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Abstract

Current guidelines recommend dual antiplatelet therapy (DAPT) consisting of aspirin and a P2Y12 

inhibitors following percutaneous coronary intervention (PCI). CYP2C19 genotype can guide 

DAPT selection, prescribing ticagrelor or prasugrel for loss-of-function (LOF) allele carriers 
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(genotype-guided escalation). Cost-effectiveness analyses (CEA) are traditionally grounded in 

clinical trial data. We conduct a CEA using real-world data using a 1-year decision-analytic model 

comparing primary strategies: universal empiric clopidogrel (base case), universal ticagrelor, and 

genotype-guided escalation. We also explore secondary strategies commonly implemented in 

practice, wherein all patients are prescribed ticagrelor for 30 days post PCI. After 30 days, all 

patients are switched to clopidogrel irrespective of genotype (nonguided de-escalation) or to 

clopidogrel only if patients do not harbor an LOF allele (genotype-guided de-escalation). 

Compared with universal clopidogrel, both universal ticagrelor and genotype-guided escalation 

were superior with improvement in quality-adjusted life years (QALY’s). Only genotype-guided 

escalation was cost-effective ($42,365/QALY) and demonstrated the highest probability of being 

cost-effective across conventional willingness-to-pay thresholds. In the secondary analysis, 

compared with the nonguided de-escalation strategy, although genotype-guided de-escalation and 

universal ticagrelor were more effective, with ICER of $188,680/QALY and $678,215/QALY, 

respectively, they were not cost-effective. CYP2C19 genotype-guided antiplatelet prescribing is 

cost-effective compared with either universal clopidogrel or universal ticagrelor using real-world 

implementation data. The secondary analysis suggests genotype-guided and nonguided de-

escalation may be viable strategies, needing further evaluation.

Introduction

The introduction of percutaneous coronary intervention (PCI) and P2Y12 receptor 

antagonists clopidogrel, prasugrel [1], and ticagrelor [2] have significantly improved 

outcomes in patients with acute coronary syndrome (ACS) [3].

For patients undergoing PCI, dual antiplatelet therapy (DAPT) consisting of aspirin and a 

P2Y12 inhibitor is recommended [4]. P2Y12 inhibitor selection is based on an individual’s 

risk of bleeding and therapeutic failure, and medication costs. Although the use of ticagrelor 

and prasugrel (alternative antiplatelets) is increasing, clopidogrel remains widely used [5]. 

The efficacy of clopidogrel is influenced by variants in the cytochrome P450 2C19 gene 

(CYP2C19), with patients possessing CYP2C19 loss-of-function (LOF) alleles 

(*2:rs4244285, *3:rs4986893), experiencing an increased risk for stent thrombosis and 

major adverse cardiovascular events (MACE) [6]. In contrast, CYP2C19 genotype does not 

influence the efficacy of prasugrel or ticagrelor [7, 8]. Both have demonstrated superior 

efficacy compared with clopidogrel, albeit without prospective genotype substratification 

and at increased bleeding risk and higher medication costs [2]. Clinical trial results have also 

informed cost-effectiveness analysis (CEA) of alternative antiplatelets versus clopidogrel [9–

12] and of CYP2C19 genotype-guided DAPT [13–15].

With the availability of rapid genotyping, guidance from the FDA and Clinical 

Pharmacogenetics Implementation Consortium (CPIC) [16], and the potential to improve 

outcomes by guiding P2Y12 inhibitor selection, implementation of genotype-guided DAPT 

has been a major focus of precision medicine efforts [17–19]. The Implementing GeNomics 

In pracTicE Network Pharmacogenetic Working Group recently showed that among patients 

prescribed clopidogrel (versus alternative antiplatelets), possession of CYP2C19 LOF allele 

was associated with twofold increase in MACE risk in patients undergoing PCI (HR = 2.3; 
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95% CI: 1.2–4.3; p = 0.013) and almost threefold increase in MACE risk in patients 

undergoing PCI for ACS (HR: 2.9; 95% CI 1.3–6.19, p = 0.013) [20].

Using these real-world effectiveness data, we conducted a CEA of genotype-guided DAPT 

versus empiric DAPT following ACS and PCI. Unlike prior efforts, which conducted CEA 

using data from clinical trials, our analysis is based on event rates observed in routine 

clinical practice. In addition, unlike prior analyses, which assumed treatment strategies do 

not change over time, we explored secondary strategies informed by clinical practice 

wherein treatment is modified at 30 days post PCI.

Methods

A decision-analytic model was designed to simulate costs and outcomes across treatment 

strategies using the payer perspective (Fig. 1) [21]. For each strategy, we simulated the 

expected outcomes for 2,000,000 ACS patients (Table 1) following PCI over a 1-year time 

horizon. During this time, a patient might experience no event, stent thrombosis, nonfatal 

stroke, nonfatal MI, major bleeding, or cardiovascular death.

The primary strategies we compared were universal empiric clopidogrel (base case), 

universal ticagrelor, and CYP2C19 genotype-guided escalation. Genotype-guided escalation 

included genotyping at time of PCI, with ticagrelor prescribed for all LOF allele carriers and 

clopidogrel prescribed for patients without an LOF allele for 12 months. The secondary 
strategies included strategies commonly implemented in practice, wherein all patients are 

prescribed ticagrelor for the first 30 days post PCI, followed by universal de-escalation to 

clopidogrel (without genotyping) or genotype-guided de-escalation to clopidogrel only in 

patients without an LOF allele for the remaining 11 months [22, 23].

Model structure and inputs

The CE model was created as a discrete event simulation using our implementation study 

and literature-based values for variant frequencies, clinical outcomes, secular death, utilities, 

and costs. Health state utilities and costs were assigned to each event in 1-month cycles. 

Model input parameters are presented in Table 2. The LOF allele frequency (32%) was 

informed by prior reports [16, 19, 20, 24]. Recognizing that LOF allele frequency varies 

across racial groups, we include additional analysis varying the LOF allele frequency from 

20 to 70%, in 5% increments. We assumed that genotyping was 100% sensitive and 100% of 

physicians use the information from genetic testing if already available. To account for 

variation in physician acceptance, we include additional analysis varying the acceptance 

from 60 to 100% in 10% increments.

For genotype-guided strategies, we modeled the DAPT regimens based on CPIC guidelines 

[16]. As ticagrelor is preferentially used over prasugrel in post ACS/PCI settings [5], it was 

included as the alternative antiplatelets in all analyses. We assumed that patients possessing 

LOF alleles would receive ticagrelor, whereas patients with gain-of-function (*1/*17, *17/

*17), or normal function (*1/*1) alleles, would be treated with clopidogrel. Because one 

increased function allele does not completely compensate for one LOF allele (*2/*17) such 

persons would receive ticagrelor consistent with CPIC recommendations.
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The rates and timing of adverse events (MACE events MI, stroke, and death) were informed 

by observed event rates as a function of CYP2C19 allele status [6, 20, 24]. Treatment-related 

incidence of bleeding was estimated from randomized trials. As the 30-day de-escalation 

strategies were not directly implemented or measured, we considered these strategies 

secondary; the simulation used different subpopulations of the implementation cohort when 

calculating early (0–30 days) versus late (31–365 days) event rates.

For clopidogrel treated patients, we estimated the incidence of MACE events from ACS 

patients in our prospective study [20], and from clinical trials, observational data, U.S. life 

tables, Medicare claims, guidelines, and other publications. [1, 2, 25–30] The event rates in 

the other gene-treatment groups were estimated using rate ratios relative to patients on 

clopidogrel from our recent report [20]. As the effects of ticagrelor are unaffected by 

CYP2C19 genotype, we assumed that LOF allele carriers and noncarriers have similar 

outcomes [28]. Based on results from Platelet Inhibition and Patient Outcomes study, we 

assumed that ticagrelor reduced cardiovascular deaths without a corresponding increase in 

fatal bleeding [2, 25].

Quality-of-life estimates and costs

We estimated age-specific quality of life [31]. We assumed that patients who had an MI or 

stent thrombosis had a 0.12 permanent quality-of-life decrement [32]. We included direct 

medical costs (such as admissions, procedures, clinical visits, and drugs) and induced costs 

(such as cost of procedural complications) but not indirect costs (such as lost wages and 

caregiver costs). Cost estimates were derived from Medicare reimbursement rates, the 

Nationwide Inpatient Sample, and key publications in the health economics literature [33, 

34]. We estimated age-specific costs from the Agency for Healthcare Research and Quality’s 

Medical Expenditure Panel Survey [15].

We assumed current monthly prescription costs (goodrx. com) for generic clopidogrel (base 

case $10/month; range $5–60/month), and ticagrelor (base case $360/month; range $20–460/

month) in the sensitivity analyses. The 6-month average costs were used as the reference. 

We estimated cost of genotyping (base case $100/test) from a survey of retail process of 

commercially available tests but included a range ($50–250/test).

We present results in 2016 U.S. dollars, quality-adjusted life years (QALYs), and 

incremental cost-effectiveness ratios (ICERs). ICERs were calculated using the difference in 

cost divided by the difference in their effect. Strategies are considered cost-effective if the 

associated ICER is below the willingness-to-pay (WTP) threshold of $100,000 per QALY 

[35]. To facilitate comparisons across the strategies in sensitivity analyses we calculated the 

net monetary benefit (NMB), calculated by multiplying QALY × WTP and subtracting the 

cost for each strategy. We conducted one-way sensitivity analyses to explore the impact of 

variation in the cost of genotyping and drug therapy, and a probabilistic sensitivity analysis 

(PSA) using the Saltelli method to account for uncertainty across all clinical risks, utilities, 

and costs simultaneously [36]. The results of the PSA for the probability of the primary 

strategies being cost-effective compared with the reference strategy across a wide range of 

WTPs are presented using cost-effectiveness acceptability curves (CEAC). The simulation 

and sensitivity analyses were conducted using the simmer package in R (Version 3.6.3).
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Results

For the primary strategies, both universal ticagrelor and genotype-guided escalation had a 

higher number of QALYs compared with universal clopidogrel (base case; Table 3). 

Genotype-guided escalation was cost-effective at $42,365/QALY, while universal ticagrelor 

was not (ICER of $227,044/QALY).

Among the secondary strategies, (Table 4) universal clopidogrel and genotype-guided 

escalation were dominated by the nonguided de-escalation strategy, which was more 

effective and less expensive. Compared with the nonguided de-escalation strategy, the 

genotype-guided de-escalation and universal ticagrelor were more effective and more 

expensive. However, genotype-guided de-escalation (ICER of $188,680/QALY) and 

universal ticagrelor (ICER $678,215/QALY) were not cost-effective.

One-way sensitivity analyses were conducted by varying the cost of testing and prescription 

costs for clopidogrel and ticagrelor. The relative rankings of strategies considered in our 

primary and secondary analyses remained unchanged from the reference case across the 

entire range of cost of testing considered (Supplementary Fig. 1a, b). Similarly, our 

reference case results were robust to varying monthly clopidogrel prescription costs from $5 

to $60 (Supplementary Fig. 2a, b).

However, we did find our findings were sensitive to the assumptions made about the 

monthly ticagrelor prescription costs. When WTP is set at $100,000/QALY, the preferred 

strategy was universal ticagrelor when ticagrelor costs were less than $130/month, genotype-

guided escalation when ticagrelor ranged from $130 to $380/month, and universal 

clopidogrel when ticagrelor costs exceed $380/month (Supplementary Fig. 3a) In the 

secondary analysis, the preferred strategy was universal ticagrelor when ticagrelor costs 

were less than $58/month, genotype-guided de-escalation when these costs ranged from $58 

to $191/month, and nonguided de-escalation when they exceeded $191/month 

(Supplementary Fig. 3b).

Sensitivity analysis also revealed our primary and secondary findings were robust to 

assumptions made about bleeding risk among ticagrelor versus clopidogrel users [15] 

(Supplementary Fig. 4a, b). Variation in CYP2C19 LOF allele frequency (Supplementary 

Fig. 5a, b) did not alter the preferred strategy, which remained genotype-guided escalation in 

the primary analysis and nonguided de-escalation in the secondary analysis across a broad 

range of LOF allele frequency (20–70%). Sensitivity analysis also revealed our primary and 

secondary findings were robust to varying acceptance of genotype-based recommendations 

(Supplementary Fig. 6a, b).

Probabilistic sensitivity analysis showed that results were most sensitive to assumptions 

about the risk of post-PCI myocardial infarction (Fig. 2a, b). Further, as demonstrated by the 

CEAC (Fig. 3), genotype-guided escalation had the highest probability of being cost-

effective when compared with universal clopidogrel or universal ticagrelor across all 

conventional WTP thresholds.
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Discussion

The paucity of clinical and cost-effectiveness data are often cited as barriers to 

pharmacogenetic implementation [37, 38]. To address these barriers, among patients 

undergoing CYP2C19 genotyping after PCI as part of clinical care, we previously showed 

that prescribing alternative antiplatelets versus clopidogrel to those with an LOF allele 

reduced the risk for MACE [20]. Utilizing these real-world data, our primary CEA 

demonstrates that genotype-guided antiplatelet therapy is cost-effective compared with 

either universal clopidogrel or universal ticagrelor.

Previous cost-effectiveness studies used event rates and probabilities from clinical trials and 

consistently showed that genotype-guided DAPT after ACS and/or PCI was cost-effective 

compared with universal clopidogrel or prasugrel [39–41]. The data with ticagrelor are more 

variable [12], but more recent studies showed that genotype-guided DAPT was cost-effective 

versus universal ticagrelor following ACS and PCI [14, 15]. A recently completed 

randomized controlled trial (POPular Genetics NCT01761786 examined the clinical utility 

of genotype-guided DAPT after PCI in STEMI patients. Patients received ticagrelor or 

prasugrel (control group) or genotype-guided DAPT. Genotype-guided DAPT patients with 

LOF alleles received ticagrelor or prasugrel, and noncarriers received clopidogrel. genotype-

guided DAPT group had a 0.7% lower absolute risk of MACE or major bleeding (p < 0.001 

for noninferiority, p = 0.4 for superiority), and a significantly lower bleeding risk (HR 0.78; 

95% CI, 0.61–0.98; p = 0.04) compared with universal alternative therapy [42]. This 

supports the clinical utility of genotype-guided DAPT, which is being further evaluated in an 

ongoing randomized controlled trial of patients undergoing PCI for either an ACS or non-

ACS indication (Tailor-PCI NCT01742117).

Our study provides cost-effectiveness data in the context of real-world implementation of 

genotype-guided DAPT. Our results are congruent with data from the Netherlands, wherein, 

prescription of prasugrel for patients with two LOF alleles undergoing elective PCI was 

cost-effective compared with universal clopidogrel [43]. Our study extends these findings to 

a population of patients with ACS undergoing emergent PCI and where alternative 

antiplatelet therapy was recommended for patients with one or two LOF alleles, consistent 

with CPIC guidelines [16]. Our sensitivity analysis demonstrates that genotype-guided 

escalation remains cost-effective despite a higher bleeding risk among ticagrelor users 

(versus clopidogrel).

We also examined the cost-effectiveness of two de-escalation strategies compared with 

continuation of ticagrelor in a secondary analysis. The rationale for a de-escalation approach 

is that, while shown to be superior to clopidogrel in reducing MACE, prasugrel and 

ticagrelor are associated with higher medication cost and greater bleeding risk, which 

appears to be greatest with use beyond the early post-PCI period [44, 45]. Thus, use of a 

more potent P2Y12 inhibitor early after PCI when the risk for atherothrombotic events is 

highest, then de-escalating to clopidogrel for chronic therapy to minimize bleeding risk and 

lower medication costs is emerging in clinical practice [22, 23]. Recently, a de-escalation 

strategy guided by platelet function testing was shown to be noninferior to continued use of 

prasugrel for the net composite outcome of atherothrombotic and bleeding events [46].
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De-escalation strategies could be potentially useful in real-world settings [47], allowing 

institutions without in-house genotyping facilities to obtain genotype results through a 

reference laboratory. However, the cost-effectiveness of de-escalation has not been 

evaluated. With this approach, alternative antiplatelets could be continued for those with the 

LOF allele, whereas therapy could be de-escalated to clopidogrel for patients with no LOF, 

thereby reducing costs and bleeding risk. We show that nonguided de-escalation from 

ticagrelor to clopidogrel after the initial 30 days is cost-effective (and less expensive) 

compared with a genotype-guided de-escalation approach or universal ticagrelor. However, 

this secondary analysis was based on estimated parameters from our implementation study 

receiving the primary strategies. Moreover, given the discordant outcomes data with a 

nonguided de-escalation strategy [22, 48], we recommend these results be considered as 

hypothesis generating, highlighting the need for studies evaluating the effectiveness and 

cost-effectiveness of the de-escalation strategies.

We focused our analysis on high-risk patients with ACS who underwent PCI, a group in 

whom we previously demonstrated a significantly lower risk for MACE when alternative 

therapy was prescribed over clopidogrel for CYP2C19 LOF carriers [20]. Studies have 

consistently demonstrated associations between CYP2C19 genotype and clopidogrel 

effectiveness in the setting of ACS and PCI [6, 8, 28, 49], whereas the association is less 

clear in those with stable coronary disease or ACS managed medically [50, 51].

The study was rigorously conducted and meets the standards of the Panel on Cost-

Effectiveness in Health and Medicine. To our knowledge, this is the first analysis based on 

data from real-world practice without the eligibility restrictions of clinical trials, which tend 

to exclude/limit higher risk patients. As might be expected, our event rates were higher than 

those observed in trials and may better reflect event rates in the general population. This 

unique strength is of particular relevance to decision makers. As genotyping was conducted 

as part of clinical care, unlike previous CEAs, our analysis was not limited by assumptions 

regarding the availability genotype data in a timeline conducive for clinical care [17].

We used standardized costs for the post-PCI outcomes. While it may be intuitive to use 

institutional costs, locally negotiated contracts determine cost-to-charge ratios, are not 

readily available or shared, and are subject to change. We recognize that we did not account 

for indirect costs, such as lost time from work secondary to adverse events and our inability 

to estimate the proportion of patients treated with ticagrelor with treatment switched at 30 

days, as this is not a strategy previously reported in clinical trials or observational studies 

[22]. The event rates modeled were from a population predominately European American 

(78%), with African Americans (15.7%) and other race groups (6.3%) contributing smaller 

proportions. As LOF allele frequencies are similar across European Americans and African 

Americans, we expect our findings are generalizable to these race groups. Although we 

model cost-effectiveness by varying the LOF allele frequencies from 20–70%, confirmation 

of these results in non-European race groups, with different LOF frequencies, is needed. 

Although guidelines recommend ticagrelor or prasugrel over clopidogrel in patients with 

ACS and PCI [4] based on superior efficacy of these drugs compared with clopidogrel [1, 2], 

we focused on ticagrelor as the alternative antiplatelet in our analysis. Data suggest similar 

efficacy of prasugrel and clopidogrel in patients without an LOF allele [52] while ticagrelor 
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demonstrated superior efficacy in patients with ACS irrespective of genotype [8]. Moreover, 

current P2Y12 inhibitor prescription data demonstrate preferential use of ticagrelor [53]. We 

recognize the limitations of the implementation data, wherein no events were accrued for 

some endpoints for the ticagrelor group. This may represent inability to capture all events in 

the real-world setting. Therefore, we conducted sensitivity analysis across reported ranges 

for these events to demonstrate no significant change in the results. We also recognize that 

models did not discount QALYs for the higher bleeding risk or dyspnea associated with 

ticagrelor or switching to clopidogrel in patients with ticagrelor associated-dyspnea [54]. We 

recognize that acceptance of genotype-based recommendations is not 100%. However, the 

CEA was robust to observed variability in acceptance. Finally, we did not collect 

information on medication adherence and assumed 100% adherence in our models. We 

recognize that if adherence was substantially lower than 100%, then the relative cost 

difference between treatment strategies would be attenuated. More complex models that 

incorporate a discontinuation (and crossover) rate need to be evaluated.

In summary, our analysis demonstrates cost-effectiveness of genotyping at the time of PCI to 

guide escalation of antiplatelet therapy. Our analysis also suggests that benefit of nonguided 

and genotype-guided de-escalation strategies on clinical outcomes and cost warrants further 

study.

Supplementary Material
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Fig. 1. Decision-analytic model simulating outcomes of five strategies over a 1-year horizon.
The primary strategies were universal clopidogrel (base case), universal ticagrelor, and 

CYP2C19-guided escalation. The secondary strategies were de-escalation at 30 days 

(unguided strategy 3; genotype-guided strategy 4).
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Fig. 2. Tornado plots of influential factors from the probabilistic sensitivity analyses (PSA).
Tornado plots of fifteen most influential factors from the probabilistic sensitivity analyses 

(PSA) of universal ticagrelor scenario (a) or genotype escalation scenario (b) compared with 

the reference scenario, universal clopidogrel. Parameter ranges used in PSA are given in 

Table 2; parameter values greater than base case are represented in red while values lower 

than base case are represented in green. Willingness to pay is set to 100,000/QALY. The 

difference in net monetary benefit on x-axis shows parameter values for which the 

alternative strategy is cost-effective (difference is positive) or when reference strategy is 

more cost-effective (difference is negative).
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Fig. 3. 
Cost-effectiveness acceptability curve and frontier; y-axis values indicate probability of a 

strategy being cost-effective across a wide range of willingness-to-pay thresholds.
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