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Abstract

The CYP2B6 gene is highly polymorphic and its activity shows wide inter-individual variability. 

However, substantial variability in CYP2B6 activity remains unexplained by the known CYP2B6 
genetic variations. Circulating, cell-free miRNAs may serve as biomarkers of hepatic enzyme 

activity. CYP2B6 activity in 72 healthy volunteers was determined using the disposition of 

efavirez as a probe drug. Circulating miRNA expression was quantified from baseline plasma 

samples. A linear model consisting of the effects of miRNA expression, genotype-determined 

metabolizer status, and demographic information was developed to predict CYP2B6 activity. 

Expression of 2510 miRNAs were quantified out of which 7 miRNAs, together with the 

CYP2B6-genotypic metabolizer status and demographics, was shown to be predictive markers 

for CYP2B6 activity. The reproducibility of the model was evaluated by cross-validation. The 

average Pearson’s correlation (R) between the predicted and observed Cmax ratios of efavirenz and 

its metabolite- 8-OH efavirenz using the linear model with all features (7 miRNA + metabolizer 

status + age + sex + race) was 0.6702. Similar results were also observed using AUC ratios 

(Pearson correlation’s R = 0.6035). Thus, at least 36% (R2) of the variability of in vivo CYP2B6 

activity was explained using this model. This is a significant improvement over the models using 

only the genotype-based metabolizer status or the demographic information, which explained only 

6% or less of the variability of in vivo CYP2B6 activity. Our results therefore demonstrate that 

circulating plasma miRNAs can be valuable biomarkers for in vivo CYP2B6 activity.
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Introduction:

Human CYP2B6 is primarily expressed in the liver and accounts on average for 2–5% 

of total hepatic CYP content. Over the past two decades, CYP2B6 has been shown to 

metabolize several xenobiotics and is estimated to metabolize about 8% of clinically 

used drugs such as bupropion, ketamine, meperidine, propofol, methadone, nevirapine, 

mephobarbital, cyclophosphamide, and efavirenz(1–4).

CYP2B6 expression has 20 to 250-fold inter- and intra-individual variability(5). Some 

of this variability can be attributed to genetic variations in the CYP2B6 gene which is 

highly polymorphic with 38 alleles, several sub-alleles, and numerous sequence variants that 

have not been assigned a haplotype as of 2019(6, 7). CYP2B6*6 (516G>T and 785A>G) 

and CYP2B6*18 (983T>C, I328T) haplotypes result in a functionally deficient allele and 

include the most clinically relevant CYP2B6 polymorphisms identified, thus far (1, 8, 9). 

Variability in enzyme activity can also arise from a variety of additional factors that alter the 

transcriptional induction and suppression of the CYP2B6 gene. Induction of the CYP2B6 

gene has been shown to be modulated through nuclear receptors, such as pregnane X 

receptor (PXR), constitutive androstane receptor (CAR), and glucocorticoid receptor (GR)

(10–12). Thus, factors that activate or repress these receptors may have a significant effect 

on the downstream expression of CYP2B6 resulting in altered metabolism of its substrates.

Efavirenz, a non-nucleoside reverse transcriptase inhibitor used in the treatment of HIV 

type I, is a CYP2B6 substrate that is predominantly metabolized to 8-hydroxyefavirenz(13, 

14). Efavirenz concentration in plasma has been shown to have extensive inter-individual 

variability. Subtherapeutic concentrations of efavirenz can lead to treatment failure while 

higher plasma concentrations observed in individuals with low-activity alleles have been 

associated with increased risk for central nervous system side effects(15, 16). The variability 

in enzyme activity is not fully attributable to the well-studied genetic polymorphisms in 

CYP2B6, suggesting that there may be additional factors such as miRNAs that contribute to 

the variability(4).

MicroRNAs are ~22 nucleotide non-coding RNAs that bind target sites predominantly 

in the 3’UTR of mRNAs and negatively regulate gene expression of majority of human 

genes including drug disposition genes. miRNAs are stably present in cell-free circulating 

form in biological fluids, such as plasma and serum that can be easily collected. There is 

ample evidence demonstrating the physiological and biological significance of miRNAs in 

regulating hepatic function through regulation of genes such as HNF4A (e.g. miR-449a), 

PXR (e.g. miR-30c-1–3p), and CYP enzymes(17–20). Studies profiling circulating miRNAs 

in liver diseases have shown that the expression of several miRNA measured in plasma are 

up or down regulated in liver diseases along with changes in CYP activity(18). In vitro 
studies support a role of miRNAs in the regulation of CYP2B6 (21). In addition, exchange 

of miRNA between liver and blood may result in an association between circulating miRNA 

concentrations and hepatic CYP2B6 activity.

Thus, we hypothesized that circulating plasma miRNAs are associated with hepatic CYP2B6 

activity. The aim of this study was to identify miRNAs in human plasma that can predict 
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the CYP2B6 activity. To test our hypothesis, we used next generation sequencing to quantify 

plasma miRNAs in 72 healthy volunteers whose clinically relevant CYP2B6 genotypes 

were determined. The CYP2B6 activity was measured using efavirenz as a probe drug 

and expressed as the AUC0–48 (area under the curve plotted from 0–48 hours after dose) 

and Cmax (highest plasma concentrations) ratios (8-hydroxy-efavirenz/efavirenz, 8-OH-EFV/

EFV)(22). We adopted bioinformatic methods to develop a model to identify miRNAs that 

further explain CYP2B6 activity along with clinically relevant genotypes and demographic 

information. We show that circulating miRNAs are predictive for in vivo CYP2B6 activity.

Methods:

Measurement of CYP2B6 activity in healthy volunteers.

CYP2B6 enzyme activity was measured in 72 healthy volunteers, male (n=45) and female 

(n=27), ages 18–49, who were administered a single dose of the probe drug, efavirenz. The 

clinical trial was registered at ClinicalTrials.gov under identifier number NCT00668395. 

The study was approved by the Indiana University School of Medicine Institutional Review 

Board and the research was performed at Indiana University School of Medicine Clinical 

Research Center. Informed consent was obtained from the volunteers after which they 

underwent screening by review of medical history, physical examination, and laboratory 

tests such as electrocardiography, HIV test, urinalysis, and blood tests. Venous blood was 

collected for DNA isolation. Detailed inclusion/exclusion criteria and dietary restrictions 

have been previously reported(23, 24).

This study was open-label and designed to evaluate the pharmacokinetics, 

pharmacogenetics, and drug interactions after single and multiple doses of efavirenz. We 

used the data from the single dose arm of the study in which a 600 mg dose of efavirenz 

was administered orally. Plasma samples were taken at predose, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 

8, 10, 12, 16, 24, 48, 72 and 144h. Plasma concentrations of efavirenz and its metabolite 

8-hydroxy-efavirenz was measured using liquid chromatography/tandem mass spectrometry 

(LC-MS/MS) as described in our previous publication(22). Time taken to reach maximum 

concentration (Tmax) was of efavirenz and 8-OH-efavirenz was found to be ~3 hours. 

Pharmacokinetic parameters were estimated from plasma concentration-versus-time data by 

non-compartmental analysis, using Phoenix® WinNonlin® (version 7.0, Pharsight Corp., 

Cary, NC). Ratios of Cmax (maximal plasma concentration) and AUC0–48 (area under the 

plasma concentrations time curve from zero to 48h) of 8-hydroxyefavirenz to that of the 

parent drug served as markers of CYP2B6 activity.

Cmax and AUC ratios showed the similar distribution and were highly correlated 

(Supplementary Figure S1). Thus, we used the Cmax ratio as the primary phenotype of 

CYP2B6 activity in the context of modeling.

DNA genotyping

Genomic DNA extracted from pre-dose whole blood was used for genotyping. 

CYP2B6 genotyping was performed using TaqMan Genotyping Assays for CYP2B6*6 

[rs2279343, rs3745274] and CYP2B6*18 [rs28399499] (Life Technologies, Foster 
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City, CA) according to manufacturer’s protocol, as previously described(23). CYP2B6 
rs2279343 (785A>G, K262R) is in a region that is identical to CYP2B7, a 

pseudogene. Genotyping of rs2279343 was performed by amplifying exon 5 with 

primers specific for CYP2B6 5′-CTCTCTCCCTGTGACCTGCTA-3′ (forward) and 5′-
CTCCCTCTGTCTTTCATTCTGTC-3′ (reverse) (Integrated DNA Technologies, Coralville, 

IA) and using 1uL of the purified PCR amplification product as a template for a 

custom TaqMan Genotyping Assay, as previously described(23). Patient demographics 

and metabolizer status are listed in Supplementary Table S1. The observed minor allele 

frequencies were as expected. Metabolizer status based on genotype was determined as per 

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline(25).

De-heparinization of RNA and library preparation

Venous blood was collected in tubes with heparin as the anti-coagulant. Plasma from 

such blood was aliquoted and stored at −80 °C. An aliquot was de-heparinized to avoid 

heparin mediated inhibition of polymerases used in next generation sequencing workflow. 

The plasma samples were thawed at room temperature and RNA was isolated using the 

miRNeasy Serum/Plasma kit according to the manufacturer’s instructions. RNA (50 ng) was 

de-heparinized in a 20 μL reaction containing heparinase (6U), heparinase buffer, RNAse 

inhibitor (1 μL) [NEB, Ipswich, MA] and water. The reaction mixture was incubated at 30°C 

for 1 hour, followed by 99.9°C for 1 minute. The reaction was held at 4°C.

Sequencing library was prepared using QIAseq miRNA Library kit as per manufacturer’s 

instructions. Sequencing was performed on Illumina-HiSeq with a read depth of 20M reads 

per sample.

miRNA quantification

Sequencing files were analyzed at Qiagen service labs using the GeneGlobe Data Analysis 

workflow (Qiagen, Frederick, MD). 3’-adapters were trimmed using ‘cutadapt’(26) and 

reads with no adapter sequence are tallied. Following trimming, Unique Molecular 

Identifiers (UMIs) and insert sequences were identified. Reads with less than 16bp inserts 

and 10bp UMIs were discarded. To annotate the insert sequences, a unique sequence set 

was made for all readsets/samples in a submitted job. Following this, a sequential alignment 

strategy was followed to map to different databases (perfect match to miRBase mature, 

miRBase hairpin, noncoding RNA, mRNA and otherRNA, and ultimately a second mapping 

to miRBase mature, where up to two mismatches were tolerated) using ‘bowtie’(27). 

miRBase V21 was used for miRNA, and piRNABank was used for piRNA.

Data normalization

Unique molecular identifier (UMI) read counts were used to quantify the expression of 

circulating miRNAs. However, the UMI read counts, like raw read counts in RNA-seq, 

have experimental sample effects. Thus, the UMI read counts were normalized against the 

RNA-seq library sizes. The normalization was performed using the algorithm of Trimmed 

Mean of M values (TMM), which is part of the R package “EdgeR” (v3.20.0) (28). In 

addition, no missing values (N.A.) of UMI count were observed for the sequenced miRNAs.
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Linear regression model

We modeled the CYP2B6 activity by linear regression as the response to the expression of 

different miRNAs, clinically relevant genotypes (characterized as metabolizer status), and 

demographic information including age, sex and ethnicities. Each miRNA was regarded as 

an independent variable for CYP2B6 activity; other covariates, namely, metabolizer status, 

age, sex, and race were perceived as known (fixed) factors independent of the miRNAs. For 

example, if a set of miRNAs were associated with CYP2B6 activity (Cmax ratio) along with 

other covariates, the formula of model was (Eqn.1):

Cmax
8 − OH − EFV

EFV
= β0 + βg[genotype ] + βa[age ] + βs[sex ] + βr[race ] + ∑kβmiR

(k) ⋅ miR(k)
(Eqn. 1)

where all independent variables were present in the formula additively as linear terms. 

‘Cmax’ was the quantified CYP2B6 activity (response variable); ‘genotype’ was assigned the 

values of metabolizer status (poor, intermediate, and normal); each ‘miR(k)’ represented the 

(normalized) expression level of the kth miRNA; the other covariates were ‘age’, ‘sex’ and 

‘race’. Coefficients β0, βg, βa, βs βr, and βmiR quantified the correlation/association of each 

of the regression variables to the response variable.

On the other hand, if we assumed that CYP2B6 activity was solely determined by the 

genotype-defined metabolizer status or demographic covariates, it would result in several 

other models: namely, the metabolizer status-only model (Eqn. 2), demographics-only model 

(Eqn. 3), or the miRNA-free model (Eqn. 4: combined model of Eqn. 2 and 3).

Cmax
8 − OH − EFV

EFV = β0 + βg[genotype ] (Eqn. 2)

Cmax
8 − OH − EFV

EFV = β0 + βa[age] + βs[sex] + βr[race ] (Eqn. 3)

Cmax
8 − OH − EFV

EFV = β0 + βg[genotype ] + βa[age ] + βs[sex ] + βr[race
]

(Eqn. 4)

Linear regression modeling was implemented in R (v3.4.4). The same approach was used 

when models were developed using AUC ratios as a measure of CYP2B6 activity.

Modeling

The workflow of the modeling approach is graphically shown in Figure 1. To establish a 

model, we preallocated a training and testing datasets respectively, and then implemented a 

supervised-feature selection (detailed as below).

Dataset partition: To construct the training and testing datasets, we randomly distributed 

the samples into the two categories. Specifically, 2/3 of the samples (N1 = 48) were assigned 

Ipe et al. Page 5

Clin Pharmacol Ther. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the training set and the remaining 1/3 (N2 = 24) were used as the testing data. We 

assigned the samples based on uniform probability-distribution, thus every sample had 

equal possibility of being distributed to either of the two sets. When building the model, 

the training set should be used to learn which features (i.e. miRNAs) could best explain 

the dataset, and thus the selected features and their respective coefficients were used as 

the (learned) model. Thereafter, this model was applied on the testing set to validate its 

performance on the new data not involved in the model-building. Distributions of features, 

as well as the Cmax (and AUC) ratios across the training and testing datasets, were shown in 

Supplementary Figure S2.

To comprehensively test the model performance, we used the cross-validation method. 

In this respect, we resampled the training and testing datasets 200 times, i.e. randomly 

distributed a different 48-sample training set (Li) and a 24-sample testing set (Ti) each time 

(i), and see how the selected features represented Li and fitted Ti.

Supervision: In selecting features from the pool of a total of 2510 miRNAs, a supervision 

strategy was needed to shortlist the candidate features. This was to i) reduce the dimension 

of data input and thus alleviate the computing burden; and ii) enhance the algorithm 

convergence and thus accelerate the computation. Intuitively, we assumed that the top 

miRNAs that were individually explanatory to the enzyme activity were more informative 

as candidate features; and the number (N) of top miRNAs included was to be empirically 

determined in the supervision.

Using the training set (expression of 2510 miRNAs in 48 subjects), we first evaluated 

how each miRNA could explain the dataset, i.e. individually regressing miRNAk (k = 1 ~ 

2510) to Cmax ratios across the 48 subjects in the training set. Therefore, 2510 submodels 

and p-values were determined. Then the miRNAs were shortlisted with respect to two 

hyper-parameters, namely, the maximum number of features (i.e. N) and the cutoff for 

significance level of association (P) (29, 30). For example, if the actual number of significant 

miRNAs (individual p-value ≤ P) was n; if n ≤ N, we used the n miRNAs, and if n > N, we 

ranked these n miRNAs based on their degrees of associations (effect sizes), and the top N 
miRNAs were used for running the further feature selection (see below “Feature selection”). 

Empirically, we modulated P = e.g. 0.05, 0.01, 0.005, etc. and N = e.g. 10, 20, 30, etc. 

until the final resultant model achieved the highest stabilized performance on the training 

set (Figure 2A–2E, left panels). A stabilized performance implies that its level plateaus at a 

certain number of features. This criterion is required to rule out the possibility of overfitting, 

which implicates non-stable increase of model performance with respect to the number of 

features.

Models developed using the training dataset with different N and P values were then 

evaluated on the testing dataset (Figure 2A–2E, right panels). The other basal models with 

only the known features (e.g. metabolizer status, sex, age, or racial group) did not involve 

the supervision.

Feature selection: Training models were generated following feature selection from the 

pool of N candidate miRNAs shortlisted in the supervision step. We used Elastic Net (EN), 
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a regularized generalized linear regression algorithm, to select a subset of miRNAs that 

were non-redundant and continued to explain the training dataset optimally (31, 32). We 

utilized the R package CARET (Classification And REgression Training, version 6.0–79) 

to automate the process. CARET partitions the parameter space into a series of lattices and 

searches for the optimal regularization parameters according to changes of model fitness 

evaluated based upon a 3-fold cross validation implemented internally in the automatic 

process (33). Specifically, the optimal tuning parameters of EN here were α = 1 (model 

fitness control) and λ = 0.01023438 (model flexibility control).

Noteworthy, dataset partition, supervision, or feature selection was indifferent with respect 

to the phenotypic activity metrics (Cmax or AUC ratio) as the respective values were of 

the same numeric distribution. Based on all procedures above, we generated the optimally 

learned model that was comprised of the expression of 7 miRNAs, along with the known 

(non-miRNA) factors.

Model evaluation

Performance was scored as the Pearson’s Correlation Coefficient (PCC) between 

the predicted values (i.e. model response) and experimentally observed values (i.e. 

measurement). Because we used a linear model, PCC2 theoretically equals the percentage 

of model-explained variance in the total variance of real data. We applied the model on the 

training and testing sets independently to evaluate how well the model represented the data 

from which it was learned, as well as the performance on independent data. The PCCs from 

the training and testing sets were called the training and testing scores, respectively.

For the sake of generalizability, it is essential to evaluate the model robustness. A robust 

model is expected to have similar performance regardless of which parts of the sample set 

is used for training or testing; moreover, model coefficients calculated each time should be 

similar. Hence, we examined the respective performance levels (on each Ti, see the earlier 

“Dataset partition”), as well as the coefficient values calculated, based on each (different) 

Li to see if they were similar or deviated in large. In addition, a well-learned model should 

exhibit balanced performances on the training and testing sets. Large difference between 

the training and testing scores indicates possible overfitting. In summary, we evaluated the 

model by checking the following aspects:

a. performance of the randomly permuted cases was robust (i.e. falling in a specific 

range, which was quantified by standard deviation sd or standard error of mean 

sem).

b. trends between training and testing scores were balanced.

c. average levels of performance (on training and testing sets, respectively).

d. feature coefficients calculated in the randomly permuted cases were similar/

consistent (consistency quantified by standard deviation sd).

We applied this examination protocol to all the models in the study.
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Results:

miRNA sequencing

A total of 2510 unique miRNAs were detected in the 72 samples. All 2510 miRNAs were 

included in the analysis. No predetermined UMI cutoff was used since the downstream 

supervision criteria will eliminate miRNAs expressed in limited samples and those that have 

low expression.

Prediction model for the CYP2B6 activity.

We have developed a model to predict CYP2B6 enzyme activity consisting of the expression 

of 7 circulating miRNAs and other covariates. The model is mathematically represented 

below (Eqn. 5).

Cmax
8 − OH − EFV

EFV = β0 + βg[genotype ] + βa[age ] + βs[sex ] + βr[race ]
+ β1 miR204 − 5p + β2 miR212 − 3p + β3 miR3649 + β4 miR3941
+ β5 miR4254 + β6 miR4442 +
β7 miR6867 − 5p

(Eqn. 5)

Estimated values of the contributing coefficients β0 (unknown factors), βg (CYP2B6 

genotype-characterized metabolizer status), βa, s, r (age, sex and race), and β1 - β7 (each 

selected miRNA) are listed in Supplementary Table S2. The miRNA effect sizes are 

specifically shown in Figure 3 with their respective 95% confidence intervals.

Robustness of these selected features was tested by resampling the training and testing 

datasets 200 times and examining the model performance for each time. The 7 miRNAs 

along with the other covariates were found to be highly robust as demonstrated by 

their presence as well as similar coefficient values observed over 200 randomizations. 

See Table S2 for the summary data of the randomizations for each miRNA as well 

as the other covariates. More specifically, R2 (R-squared) values (for each instance) 

of the cross-validations were calculated and compared across the training and testing 

datasets (Supplementary Figure S3). Additionally, see Supplementary Table S3 for summary 

statistics of all the model features (as well as CYP2B6 activity) in the full dataset.

The training or testing score of the model is the Pearson’s correlation coefficient (R) 

between the model-predicted and experimentally determined CYP2B6 activity on the 

training or testing datasets, respectively (Figure 4). The average training score (in 200 

randomizations) was 0.7264 and the average testing score was 0.6702. Thus, the coefficient 

of determination for CYP2B6 activity by the model is 0.45 (R2). In other words, 45% of the 

variability in CYP2B6 activity in vivo can be explained by our model.

To be comprehensive, data of modeling using the other CYP2B6 activity metric (AUC ratio) 

are shown in Supplementary Table S4.
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Comparison of the full-feature model with alternative reduced models.

As a further means to prove the model validity and exclude the possibility of overfitting 

by excessive features, we computed the Akaike information criterion (AIC) values for all 

alternative models that are reduced by 1 feature, 2 features, etc. The values were shown 

in Supplementary Figure S4. Theoretically, AIC = 2k − 2L(θ), where k is the number 

of features and L is the value of maximum likelihood function for the fitted model θ). 

Generally, most alternative models of reduced features resulted in extra loss of information 

(i.e. elevated AIC).

Comparison of basal models with full-feature model.

The performance of our full-feature model was compared to the other models consisting 

of only the clinically genotypic CYP2B6 metabolizer status, demographic data (age, sex 

and ethnics) or both. Robustness of the metabolizer status-only and demographics-only 

models were also tested in 200 randomizations using the same protocol described above. 

Although, performance of the metabolizer status- and demographic-only models were found 

to be robust, the average training scores were only 0.2896 (metabolizer status-only), 0.2429 

(demographic-only) and 0.3589 (metabolizer status + demographic), respectively; and the 

average testing scores were 0.2433, 0.1409 and 0.2182 respectively (Figure 4). Thus, 

only 6% of the variability in CYP2B6 activity could be explained by the metabolizer 

status-only model; and 2% could be explained by solely the demographic information. These 

results demonstrate that the use of expression levels of 7 circulating miRNAs significantly 

increases the predictive (or explanatory) power of CYP2B6 activity, in vivo (45%). One 

(average-level) example for the model accuracy, i.e. correlation between the predicted and 

experimental values of CYP2B6 activity, of the miRNA-featured model and the other 

miRNA-free models respectively (as validated results on the testing dataset), are shown 

in Figure 5.

Discussion:

CYP2B6 activity shows large inter-individual variability. While some of this variability can 

be explained by the known variants in the CYP2B6 gene, a large proportion of variability 

remains unaccounted for. In this study, we investigated the role of miRNAs as biomarkers of 

CYP2B6 function. There is constant exchange of miRNAs between blood and the different 

organs that it perfuses. Therefore, it is plausible that the CYP2B6 expression in the liver 

may be regulated by miRNAs in circulation. It is also possible that the miRNAs secreted 

by the liver may be indicative of the level of CYP2B6 activity. We show that circulating 

miRNAs are associated with, and can be predictive of, in vivo CYP2B6 activity. Unlike 

a traditional approach aiming to identify associations between individual miRNAs and 

enzyme activity, our present study employed bioinformatic tools to build a ‘predictor model’ 

of CYP2B6 activity based on circulating miRNA levels. The model consists of a small 

subset of circulating miRNAs that robustly explained clinical CYP2B6 activity. Therefore, 

these miRNAs can be regarded as potential candidates for in vivo biomarkers.

In this study, the expression of 2510 miRNAs were quantified in 72 samples, out of which 7 

miRNAs were shortlisted as biomarkers of CYP2B6 activity. The critical aspect of working 
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with such large amounts of data to identify biomarkers is the data interpretation because 

hundreds or thousands of associations will be discovered so we must find ways to prioritize 

these associations. Our bioinformatic modeling demonstrates that selection of candidate 

biomarkers through supervised feature selection can serve to prioritize the information that 

explains the phenotype. This practice can also be used on RNA sequencing datasets.

The algorithm identified seven circulating miRNAs that can predict in vivo CYP2B6 

activity. The expression of each of these seven miRNAs is strongly correlated with CYP2B6 

activity. However, these miRNAs together along with the clinically relevant genotypes have 

a more significant and reproducible predictive power than any individual miRNA or the 

metabolizer statuses alone. High correlations with CYP2B6 activity were observed for some 

of the individual miRNAs; but these correlations were lower than the combination of the 7 

miRNAs and not as highly reproducible across randomization tests (Supplementary Figure 

S5). Therefore, the prediction model that includes the 7 miRNAs is not biased by any 

individual miRNA and the optimal prediction power is attained through the combination 

of the seven miRNAs. The seven miRNAs identified as predictors of CYP2B6 activity 

are miR-204–5p, miR-212–3p, miR-3649, miR-3941, miR-4254, miR-4442 and miR-6867–

5p. Their respective levels of impact on CYP2B6 activity are summarized in Figure 3. 

Two of the seven miRNAs, miR-4254 and miR-6867–5p that are shown exerting positive 

and negative impact on the enzyme activity, respectively, have predicted binding sites on 

the CYP2B6 mRNA using TargetScan(34) and could plausibly regulate CYP2B6 activity 

through direct interaction with the transcript. The miRNAs may also function through 

regulating upstream regulators of CYP2B6 such as GR, PXR, and CAR. Two other miRNAs 

miR-204–5p (largest negative correlation with CYP2B6 activity) and miR-3941 (positive 

correlation) are predicted to target GR; and miR-4254 (positive correlation) is predicted also 

to target both PXR and CAR.

Our bioinformatic modeling aims to identify combination of independent features that are 

most explanatory to the observed phenotype. While there may be synergistic effects exerted 

by groups (or clusters) of miRNAs, each individual one may not significantly associate 

with phenotype, but may show explanatory power when clustered as a co-expression set. 

However, here we do not attempt to reveal the synergistic effect because this cannot 

be achieved by a de novo regularized feature-selection approach because there are too 

many possible combinations of miRNA clusters. Models like these could include known 

synergistic miRNA clusters should they be identified in the future.

Since the hyper-parameters of supervised modeling were empirically estimated, we 

implemented multiple tests to rule out model overfitting. To this respect, we have conducted: 

i) exploratory data analyses, which are prior examinations for features and datasets to ensure 

no bias were in the modeling data, ii) cross-validations, which are posterior tests for the 

robustness of predictive ability as well as model framework (i.e. feature and coefficients), 

and iii) systematic tests of information loss, which computed the AIC of our model against 

all possible alternative (reduced) models. On the other hand, the established model was also 

compared with all miRNA-free models (i.e. not featured by miRNA) to demonstrate the 

biological relevance of the selected miRNA features.
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Nonetheless, one further issue is, although the model was validated based on the current 

sample set, the selected miRNAs need to be further investigated in functional experiments or 

at a larger population level for their validity as true clinically relevant biomarkers. Therefore, 

this present pilot research can serve as a foundation for future studies.

There is significant value in improved prediction of CYP2B6 activity in therapies 

using its substrates, such as efavirenz, which has shown to have adverse effects at 

high concentrations and treatment failure at too low concentrations. Although continued 

mechanistic investigation will be needed, we have demonstrated the value of circulating 

miRNAs as predictors of enzyme activity.A similar approach can be used for other CYP 

enzymes with unexplained variability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights:

What is the current knowledge on the topic?

CYP2B6 is a highly polymorphic enzyme that has a wide pharmacokinetic variability. 

However, all of this variability cannot be accounted for by demographic information 

and the known allelic variants CYP2B6*6 and CYP2B6*18. Circulating miRNAs are 

constantly exchanged between blood and different organs in the body including the liver.

What question did this study address?

We hypothesized that circulating miRNAs are associated with hepatic CYP2B6 activity. 

We measured baseline miRNA expression in plasma from 72 healthy volunteers whose 

CYP2B6 enzyme activity was measured using the probe drug efavirenz. We determined 

whether the expression of certain miRNAs was associated and predictive of CYP2B6 

activity in vivo.

What does this study add to our knowledge?

We developed a model consisting of seven miRNAs along with demographic information 

and the CYP2B6 metabolizer status that could predict CYP2B6 enzyme activity, in vivo. 

The model with seven miRNAs, demographics and metabolizer status was able to explain 

36% of the variability in CYP2B6 activity while models without miRNAs were able to 

explain only 6% or less.

How might this change clinical pharmacology or translational science?

The identification of seven miRNAs that are associated with CYP2B6 activity helps 

further explain the pharmacokinetic variability in CYP2B6 in addition to the known 

variant genotypes. Measuring the expression of these miRNAs along with the genotyping 

patients may help improve the prediction of CYP2B6 activity. This study also 

demonstrates a novel modelling approach to correlate miRNA expression to CYP2B6 

enzyme function. This approach can be used for other enzymes with unexplained 

pharmacokinetic variability.
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Figure 1. 
Workflow of modeling showing data partition, supervision and feature selection followed by 

model evaluation.
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Figure 2: Results of numerical experiments on supervision cutoffs
Values in the Y-axis are the performance scores (Pearson’s correlation) of the models. X- 

axis denotes the maximum number of features (N) included in the model. A- E denotes 

p-value cutoffs (P) of 0.05, 0.01, 0.005, 0.001, and 0.0005. The plots on the left show the 

performance of the training model, and the model evaluation on unused data is shown on the 

right.

The P of 0.005 and N of 30 resulted in a learning curve with the highest stable score on the 

training set; and showed optimal performance on the testing set.
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Figure 3. Forest plot of the selected miRNAs with effect sizes on CYP2B6 activity.
Effect sizes (estimated) of the 7 miRNAs included in the model are shown with 95% 

confidence intervals.
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Figure 4. Performance of prediction model.
Performance is scored as the Pearson’s correlation between predicted and observed values, 

the results of 200 randomized tests on the full feature model (7 miRNAs + metabolizer 

status + age + sex + race), metabolizer status-only, demographic only, and both metabolizer 

status and demographic are shown.

(A): Training score -performance of the full feature model and other models on the training 

set. Average level for full feature model = 0.73 (std. error of mean = 0.004), metabolizer 

status-only model = 0.29 (std. error of mean = 0.005), demographics only model = 0.24 (std. 

error of mean = 0.004), and the metabolizer status + demographics model = 0.36 (std. error 

of mean = 0.005).

(B): Testing score -performance of the full feature model and other models on the testing 

set. Average level for full feature model = 0.67 (std. error of mean = 0.009), metabolizer 

status-only model = 0.24 (std. error of mean = 0.011), demographics only model = 0.13 (std. 

error of mean = 0.009), and the metabolizer status + demographics model = 0.21 (std. error 

of mean = 0.01). Bold line indicates the median, the box spans the lower (1st) and upper 

(3rd) quartile, and the whisker bars extent to the minimum and maximum values. Data points 

marked by “+” extending beyond the whiskers were the outliers.

As shown, (average) training and testing scores are similar, indicating no or negligible 

overfitting. Additionally, most of the scores fall in the specific range marked by the boxplots, 

suggesting robust model performance. The small standard errors indicate accurate estimation 

of the means, i.e. most scores stably reside in a narrow range.
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Figure 5. Model performance showing correlation between predicted and experimental values.
One example (from 200 randomizations) of correlation between CYP2B6 activity predicted 

by the models and experimental values in the testing data, using an instance from the 200 

randomizations that was closest to the average performance. A) Full feature model, B) 

Metabolizer status only, C) Demographics only, and D) Metabolizer status + Demographics 

model. Dashed line is the line of identity and the solid black line is the regression line.
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