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Abstract—Detecting out-of-distribution (OOD) samples in
medical imaging plays an important role for downstream medical
diagnosis. However, existing OOD detectors are demonstrated
on natural images composed of classes with clear inter-class
variations and have difficulty generalizing to medical images.
The key issue is the granularity of OOD data in the medical
domain, where intra-class OOD samples are predominant. We
focus on the generalizability of OOD detection for medical images
and propose a self-supervised Cascade Variational autoencoder-
based Anomaly Detector (CVAD). We use a cascaded variational
autoencoder architecture, which combines latent representation
at multiple scales, before being fed to a discriminator to
distinguish the OOD data from the in-distribution (ID) data.
Finally, both the reconstruction error and the OOD probability
predicted by the binary discriminator are used to determine the
anomalies. We compare the performance with the state-of-the-
art deep learning models to demonstrate our model’s efficacy on
various open-access medical imaging datasets for both intra- and
inter-class OOD. Further extensive results on datasets including
common natural datasets show our model’s effectiveness and
generalizability.

I. INTRODUCTION

Despite recent advances in deep learning that have con-
tributed to solving various complex real-world problems [1],
[2], the safety and reliability of AI technologies remain a
big concern in medical applications. Deep learning models
for medical tasks are often trained with data from known
distributions, and fail to identify out-of-distribution (OOD)
inputs and possibly assign high probabilities to the anomalies
during inference because of the insensitivity to distribution
shifting. Medical anomalies, a.k.a., OOD data, outliers, can
arise due to various reasons such as noise during data acqui-
sition, changes in disease prevalence and incidence (e.g., the
evolution of rare cancer types), or inappropriate inputs (e.g.,
different modalities unseen during training) [3]. To ensure
the reliability of deep models’ predictions, it is necessary to
identify unknown types of data that are different from the
training data distribution. A good anomaly detector should
be able to learn good representations of the in-distribution
(ID) during training and thus identify the outliers from test
datasets. However, the core challenges for medical anomaly
detection are – (1) the OOD data is usually unavailable at
the time of model training; (2) in theory, there are infinite

Fig. 1. ID, Intra- and Inter-class OOD examples for medical images.
Compared to natural images, medical OOD samples exhibit more subtle intra-
class variations (e.g., normal vs pneumonia in the 1st row and benign vs
malignant in the 2nd row).

numbers of variations of OOD data; and (3) different types
of OOD data can be identified with varying difficulties. In
general, the OOD classifications [4] can be refined based on
the variation difference by summarizing them as inter-class
OOD data and intra-class OOD data. Inter-class OOD data is
in a category different from the ID data1, e.g. a skin cancer
image v.s. a lung X-ray image; intra-class OOD data belongs
to the same category as the ID data but different classes, e.g.
a normal skin image v.s. a skin image with cancer. Therefore,
inter-class OOD data often has larger variations from the ID
data, whereas the intra-class OOD data is close to ID data, as
observed in Figure 1. Thus, identifying intra-class OOD data
is more difficult than the inter-class OOD data given subtle
differences with ID data.

To cope with the OOD unavailability and uncertainty chal-
lenges, we adopt an unsupervised way to design our anomaly
detector. For intra-class OOD data, we expect the model can
be sensitive to minor variations and thus screen the dissimilar
inputs. To acquire such high identification of hard OOD cases,
we propose a Cascade Variational autoencoder based Anomaly
Detector (CVAD) to learn both coarser and finer features

1By default, we mean a category can contain several classes. For example,
a bird category can include owls, woodpeckers, flamingos, etc.
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inspired by [5], [6]. With the cascade VAE architecture to
model the in-distribution representations, CAVD gains superior
reconstructions and learns good-quality features to threshold
out the OOD data. To enhance the detection ability of inter-
class OOD data, we further train a binary discriminator with
the reconstructed data as the fake OOD category. In this paper,
our contributions are three-fold:
• We propose a generic medical OOD detector – CVAD.

By utilizing a cascade VAE to learn latent variables of in-
distribution data, CVAD owns good reconstruction ability
of in-distribution inputs and obtains discriminative ability
for OOD data based on the reconstruction error.

• We adopt a binary discriminator to further separate the
in-distribution data from the OOD data by taking the
reconstructed image as fake OOD samples. Thus, our
model has better discriminative capability for the inter-
class as well as intra-class OOD cases.

• We conduct extensive experiments on multiple public
medical image datasets to demonstrate the generalization
ability of our proposed model. We evaluate comprehen-
sively against state-of-the-art anomaly detectors in detect-
ing both intra-class and inter-class OOD data, showing
improved performance. The implementation technical re-
port including original code and usage instructions has
been publicly available in [8].

II. RELATED WORK

Although there have been extensive research on outlier
detection [1], [9], effective medical image OOD detectors
are still lacking due to complicated data types (e.g., various
modalities and protocols, difference in acquisition devices)
and user-defined application situations (e.g., disease types).
Without OOD data available during training, unsupervised
anomaly detection becomes the mainstream research direction,
which CVAD also belongs to. Recent unsupervised anomaly
detection approaches can be roughly classified as two main
categories - generative and objective.

A. Generative methods

Deep generative models appear to be promising in detecting
OOD data since they can learn latent features of training data
and generate synthetic data with similar features to known
classes [10]. Thus, the compressed latent features can be
used to distinguish OOD data from ID data. Two major
families of deep generative models are Variational Autoen-
coders (VAEs) [11] and Generative Adversarial Networks
(GANs) [12].

VAEs: Traditional AutoEncoders [13] (AEs) can reconstruct
input images well and be used to detect anomalies [43],
but risk learning the identity of deep image features. Com-
paratively, VAEs generate contents by regularizing the latent
feature distribution representations. With this trait, VAE [11]
and its modifications have been used widely in generating
realistic synthetic images [7], [14], [15]. Although VAEs are
theoretically elegant and easy to train with nice manifold
representations, they usually produce blurry images that lack

detailed information [6], [14]. To improve the image recon-
struction quality, pchVAE [7] adds a conditional hierarchical
VAE branch to learn lower-level image components. The
improved reconstructions of VAEs are adopted for detecting
OOD samples based on the reconstruction quality [16]. Other
approaches seek to enhance the reliable uncertainty estimation
of VAE for better performance [1], [17], [18], [19], [20].
Reference [18] applies an improved noise contrastive prior
(INCP) to acquiring reliable uncertainty estimate for standard
VAEs; whereas Bayesian VAE [1] detects OOD by estimating
a full posterior distribution over the decoder parameters using
stochastic gradient Markov chain Monte Carlo. Nonetheless,
most of the VAE-based OOD detections are only evaluated
on natural image datasets (MNIST [21], FashionMNIST [22],
CIFAR10 [23], SVHN [24], etc.), which are with small image
size (e.g., 32× 32) and clear intra- and inter-class variations.

GANs: Compared with VAEs, GANs usually generate
much sharper images but face challenges in training sta-
bility and sampling diversity, especially when synthesizing
high-resolution images [14]. Still, GANs remain popular in
outlier detection, such as, AnoGAN [25], f-AnoGAN [44],
ADGAN [26], GANomaly [27] to detect OOD samples using
GAN architectures. Besides standard architectures, there are
hybrid models that detect anomalies by combining a VE/VAE
with a GAN [5], [6], [28]. In order to acquire competitive
OOD discriminative ability, OCGAN [28] integrates four
components: a denoising auto-encoder, two discriminators and
a classifier with complicate training process. Generally, such
hybrid networks are not competitive for image datasets with
clear class variations, as reported in [5]. Their experiments
are often done with small-sized images and may fail when
experimenting on large-sized medical images.

B. Objective methods

Objective anomaly detectors learn identifying OOD data via
specific optimization functions and auxiliary transformations.
Such OOD detection approaches include classifier-based and
transformation-based methods [29], [30], [31].

Classifier-based method: ODIN [31] uses temperature
scaling and adds small perturbations to input data for separat-
ing the softmax score distributions between ID and OOD im-
ages. Similar separation via a multi-class classifier is also fol-
lowed by [32]. However, the prerequisite of balanced multiple
classes is not always applicable in medical applications. Com-
paratively, the one-vs-rest setup [33] is much more common
and useful in medical OOD detection, which treats one-class as
in-distribution data and evaluates performance on the left OOD
data. Following the setting, the anomaly detection reduces to
a one-class classification (OCC) problem [34]. Representative
one-class classifiers are DeepSVDD [29], OCSVM [35].

Transformation-based method: Most of the anomaly de-
tectors are unsupervised given the assumption the anomalies
are unavailable during training. Hence, good detection per-
formance largely depends on the learning of high-quality in-
distribution features. Self-augmentation with transformations
on training data not only enriches the training diversity but



Fig. 2. Proposed CVAD architecture - a cascade VAE as the generator and a separate binary classifier (D) as the discriminator. The main VAE pipeline is
composed by the encoder E1 shown as the orange part and the decoder D1 in the dark green part; the branch VAE has the pink part as the encoder E2

and the light green for its decoder D2. Given an input image x, the main VAE learns to reconstruct x
′
1 via latent representations µ1 and σ1; the branch

VAE takes the outputs of the results of the main VAE encoder intermediate part E11 and the intermediate decoder D11 as inputs and feeds the concatenated
features to E2 to formulate the branch latent variables µ2 and σ2, which gives a low-level reconstruction x

′
2 via the corresponding decoder D2. By adding

the two reconstructions - x
′
1 and x

′
2together with a sigmoid function, a final reconstruction x is generated and later treated as fake OOD data as compared

to the original input x. The binary discriminator D will learn to distinguish them.

also introduces discriminative knowledge. For example, [30]
proposes contrasting shifted instances for anomaly detection.
Nevertheless, the augmentations are with limited transforma-
tions and consume more time to train as more generated data
are fed as fake OOD data. Our model CVAD has no additional
augmentations but still captures high-quality representations of
in-distribution data. Besides, there are many other approaches
contributing to OOD detection, such as GradCon [36], gener-
alized ODIN [37] and FSSD [38]. Please refer to the papers
for more details.

III. METHODS

Anomaly detection includes both intra- and inter-class OOD
identification, of which medical intra-class OOD data is
much more challenging because of the minute dissimilarity
compared to ID data. With no prior knowledge available
and no sophisticated pre-processing, we utilize a variational
autoencoder to learn the “normality” of in-distribution inputs
via image reconstruction and enhance the discriminative ability
for both two OOD classes via a binary discriminator. Both the
reconstruction and discrimination contribute to accurate intra-
and inter-class OOD detection.

A. CVAD architecture

Figure 2 shows the design of CVAD. Inspired by the
GAN’s architecture, we adopt a cascade VAE architecture
as the “generator” for modeling ID representations and a
separate classifier as the “discriminator” to strengthen OOD
discrimination.

A standard VAE module consists of two neural networks:
an encoder and a decoder [11], with the encoder qφ(z|x)
(parameterized by φ) mapping the visible variables x to the
latent variables z and the decoder pθ(x|z) (parameterized by

θ) sampling the visible variables x given the latent variables
z [14]. Given a dataset D = {xi}Ni=1 with N input vectors
drawn from some underlying data distribution p∗(x), φ and θ
are then learned by maximizing the variational lower bound
(ELBO) L(φ, θ), which is a lower bound to the marginal log-
likelihood log p(x|θ) [1]. However, a vanilla VAE exhibits
limited potential in distinguishing unseen distributions due to
the blurry reconstructions for large-size images. Thus, we learn
from pchVAE [7] and tailored it as “generator” to acquire high-
quality reconstruction and better latent representations.

Generator: Different from the standard VAE, our “gener-
ator” has two encoders E1, E2 and two decoders D1, D2.
To learn the high-level features, a deep and standard VAE
architecture constructed by E1 and D1 formulates the deep
latent variables z1 by sampling parameters µ1 and σ1 of size
K. Meanwhile, the low-level features are learnt by the branch
VAE. Instead of using the original input, branch VAE utilizes
the concatenation of two intermediate features from E11 and
D11. Given original input variables x, the input of branch
VAE can be represented as f(x). The encoder of branch
VAE E2 is simpler than E1 whereas the decoder D2 owns
the same architecture as D12. This branch VAE formulates
latent Gaussian distributions with parameters µ2, σ2 of size
4K. After sampling, two sets of latent variables, i.e., z1, z2 are
acquired and decoded to image contexts x

′

1 and finer details
x

′

2 respectively. x is the combination of x
′

1 and x
′

2.
Discriminator: Since the “generator” itself has no aware-

ness of distinguishing outliers, we add a binary discriminator
D to distinguish the reconstructed image x

′
from the original

input image x. As x
′

shares very similar features with x after
the first-stage training of the image generator, the discriminator
is much more sensitive to minor differences from the in-
distribution data, enhancing the accuracy of identifying both



intra-class OOD data and inter-class OOD data.

B. Network training

Instead of training CVAD in an adversarial way, we train
the generator and the discriminator in two stages. The reason
is that training with adversarial losses often leads to much
sharper reconstructions but ignores the low-level information
of ID data, incurring high reconstruction errors and poten-
tial dangerous decisions for medical applications. Therefore,
CAVD is designed to first train the image generator and
then the binary discriminator to detect OOD data. This non-
adversarial training enables CVAD to inherit the merit of
VAEs [11] and avoid the instability of GANs [12].

To optimize the generator, we minimize two objectives for
the primary VAE part in Eqn. 1 and the branch VAE part in
Eqn. 2, KL refers to Kullback-Leibler divergence.

L(x;φ1, θ1) = −Ez1∼qφ1
(z1|x)[log pθ1(x|z1)]+

DKL(qφ1(z1|x)||pθ1(z1))
(1)

L(x;φ2, θ2) = −Ez2∼qφ2
(z2|f(x))[log pθ2(x|z2)]+

DKL(qφ2(z2|f(x))||pθ2(z2))
(2)

Therefore, the “generator” loss can be formulated as Eqn. 3.
α1 and α2 to balance the weights of the two individual terms.

LG = α1L(x;φ1, θ1) + α2L(x;φ2, θ2) (3)

The binary discriminator is trained to distinguish true/fake
images using binary cross entropy.

Anomaly score: An anomaly score S is defined in Eqn. 4
based on errors during inference and includes two parts: the
reconstruction error LG output by the “generator” and the
probability of being the anomaly class SD output by the
discriminator. Instead of simply adding the two parts together,
we first scale the “generator” reconstruction errors into [0,1]
for the whole dataset and get the average score value to avoid
assigning imbalanced weights between the two parts:

S = 0.5 ∗ ( LG − LGmin
LGmax − LGmin

+ SD) (4)

C. Network Details

As illustrated in Figure 2, our generator has a standard VAE
part which consists of E11, E12, D11 and D12 and a branch
VAE composed by a shallow encoder E2 and a decoder D2.
The primary VAE is a symmetric network with five 4 × 4
convolutions with stride 2 and padding 1 followed by five
transposed convolutions. Respectively, E11 stands for the first
three convolution layers; E12 refers the last two convolution
layers; D11 is for the first three transposed convolution layers
and D12 means the last two transposed convolution layers.
The input of the branch VAE is the intermediate features of
E11 and the middle decoded features of D11. E2 here is a
convolution layer which has a same 4× 4 kernel with stride 2
and padding 1. D2 shares the same decoder architecture as the
standard VAE, namely, D2 = D11+D12. All convolutions and
transposed-convolutions are followed by batch normalization
and leaky ReLU (with slope 0.2) operations. We used a base

TABLE I
THE SELECTION DETAILS OF ID AND OOD DATA

Dataset Details

RSNA

In-class: normal (8,851)
Intra-class: pneumonia (9,555),
abnormal (11,821)
InterClass1: BIRD (37,715)
InterClass2: SIIM (33,125)
InterClass3: IVC-Filter (1,258)

IVC-Filter

In-class: type 11 (196)
Intra-class: type 0-10, 12,13 (1,062)
InterClass1: BIRD (37,715)
InterClass2: SIIM (33,125)
InterClass3: RSNA (30,227)

SIIM

In-class: benign (32,541)
Intra-class: malignant (584)
InterClass1: BIRD (37,715)
InterClass2: IVC-Filter (1,258)
InterClass3: RSNA (30,227)

channel size of 16 and increased number of channels by
a factor of 2 with every encoder layer and decreased the
number of channels to half for each decoder layer. The latent
dimension K of z1 is set as 512 and z2 is with 4K, i.e.,
2048 dimensions. The binary discriminator is composed of
five convolution layers with the same settings as above and
a final fully connected layer to make a binary prediction.
After a sigmoid function, the final ID/OOD class probability
is obtained.

IV. EXPERIMENTS

We conducted extensive experiments, verifying the gen-
eralizability and effectiveness of our approach on multiple
open-access medical image datasets for intra- and inter-class
OOD detection. In total, we used four independent datasets,
including three medical image datasets – RSNA Pneumonia
dataset [40], inferior vena cava filters (IVC-Filter in short)
on radiographs [41] and SIIM-ISIC Melanoma dataset [42]
(identify melanoma in lesion images) and one natural im-
age datasets – Bird Species2. Among the medical datasets,
RSNA and SIIM datasets have binary classes – normal and
abnormal, whereas IVC-Filter dataset has 14 distinct types
(classes). Table I lists the class information and number of
images for each dataset and the corresponding usage in the
Detail column. Bird dataset, which contains 270 bird species
with 38,518 training images, was only used as inter-class
OOD for detection validation. To unify the OOD detection
pipeline and facilitate evaluation, we resized both the medical
images and the validation inter-class OOD images to a unified
256×256×channel size, where IVC-Filter and RSNA datasets
are in gray scale with channel as 1 and the SIIM images are
in RGB format and have channel 3. To train the anomaly
detectors, we split the ID data into training and valuation parts
in the ratio of 80% v.s. 20%. All the OOD data will only be
used during evaluation phase.

We implemented our model using Pytorch 1.5.0, Python
3.6. α1, α2 were equal to 1. We ran the models on 4 NVIDIA

2https://www.kaggle.com/gpiosenka/100-bird-species

https://www.kaggle.com/gpiosenka/100-bird-species


TABLE II
INTRA-CLASS OOD DETECTION RESULTS (FPR, TPR AND AUC VALUES) OF VARIOUS ANOMALY DETECTORS TRAINED ON RSNA, IVC-FILTER AND
SIIM DATASETS. BEST RESULTS ARE HIGHLIGHTED. STANDARD DEVIATIONS ARE CALCULATED VIA 10 ROUNDS OF BOOTSTRAPPING ESTIMATIONS.

Methods RSNA IVC-Filter SIIM
↓FPR ↑TPR ↑AUC ↓FPR ↑TPR ↑AUC ↓FPR ↑TPR ↑AUC

AE [39] 0.318±0.014 0.461±0.009 0.566±0.004 0.198±0.104 0.350±0.075 0.436±0.040 0.420±0.024 0.714±0.030 0.673±0.006

VAE [16] 0.473±0.001 0.462±0.001 0.487±0.001 0.489±0.097 0.707±0.076 0.542±0.080 0.442±0.008 0.740±0.006 0.676±0.023

pchVAE [7] 0.501±0.018 0.731±0.030 0.600±0.007 0.590±0.072 0.620±0.013 0.472±0.038 0.378±0.045 0.558±0.040 0.616±0.012

DeepSVDD [29] 0.508±0.021 0.413±0.023 0.421±0.009 0.503±0.106 0.672±0.042 0.500±0.075 0.276±0.036 0.683±0.050 0.740±0.010

GANomaly [27] 0.524±0.005 0.678±0.015 0.576±0.005 0.446±0.172 0.627±0.227 0.518±0.103 0.553±0.103 0.495±0.108 0.418±0.016

f-AnoGAN [44] 0.365±0.033 0.541±0.029 0.614±0.005 0.419±0.077 0.611±0.054 0.544±0.042 0.381±0.000 0.624±0.033 0.721±0.015

CVAD (ours) 0.327±0.016 0.646±0.017 0.696±0.005 0.541±0.094 0.706±0.091 0.582±0.031 0.376±0.020 0.766±0.021 0.749±0.010

Quadro RTX 6000 GPUs with 24 GB memory each. In our
model training, we used Adam optimizer with a learning rate
of 0.001, and each network was trained for 100-350 epochs.

We evaluated our anomaly detection model performance
in terms of standard statistical metrics - (i) area under the
receiver operating characteristic (AUROC, AUC in short); (ii)
True Positive rate (TPR); (iii) False positive rate (FPR). To
classify ID and OOD classes, a threshold should be defined
for the anomaly scores. Notably, the AUC value is threshold-
invariant, while the TPR and FPR are determined by the
selection of the anomaly threshold. We adopted the Geometric
Mean (G-Mean) method to determine an optimal threshold for
the ROC curve by tuning the decision thresholds and reported
the resulting FPR and TPR values. To be fair and thorough, we
ran all the experiments on both intra-class OOD and inter-class
OOD to further analyze the performance of anomaly detectors
on the specific type of OOD detection.

V. RESULTS

A. Quantitative Results

We set the vanilla AE and VAE architectures as baselines
and compared our CVAD model with several representative
models with varying architectures – pchVAE [7], a classifier-
based approach DeepSVDD [29], and two GAN-based meth-
ods, i.e., GANomaly [27] and f-AnoGAN [44]. Table II shows
the models’ performance for the intra-class OOD detection and
Table III primarily presents the inter-class OOD performance.

1) Results for Intra-class OOD Detection: Intra-class OOD
images are the most challenging outliers to identify since they
often share similarity to the ID data but belong to a different
class with unique characteristics. Still, CVAD exhibits its su-
periority in detecting intra-class OOD for medical images. On
the RSNA dataset, CVAD achieves the best AUC score 0.696
(+0.275 from DeepSVDD’s AUC score 0.421, +0.120 from
GANomaly’s AUC score 0.576, +0.082 from f-AnoGAN’s
AUC score 0.614); for IVC-Filter, CVAD obtains the highest
AUC values 0.582; for SIIM dataset, although DeepSVDD and
f-AnoGAN show competitive performance, CVAD acquires
the optimal AUC score 0.749. Overall, CVAD performs stably
and effectively for intra-class OOD detection.

2) Results for Inter-class OOD Detection: To fairly eval-
uate all the models, we tested them on multiple inter-class
OOD data types and presented the corresponding AUC scores
in Table. III. As the OOD image datasets may have different

TABLE III
AUC SCORES PREDICTED BY OOD DETECTORS FOR INTER-CLASS

IDENTIFICATION ON RSNA, IVC-FILTER AND SIIM DATASETS. BOLD
INDICATES THE BEST PERFORMANCE.

Dataset Methods AUROC score
InterClass1 InterClass2 InterClass3

RSNA

AE [39] 0.677±0.006 0.608±0.005 0.616±0.004

VAE [16] 0.752±0.004 0.604±0.007 0.613±0.006

pchVAE [7] 0.790±0.006 0.776±0.005 0.632±0.007

DeepSVDD [29] 0.838±0.005 0.834±0.004 0.604±0.006

GANomaly [27] 0.733±0.005 0.816±0.004 0.597±0.007

f-AnoGAN [44] 0.842±0.001 0.693±0.001 0.682±0.002

CVAD (ours) 0.863±0.003 0.803±0.004 0.703±0.005

IVC-Filter

AE [39] 0.372±0.051 0.342±0.041 0.237±0.051

VAE [16] 0.666±0.026 0.400±0.039 0.706±0.027

pchVAE [7] 0.885±0.022 0.732±0.033 0.905±0.026

DeepSVDD [29] 0.861±0.051 0.724±0.060 0.883±0.102

GANomaly [27] 0.803±0.018 0.827±0.190 0.922±0.072

f-AnoGAN [44] 0.911±0.020 0.625±0.043 0.864±0.042

CVAD (ours) 0.984±0.002 0.911±0.017 0.985±0.001

SIIM

AE 0.572±0.004 0.013±0.000 0.752±0.005

VAE [16] 0.712±0.006 0.021±0.002 0.759±0.003

pchVAE [7] 0.943±0.002 0.992±0.000 0.684±0.004

DeepSVDD [29] 0.980±0.001 0.992±0.000 0.804±0.002

GANomaly [27] 0.688±0.005 0.989±0.000 0.442±0.006

f-AnoGAN [44] 0.951±0.001 0.924±0.002 0.606±0.003

CVAD (ours) 0.983±0.001 0.978±0.001 0.869±0.003

image channels and image sizes from the ID training images,
we adjusted the image channels and resized the images to
ensure consistent input data format for evaluation3. CVAD
obtains the highest AUC values on RSNA and SIIM datasets
(except for inter-class2), and performs the best for IVC-Filter
dataset across three inter-class OOD detection evaluations.
Generally, the inter-class OOD detection of CVAD is satisfied
with stable performance.

3) Effectiveness of CVAD’s Components: We here demon-
strate the importance of each component of CVAD. Table IV
shows the performance difference under the intra-class and
three inter-class OOD data situations. CVAD G represents the
“generator”, CVAD D stands for only using the predictions
of the discriminator. CVAD balances the two components’
prediction. As can be observed, CVAD G and CVAD D show
certain variations for different cases. For example, CVAD D
generally works better than CVAD G for RSNA dataset but
behaves worse than CVAD G in SIIM scenario. Nevertheless,
each component owns its unique OOD discriminative ability,

3For example, to evaluate trained models on RSNA, we converted
the BIRD and SIIM images to grayscale mode and resized them to
the same in-distribution image size.



TABLE IV
AUC SCORES PREDICTED BY THE “GENERATOR” CVAD G, THE

DISCRIMINATOR CVAD D AND CVAD FOR INTER-CLASS
IDENTIFICATION ON RSNA, IVC-FILTER AND SIIM DATASETS

RESPECTIVELY.

Dataset Methods AUROC score
IntraClass InterClass1 InterClass2 InterClass3

RSNA
CVAD G (ours) 0.602±0.006 0.854±0.003 0.517±0.004 0.601±0.005

CVAD D (ours) 0.672±0.005 0.793±0.003 0.809±0.003 0.679±0.005

CVAD (ours) 0.696±0.005 0.863±0.003 0.803±0.004 0.703±0.005

IVC-Filter
CVAD G (ours) 0.568±0.031 0.981±0.003 0.787±0.023 0.983±0.002

CVAD D (ours) 0.543±0.041 0.661±0.018 0.925±0.011 0.834±0.013

CVAD (ours) 0.582±0.031 0.984±0.002 0.911±0.017 0.985±0.001

SIIM
CVAD G (ours) 0.746±0.010 0.995±0.000 0.995±0.000 0.827±0.004

CVAD D (ours) 0.724±0.008 0.874±0.002 0.055±0.001 0.862±0.005

CVAD (ours) 0.749±0.010 0.983±0.001 0.978±0.001 0.869±0.003

Fig. 3. Anomaly scores output by CVAD for different types of input data
(experiments for RNSA dataset). Columns from left to right, ID, intra-class
OOD, inter-class OOD1, inter-class OOD2, inter-class OOD3.

and combining their advantages entitles CVAD the capability
of capturing both intra-class and inter-class dissimilarities. For
which sake, CVAD has better generalization and can perform
well and stably under different situations.

B. Qualitative Results

1) Anomaly Detection: Figure 3 shows two experimental
results for RSNA dataset. Each row stands for one case and
each column represents a specific type of input data. From
left to right, they are in-distribution data, intra-class OOD
data, inter-class OOD1 data, inter-class OOD2 data and inter-
class OOD3 data, respectively. The corresponding anomaly
score predicted by CVAD is on top of each example. Higher
anomaly scores mean more likely the inputs are OOD. As can
be seen in Figure 3, the two intra-class OOD samples (2nd
column) are alike as the in-distribution data but the inter-
class OOD examples show very different appearance from
in-distribution data. Correspondingly, the anomaly scores of
intra-class OOD are close to the scores of ID samples and
difficult to separate whereas the intra-class OOD cases with
clear variations are assigned higher anomaly scores and are
easy to identify. This phenomenon further demonstrates the
challenges of identifying intra-class OOD data.

2) Visualization of Reconstruction Effects: CVAD gains
good latent in-distribution features via its “generator”, which
learns both low-level and high-level representations. To
demonstrate the effectiveness, we took RSNA dataset as a
representative and showcased the reconstruction details in
Figure 4, with the first column for branch VAE reconstruction

Fig. 4. Reconstruction details visualization of CVAD’s “generator” trained
on RSNA dataset for different data types.

x′2, the second column for standard VAE part reconstruction
x′1, the third column for ultimate reconstruction x′ and the
last column for the original input image x (following the same
notations indicated in Figure 2). To further reveal the effects
of “generator” on different OOD samples, we also presented
example images for ID (i.e., normal class, 1st row), intra-
class OOD (i.e., pneumonia or with opacity, 2nd row), inter-
class OOD1 (i.e., gray-scale bird images, 3rd row), inter-class
OOD2 (i.e., skin cancer images from SIIM dataset,4th row)
and inter-class OOD3 (i.e., images from IVC-Filter dataset,
5th row) in Figure 4. Compared with the intra-class medical
OOD data, reconstructions on inter-class OOD inputs are more
messy and dissimilar to the original OOD data, which leads
to larger reconstruction errors and thus easier to distinguish.
This observation reveals the varying difficulties of detecting
different types of OOD data – intra-class OOD is much more
challenging than inter-class OOD.

VI. CONCLUSION

We propose an effective medical anomaly detector CVAD
that can reconstruct coarse and fine image components by
learning multi-scale latent representations. The high quality
of generated images enhances the discriminative ability of the
binary discriminator in identifying unknown OOD data. We
demonstrate the OOD detection efficacy for both intra-class
and inter-class OOD data on various medical and natural image
datasets. Our model has no prior assumptions on the input
images and application scenarios for OOD, thus can be applied
to detect OOD samples in a generic way for multiple scenarios.
A detailed technical report about the code implementation and
parameter usages of CVAD has been publicly available for
easy reproduction.
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