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Abstract— This paper presents a novel distributed nonlinear
model predictive control (DNMPC) for minimizing velocity
tracking and spacing errors in heterogeneous vehicle platoon
under uncertainty. The vehicle longitudinal dynamics and
information flow in the platoon are established and analyzed.
The algorithm of DNMPC with robustness and reliability
considerations at each vehicle (or node) is developed based on
the leading vehicle and reference information from nodes in its
neighboring set. Together with the physical constraints on the
control input, the nonlinear constraints on vehicle longitudinal
dynamics, the terminal constraints on states, and the reliability
constraints on both input and output, the objective function
is defined to optimize the control accuracy and efficiency by
penalizing the tracking errors between the predicted outputs
and desirable outputs of the same node and neighboring nodes,
respectively. Meanwhile, the robust design optimization model
also minimizes the expected quality loss which consists of the
mean and standard deviation of node inputs and outputs.
The simulation results also demonstrate the accuracy and
effectiveness of the proposed approach under two different
traffic scenarios.

I. INTRODUCTION

In recent years, the vigorous development in the automo-
bile industry has brought great convenience to people’s lives.
However, the rapid increase in the number of vehicles has
also led to back-of-queues, traffic accidents, and environ-
mental pollution [1]–[3]. Comparing the means of widening
and improving the road infrastructure, it is more efficient
and economical to deal with the aforementioned issues by
enhancing autonomous vehicles’ technology and establishing
intelligent transportation systems [4]–[7]. Currently, many
advanced methodologies have been proposed to ameliorate
the vehicle safety and fuel efficiency [8]. For instance, the
authors in [9] proposed a minimum fuel control strategy in
an automated vehicle-following scenario using the Pulse and
Gliding method. The authors in [10] developed strategies to
optimize the fuel consumption of vehicles during vehicle-
following conditions.
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However, our ego vehicle is not a single participant
on the road and there are many other road users in the
surrounding environment, which forms a group of vehicles.
In the vehicle group system, the road-driver-vehicles are mu-
tually restricted, forming an extremely complex and strong
nonlinear dynamic system, so that it is limited to improve
the control accuracy and robustness of a single-vehicle.
Recently, many research works have shown that vehicle
platoon can alleviate traffic jams, enhance driving safety,
and mitigate vehicle fuel emissions significantly [11]–[13].
The development of a control method for vehicle platoon
started from the PATH project in California in the 1980s
[14]. Vehicle platooning mainly composes several vehicles
in the same lane as one single platoon by adjusting the inter-
vehicle distance and maintaining the desired speed by both
longitudinal and lateral control technologies based on the
information from its neighboring vehicles or leading vehicle.

In the PATH project, the control task assignment in the
platoon and the sensing and execution technologies were
studied [15]. In addition, [16] investigated the string sta-
bility of lateral control solution for a homogeneous vehicle
platoon. The lateral dynamics and motion equations have
also been derived. The Cooperative Adaptive Cruise Control
(CACC) was also designed to assess influences on the energy
savings of heavy trucks [17]. For heterogeneous platoons,
[18] proposed a robust coordinated control of nonlinear
heterogeneous platoon under uncertain topology. Distributed
nonlinear MPC and heterogeneous vehicle platooning Metric
Learning with cut-in/cut-out maneuvers were explored in
[19]. Although many problems in vehicle platooning have
been investigated, there are still many open issues that remain
to be explored and solved, such as relative single commu-
nication topology, comprehensive analysis of heterogeneous
platooning, adaption to uncertainties, among others.

Uncertainty exists in vehicle platoon control. The perfor-
mance of advanced vehicle platooning models and control
methods will be affected if uncertainties in parameters and
external environment are not properly addressed. Several
robust control strategies, such as H2-, H∞- and µ-synthesis
[20], were developed to find the optimal control parameters.
However, such control strategies use deterministic parameters
in the early vehicle design process. To optimize the control
parameters and vehicle parameters simultaneously, the robust
design approach [21], [22] is preferred over the robust control
strategy. A Min-Max Model Predictive Control (MM-MPC)
strategy was proposed in [17] to account for the uncertainty
of time delays. The optimal control was obtained by min-
imizing the cost of the worst case [23]. Stochastic Model
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Predictive Control (SMPC) [24] is another powerful tool for
optimal control under uncertainty. SMPC treats uncertainties
with a probabilistic approach, which can provide more real-
istic solutions. In addition, chance constraints are applied
to ensure that the system can maintain its intended state
at a specific probability level. Data-based approaches were
also used in SMPC. The data of the control object was di-
rectly obtained from sensors with noises following Gaussian
distributions. Kalman Filter [25] was used to estimate the
positions of target vehicles. This approach does not use the
information of the vehicle dynamic model but accounts for
all the parameters’ uncertainty into measurement uncertainty.

To address the challenges mentioned above, this work pro-
poses a novel distributed nonlinear model predictive control
for heterogeneous vehicle platoons under uncertainty. The
main contributions of this work are summarized as follows:
• Proposed a new distributed nonlinear model predictive

control (DNMPC) method for heterogeneous vehicle
platooning based on the existing work in [1]. Our
approach is general for heterogeneous vehicle types and
can keep a safe inter-vehicle spacing with the desired
velocity under uncertainty.

• Applied robust design with reliability constraints to
ensure the robustness and reliability of the vehicle
control method given the existence of uncertainty.

• Designed two relatively complex traffic scenarios for
evaluating the effectiveness of the proposed method
under uncertainty.

• Demonstrated the effectiveness of the proposed ap-
proach via showing a good tracking performance related
to both spacing error and speed tracking error.

The remainder of this paper can be organized as fol-
lows: Section II introduces the nonlinear platoon model
and information flow model. The extension of DMPC using
robust design and reliability-based design are presented in
Section III. Simulation results of two designed scenarios on
highways are presented and discussed in Section IV. Section
V concludes the paper and points out several future research
directions.

II. PLATOON MODELING
Different from most of the existing research, this paper

mainly considers the heterogeneous vehicle platoon with the
predecessor-following (PF) communication topology. There
are one leading vehicle (indexed by 0) and seven following
(indexed by 1 to 7) vehicles driving on a flat and straight
road, and each vehicle is represented by a node so there
are eight nodes in total in the platoon. We also assume
the communication among all nodes is unidirectional and
the information flow can only be delivered from the pre-
ceding vehicle to the downstream vehicles. Meanwhile, the
heterogeneous platoon is actually a spatial formation, which
consists of several different types of vehicles in terms of
vehicle size, dynamics, and driving environments. There
are two main components in the platoon model, one is
the nonlinear dynamics for each following vehicle, and the
other is the model of information flow. Note that only the

longitudinal dynamics and control are considered in this
paper.

A. Nonlinear Platoon Model

Each vehicle in the platoon also has its own moving
dynamics with both state and control input constraints. To
better understand and formulate the optimization problem
proposed in the paper, we first need to study the vehicle
dynamic model in the platoon.

Since the vehicle dynamics in the longitudinal direction
is strongly nonlinear and includes many nonlinear terms
such as engine, transmission, driveline, brake system, and
aerodynamic drag, etc. Thus, it is impossible to establish
an accurate model when the vehicle is running on the road
by considering all above-mentioned elements in modeling.
By taking both model accuracy and its feasibility, there are
some simplifications we have made for vehicle longitudinal
modeling as following:

1) Consider only the vehicle motion along the longitu-
dinal direction. The lateral and vertical motions are
neglected.

2) Focuses on the flat road condition and normal driving
states, no side-slip angle is expected.

3) Vehicle is viewed as a rigid-body and left-right sym-
metric object.

4) The dynamics of the powertrain is simplified as a
first-order inertial transfer function. There is only one
control input for both driving torque and braking
torque.

After applying the above-mentioned simplifications, we
can derive a discrete-time (D-T) dynamic model of any node
in the following vehicles [1] as following:

pi(k + i) = pi(k) + vi(k)∆t,
vi(k + 1) = vi(k) + ∆t

mi
(
ηT,i

Ri
Ti(k)− CA,iv2

i (k)

−migfi),
Ti(k + 1) = Ti(k) + ∆t

τi
(ui(k)− Ti(k))

(1)
where N = 1, 2, ..., 7 represents the set of all following ve-
hicles. Variables pi(k), vi(k) and Ti(k) are the displacement,
velocity and coupled torque of driving & braking of vehicle
i at time k, respectively. mi is the mass of vehicle i, CA,i is
the lumped aerodynamic drag coefficient of node i, g is the
constant of gravity, fi is the rolling friction coefficient, ∆t
is the sampling time in the simulation, τi is the inertial time
lag of drive line in vehicle i, ηi is the mechanical efficiency
coefficient of drive line in node i, Ri is the tire radius of
vehicle i, ui is the control input of desired acceleration or
torque, which is also subject to a box constraint as ui ∈ Ui
= {umin,i ≤ ui ≤ umax,i}, and where umin,i and umax,i
are the lower bound and upper bound of control inputs. The
state-space model of vehicle longitudinal dynamics is also
built by defining the states as xi(t) = [pi(t), vi(t), Ti(t)] ∈
R3, and the system output denotes as yi(t) = [pi(t), vi(t)] ∈
R2. Thus, the system plant of each node can be rewritten in



the following discrete-time compact form:{
xi(k + 1) = Ai(xi(k)) +Biui(k),
yi(k + 1) = Ciyi(t),

, i ∈ N (2)

where Ai(xi(k)) defined as

Ai(xi(k)) =

 pi(k) + vi(k)∆t
vi(k) + ∆t

mi
(
ηT,i

Ri
Ti(k)− Fi)

Ti(k)− ∆t
τi
Ti(k)


Fi(k) = CA,iv

2
i (k) +migfi

(3)

and Bi =[0 0 1
τ∆t]T∈ R3×1, Ci =

[
1 0 0
0 1 0

]
∈ R2×3.

Furthermore, the vectors of vehicle state variables, outputs,
and control inputs of all N nodes are defined below: X(k) = [xT1 (k), xT2 (k), · · · , xTN (k)]T

Y (k) = [yT1 (k), yT2 (k), · · · , yTN (k)]T

U(k) = [uT1 (k), uT2 (k), · · · , uTN (k)]T
, i ∈ N (4)

Then the overall discrete-time model of vehicle platoon
for N following vehicles can be presented below:{

X(k + 1) = Θ(X(k)) + ΠU(k),
Y (k + 1) = Υy(K),

, i ∈ N (5)

where the new system matrix can be calculated as the
following for all N nodes [1]: Θ = [AT1 (x1), AT2 (x2), · · · , ATN (xN )]T ,∈ R3N×1

Π = diag{B1, B2, · · · , BN},∈ R3N×N

Υ = IN
⊗
Ci,∈ R2N×3N

(6)

where
⊗

denotes the Kronecker product in the computation.

B. Model of Information Flow

For the communication topology, an accurate model is
significant to design the integrated objective function for
distributed model predictive control [1], [11]. The directed
graph theory was used to model the information flow in a
platoon by interconnecting the allowable information flow
between vehicles in a platoon, which is represented by G =
(V ,E). V = {α1, α2, ..., αN} denotes the set of nodes and αi
is the i-th vehicle in the following vehicles, and E = V ×V
is the set of connection edges between nodes. The directed
graph theory can model all aforementioned topologies, such
as Predecessor Following (PF) topology, Predecessor-leader
following (PLF) topology, and Bidirectional (BD) topology,
and so on. To simplify the model, the communication model
is continuously formulated as three matrices as adjacent
matrix A , Laplacian matrix L , and pinning matrix P .

The adjacent matrix associated with graph G is defined
to represent the communication edge from node j to node i,
which can be shown as A ∈ RN×N with each entry defined
as: {

αij = 1, {αj , αi} ∈ E
αij = 0, {αj , αi} /∈ E

, i, j ∈ N (7)

where {αi, αj} ∈ E means vehicle i can receive information
from vehicle j, and there is no self-loop in the assumption,
so αij = 0. Then the neighboring set of node i is given by
Ni= {j|αij = 1}.

The Laplacian matrix L = [lij] ∈ RN×N associated with
graph G can be defined as:

L = D −A (8)

where D is called an in-degree matrix that can be defined as

D =

deg1

. . .
degN

 , N ∈ 1, 2, . . . , 7 (9)

And the in-degree of vehicle i is defined as degN =∑N
j=1 αij , which represents the overall available commu-

nication edges between node i and other nodes in the
neighboring set. Actually, the Laplacian matrix is an induced
matrix from the adjacent matrix.

The pinning matrix P associated with graph G can be
explained as the information flow from the leading vehicle
to the following vehicles, which is denoted as:

P =

p1

. . .
pN

N ∈ 1, 2, . . . , 7 (10)

where pi = 1 if communication edge {α0, αi} ∈ E, and
otherwise pi = 0. When pi = 1, node i is called to be
pinned to the leader, which indicates vehicle i can receive
information from the leader. The leading vehicle (indexed by
0) accessible set of node i can also be defined:

Pi =

{
{0}, pi = 1
∅, pi = 0, (11)

III. CONTROL METHODS

A. Control Objective

The overall control objective of the proposed distributed
MPC-based platoon control is to follow the leading vehicle’s
velocity while tracking and maintaining the desired gap
between any two consecutive vehicles. Thus, the constant
spacing policy (di−1,i = d0) is applied for the design of
distributed MPC, and d0 is the satisfied constant gap we
need to regulate in vehicle platoon. The overall structure
of the proposed DNMPC for a heterogeneous platoon with
considering the robust design and reliability-based design
under Predecessor Following (PF) topology is shown in
Fig.1.

B. Control Problem Formulation

This section mainly introduce the formulation of the
optimization problem for vehicle heterogeneous platoons.
The initial position and velocity of leading vehicle (indexed
by 0) can be represented as p0(t) and v0(t), respectively. For
the leading speed, we made an assumption of constant speed
at time t = 0 as some previous works [1], [11], such as p0 =
v0 ∆t. Then the desired state that the following vehicles aim
to track and the expected control inputs are as the following:

xdes,i(k) = [pdes,i(k), vdes,i(k), Tdes,i(k)]T

udes,i(k) = Tdes,i(k)
(12)



Fig. 1. Overall structure of DNMPC for heterogeneous platoon considering robust design and reliability-based design under PF topology.

where pdes,i(k) = p0(k) - d0, vdes,i = v0. Note that the desired
torque applied to the vehicle is Tdes,i = CA,ivi2(k) + migfi,
which is used to counterbalance the external drag.

For formulating the optimal control problem for each node
i, all nodes that can send information to i will be used.
In other words, the optimization for each node i will only
utilize the information from its neighbor set N for obtaining
the optimal control inputs at each iteration. Meanwhile, the
vectors of outputs and inputs of N nodes are defined as the
following [1], [11]:{

yi(k) = [yTj1(k), yTj2(k), yTj3(k)]T

ui(k) = [uj1(k), uj2(k), uj3(k)]T
(13)

Furthermore, the prediction horizon in the distributed MPC
is set as Np, and three other types of control variables will
be defined in the prediction horizon [1], [13]:

1) uai (k): the assumed control inputs of node i;
2) upi (k): the predicted control inputs of node i;
3) u∗i (k): the desired control inputs of node i;

where Np = 0,1,2,· · · , Np − 1
Similarly, three different types of system outputs can be

defined based on the aforementioned three control inputs
below:

1) yai (k): the assumed system outputs of node i that is a
shifted optimal plant outputs;

2) ypi (k): the predicted system outputs of node i in the
local MPC problem;

3) y∗i (k): the desired system outputs of node i after
solving the local MPC problem;
where Np = 0,1,2,· · · , Np − 1

And assume that the system outputs of each node i will be
delivered to the nodes in its neighboring set for optimizing
the spacing error of distance and tracking error of speed

of each vehicle i. Therefore, we can formulate the platoon
control problem for each following vehicle by the local
optimization below [1], [11]:

min
Ui

Ji(y
p
i (: |t), upi (: |t), y

a
i (: |t), yai (: |t))

= min
Ui

Np−1∑
k=0

ζ(ypi (k|t), upi (k|t), y
a
i (k|t), yai (k|t))

(14)

s.t.
xi
p(k + 1|t) = Θ(xpi (k|t)) + Πupi (k|t)

ypi (k + 1|t) = Υxpi (k|t)
k = 0, 1, 2, · · · , Np − 1
umin,i ≤ upi (k|t) ≤ umax,i
ypi (Np|t) = 1

Γ

∑
j=Γ(yaj (Np|t)− ddes,ij)

T pi (Np|t) = hi(Np|t)

where ζ(ypi (k|t), upi (k|t),yai (k|t), yi(k)(k|t)) is the defined
objective function, and it is presented below:

ζ(ypi (k|t), upi (k|t), yai (k|t), yai (k|t))
= (ypi (k|t)− ydes,i(k|t))TQi((y

p
i (k|t)

− ydes,i(k|t))
+ (upi (k|t)− hi(k|t))TRi(u

p
i (k|t)− hi(k|t))

+ (ypi (k|t)− yai (k|t))TWai(y
p
i (k|t)− yai (k|t))

+ (ypi (k|t)− yaj (k|t))TWni(y
p
i (k|t)− yaj (k|t))

(15)
where Γ is the total number of nodes in the set of Ni ∪ Pi,
which denotes the total number of nodes in the collection
set of neighboring and the leader accessible set of node i.
Ui = [upi (0|t), u

p
i (1|t),· · · , uip(Np − 1|t)]T is the control

sequence to be optimized in MPC. In the constraints, the
first three equations are the equality constraints of vehicle
nonlinear dynamics in the prediction horizon. The fourth



one is the constraints on vehicle control inputs. The last
two equations indicate the terminal constraints of the state
variables. The first condition is neighboring average-based
terminal constraints, which enforce the final states as close
as possible to the average value of the known reference
set points. The second condition of terminal constraint is
to ensure that the vehicle state is around the equilibrium
with the final control input, which indicates a smooth driving
torque without sudden acceleration and braking. Note that the
initial predicted system state xpi (0|t) = xi(t).

Meanwhile, there are four weighting matrices in the ob-
jective function, and they are all positive positive-definite
matrices. Qi is the weighting matrix that penalizes the output
tracking error from the desired outputs, and it also indicates
whether the node i can receive the reference information
from the leading vehicle. When the node i is pinning to
the leading vehicle, Qi > 0, otherwise Qi = 0. Ri is the
weighting factor that penalizes the sudden change of control
inputs. In other words, the vehicle prefers a constant and
smooth driving speed in the end without jerk. Wai means
vehicle i tries to maintain the actual system output as close
as possible to its assumed output (shifted optimal outputs of
the same node). Wni indicates that the node i tries to keep
the plant outputs as close as to the assumed outputs of the
nodes in its neighboring set Ni.

C. Robust design with reliability constraint

Robust design minimizes the effects of uncertainty in the
design objective without eliminating the sources of uncer-
tainty. High robustness is achieved by changing the nominal
values of design variables.

Robustness is typically defined as insensitive to uncer-
tainty. Using the notion of Taguchi’s quality loss, we consider
robustness in a broader sense: maximize both the motion re-
sponses’ insensitivity to uncertainty and their average perfor-
mance. We now use a nominal-the-best type performance as
an example. Let t = (t1, t2, . . . , tm) be the targets we want
to achieve for performance variables Y = (Y1, Y2, . . . , Ym).
The traditional quality loss function [26] L(Y) is illustrated
in Fig. 2 (shown in only one dimension) and is defined by

L(Y) =
m∑
i=1

ki (Yi − ti)2 (16)

where ki is a constant determined by the cost (see in Fig. 2)
reaching the tolerance boundary, and m is the dimension of
Y. There is always a loss if Y deviates from their targets.
We can change design variables to maximize the expected
(average) quality loss, given by

EL =
m∑
i=1

ki

[
(µYi

− ti)2
+ σ2

Yi

]
(17)

where µYi and σYi are the mean and standard deviation of
Yi, respectively.

Minimizing EL will reduce both (µYi − t2i ) (bringing
the average performance to the target) and σ2

Yi
(reducing

variation of the performance). This gives a good trade-off
between the performance and its variation.

𝐿𝐿($)

𝑌𝑌

𝑡𝑡

𝑐𝑐

Tolerance range

Fig. 2. Quality loss function.

The evaluation of the mean performance (µYi
) is trivial

by substituting the nominal values of random variables (µX )
into the performance function. The performance function is
the vehicle dynamic model in this work. The vehicle state
(position, velocity, torque) is the vehicle performance that we
are interested in. Now we discuss how to approximate the
standard deviation of Yi. The First Order Second Moment
(FOSM) [27] method is used to approximate the standard
deviation. We denote the performance function by

Y = g(X) (18)

FOSM employs the first-order Taylor expansion to lin-
earize Eq. (18) at the means of input random variables. The
approximation is given by

g(x) = g (µX) +∇g (µX) · (X − µX) (19)

Since the random variables are assumed to be independent,
the variance of g(x) can be obtained by

σ2
Y =

n∑
i=1

(
∂g

∂Xi

)2

σ2
Xi

(20)

In this preliminary study, we assume mi, CA,i, fi, τi,
ηi, Ri are independent random variables and follow normal
distributions. The distributions are listed in Table 1. The
control input ui is the design variable.

Robust design minimizes the expected quality loss EL
which consists of the mean and standard deviation of Yi
as shown in Eq. (17). The first part (µYi

− ti)2 exactly is
the same as Eq. (15) in the deterministic MPC. Now we
just need to add the variance term σ2

Yi
into Eq. (14) to

have the robustness of the objective. Using the longitudinal
dynamic function (Eq. (1)) at k + 1 time as an example,
we can assume the output Y in Eq. (18) is pi(k + i),
vi(k + 1), and Ti(k + 1) in Eq. (1) at k + 1 time. We
have three performance functions that are the three equations
in Eq. (1); namely, g1(X) = pi(k) + vi(k)∆t, g2(X) =
vi(k) + ∆t

mi
(
ηT,i

Ri
Ti(k)−CA,iv2

i (k)−migfi), and g3(X) =

Ti(k) + ∆t
τi

(ui(k) − Ti(k)). In this work, we assume that
the vehicle state (position, velocity, torque) at the previous
time is deterministic, which means that the uncertainty from
previous time is not propagated to current time point. The
uncertainty propagation in terms of time will be further
studied in the future. Therefore, taking the partial derivatives
with respect to the random variables and substituting into



TABLE I
DETAILED DISTRIBUTION OF RANDOM VARIABLES.

Random Variables Distribution Mean Standard deviation
m1,...,7(kg) Normal (2.5, 2.3, 2.0, 1.9, 1.7, 1.6, 1.5)×103 (375, 345, 300, 285, 255, 240, 225, 270)
τ1,...,7(s) Normal (0.95, 0.89, 0.80, 0.77, 0.71, 0.68, 0.65) (9.5, 8.9, 8.0, 7.7, 7.1, 6.8, 6.5)×10−2

CA,1,...,7(N · s2m−2) Normal (0.9, 0.9, 0.7, 0.7, 0.45, 0.45, 0.45) (9.0, 9.0, 7.0, 7.0, 4.5, 4.5, 4.5)×10−2

R1,...,7(m) Normal (0.45, 0.45, 0.3, 0.3, 0.27, 0.24, 0.23) (2.25, 2.25, 1.5, 1.5, 1.2, 1.15, 1.35)×10−3

f1,...,7 Normal 0.01 5× 10−4

η1,...,7 Normal 0.96 0.048

Eq.(20), we have

σ2
pi(k+i) = 0,

σ2
vi(k+1) =

(
∂g2
∂mi

)2

σ2
mi

+
(

∂g2
∂CA,i

)2

σ2
CA,i

+
(
∂g2
∂fi

)2

σ2
fi

+
(
∂g2
∂τi

)2

σ2
τi +

(
∂g2
∂ηi

)2

σ2
ηi +

(
∂g2
∂Ri

)2

σ2
Ri
,

σ2
Ti(k+1) =

(
∂g3
∂ηi

)2

σ2
ηi

(21)
Then, the obtained standard deviations of pi, vi, and Ti at

each time instant can be obtained by Eq. (21). As mentioned
before, the objective function in Eq. (14) is the term of
(µYi − ti)

2 in Eq. (16). The second term can be expressed
as

Np−1∑
k=0

σ2
Yi

= σ2
ypi (k|t)

T (Qi +Wai +Wni) + σ2
Ti(k+1)Ri

(22)
where σ2

ypi (k|t) = [σ2
pi(k+i), σ

2
vi(k+1)]

T . Therefore, the robust
design objective can be formulated as

JNP
= min

Ui

Ji(y
p
i (: |t), upi (: |t), y

a
i (: |t), yai (: |t))

+ σ2
ypi (k|t)

T (Qi +Wai +Wni) + σ2
Ti(k+1)Ri

(23)
In addition to the equality constraints in Eq. (14), the

terminal constraints are replaced by reliability constraints
to ensure the specific probability that vehicles maintain
within the vicinity of the equilibrium state with pre-defined
thresholds (Ts1, Ts2) under the influence of uncertainty. The
reliability constraints can be expressed as

Pr{‖ypi (Np|t)−
1

Γ

∑
j−Γ

(yaj (Np|t)− ddes,ij)|| ≤ Ts1} ≥ R

Pr{‖T pi (Np|t) = hi(Np|t)|| ≤ Ts2} ≥ R
(24)

Combined equality constraints in Eqs. (14), (23), and (24),
we have the final robust design optimization model with
reliability constraints, which is given by

JNP
= min

Ui

Ji(y
p
i (: |t), upi (: |t), y

a
i (: |t), yai (: |t))

+ σ2
ypi (k|t)

T (Qi +Wai +Wni) + σ2
Ti(k+1)Ri

(25)
s.t.
xpi (k + 1|t) = Θ(xpi (k|t)) + Πupi (k|t)
ypi (k + 1|t) = Υxpi (k|t)
k = 0, 1, 2, · · · , Np − 1
Pr{‖ypi (Np|t)− 1

Γ

∑
j−Γ(yaj (Np|t)−ddes,ij)|| ≤ Ts1} ≥ R

Pr{‖T pi (Np|t) = hi(Np|t)|| ≤ Ts2} ≥ R

Next, we use two scenarios to illustrate the control effects
of the proposed method.

IV. SIMULATION RESULTS

To verify the control effects of the proposed DNMPC with
robustness and reliability considerations under uncertainty,
both the platoon model and controller are built and designed
in MATLAB, and numerical simulations are conducted to
demonstrate the main results of the paper. The simulated
heterogeneous platoon contains one leading vehicle (vehicle
ID 0) and seven following vehicles (Vehicle IDs from 1 to 7)
under PF communication topology, and the desired spacing
between each vehicle is 20 m, which is the distance from
the rear end of the preceding vehicle to the front end of the
following vehicle. The maximum and minimum accelerations
are 6 m/s2 and -6 m/s2, respectively. Two different scenarios
are designed to assess the control effects and accuracy of the
distributed nonlinear model predictive control.

A. Scenario 1

In Scenario 1, there is no initial spacing error and the
desired spacing between any consecutive vehicles is 20 m.
All followers’ initial velocity is 30 m/s which is different
from the leading vehicle’s speed of 28 m/s, and the leading
vehicle has perturbations of acceleration of 3 m/s2 from 1
sec to 2 sec, and -2 m/s2 from 6 sec to 7 sec. The sampling
time of simulation is 0.1 sec and the prediction horizon of
DNMPC is 20.
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Fig. 3. Control effects of velocity for the platoon under PF topology in
Scenario 1.



0 2 4 6 8 10

Time (s)

-6000

-4000

-2000

0

2000
T

or
qu

e 
(N

)

1
2
3
4
5
6
7

Fig. 4. Control inputs for the platoon under PF topology in Scenario 1.
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Fig. 5. Spacing errors for the platoon under PF topology in Scenario 1.

In the simulation, the initial speed of the leader and
followers are different but with the same zero spacing error.
As shown in Fig. 3, the leading speed is constant during
the 1st sec and then increases from 28 m/s to around 31
m/s during the next one sec. After maintaining the constant
speed for 5 seconds, node 0 decreases its speed from the
7th second to the 8th second until reaching 29 m/s. Fig. 3
and Fig. 5 indicate that both the speed tracking and spacing
maintenance of all following vehicles are accurate and stable.
The control inputs applied to each vehicle are also shown in
Fig. 4.

B. Scenario 2

In Scenario 2, there is no initial spacing error and the
desired spacing between any consecutive vehicles is still 20
m. All followers’ initial velocity is 30 m/s which is different
from the leading vehicle’s speed of 32 m/s, and the leading
vehicle has perturbations of acceleration of -3 m/s2 from sec
1 to sec 2, and 2 m/s2 from sec 6 to sec 7. The sampling time
and prediction horizon of DNMPC are the same as Scenario
1.

In the simulation, the initial speed of the leader and
followers are different with the same zero spacing error. As

can be seen in Fig. 6, the leading speed is constant during the
first second and then decreases from 32 m/s to around 29 m/s
during the next second. After maintaining the constant speed
for 5 seconds, node 0 increases its speed from the 7th second
to the 8th second until reaching 31 m/s. It is easy to observe
from the Fig. 6 and Fig. 8 that both the velocity tracking
and spacing errors of all following vehicles are accurate and
stable. The control inputs applied to each vehicle are also
shown in Fig. 7.
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Fig. 6. Control effects of velocity for the platoon under PF topology in
Scenario 2.
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Fig. 7. Control inputs for the platoon under PF topology in Scenario 2.

V. CONCLUSIONS

This paper proposes a novel distributed nonlinear model
predictive control technique with considering robustness and
reliability to handle the potential spacing error in the hetero-
geneous vehicle platoon under unidirectional topologies. The
platoon model consisting of vehicle longitudinal dynamics
and information flow has been developed. An algorithm
of the robust design optimization model with reliability
constraints is derived and implemented. Under the proposed
DNMPC framework, the control of heterogeneous platoon
is well formulated and optimized by solving an online
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Fig. 8. Spacing errors for the platoon under PF topology in Scenario 2.

nonlinear programming problem. Two scenarios are devised
to mimic the real highway scenarios in platooning with per-
turbations of accelerations. The simulation results illustrate
no collisions and overshoot of system outputs during the
transient process. The converging speeds and smoothness
of the desired velocity tracking and spacing error are also
satisfied.

One topic for future research is to extend the current
platoon model to a more comprehensive one that includes
longitudinal dynamics, lateral dynamics, and information
flow. Another topic is to include the inherent time-dependent
uncertainty when robustness and reliability are considered in
DNMPC to handle more complex scenarios (cut-in or cut-
out).
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