the ST and PEO,
are significantly decreased in Hand1∆ST/∆ST compared to Hand1+/+ (0.143 fold, p = 0.034)
(Figure 3R). Tbx18 expression in E9.5 hearts is increased by a modest but significant
(2.026 fold, p = 0.001) level within Hand1∆ST/∆ST compared to Hand1+/+ controls (Figure 3R).
Tbx18 expression within Hand1+/+ and Hand1∆ST/∆ST torsos remains unchanged (0.909 fold,
p = 0.368) (Figure 3R).

3.4. Expression of Hand2 in Hand1∆ST/∆ST Embryos

Hand1 and Hand2 are expressed in overlapping domains during heart develop-
ment [12]. Previous work has also suggested functional redundancy in function of these fac-
tors [13,22]. To determine if loss of the ST enhancer results in changes in Hand2 expression,
E9.5 embryos were sectioned and Hand1+/+ and Hand1∆ST/∆ST embryos were compared
(Figure 4). As previously reported, Hand2 is robustly expressed in the ST (Figure 4A,C)
and PEO (Figure 4E,G) [13]. Hand2 domain of expression in Hand1∆ST/∆ST embryos com-
pared to Hand1+/+ in ST (Figure 4B,D) and PEO (Figure 4F,H) appears unchanged. In
the four-chambered heart, Hand2 expression appears unchanged between Hand1+/+ and
Hand1∆ST/∆ST embryos (Figure 4K,L). Loss of the ST enhancer in Hand1∆ST/∆ST embryos
does not appear to change the domain or qualitative level of Hand2 expression in the ST
or its derivatives. qRTPCR analysis using Taqman probes against Hand2 in pooled E9.5
embryos show Hand2 expression levels as trending lower but not significantly different
within Hand1∆ST/∆ST compared to Hand1+/+ hearts (0.657 fold, p = 0.083) (Figure 4M).
Hand2 expression within the torso, similar to Hand1, is significantly decreased (0.390 fold,
p = 0.021) in Hand1∆ST/∆ST compared to Hand1+/+ embryos (Figure 4M).

3.5. Development of the Epicardium Is Unaffected In Hand ∆ST/∆ST Embryo

During heart development, the ST is the source of cells that gives rise to the epi-
cardium [1]. By E13.5, epicardial cells cover the four-chambered heart and are marked
by expression of Tcf21 [23]. To determine if loss of the ST enhancer results in changes
in epicardial development, E13.5 Hand1+/+ and Hand1∆ST/∆ST embryos were sectioned.
Comparison of Tcf21 expression in Hand1+/+ (Figure 5A,A’) and Hand1∆ST/∆ST (Figure 5B,B’)
epicardium suggests that epicardial development in Hand1∆ST/∆ST embryos is normal.
Higher power views of Tcf21 expression at the epicardial surface (red square Figure 4A,B)
reveal infiltration of Tcf21 positive epicardial cells within myocardium indicating the ex-
pected secondary EMT observed in normal development (Figure 5A’,B’). qRT-PCR analysis
for Tcf21 using Taqman probes in E13.5 hearts suggests a modest but significant increase
(1.626 fold, p = 0.005) in Tcf21 transcript in Hand1∆ST/∆ST hearts compared to Hand1+/+

controls (Figure 5E).
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Figure 4. Hand2 expression in Hand1∆ST/∆ST Embryos. (A–L) Section in-situ hybridization at E9.5 for Tbx18 and Hand2
mRNA in Hand1+/+ and Hand1∆ST/∆ST embryos. Arrowheads indicate Tbx18 expressing cells migrating over the heart to
form the epicardium. st, septum transversum; peo, proepicardial organ; rv, right ventricle; lv, left ventricle. n = 3 for all
genotypes. Scale bar 100 µm. (M) qRT-PCR at E9.5 for Hand2 expression in heart, and torso (dissected to exclude the heart,
but with PEO and ST intact) in Hand1+/+ and Hand1∆ST/∆ST embryos (* indicates p ≤ 0.01). n = 9 embryos, pooled. Error
bars represent the high and low range of replicate cycle reads within each primer set.
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Figure 5. Development of The Epicardium is Unaffected in Hand1∆ST/∆ST Embryo. (A,B) and (A’,B’) Section in-situ
hybridization at E13.5 Hand1+/+ and Hand1∆ST/∆ST embryos for Tcf21 showing four chamber view and at higher magnification.
Arrow indicating epicardium. (C,D) and (C’,D’) Section in-situ hybridization at E13.5 Hand1+/+ and Hand1∆ST/∆ST embryos
for Periostin (Postn) showing four chamber view and at higher magnification. Arrow indicating cardiac fibroblasts. rv, right
ventricle; lv, left ventricle; epi, epicardium. Scale bar 100 µm. (E) qRT-PCR at E13.5 for Tcf21 in Hand1+/+ and Hand1∆ST/∆ST

hearts. Significant increase in Tcf21 (* indicates p≤ 0.01) is observed. Error bars represent the high and low range of replicate
cycle reads within each primer set.

Epicardial cells undergo secondary EMT to give rise to epicardial derived cells (EPDCs)
that move into the myocardium and eventually differentiate into cardiac fibroblasts that
contribute to the developing valves [7]. Periostin (Postn) is expressed by these EPDCs [24]. In
order to confirm that loss of ST enhancer appears not to affect EPDC development, section
ISH was carried out at E13.5 to examine Postn expression within Hand1+/+ and Hand1∆ST/∆ST

embryos (Figure 5C,D). Comparison of Hand1+/+ and Hand1∆ST/∆ST embryos (Figure 5C’,D’
respectively) suggests an increased region of Postn expression in Hand1∆ST/∆ST embryos. Given
that Tcf21 expression is upregulated within Hand1∆ST/∆ST embryos along with the increased
expression of Postn, our data suggests an expansion of EPDCs in Hand1∆ST/∆ST embryos.

3.6. Loss of Putative LncRNA Family Does Not Affect Heart Development

The mouse Hand1 locus contains 6 putative lncRNAs (X1–X6) predicted by Gnomon
(NCBI eukaryotic gene prediction tool) to be upstream of the Hand1 transcriptional start
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site, that transcribe in the same direction as Hand1, and partially overlap with the ST
enhancer (Figure 6A, red box). Primers designed internally to a common exon shared by
all 6 of the putative lncRNAs (Figure 6B, P1, blue) detect lncRNA transcript within E10.5
Hand1+/+ hearts, with no expression observed in Hand1∆ST/∆ST hearts (Figure 6C). Primers
that are intron spanning (Figure 6B, P2, magenta) also reveal lncRNA expression within
E10.5 Hand1+/+ hearts but fail to detect expression within Hand1∆ST/∆ST hearts (Figure 6C).
Loss of the common exon in Hand1∆ST/∆ST hearts leads to loss of downstream exons as
determined by qRT using primers against the last two exons of X4, X5, X6 (Figure 6B, P3,
purple) indicate that loss of the common exon leads to loss of lncRNA transcript as detected
by qPCR in Hand1∆ST/∆ST E10.5 hearts (Figure 6C).
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Figure 6. Loss of Putative LncRNA Family does not Affect Heart Development. (A) Schematic showing predicted lncRNAs
X1, X2, X3, X4, X5, X6 upstream of Hand1 coding region. Red box indicating ST enhancer deletion. (B) Schematic showing
lncRNA overlaid with ST enhancer. Common exon shared between all lncRNAs that overlaps with ST enhancer is marked.
Two primer sets designed to detect lncs P1 (blue, 202 bp lncRNA product size), P2 (magenta, 2573 bp genomic product
size, 198 bp lncRNA product size), P3 (purple, 4423 bp genomic product size, 659 bp lncRNA product size) are marked. (C)
qRT-PCR results to detect lncRNAs in E10.5 Hand1+/+ and Hand1∆ST/∆ST embryos. (* indicates p ≤ 0.05). Error bars indicate
standard error.

4. Discussion

Hand1 embryonic expression is regulated by a number of tissue-specific enhancers
driving tissue-specific expression within post-migratory neural crest cells (NCC) within
the sympathetic ganglia, the myocardium of the LV, and within the post-migratory NCC
that populate the lower jaw and cardiac OFT [15,22,25]. Hand1 expression is also observed
within the ST of the developing embryo [13] and using a Cre recombinase Hand1 knock-in
allele [26] to delete Hand2 reveals cardiac phenotypes of epicardial origin [13]. Transgenic
reporter analysis identifies a conserved non-coding region that drives expression within
the ST [15]. In this study, we delete this ST enhancer to determine its role in regulating
Hand1 expression within the ST and its role in PEO and epicardial formation.

Results show clearly that Hand1∆ST/∆ST mice are viable and without any discernable
phenotypes. Moreover, Hand1∆ST/LacZ compound heterozygotes are also viable and without
any discernable phenotypes. Given that Hand1 expression within the developing ST does
not appear changed, we conclude that it is likely that a secondary ST enhancer, as yet
unidentified, compensates in Hand1∆ST/∆ST mice. It is possible that the Hand1 OFT/PA
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enhancer that lies just 3′ to the ST enhancer might also contribute to Hand1 ST expression;
however, previous transgenic reporter analysis does not support this possibility [15].
Interrogation of gene expression within Hand1∆ST/∆ST embryos for markers of the ST and
PEO (Tbx18), the epicardium (Tcf21), and established EPDCs (Postn) reveal no change in
expression patterns supporting the lack of phenotype observed in these mice.

The ST and PEO, are incompletely marked by Hand1 (Figure 3C) [13], suggesting that
non-Hand1 expressing cells might be sufficient to drive ST maturation during development.
Additionally, non-PEO origin cells are known to contribute to the epicardium [27]. This
heterogeneity of the PEO, and the non-PEO origin of the epicardium could explain a lack
of phenotype in the ST enhancer knockout mice; however, given that Hand1 expression
patterns are not visibly changed, it is more likely that there is compensation for Hand1
expression from a redundant enhancer.

One curious observation made in Hand1∆ST/∆ST embryos is that we observe a signifi-
cant increase in Hand1 cardiac expression. This could be the result of removing negative
myocardial transcriptional inputs or the repositioning of Hand1 OFT and LV enhancers
within the open chromatin such that these enhancers become more efficient. The lack of
phenotype in Hand1∆ST/∆ST embryos might also be due to the decrease in Hand2 expression
seen in Hand1∆ST/∆ST hearts (Figure 4M), suggesting a feedback regulatory mechanism
between Hand1 and Hand2 expression levels in vivo. This compensatory mechanism might
be heart-specific, as both Hand1 and Hand2 are significantly downregulated in the torsos
within Hand1∆ST/∆ST embryos. What is clear is that the increase in Hand1 cardiac tran-
scripts does not result in observable phenotype, suggesting that there is broad toleration
for different concentrations of Hand1 transcript and/or that established mechanisms of
post-translational regulation of HAND1 protein can mitigate deleterious gain-of-function
phenotypes [28–30].

Finally, we show that a murine-specific predicted lncRNA family is actually expressed
during embryonic development and a common lncRNA exon resides within the Hand1
ST enhancer (Figure 6). The observed increase in Hand1 expression within Hand1∆ST/∆ST

hearts suggests that these lncRNAs might repress Hand1. Results show that deletion of
the ST enhancer leads to a loss of expression of this novel lncRNA family; however, no
phenotype is observed. Recent work from other groups has shown deletion of cardiac-
specific lncRNAs is not required for embryo viability. Given many of these identified
lncRNAs are not well conserved through evolution may reflect subtle roles in transcription,
mRNA processing, or other molecular mechanisms that are species-specific [31].

Taken together, we conclude from this data that the Hand1 ST enhancer is sufficient
to drive ST expression during mouse embryogenesis [15] but is not necessary to maintain
sufficient Hand1 expression within the ST suggesting the existence of a redundant Hand1
ST enhancer capable of driving normal epicardial development.
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