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AbstractMachine learning algorithms formedical diagnostics often require resource-
intensive environments to run, such as expensive cloud servers or high-end GPUs,
making these models impractical for use in the field. We investigate the use of model
quantization and GPU-acceleration for chest X-ray classification on edge devices.
We employ 3 types of quantization (dynamic range, float-16, and full int8) which we
tested onmodels trained on the Chest-XRay14Dataset.We achieved a 2-4x reduction
in model size, offset by small decreases in the mean AUC-ROC score of 0.0%-0.9%.
On ARM architectures, integer quantization was shown to improve inference latency
by up to 57%. However, we also observe significant increases in latency on x86 pro-
cessors. GPU acceleration also improved inference latency, but this was outweighed
by kernel launch overhead. We show that optimization of diagnostic models has the
potential to expand their utility to day-to-day devices used by patients and health-
care workers; however, these improvements are context- and architecture- dependent
and should be tested on the relevant devices before deployment in low-resource
environments.

Areeba Abid*
Emory University School ofMedicine, Atlanta, GA, USA, e-mail: areeba.abid@emory.address

Priyanshu Sinha*
Mentor Graphics India Pvt Ltd, Noida, India e-mail: priyanshu\_sinha@outlook.com

Aishwarya Harpale
CakeSoft Technologies Pvt Ltd, Pune, Maharashtra, India

Judy Gichoya
Emory University School of Medicine, Atlanta, GA, USA

Saptarshi Purkayashta
Indiana University–Purdue University Indianapolis School of Informatics & Computing, Indi-
anapolis, Indiana, USA e-mail: saptpurk@iupui.edu

*Authors contributed equally.

1



2 Abid, A., Sinha, P., et. al.

1 Background
Use the template chapter.tex togetherwith the document class SVMono (monograph-

type books) or SVMult (edited books) to style the various elements of your chapter
content.

Instead of simply listing headings of different levels we recommend to let every
heading be followed by at least a short passage of text. Further on please use the
LATEX automatism for all your cross-references and citations. And please note that
the first line of text that follows a heading is not indented, whereas the first lines of
all subsequent paragraphs are.
1.1 Motivation
Machine learning algorithms in healthcare showpromise for alleviating disparities

in access to healthcare, by providing automated diagnostic support in low-resource
areas. However, these models are often developed (and limited to being run on)
high-end hardware or cloud servers. To achieve equity in machine learning access
and take advantage of widespread mobile access in limited resource settings, these
models should be tested on edge devices, rather than being limited to high-powered
servers. There are advantages and limitations of edge devices and high powered
server architectures. Cloud servers have considerably more computational capacity
andmemory, but are expensive. Network bandwidth is finite, so downloadingmodels
or uploading data to servers is a resource-heavy task. On the other hand, edge devices
are constrained in terms of memory and computing power, but are cheaper and not
limited by network speed, making them more accessible in environments where
financial and/or network resources are limited. In medical use cases, edge devices
are additionally advantageous because they are not bound by HIPAA restrictions
that limit the transfer of electronic protected health information (eHPI) to the cloud,
as patient information does not need to leave the device in order to obtain a model
inference [1]. Models can also be deployed to wearables in the context of chronic
diseasemanagement, such as predicting blood glucose levels [2]. Due to thememory,
inference latency, and privacy advantages offered by edge devices, deep learning
models in healthcare gainmuch utility when optimized for deployment and execution
in lower-resource environments.

In this study, we evaluate the advantages and limitations of optimizing clinical
machine learning models for edge devices. We study three metrics: model size,
inference latency, and model accuracy as represented by area under the receiver
operating characteristic (AUC-ROC) curve. We use radiology models trained on
the NIH Chest-XRay14 Dataset and optimize these models by using 3 types of
quantization: dynamic range, float-16, and full int8 quantization [3].

We hypothesize that if clinical models can be run faster and with reduced memory
usage requirements on edge devices, models will be more suitable for deployment
in limited-resource clinical settings for timely decision support.
1.2 Overview of Compression Techniques
Broadly, there are two common techniques for model compression for edge de-

vices, quantization and pruning [6]. These methods reduce model complexity at a
slight cost to accuracy, but offer improvements in computational speed and model



Optimizing Medical Image Classification Models for Edge Devices 3

Fig. 1 Common machine learning contexts in healthcare.

size. This has the added benefit of reducing power consumption and bandwidth
utilization.

Quantization is the reduction of model values to lower-bit representations. For
example, a model trained with float32 precision can be compressed to use float16 or
int8 precision for its weights, biases, and/or activations. This reduction in precision
often has little impact on model accuracy, but reduces memory usage up to 4x (such
as when reducing 32-bit floats to 8-bit integers). Computational speed also improves,
as integer operations are generally faster than float operations on ARM CPUs [7].
Quantization can be implemented after model training (post-training quantization)
or during training (quantization-aware training). Post-training quantization is faster
to implement, but quantization-aware training typically offers better accuracy [8].

Connection Pruning is another common compression technique. In magnitude-
based weight pruning, we drop low-weight connections between neural network
layers. Models are represented by tensors; after connection pruning, the dropped
connections are replaced by zeroes in the tensors. This results in sparse tensors for
weight representations, which are easier to compress and reduce memory usage.
As sparse representations contain zeroes, we can skip them while calculating an
inference, reducing latency.

In this paper, we explore the advantages of quantization only, both post-training
and quantization-aware training methods.

2 Method
2.1 Dataset
To demonstrate the efficacy of quantization for clinical use cases, we used the

Chest-Xray14 Dataset, which consists of 112,120 X-ray images from 30,805 unique
patients [3]. This dataset has been widely used to develop classification models for
cardiopulmonary pathology. Each image in this dataset is annotated with labels from
14 pathology classes derived using text-mining from the associated radiology reports.
The X-ray images can contain multiple pathologies, and each detected pathology is
represented in a 1-by-14 vector as a positive class.
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We randomly split the dataset into training (54,091 images), validation (23,183
images), and test (33,118 images) setswhile ensuring that therewas no patient overlap
between each split. We performed pre-processing on each image by downscaling to
224×224 pixels.

2.2 Baseline FP32 Model
The floating point-32 model used as a baseline was Arevalo and Beltran’s Chest

X-Ray classification model ("Xrays-multi-dense121 0980aa"), developed using the
DenseNet121 architecture [4]. This architecture consists of dense blocks followed by
convolution and pooling layers. Each dense block receives feature maps from all the
preceding layers and concatenates them to achieve a thinner and compact network.
The model was initialized with weights pre-trained on the ImageNet dataset. An
Adam optimizer is used to minimize the cost function starting with an initial learning
rate of 0.001. Data generators were initialized with a batch size of 32.

Since each image can contain pathology in multiple classes, the output of the
model is a 1x14 vector representing a probability score for each of the 14 pathology
classes. The "No Finding" class is represented by a vector consisting of all zeroes.

We use this model as the baseline for size, inference latency, and accuracy com-
parison, and for generation of compressed models using post-training quantization.

2.3 Quantization of the Model
We implemented 3 types of quantization - Dynamic Range Post-Training Quanti-

zation, Float16 Post-Training Quantization, and Full Int8 Quantization-Aware Train-
ing. These compression methods were implemented using TensorFlow Model Opti-
mization Toolkit [5].

Table 1 Summary of Model Quantization Techniques
Compression Technique Model Architecture

Dynamic Range Post-Training
Quantization

Only weights are reduced to 8-bit integers. Activations are
dynamically down-scaled to 8-bit at run-time for faster

computation
FP16 Post-Training Quantization Weights, biases, activations, and outputs are all reduced to 16-bit

floats
Full Int8 Quantization-Aware

Training
Weights, biases, and activations are all reduced to 8-bit ints. Input

& output remain 32-bit floats.

Dynamic Range Post-Training Quantization: In dynamic range quantization,
the model combines both floating point and 8-bit integer precision. The model
weights and biases are scaled down from floating point to integer precision statis-
tically by calculating the scale factor and zero point beforehand. Activations are
dynamically quantized at run-time to 8-bit precision, so that computations between
activations and weights can be performed in 8-bit precision. However, the outputs
are then converted back and stored as floats. This reduces the latency of computation
at inference close to that of fixed-point integer operations. This typically reduces the
model size by about 75%.
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Float16 Post-Training Quantization: We implemented Float-16 Quantization to
reduce the full precision 32-bit floating point data to reduced precision. The weights,
biases and activations are stored in 16-bits, and computations occur in the same
format. Outputs are also stored in the 16-bit format. This typically reduces the model
size by about 50%.

Full Int8 Quantization-Aware Training: During training of the initial FP32
model, quantization is emulated by down-scaling float precision so it matches 8-bit
precision. The initial FP32 model is trained with floating point values, but during
the forward pass of information, these values are converted to int8 and then back
to FP32. This makes the float values less precise during training, which makes the
model robust to quantization. After training, the model weights are quantized to int8,
but since the weights were determined at lower precision, there is no additional loss
of accuracy from the less-precise weights. Biases and activations are also reduced
to int8, which does have some cost to accuracy, but allows for faster computation.
This typically reduces the model size by about 75%.

Fig. 2 Development of quantized models.

2.4 Hardware Specifications and Costs
Edge devices come in a variety of hardware specifications, ranging from smart-

phones to an array of embedded devices and chips. To obtain representative results,
we tested our compression techniques on a range of ARM and x86 architectures. The
ARM devices used are the NVIDIA Jetson Nano, Raspberry Pi 3B+, Google Pixel,
and Samsung Galaxy S10+. The x86 devices used are PC laptops using Intel x86
and AMD x86 processors. The costs of these devices range from less than 50 USD
to over 1000 USD (Table 2). These costs can be compared to the costs of typical
GPUs, both cloud and local (Table 3).

The choice of which devices to use was made based on CPU architecture, price
range, and GPU availability. We include both ARM and x86 processors to investigate
the effect of quantization on different architectures, which is critical to measure
because these processors are optimized for computations on different data types:
Arm processors have Integer computation accelerators, whereas x86 processors
have floating point accelerators. We also examine the performance of the models
over a spectrum of high-end and low-end devices, since a major application of edge
computing is in resource-constrained environments. We include smartphone devices
with optional GPU enabling, to allow for comparison of CPU- vs GPU- inference
on a single device.
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Table 2 Specifications of Test Devices: Architecture and Cost.
Device Name ARM/x86 Specification Price Range
NVIDIA Jetson

Nano
ARM ARMv8 Processor rev 1 (v8l), 4 GB RAM, 4

Core CPU
<100 USD

Raspberry Pi 3B+ ARM 4 Core CPU, 1 GB RAM, 1.4GHz processor,
Broadcom Arm Cortex A53-architecture

processor

<50 USD

Google Pixel (1st
Gen)

ARM Quad-core (2×2.15 GHz & 2×1.6 GHz) Kryo
64-bit ARMv8-A

650 USD

Samsung Galaxy
S10+

ARM CPU: Snapdragon 855; GPU: Adreno 640 999 USD

PC Laptop, Intel
processor

x86 Intel Core i7-7820HQ CPU 2.90 GHz, 32
GB RAM, 8 Core

>1000 USD

PC Laptop, AMD
processor

x86 Ryzen 7 3750H, 16 GB, 8 Core. Nvidia
GeForce GTX 1660Ti with Max Q design

GPU. VRAM: 6GB

>1000 USD

Table 3 Costs of Representative GPU Servers (Cloud and Local Examples)
Type of Server Host / Service Cost
Local GPU ThinkStation Nvidia GeForce RTX2080

Super 8GB GDDR6 Graphics Card
1,100 USD [9]

Local GPU Dell 16GB NVIDIA Tesla T4 GPU
Graphic Card

3,904 USD [10]

Cloud GPU Amazon Machine Learning 0.42 USD/hr + 0.10 USD per
1000 predictions [11]

Cloud GPU Google Cloud, Basic-GPU 0.83 USD/hr [12]
Cloud GPU Microsoft Azure, NC6 GPU 0.90 USD/hr [13]

2.5 Measuring Accuracy & Inference Latency
Tomeasure the effect of model compression on accuracy, 33,118 test images from

the ChestX-Ray 14 Dataset were used to evaluate the models and obtain AUC-ROC
curves. For inference latency, each model was tested with 25 distinct pre-processed
Chest X-Ray images. The model file was closed and reloaded between each image
test. Twomeasurements were recorded; the total run time of the test for all 25 images,
and the average inference latency (not including model and image file load time).
The first measurement takes into account model load time and GPU kernel creation
(if applicable), while the second measurement isolates inference latency only.

2.6 Code Repository
The code used to evaluate models is located at this repository:

https://github.com/areeba-a-abid/OptimizationEdgeDevices

3 Results and Discussion
The compression techniques used in this paper demonstrate varying degrees of

improvement in model metrics for each device tested. The tables below describe
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Table 4 Model Accuracy (AUROC) By Class. Note: Differences >0.05 between optimized models
and baseline are bolded.

Class Baseline FP32 Dynamic
Quantization

Float16
Quantization

Quant-Aware
Trained Int8

Atelectasis 0.78 0.78 0.78 0.75
Cardiomegaly 0.90 0.90 0.90 0.71*
Consolidation 0.79 0.79 0.79 0.77

Edema 0.88 0.88 0.88 0.79*
Effusion 0.87 0.87 0.87 0.84

Emphysema 0.88 0.88 0.88 0.78*
Fibrosis 0.79 0.79 0.79 0.73*
Hernia 0.83 0.83 0.83 0.51*

Infiltration 0.71 0.70 0.71 0.66*
Mass 0.82 0.82 0.82 0.75*
Nodule 0.73 0.73 0.73 0.65*

Pleural Thickening 0.77 0.77 0.77 0.71*
Pneumonia 0.74 0.74 0.74 0.66*

Pneumothorax 0.85 0.85 0.85 0.77*
Mean AUC-ROC 0.81 0.81 0.81 0.72*

Table 5 Size of Models
Architecture Baseline

Model
Dynamic Quant. FP16 Quant. QAT Int8

Model Size (MB) 27.9 7.3 14.1 7.4
Size Reduction - 3̃.8x 2̃.0x 3̃.8x

the impact of model compression techniques on model size, model accuracy, and
inference time.

3.1 Model Accuracy
Our results demonstrate that compression of deep radiology models is possible

with very minor cost with respect to accuracy (Table 4). The Dynamically Quantized
and FP16 Quantized models performed almost identically to the baseline model that
they were derived from, with mean AUC-ROCs of 0.81 for both (the same as the
mean AUC-ROC of the baseline FP32 model). The QAT Full Int8 model observed a
decrease of 0.09 in mean AUC-ROC, with the ’Hernia’ and ’Cardiomegaly’ classes
experiencing the biggest drop. In medical contexts, a class-by-class comparison is
necessary to investigate where losses are most pronounced and for which types
patients inferences should be used with extra caution. A reduction in sensitivity
for high-mortality or costly conditions may lead to a larger impact on model util-
ity as compared to the same percent reduction in the labeling-accuracy of benign
conditions.

3.2 Model Size
The baseline FP32 model, which used 32-bit float representation for weights

and activations, had a model size of 27.9 MB. FP16 Quantization reduced size by
almost half, to 14.1 MB. By reducing representations to 8 bits, Dynamic and Int8
Quantization offered almost a 4x reduction, to 7.3 and 7.4 MB (Table 5).
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3.3 Inference Latency
The degree of improvement in inference time was architecture-dependent. On

ARM devices, integer computations are faster, so latency improved most with Dy-
namicQuantization andQAT Int8Quantization. However, themore expensive smart-
phones (Google Pixel & Samsung Galaxy) did not show this improvement, because
the Snapdragon CPUs do not support all quantized operations; investigating this is
beyond the scope of this paper. The reduction in latency was most significant for
the cheapest device (the Raspberry Pi), improving by 49-57% for these two integer
quantizationmethods. The JetsonNano and SamsungGalaxy demonstrated improve-
ments between 25-49% (Table 6). FP16 quantization also offered a 13% reduction
in latency on the Raspberry Pi, but increased latency on all other ARM devices. No
significant improvement of FP16 models on ARM devices was expected, because
the computations are still conducted using floats. The percent change for each model
on ARM devices is shown in Figure 3).

For x86 devices, quantization methods that convert weights to integers actually
increase latency by over 100x on the Intel processor and over 50x on the AMD
processor. This is expected, as x86 devices are optimized for float computations.
While integer quantization offers improvements for ARM devices, the dramatic
effect on latency for x86 processors is a significant drawback to consider.

Investigating the effect of GPU on latency was done using the Samsung Galaxy
S10+. When GPU is enabled, the time for inference per image is reduced for all
models, but the overall run-time of the prediction increases. This is because setup
time for the device’s GPU kernel is expensive. Whether this trade-off is worthwhile
is dependent on the number of images being passed into the model; beyond a certain
number of inferences, the speedup of GPU surpasses the initial cost of setup.

The decision on if and how to optimize for edge devices is outlined in Figure 4.

Fig. 3 Percent Change in Inference Latency for ARM Devices Compared to Baseline.

4 Conclusion
We find that model compression is an effective way to reduce model size by

2-4x with a minimal reduction in accuracy. This allows for a significant reduction
in device cost and makes clinical models more accessible for a wider range of
patients and healthcare providers, especially as machine learning models expand to
a wide range of edge devices, such as smartphones, wearable technology, embedded
devices, and imaging hardware. However, given the diversity of devices used in
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Table 6 Inference Latency (ms) Per Image and Percent Change from Baseline Per Device

Architecture Baseline
Model

Dynamic Quant. FP16 Quant. QAT Int8

NVIDIA Jetson Nano 801 520 (↓35%) 806 (↑1%) 410 (↓49%)
Raspberry Pi 3B+ 2340 1200 (↓49%) 2037 (↓13%) 1010 (↓57%)

Google Pixel 684 690 (↑1%) 741 (↑8%) 674 (↓1%)
Samsung Galaxy S10+ 191 128 (↓33%) 201(↑5%) 220 (↑15%)

Intel x86 50 6070 (↑12040%) 50 (0%) 6937 (↑13774%)
AMD x86 100 5980 (↑5880%) 89 (↓11%) 6305 (↑6205%)

Table 7 Effect of GPU on Inference Latency and Total Run Time (ms) on Samsung Galaxy S10+
Architecture Baseline

Model
Dynamic
Quant.

FP16 Quant. QAT Int8

Inference time only
(per image)

CPU only: 191 128 201 220
GPU-enabled: 124 125 120 124

Average run time
(per image)

CPU only: 195 132 206 223
GPU-enabled: 981 990 1002 1239

Fig. 4 To Optimize or Not to Optimize? Factoring in device types and priorities in optimization
decisions.

medicine, it is important to note that the impact of model compression on inference
latency varies depending on the architecture. Because x86 processors are optimized
for float calculations, quantization to integers increases latency. Therefore, integer
quantization methods are best suited for devices using ARM architectures.

Improvements in latency for x86 processors are demonstrated using FP16 mod-
els. Enabling GPU on higher end devices that have this option can also improve
performance, but has the added cost of GPU kernel setup time. For example, in the
context of radiology, a model that reads a single patient’s X-ray images on-demand
may be better off not utilizing GPU optimizations, but a use-case in which many
patients’ images are read at once may benefit from it.

As the availability of medical machine learning grows, we show that careful
choices about model compression allow these advancements to bemademore widely
accessible, independent of access to high-cost devices or servers, but that the im-
provements offered by quantization are architecture- and context-dependent.
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5 Future Work
In this paper, we used image classification as an example of the types of clinical

models run on edge devices. Optimization for edge devices should also be explored
in image segmentation problems, such as automated ultrasound segmentation; this
is a rapidly growing area of model development and can be used at point-of-care on
edge devices [14].

There are many more methods of model compression that should be further
investigated. Quantization can be used to reduce model size further by reducing
precision to 4-, 2-, or even 1-bit. Connection pruning, as discussed in section 1.2 can
offer improvements independent of the type of processor used, and should be further
explored.

Power usage is another important metric that was not explicitly investigated in this
paper. Compression is expected to reduce the power usage of a model as a function
of reduced run-time, but measuring and confirming this assumption was beyond the
scope of this paper.
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