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Abstract

Transcriptomics has become an important tool for identification of biological pathways 

dysregulated in Alzheimer’s disease (AD). We performed a network-based gene expression 

analysis of blood-based microarray gene expression profiles using two independent cohorts, 

Alzheimer’s Disease Neuroimaging Initiative (ADNI; N=661) and AddNeuroMed (N=674). 

Weighted gene co-expression network analysis identified 17 modules from ADNI and 13 from 

AddNeuroMed. Four of the modules derived in ADNI were significantly related to AD; 5 modules 

in AddNeuroMed were significant. Gene-set enrichment analysis of the AD-related modules 

identified and replicated three biological pathways including the Fc gamma receptor-mediated 

phagocytosis pathway. Module-based association analysis showed the AD-related module, which 

has the three pathways, to be associated with cognitive function and neuroimaging biomarkers. 

Gene-based association analysis identified PRKCD in the Fc gamma receptor-mediated 

phagocytosis pathway as being significantly associated with cognitive function and CSF 

biomarkers. The identification of the Fc gamma receptor-mediated phagocytosis pathway 

implicates the peripheral innate immune system in the pathophysiology of AD. PRKCD is known 

to be related to neurodegeneration induced by amyloid-β.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia (undefined author, 2018). 

Although AD is classically viewed primarily as a neurodegenerative CNS disease, many 

systemic manifestations suggest that AD is a multifactorial disease that affects both brain 

and periphery (Morris et al., 2014). The systemic manifestations generally parallel the 

progressive functional decline associated with neurodegeneration (Morris et al., 2014). 

However, some systemic manifestations are also observable prior to the presence of clinical 

symptoms in AD (Vidoni et al., 2011).

Because blood interacts with every organ in the body, including the brain, blood-based 

profiles may provide an accessible and effective tool for assessing the complex interplay 

between the brain and the periphery in the pathogenesis of AD (Mohr and Liew, 2007). 

Among blood-based biomarkers, the transcriptome uniquely reflects both fixed genetic 

effects and dynamic environmental effects (Gladkevich et al., 2004; Tylee et al., 2013). 

There have been several studies investigating blood transcriptomic profiles in AD, which 

reported biological pathways including stress and immune responses (Bai et al., 2014; Booij 
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et al., 2011; Chen et al., 2011; Fehlbaum-Beurdeley et al., 2012; Han et al., 2013; Kálmán et 

al., 2005; Lunnon et al., 2012, 2013; Maes et al., 2007; Naughton et al., 2015; Roed et al., 

2013; Rye et al., 2011). However, many of the studies analyzed only a small number of 

samples and their findings were not replicated in independent cohorts. Furthermore, most of 

the aforementioned studies evaluated differential expressions only at the level of individual 

genes. Because genes with similar function tend to have correlated expression (Eisen et al., 

1998), network-based approaches can better elucidate the molecular mechanisms underlying 

complex brain disorders (Dragomir et al., 2018).

In this study, using two independent cohorts, we performed blood-based gene co-expression 

network analysis to identify AD-related modules. We then performed pathway-based 

enrichment analysis to determine biological functions characteristic of these AD-related 

modules and association analysis of the AD-related modules and genes belonging to the 

biological pathways with fluid and neuroimaging biomarkers for AD. For fluid biomarkers 

for AD, we used the concentration of amyloid-β42 (Aβ42), phosphorylated tau181p (p-tau) 

and total tau (t-tau) in cerebrospinal fluid (CSF) (Kang et al., 2015). For neuroimaging 

biomarkers for AD, we used a global cortical measure of amyloid burden measured from 

[18F] florbetapir PET scans (Ramanan et al., 2014) and hippocampal volume measured from 

MRI scans (Potkin et al., 2009). Genetic data were also used for gene-based association 

analysis and expression quantitative trait locus (eQTL) analysis (Rockman and Kruglyak, 

2006).

2. Material and methods

2.1 Participants

Data used in the study were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) and AddNeuroMed cohorts as discovery and replication samples, respectively. The 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, 

PET, other biological markers, and clinical and neuropsychological assessment can be 

combined to accurately capture the progression of mild cognitive impairment (MCI) and 

early AD. The AddNeuroMed is a cross European, public/private consortium developed for 

AD biomarker discovery (Lovestone et al., 2009). The diagnosis of AD was made clinically 

using NINCDS/ADRDA criteria for probable AD (McKhann et al., 1984). The diagnosis of 

MCI was made according to the presence of objective memory impairment but without 

meeting the criteria for dementia. Written informed consent was obtained at the time of 

enrollment and included permission for analysis and data sharing. The protocol and 

informed consent forms were approved by each participating sites’ Institutional Review 

Board.

2.2 Genotyping and imputation

Genotyping for ADNI and AddNeuroMed was performed using blood genomic DNA 

samples and Illumina GWAS array platforms (Illumina Human610-Quad BeadChip, 

Illumina HumanOmni Express BeadChip, and Illumina HumanOmni 2.5M BeadChip) 

(Furney et al., 2011; Saykin et al., 2015). APOE genotyping was separately conducted using 
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standard methods as described previously to yield the APOE ε4 allele defining single 

nucleotide polymorphisms (SNPs) (rs429358, rs7412) (Furney et al., 2011; Saykin et al., 

2015). Using PLINK 1.9 (www.cog-genomics.org/plink2/) (Purcell et al., 2007), we 

performed standard quality control (QC) procedures for samples and SNPs as described 

previously (Lee et al., 2018): (1) for SNP, SNP call rate < 95%, Hardy-Weinberg p-value < 

1×10−6, and minor allele frequency (MAF) < 1%; (2) for sample, sex inconsistencies, and 

sample call rate < 95%. Furthermore, in order to prevent spurious association due to 

population stratification, we selected only non-Hispanic participants of European ancestry 

that clustered with HapMap CEU (Utah residents with Northern and Western European 

ancestry from the CEPH collection) or TSI (Toscani in Italia) populations using 

multidimensional scaling analysis (Price et al., 2006; Thorisson et al., 2005). After QC 

procedures, as ADNI and AddNeuroMed used different genotyping platforms, we imputed 

ungenotyped SNPs separately in each platform using MaCH with the Haplotype Reference 

Consortium data as a reference panel (Li et al., 2010; McCarthy et al., 2016). After the 

imputation, we imposed an r2 value equal to 0.30 as the threshold to accept the imputed 

genotypes.

2.3 Imaging and cerebrospinal fluid biomarkers in ADNI

To measure hippocampal and intracranial volumes from T1-weighted brain MRI scans, we 

used FreeSurfer version 5.1 (surfer.nmr.mgh.harvard.edu) (Jack et al., 2010). For assessment 

of cortical amyloid accumulation, we used pre-processed (co-registered, averaged, 

standardized image and voxel size, uniform resolution) [18F] florbetapir PET scans (Jagust 

et al., 2015) and calculated mean standardized uptake values using a whole cerebellum 

reference region as previously described (Risacher et al., 2015). The concentration of CSF 

Aβ42, p-tau and t-tau were measured by the validated and highly automated Roche Elecsys 

electrochemiluminescence immunoassays (Roche Diagnostics, Mannheim, Germany) 

(Bittner et al., 2016).

2.4 Blood-based RNA expression microarray profiling

For the ADNI and AddNeuroMed samples, the PAXgene Blood RNA Kit (Qiagen Inc., 

Valencia, CA, USA) was used to purify total RNA from whole blood collected in a PAXgene 

Blood RNA Tube (Lunnon et al., 2012; Saykin et al., 2015). The Affymetrix Human 

Genome U219 Array (Affymetrix, Santa Clara, CA, USA) and the Illumina Human HT-12 

v3 Expression BeadChips (Illumina Inc., San Diego, CA, USA) were used for expression 

profiling in ADNI and AddNeuroMed, respectively (Lunnon et al., 2012; Saykin et al., 

2015). Raw expression values were pre-processed using the robust multi-chip average 

normalization method in ADNI (Choe et al., 2005) and the robust spline normalization 

method in AddNeuroMed (Du et al., 2008). We checked discrepancies between the reported 

sex and sex determined from sex-specific gene expression data including XIST and USP9Y. 

We also evaluated whether SNP genotypes were matched with genotypes predicted from 

gene expression data (Schadt et al., 2012). After QC, the RNA expression profiles contained 

21,150 and 5,141 probes, in ADNI and AddNeuroMed, respectively. The RNA expression 

profiles were pre-adjusted with RNA integrity number (RIN) values and batch effects using 

linear regression.
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2.5 Gene co-expression network analysis & identification of AD-related modules

We constructed clusters (modules) of highly co-expressed genes from RNA expression 

profiles of all participants (cognitively normal older adults (CN) and patients with MCI and 

AD) using the weighted correlation network analysis (WGCNA) software (Langfelder and 

Horvath, 2008), which calculates the network adjacency matrix based on co-expression 

similarity and identifies gene modules using unsupervised hierarchical clustering. Modules 

were represented by a weighted average expression profile, the module eigengene (ME), 

which is defined as the first principal component of the expression matrix in each module. 

We then performed a correlation analysis between ME and AD diagnosis (CN vs. AD) and 

presented this as a color-coded correlation map. We also performed a linear regression 

analysis with AD diagnosis, age and sex as independent variables and ME as an outcome to 

identify modules that were dysregulated in AD using R version 3.6.0 (www.R-project.org). 

Multiple testing correction was performed using the false discovery rate (FDR) with the 

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

2.6 Pathway-based enrichment analysis of AD-related modules

We performed enrichment analysis to identify the biological pathways of genes assigned to 

each of the AD-related modules. The DAVID bioinformatic resource was used to evaluate 

whether genes in a particular biological pathway were significantly more enriched in a given 

module than would be expected by random chance (FDR-corrected p-value < 0.05) (Huang 

et al., 2009). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were used as a 

reference for functional annotation (Kanehisa et al., 2016). We then checked whether the 

biological pathways identified in ADNI were replicated in AddNeuroMed. We defined 

pathways as replicated only when the ME of the corresponding module in AddNeuroMed 

showed also a significant diagnosis group difference in the same direction (positively or 

negatively) as the ME of the matching ADNI module.

2.7 Module-based association analysis of modules with replicated biological pathways 
with AD biomarkers

We performed a linear regression analysis to evaluate whether the ME of AD-related 

modules that had the replicated biological pathways were also associated with the following 

AD biomarkers in all participants (CN, MCI and AD) from the ADNI cohort (FDR-

corrected p-value < 0.05): composite scores for memory and executive function (Crane et al., 

2012; Gibbons et al., 2012), hippocampal volume on MRI, CSF Aβ42, CSF p-tau, CSF t-tau, 

CSF p-tau/Aβ42, CSF ttau/Aβ42 and averaged cortical uptake of [18F] florbetapir PET. 

Covariates included age and sex. Intracranial volume and MRI field strength were also used 

as covariates for hippocampal volume.

2.8 Gene-based association analysis of target genes in replicated biological pathways

We selected common genes that belonged to each replicated biological pathway in both 

ADNI and AddNeuroMed. For each pathway, we identified genes that showed differential 

expression between AD and CN in ADNI and examined whether the findings were 

replicated in AddNeuroMed (FDR-corrected p-value < 0.05). For those differentially 

expressed genes, gene-based association analysis with AD biomarkers was performed using 
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a set-based test in PLINK 1.9. SNPs in the coding region, 5’ untranslated region, 3’ 

untranslated region, regulatory region and intronic region (±20 kb of upstream and 

downstream regions) with MAF greater than 0.05 were used for analysis. The same AD 

biomarkers in the module-based association analysis were used for this analysis as well. An 

empirical p-value (20,000 permutation) was calculated for each gene.

2.9 eQTL analysis of differentially expressed genes

We performed eQTL analysis on differentially expressed genes in each replicated biological 

pathway using PLINK 1.9 (FDR-corrected p-value < 0.05) (Rockman and Kruglyak, 2006). 

The GWAS and RNA expression data from all participants (CN, MCI and AD) with the 

same set of SNPs for each gene in the gene-based association analysis were used for eQTL 

analysis. We then checked whether the significantly associated SNPs were replicated in 

AddNeuroMed. In addition, we performed a meta-analysis using METAL (Willer et al., 

2010), which weighted the effect size estimates by their estimated standard errors. Results of 

the eQTL analysis were plotted using LocusZoom (Pruim et al., 2010).

2.10 Hub genes in AD-related modules with the replicated biological pathways

We identified hub genes (top 10% of genes with the highest intramodular connectivity) and 

the overlapping hub genes for the AD-related modules with replicated biological pathways 

in ADNI and AddNeuroMed using WGCNA.

3. Results

A total of 661 participants from ADNI and 674 participants from AddNeuroMed were 

included in the present study (Table 1). Gene co-expression network analysis using WGCNA 

yielded 17 and 13 modules of highly co-expressed genes in ADNI and AddNeuroMed, 

respectively (Figure 1). Following a linear regression analysis, 4 modules (lightgreen, red, 

brown and darkturquoise) in ADNI and 5 modules (turquoise, yellow, black, tan and green) 

in AddNeuroMed were significantly dysregulated in AD compared to control samples 

(FDR-corrected p-value < 0.05) (Table A.1).

Pathway-based enrichment analysis of the four AD-related modules in ADNI identified a 

total of 10 enriched biological pathways (Table 2). Among them, 3 pathways linked to the 

brown module (containing 1580 genes) in ADNI were replicated in the yellow module 

(containing 466 genes) of AddNeuroMed (FDR-corrected p-value < 0.05): Fc gamma 

receptor (FcγR)-mediated phagocytosis, osteoclast differentiation, and tuberculosis. The 

ribosome pathway was also enriched in both the red module of ADNI and the turquoise 

module of AddNeuroMed. However, it was not considered to be replicated because the 

direction of the relationship between the ME and AD diagnosis was opposite in ADNI and 

AddNeuroMed. Therefore, only the brown module in ADNI and the yellow module in 

AddNeuroMed had the replicated biological pathways in the enrichment analysis. Module-

based association analysis revealed that the brown module in ADNI was positively 

associated with mean cortical amyloid-β (Aβ) accumulation measured using [18F] 

florbetapir PET scans, and negatively associated with composite scores for memory and 

executive function as well as hippocampal volume (Table 3 and Figure 2).

Park et al. Page 6

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the FcγR-mediated phagocytosis pathway, we identified 11 genes (ASAP1, GAB2, LYN, 
MAPK1, MAPK3, MARCKS, PAK1, PLCG2, PRKCD, SYK, and VASP) that were 

common in both the brown module of ADNI and the yellow module of AddNeuroMed. In 

ADNI, ASAP1, PRKCD and VASP were significantly overexpressed in AD compared to 

CN. Among the 3 genes, ASAP1 and PRKCD were replicated in AddNeuroMed. Gene-

based association analysis of SNPs within ASAP1 and PRKCD with AD biomarkers 

identified PRKCD as being significantly associated with cognitive functions and CSF p-tau/

Aβ42 (Table 4). eQTL analysis identified several SNPs in ASAP1 as being associated with 

expression levels of ASAP1, which were replicated in AddNeuroMed. rs11774659 had the 

lowest p-value of 4.81×10−9 in the meta-analysis. We plot each SNP in the region on the 

chromosome and indicate their association with ASAP1 expression levels (Figure 3). No 

SNPs were identified and replicated in PRKCD.

In the osteoclast differentiation pathway, we identified 15 genes (GAB2, GRB2, IFNAR1, 
LILRA2, LILRB2, LILRB3, MAPK1, MAPK3, OSCAR, PLCG2, SIRPA, SPI1, SYK, 
TNFRSF1A, and TYROBP) that were common in both the brown module of ADNI and the 

yellow module of AddNeuroMed. In ADNI, LILRA2, LILRB3, SPI1, and TYROBP were 

significantly overexpressed in AD compared to CN. Among them, 3 genes (LILRA2, 
LILRB3, and TYROBP) were replicated in AddNeuroMed. Gene-based association analysis 

of SNPs with AD biomarkers identified only LILRB3 as being significantly associated with 

cognitive functions and CSF p-tau/Aβ42 (Table 4). eQTL analysis identified SNPs in 

LILRA2 as significantly associated with expression levels of LILRA2, which was replicated 

in AddNeuroMed. rs28516458 had the smallest p-value of 5.42×10−18 in the meta-analysis 

(Figure 3). No SNPs were identified and replicated in LILRB3 and TYROBP.

In the tuberculosis pathway, we identified 14 common genes (APAF1, ATP6V0B, 
ATP6V0D1, CAMK2G, CREBBP, CTSD, FADD, LSP1, MAPK1, MAPK3, RAB5C, 
RAB7A, SYK, and TNFRSF1A) in both the brown module of ADNI and the yellow module 

of AddNeuroMed. APAF1 were significantly overexpressed in AD compared to CN in 

ADNI, which was replicated in AddNeuroMed. Gene-based association analysis of SNPs 

within APAF1 did not identify any associations between SNPs and AD biomarkers. No 

SNPs in APAF1 were identified and replicated in eQTL analysis.

In the intramodular connectivity analysis, we identified 160 and 58 hub genes from the 

brown module of ADNI and the yellow module of AddNeuroMed, respectively. A total of 30 

genes, including PRKCD and LILRB3, overlapped between the two modules (Table A.2).

4. Discussion

In this study, we constructed modules from gene co-expression network analysis in 

peripheral blood and determined that 3 biological pathways (FcγR-mediated phagocytosis, 

osteoclast differentiation, and tuberculosis) were dysregulated in AD patients. The brown 

module in ADNI in which these three pathways were found, was associated with AD 

biomarkers including cognitive functions, hippocampal volume, and cortical amyloid-β 
accumulation. This is the first blood-based transcriptomic study in AD that used two 

independent cohorts (discovery and replication samples) to demonstrate consistent findings.
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FcγRs, which are cellular receptors for IgG, play an important role in various types of 

immune responses. One function is to couple the specificity of the antibody response to 

innate effector pathways, such as phagocytosis, antibody-dependent cellular cytotoxicity, 

and the recruitment and activation of inflammatory cells (Nimmerjahn and Ravetch, 2006). 

It is known that FcγRs are necessary for the intracerebral immune complex to induce 

inflammation in the brain (Teeling et al., 2012). The increased expression of FcRs on 

microglia has been observed in both animal models and patients with AD (Fuller et al., 

2014). Indeed, it is through this mechanism that antibodies against Aβ peptide may trigger 

microglia to clear Aβ plaques and thus cause the serious side effects called ARIA (amyloid-

related imaging abnormalities) when using such immunotherapy strategies (Gu et al., 2016; 

Lai et al., 2017; Le Page et al., 2018). It is possible to prevent these outcomes by 

neutralizing the Fc arm of the antibody without loss of efficacy as Aβ plaques can be 

neutralized by Aβ antibodies without the action of Fc receptors (Das et al., 2003; Golde et 

al., 2009).

Interestingly, in-vitro phagocytic activity by peripheral blood monocytes was significantly 

increased in participants with amyloid-positive PET scans compared to participants with 

amyloid-negative PET scans (Gu et al., 2016). Peripheral inflammatory markers were found 

to be elevated in patients with AD as well (Lai et al., 2017). Inflammation initiated in the 

brain may lead to the release of soluble inflammatory mediators that migrate to the 

periphery and activate peripheral immune cells (Le Page et al., 2018). On the other hand, 

these peripheral immune cells may also migrate to the brain and perpetuate brain 

inflammation through the disrupted blood-brain barrier in AD, sustaining a vicious cycle 

between the brain and periphery (Le Page et al., 2018; Sweeney et al., 2018).

We also found that ASAP1 and PRKCD were significantly overexpressed in AD patients 

compared to CN among genes in the FcγR-mediated phagocytosis pathway. In linkage 

analysis of autopsy-confirmed familial AD, it was reported that some SNPs near ASAP1 
were associated with AD (Sillén et al., 2011). In addition, PRKCD encodes protein kinase 

C-δ which is activated by Aβ and phosphorylates myristoylated alanine-rich C kinase 

substrate (MARCKS) (Nakai et al., 2001). The phosphorylation of MARCKS is known to 

induce neurite degeneration via instability of the actin network in human and mouse brains 

(Fujita et al., 2016).

Osteoclasts are bone-resorbing cells that regulate bone turnover (Cappariello et al., 2014). It 

was known that low bone mineral density was associated with the risk of AD (Tan et al., 

2005). Previously the association between AD and osteoporosis was thought to be related to 

reduced daily activities, low Vitamin D or low estrogen exposure (Ensrud and Crandall, 

2017; Mokry et al., 2016; Tan et al., 2005). However, it was also reported that differentiation 

of osteoclasts is increased in an AD mouse model, which favors loss of bone mineral (Cui et 

al., 2011). Furthermore, Aβ peptides were elevated in human osteoporotic bone tissues and 

enhanced osteoclast function (Li et al., 2014). The altered osteoclast differentiation pathway 

that we identified in peripheral blood of AD patients might be associated with increased risk 

of osteoporosis in AD patients.
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Differentially expressed genes between AD and CN in the osteoclast differentiation pathway 

were related to the pathogenesis of AD patients. TYRO protein tyrosine kinase-binding 

protein, encoded by TYROBP, is a signaling adaptor protein that plays important roles in 

signal transduction in microglia, osteoclasts, macrophages and dendritic cells, and enhances 

phagocytic activity of microglia (Ma et al., 2015). It was reported that TYROBP acted as a 

key regulator in an immune- and microglia-specific module that was constructed from the 

brain transcriptomic network of AD patients (Zhang et al., 2013). Leukocyte Ig-like 

receptors are expressed on innate and adaptive immune cells and maintain immune 

homeostasis (Takeda and Nakamura, 2017). LILRA2 was known to act as one of the hub 

genes in the Fc receptor system in the brain transcriptomic network of AD patients (Zhang et 

al., 2013).

The tuberculosis pathway was also identified in the enrichment analysis. Some of the sub-

pathways of the tuberculosis pathway, such as the toll-like receptor signaling pathway and 

the mitogen-activated protein kinase signaling pathway, are known to be associated with the 

pathogenesis of AD and may be of some influence (Huang et al., 2017; Kim and Choi, 

2010).

For the past few decades, the amyloid cascade hypothesis has been accepted as the main 

pathophysiological mechanism of AD (Selkoe and Hardy, 2016). It states that the deposition 

of Aβ protein is the causative agent of Alzheimer’s pathology and that the neurofibrillary 

tangles, cell loss, and cognitive decline follow as a direct result of this deposition (Hardy and 

Higgins, 1992). However, clinical trials that reduce brain amyloid in AD patients have 

repeatedly failed, suggesting that another key mechanism, in addition to the Aβ deposition, 

is necessary to explain the occurrence and progression of AD (Mullane and Williams, 2018). 

Previously, neuroinflammation was considered to be merely a late stage phenomenon in AD 

(Wyss-Coray, 2006); however, preclinical, genetic, and bioinformatic studies have shown 

that it actively contributes to AD pathogenesis and is now recognized as a core feature of 

AD (Heppner et al., 2015). Brain transcriptomic studies as well as several small blood 

transcriptomic studies have implicated the innate immune pathway in the pathogenesis of 

AD (International Genomics of Alzheimer’s Disease Consortium, 2015; Zhang et al., 2013), 

which is summarized in a review article (Song et al., 2016).

This present study has some limitations. First, the regression coefficients observed in blood 

are relatively small in magnitude, compared to what is typically observed in post-mortem 

brain studies. However, our findings were replicated in two independent data sets. 

Furthermore, while access to brain tissue from living patients is extremely limited, blood is 

easily accessible, non-invasive, inexpensive, and can be obtained longitudinally, providing a 

useful potential biomarker for AD. Second, blood-based transcriptomic profiles could be 

influenced by confounding factors such as medication and blood collection, processing and 

storage procedures (Hampel et al., 2018; Mohr and Liew, 2007). However, we checked RNA 

quality using RIN values and also filtered out genes with low expression values. Importantly, 

we replicated our results using an independent dataset. Third, transcriptome profiling was 

performed on different microarray platforms in ADNI and AddNeuroMed. Therefore, in this 

study, we did not perform a mega-analysis but constructed network-based modules in ADNI 

and AddNeuroMed separately. Although the present replicated results are robust, we may 
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have not detected other potentially important peripheral transcriptomic changes due to 

methodological differences between cohorts. Fourth, we employed expression profile 

technology. Newer RNA-sequencing methods in the future may better quantitate expression 

and clarify the role of other factors such as alternative splicing sites. Finally, we analyzed 

cross-sectionally collected gene expression data. Thus, our findings represent association not 

causality. Longitudinal studies are needed to understand the role of altered pathways in the 

onset of AD as well as cause and effect relationships.

In summary, network-based blood gene expression analysis showed that dysregulated 

pathways, including FcγR-mediated phagocytosis, were observed in patients with AD. 

Transcriptomics can provide a comprehensive understanding of biological processes and 

hold great promise for personalized and precision medicine (Li et al., 2016). With more 

sophisticated blood transcriptome profiling methods and integrative analysis approaches 

with validation using other multi-omics data, blood-based transcriptomics profiles may 

become suitable for use in clinical practice for predicting, diagnosing, and personalizing 

treatment for AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative 
(National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number 
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical 
Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s 
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers 
Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; 
EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; 
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 
Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, 
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal 
Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health 
Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by 
the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern 
California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic 
Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for 
Neuro Imaging at the University of Southern California. The collection and analysis of AddNeuroMed samples was 
supported by InnoMed (Innovative Medicines in Europe) an Integrated Project funded by the European Union of 
the Sixth Framework program priority FP6-2004-LIFESCIHEALTH-5, the Alzheimer’s Research Trust, the John 
and Lucille van Geest Foundation and the NIHR Biomedical Research Centre for Mental Health at the South 
London and Maudsley NHS Foundation Trust and [Institute of Psychiatry] Kings College London.

Additional support for data analysis was provided by NLM R01 LM012535, NIA R03 AG054936, NIA R01 
AG19771, NIA P30 AG10133, NLM R01 LM011360, DOD W81XWH-14-2-0151, NIGMS P50GM115318, 
NCATS UL1 TR001108, NIA K01 AG049050, the Alzheimer’s Association, the Indiana Clinical and Translational 
Science Institute, and the IU Health-IU School of Medicine Strategic Neuroscience Research Initiative.

Reference

Bai Z, Stamova B, Xu H, Ander BP, Wang J, Jickling GC, Zhan X, Liu D, Han G, Jin LW, Decarli C, 
Lei H, Sharp FR, 2014 Distinctive RNA expression profiles in blood associated with Alzheimer 
disease after accounting for white matter hyperintensities. Alzheimer Dis Assoc Disord 28, 226–
233. [PubMed: 24731980] 

Park et al. Page 10

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fnih.org


Benjamini Y, Hochberg Y, 1995 Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. J R Statist Soc 57, 289–300.

Bittner T, Zetterberg H, Teunissen CE, Ostlund RE, Militello M, Andreasson U, Hubeek I, Gibson D, 
Chu DC, Eichenlaub U, Heiss P, Kobold U, Leinenbach A, Madin K, Manuilova E, Rabe C, 
Blennow K, 2016 Technical performance of a novel, fully automated electrochemiluminescence 
immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid. Alzheimers 
Dement 12, 517–526. [PubMed: 26555316] 

Booij BB, Lindahl T, Wetterberg P, Skaane NV, Sæbø S, Feten G, Rye PD, Kristiansen LI, Hagen N, 
Jensen M, Bårdsen K, Winblad B, Sharma P, Lönneborg A, 2011 A gene expression pattern in blood 
for the early detection of Alzheimer’s disease. J Alzheimers Dis 23, 109–119. [PubMed: 20930264] 

Cappariello A, Maurizi A, Veeriah V, Teti A, 2014 The Great Beauty of the osteoclast. Arch Biochem 
Biophys 558, 70–78. [PubMed: 24976175] 

Chen KD, Chang PT, Ping YH, Lee HC, Yeh CW, Wang PN, 2011 Gene expression profiling of 
peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer’s 
disease. Neurobiol Dis 43, 698–705. [PubMed: 21669286] 

Crane PK, Carle A, Gibbons LE, Insel P, Mackin RS, Gross A, Jones RN, Mukherjee S, Curtis SM, 
Harvey D, Weiner M, Mungas D, Alzheimer’s Disease Neuroimaging Initiative, 2012 Development 
and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI). Brain Imaging Behav 6, 502–516. [PubMed: 22782295] 

Cui S, Xiong F, Hong Y, Jung JU, Li XS, Liu JZ, Yan R, Mei L, Feng X, Xiong WC, 2011 APPswe/Aβ 
regulation of osteoclast activation and RAGE expression in an age-dependent manner. J Bone Miner 
Res 26, 1084–1098. [PubMed: 21542009] 

Das P, Howard V, Loosbrock N, Dickson D, Murphy MP, Golde TE, 2003 Amyloid-beta immunization 
effectively reduces amyloid deposition in FcR gamma(−/−) knock-out mice. J Neurosci 23, 8532–
8538. [PubMed: 13679422] 

Dragomir A, Vrahatis A, Bezerianos A, 2019 A Network-Based Perspective in Alzheimer’s Disease: 
Current State and an Integrative Framework. IEEE J Biomed Health Inform 13, 14–25.

Eisen MB, Spellman PT, Brown PO, Botstein D, 1998 Cluster analysis and display of genome-wide 
expression patterns. Proc Natl Acad Sci U S A 95, 14863–14868. [PubMed: 9843981] 

Ensrud KE, Crandall CJ, 2017 Osteoporosis. Ann. Intern. Med 167, ITC17–ITC32. [PubMed: 
28761958] 

Fehlbaum-Beurdeley P, Sol O, Désiré L, Touchon J, Dantoine T, Vercelletto M, Gabelle A, Jarrige AC, 
Haddad R, Lemarié JC, Zhou W, Hampel H, Einstein R, Vellas B, EHTAD/002 study group, 2012 
Validation of AclarusDx™, a blood-based transcriptomic signature for the diagnosis of 
Alzheimer’s disease. J Alzheimers Dis 32, 169–181. [PubMed: 22785402] 

Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, Homma H, Tamura T, Watanabe H, 
Katsuno M, Matsumi C, Kajikawa M, Saito T, Saido T, Sobue G, Miyawaki A, Okazawa H, 2016 
HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a 
potential therapeutic target for Alzheimer’s disease. Sci Rep 6, 31895. [PubMed: 27557632] 

Fuller JP, Stavenhagen JB, Teeling JL, 2014 New roles for Fc receptors in neurodegeneration-the 
impact on Immunotherapy for Alzheimer’s Disease. Front Neurosci 8, 235. [PubMed: 25191216] 

Furney SJ, Simmons A, Breen G, Pedroso I, Lunnon K, Proitsi P, Hodges A, Powell J, Wahlund LO, 
Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Spenger C, Lathrop M, Shen L, Kim 
S, Saykin AJ, Weiner MW, Lovestone S, 2011 Genome-wide association with MRI atrophy 
measures as a quantitative trait locus for Alzheimer’s disease. Mol Psychiatry 16, 1130–1138. 
[PubMed: 21116278] 

Gibbons LE, Carle AC, Mackin RS, Harvey D, Mukherjee S, Insel P, Curtis SM, Mungas D, Crane PK, 
Alzheimer’s Disease Neuroimaging Initiative, 2012 A composite score for executive functioning, 
validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild 
cognitive impairment. Brain Imaging Behav 6, 517–527. [PubMed: 22644789] 

Gladkevich A, Kauffman HF, Korf J, 2004 Lymphocytes as a neural probe: potential for studying 
psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 28, 559–576. [PubMed: 
15093964] 

Park et al. Page 11

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Golde TE, Das P, Levites Y, 2009 Quantitative and mechanistic studies of Abeta immunotherapy. CNS 
Neurol Disord Drug Targets 8, 31–49. [PubMed: 19275635] 

Gu BJ, Huang X, Ou A, Rembach A, Fowler C, Avula PK, Horton A, Doecke JD, Villemagne VL, 
Macaulay SL, Maruff P, Fletcher EL, Guymer R, Wiley JS, Masters CL, 2016 Innate phagocytosis 
by peripheral blood monocytes is altered in Alzheimer’s disease. Acta Neuropathol 132, 377–389. 
[PubMed: 27411339] 

Hampel H, O’Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, 
Blennow K, 2018 Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. 
Nat Rev Neurol 14, 639–652. [PubMed: 30297701] 

Han G, Wang J, Zeng F, Feng X, Yu J, Cao HY, Yi X, Zhou H, Jin LW, Duan Y, Wang YJ, Lei H, 2013 
Characteristic transformation of blood transcriptome in Alzheimer’s disease. J Alzheimers Dis 35, 
373–386. doi:10.3233/JAD-121963 [PubMed: 23411692] 

Hardy JA, Higgins GA, 1992 Alzheimers disease: the amyloid cascade hypothesis. Science 256, 184–
185. [PubMed: 1566067] 

Heppner FL, Ransohoff RM, Becher B, 2015 Immune attack: the role of inflammation in Alzheimer 
disease. Nat Rev Neurosci 16, 358–372. [PubMed: 25991443] 

Huang DW, Sherman BT, Lempicki RA, 2009 Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources. Nat Protoc 4, 44–57. [PubMed: 19131956] 

Huang NQ, Jin H, Zhou SY, Shi JS, Jin F, 2017 TLR4 is a link between diabetes and Alzheimer’s 
disease. Behav Brain Res 316, 234–244. [PubMed: 27591966] 

International Genomics of Alzheimer’s Disease Consortium, 2015 Convergent genetic and expression 
data implicate immunity in Alzheimer’s disease. Alzheimers Dement 11, 658–671. [PubMed: 
25533204] 

Jack CR, Bernstein MA, Borowski BJ, Gunter JL, Fox NC, Thompson PM, Schuff N, Krueger G, 
Killiany RJ, DeCarli CS, Dale AM, Carmichael OW, Tosun D, Weiner MW, Alzheimer’s Disease 
Neuroimaging Initiative, 2010 Update on the magnetic resonance imaging core of the Alzheimer’s 
disease neuroimaging initiative. Alzheimers Dement 6, 212–220. [PubMed: 20451869] 

Jagust WJ, Landau SM, Koeppe RA, Reiman EM, Chen K, Mathis CA, Price JC, Foster NL, Wang AY, 
2015 The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015. Alzheimers Dement 
11, 757–771. [PubMed: 26194311] 

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M, 2016 KEGG as a reference resource for 
gene and protein annotation. Nucleic Acids Res. 44, D457–D462. [PubMed: 26476454] 

Kálmán J, Kitajka K, Pákáski M, Zvara A, Juhász A, Vincze G, Janka Z, Puskás LG, 2005 Gene 
expression profile analysis of lymphocytes from Alzheimer’s patients. Psychiatr Genet 15, 1–6. 
[PubMed: 15722950] 

Kang JH, Korecka M, Figurski MJ, Toledo JB, Blennow K, Zetterberg H, Waligorska T, Brylska M, 
Fields L, Shah N, Soares H, Dean RA, Vanderstichele H, Petersen RC, Aisen PS, Saykin AJ, 
Weiner MW, Trojanowski JQ, Shaw LM, 2015 The Alzheimer’s Disease Neuroimaging Initiative 2 
Biomarker Core: A review of progress and plans. Alzheimers Dement 11, 772–791. [PubMed: 
26194312] 

Kim EK, Choi EJ, 2010 Pathological roles of MAPK signaling pathways in human diseases. Biochim 
Biophys Acta 1802, 396–405. [PubMed: 20079433] 

Lai KSP, Liu CS, Rau A, Lanctôt KL, Köhler CA, Pakosh M, Carvalho AF, Herrmann N, 2017 
Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 
175 studies. J Neurol Neurosurg Psychiatry 88, 876–882. [PubMed: 28794151] 

Langfelder P, Horvath S, 2008 WGCNA: an R package for weighted correlation network analysis. 
BMC Bioinformatics 9, 559. [PubMed: 19114008] 

Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM, Fulop T, 2018 Role of the 
peripheral innate immune system in the development of Alzheimer’s disease. Exp Gerontol 107, 
59–66. [PubMed: 29275160] 

Lee Y, Han S, Kim D, Kim D, Horgousluoglu E, Risacher SL, Saykin AJ, Nho K, 2018 Genetic 
variation affecting exon skipping contributes to brain structural atrophy in Alzheimer’s disease. 
AMIA Jt Summits Transl Sci Proc 2017, 124–131. [PubMed: 29888056] 

Park et al. Page 12

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Li S, Liu B, Zhang L, Rong L, 2014 Amyloid beta peptide is elevated in osteoporotic bone tissues and 
enhances osteoclast function. Bone 61, 164–175. [PubMed: 24473375] 

Li S, Todor A, Luo R, 2016 Blood transcriptomics and metabolomics for personalized medicine. 
Comput Struct Biotechnol J 14, 1–7. [PubMed: 26702339] 

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR, 2010 MaCH: using sequence and genotype data to 
estimate haplotypes and unobserved genotypes. Genet Epidemiol 34, 816–834. [PubMed: 
21058334] 

Lovestone S, Francis P, Kloszewska I, Mecocci P, Simmons A, Soininen H, Spenger C, Tsolaki M, 
Vellas B, Wahlund LO, Ward M, 2009 AddNeuroMed--the European collaboration for the 
discovery of novel biomarkers for Alzheimer’s disease. Ann N Y Acad Sci 1180, 36–46. 
[PubMed: 19906259] 

Lunnon K, Ibrahim Z, Proitsi P, Lourdusamy A, Newhouse S, Sattlecker M, Furney S, Saleem M, 
Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Coppola G, Geschwind D, Simmons 
A, Lovestone S, Dobson R, Hodges A, 2012 Mitochondrial dysfunction and immune activation are 
detectable in early Alzheimer’s disease blood. J Alzheimers Dis 30, 685–710. [PubMed: 
22466004] 

Lunnon K, Sattlecker M, Furney SJ, Coppola G, Simmons A, Proitsi P, Lupton MK, Lourdusamy A, 
Johnston C, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Geschwind D, Lovestone 
S, Dobson R, Hodges A, 2013 A blood gene expression marker of early Alzheimer’s disease. J 
Alzheimers Dis 33, 737–753. [PubMed: 23042217] 

Ma J, Jiang T, Tan L, Yu JT, 2015 TYROBP in Alzheimer’s disease. Mol Neurobiol 51, 820–826. 
[PubMed: 25052481] 

Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM, 2007 Transcriptional profiling of 
Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28, 1795–1809. [PubMed: 
16979800] 

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, 
Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N, Koskinen S, Vrieze S, Scott LJ, 
Zhang H, Mahajan A, Veldink J, Peters U, Pato C, van Duijn CM, Gillies CE, Gandin I, 
Mezzavilla M, Gilly A, Cocca M, Traglia M, Angius A, Barrett JC, Boomsma D, Branham K, 
Breen G, Brummett CM, Busonero F, Campbell H, Chan A, Chen S, Chew E, Collins FS, Corbin 
LJ, Smith GD, Dedoussis G, Dorr M, Farmaki A-E, Ferrucci L, Forer L, Fraser RM, Gabriel S, 
Levy S, Groop L, Harrison T, Hattersley A, Holmen OL, Hveem K, Kretzler M, Lee JC, McGue 
M, Meitinger T, Melzer D, Min JL, Mohlke KL, Vincent JB, Nauck M, Nickerson D, Palotie A, 
Pato M, Pirastu N, McInnis M, Richards JB, Sala C, Salomaa V, Schlessinger D, Schoenherr S, 
Slagboom PE, Small K, Spector T, Stambolian D, Tuke M, Tuomilehto J, van den Berg LH, Van 
Rheenen W, Volker U, Wijmenga C, Toniolo D, Zeggini E, Gasparini P, Sampson MG, Wilson JF, 
Frayling T, de Bakker PIW, Swertz MA, McCarroll S, Kooperberg C, Dekker A, Altshuler D, 
Willer C, Iacono W, Ripatti S, Soranzo N, Walter K, Swaroop A, Cucca F, Anderson CA, Myers 
RM, Boehnke M, McCarthy MI, Durbin R, Haplotype Reference Consortium, 2016 A reference 
panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 1279–1283. [PubMed: 
27548312] 

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM, 1984 Clinical diagnosis of 
Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of 
Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 
939–944. [PubMed: 6610841] 

Mohr S, Liew CC, 2007 The peripheral-blood transcriptome: new insights into disease and risk 
assessment. Trends Mol Med 13, 422–432. [PubMed: 17919976] 

Mokry LE, Ross S, Morris JA, Manousaki D, Forgetta V, Richards JB, 2016 Genetically decreased 
vitamin D and risk of Alzheimer disease. Neurology 87, 2567–2574. [PubMed: 27856775] 

Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM, 2014 Is Alzheimer’s disease a systemic 
disease? Biochim Biophys Acta 1842, 1340–1349. [PubMed: 24747741] 

Mullane K, Williams M, 2018 Alzheimer’s disease (AD) therapeutics - 1: Repeated clinical failures 
continue to question the amyloid hypothesis of AD and the current understanding of AD causality. 
Biochem Pharmacol 158, 359–375. [PubMed: 30273553] 

Park et al. Page 13

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nakai M, Tanimukai S, Yagi K, Saito N, Taniguchi T, Terashima A, Kawamata T, Yamamoto H, 
Fukunaga K, Miyamoto E, Tanaka C, 2001 Amyloid beta protein activates PKC-delta and induces 
translocation of myristoylated alanine-rich C kinase substrate (MARCKS) in microglia. 
Neurochem Int 38, 593–600. [PubMed: 11290384] 

Naughton BJ, Duncan FJ, Murrey DA, Meadows AS, Newsom DE, Stoicea N, White P, Scharre DW, 
Mccarty DM, Fu H, 2015 Blood genome-wide transcriptional profiles reflect broad molecular 
impairments and strong blood-brain links in Alzheimer’s disease. J Alzheimers Dis 43, 93–108. 
[PubMed: 25079797] 

Nimmerjahn F, Ravetch JV, 2006 Fcgamma receptors: old friends and new family members. Immunity 
24, 19–28. [PubMed: 16413920] 

Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, Saykin AJ, Orro A, Lupoli S, 
Salvi E, Weiner M, Macciardi F, 2009 Hippocampal Atrophy as a Quantitative Trait in a Genome-
Wide Association Study Identifying Novel Susceptibility Genes for Alzheimer’s Disease. PLoS 
ONE 4, e6501. [PubMed: 19668339] 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D, 2006 Principal components 
analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904–909. 
[PubMed: 16862161] 

Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer 
CJ, 2010 LocusZoom: regional visualization of genome-wide association scan results. 
Bioinformatics 26, 2336–2337. [PubMed: 20634204] 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker 
PIW, Daly MJ, Sham PC, 2007 PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am J Hum Genet 81, 559–575. [PubMed: 17701901] 

Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, Foroud TM, Hakonarson H, 
Huentelman MJ, Aisen PS, Petersen RC, Green RC, Jack CR, Koeppe RA, Jagust WJ, Weiner 
MW, Saykin AJ, 2014 APOE and BCHE as modulators of cerebral amyloid deposition: a 
florbetapir PET genome-wide association study. Mol Psychiatry 19, 351–357. [PubMed: 
23419831] 

Risacher SL, Kim S, Nho K, Foroud T, Shen L, Petersen RC, Jack CR, Beckett LA, Aisen PS, Koeppe 
RA, Jagust WJ, Shaw LM, Trojanowski JQ, Weiner MW, Saykin AJ, Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), 2015 APOE effect on Alzheimer’s disease biomarkers in older 
adults with significant memory concern. Alzheimers Dement 11, 1417–1429. [PubMed: 
25960448] 

Rockman MV, Kruglyak L, 2006 Genetics of global gene expression. Nat Rev Genet 7, 862–872. 
[PubMed: 17047685] 

Roed L, Grave G, Lindahl T, Rian E, Horndalsveen PO, Lannfelt L, Nilsson C, Swenson F, Lönneborg 
A, Sharma P, Sjögren M, 2013 Prediction of mild cognitive impairment that evolves into 
Alzheimer’s disease dementia within two years using a gene expression signature in blood: a pilot 
study. J Alzheimers Dis 35, 611–621. [PubMed: 23478308] 

Rye PD, Booij BB, Grave G, Lindahl T, Kristiansen L, Andersen HM, Horndalsveen PO, Nygaard HA, 
Naik M, Hoprekstad D, Wetterberg P, Nilsson C, Aarsland D, Sharma P, Lönneborg A, 2011 A 
novel blood test for the early detection of Alzheimer’s disease. J Alzheimers Dis 23, 121–129. 
[PubMed: 20930265] 

Saykin AJ, Shen L, Yao X, Kim S, Nho K, Risacher SL, Ramanan VK, Foroud TM, Faber KM, Sarwar 
N, Munsie LM, Hu X, Soares HD, Potkin SG, Thompson PM, Kauwe JSK, Kaddurah-Daouk R, 
Green RC, Toga AW, Weiner MW, 2015 Genetic studies of quantitative MCI and AD phenotypes 
in ADNI: Progress, opportunities, and plans. Alzheimers Dement 11, 792–814. [PubMed: 
26194313] 

Selkoe DJ, Hardy J, 2016 The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol 
Med 8, 595–608. [PubMed: 27025652] 

Sillén A, Brohede J, Forsell C, Lilius L, Andrade J, Odeberg J, Kimura T, Winblad B, Graff C, 2011 
Linkage analysis of autopsy-confirmed familial Alzheimer disease supports an Alzheimer disease 
locus in 8q24. Dement Geriatr Cogn Disord 31, 109–118. [PubMed: 21273770] 

Sweeney MD, Sagare AP, Zlokovic BV, 2018 Blood-brain barrier breakdown in Alzheimer disease and 
other neurodegenerative disorders. Nat Rev Neruol 14, 133–150.

Park et al. Page 14

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Takeda K, Nakamura A, 2017 Regulation of immune and neural function via leukocyte Ig-like 
receptors. J Biochem 162, 73–80. [PubMed: 28898976] 

Tan ZS, Seshadri S, Beiser A, Zhang Y, Felson D, Hannan MT, Au R, Wolf PA, Kiel DP, 2005 Bone 
mineral density and the risk of Alzheimer disease. Arch Neurol 62, 107–111. [PubMed: 15642856] 

Teeling JL, Carare RO, Glennie MJ, Perry VH, 2012 Intracerebral immune complex formation induces 
inflammation in the brain that depends on Fc receptor interaction. Acta Neuropathol 124, 479–490. 
[PubMed: 22618994] 

Thorisson GA, Smith AV, Krishnan L, Stein LD, 2005 The International HapMap Project Web site. 
Genome Res 15, 1592–1593. [PubMed: 16251469] 

Tylee DS, Kawaguchi DM, Glatt SJ, 2013 On the outside, looking in: a review and evaluation of the 
comparability of blood and brain “-omes”. Am J Med Genet B Neuropsychiatr Genet 162B, 595–
603. [PubMed: 24132893] 

Vidoni ED, Townley RA, Honea RA, Burns JM, 2011 Alzheimer disease biomarkers are associated 
with body mass index. Neurology 77, 1913–1920. [PubMed: 22105948] 

Willer CJ, Li Y, Abecasis GR, 2010 METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics 26, 2190–2191. [PubMed: 20616382] 

Wyss-Coray T, 2006 Inflammation in Alzheimer disease: driving force, bystander or beneficial 
response? Nat Med 12, 1005–1015. [PubMed: 16960575] 

Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, 
Dobrin R, Fluder E, Clurman B, Melquist S, Narayanan M, Suver C, Shah H, Mahajan M, Gillis T, 
Mysore J, MacDonald ME, Lamb JR, Bennett DA, Molony C, Stone DJ, Gudnason V, Myers AJ, 
Schadt EE, Neumann H, Zhu J, Emilsson V, 2013 Integrated systems approach identifies genetic 
nodes and networks in late-onset Alzheimer’s disease. Cell 153, 707–720. [PubMed: 23622250] 

Park et al. Page 15

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Verification

1. All authors did not have any actual or potential conflicts of interest including 

any financial, personal or other relationships with other people or 

organizations within three years that could inappropriately influence this 

work.

2. This work was supported by several grants from various Institutes including 

NIA. However, the funders had no role in the design and conduct of the study; 

collection, management, analysis, and interpretation of the data; preparation, 

review, or approval of the manuscript, and decision to submit the manuscript 

for publication.

3. The data contained in the manuscript being submitted have not been 

previously published, have not been submitted elsewhere and will not be 

submitted elsewhere while under consideration at Neurobiology of Aging.

4. Written informed consent was obtained at the time of enrollment and/or 

genetic sample collection and protocols were approved by each participating 

study and sites’ Institutional Review Board.

5. All authors have reviewed the contents of the manuscript being submitted, 

approve of its contents and validate the accuracy of the data.

Park et al. Page 16

Neurobiol Aging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Clustering dendrogram with correlation between modules and AD diagnosis (CN vs. 
AD)
Weighted correlation network analysis constructed 17 and 13 modules in ADNI (A; 

discovery data) and AddNeuroMed (B; replication data) cohorts, respectively. The modules 

are represented in the rows with the clustering dendrogram. Colors were assigned to the 

modules arbitrarily according to their size by the WGCNA software. Each cell contains the 

correlation between the corresponding module and AD diagnosis (CN vs. AD) with its FDR-

corrected p-value. It is color-coded by the correlation according to the color legend. The p-

value was derived from a linear regression analysis with AD diagnosis, age and sex as 

independent variables and module eigengene as an outcome.

Abbreviation: AD: Alzheimer’s disease; CN: cognitively normal older adults; FDR: false 

discovery rate; WGCNA: weighted correlation network analysis
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Figure 2. Relationship between hippocampal volume and the brown module in ADNI
The relationship between hippocampal volume and module eigengene (ME) of the brown 

module in ADNI was represented in a scatter plot. The blue line was obtained from a linear 

regression analysis (FDR-corrected p-value = 1.55×10−2), and the gray zone around the blue 

line indicates 95% confidence interval.

Abbreviation: FDR: false discovery rate
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Figure 3. LocusZoom plot for eQTL analysis of ASAP1 and LILRA2
SNPs’ positions on chromosome and their color-coded association with expression levels of 

ASAP1 are plotted in ADNI (A) and AddNeuroMed (B). The SNP with the lowest p-value 

in a meta-analysis (rs11774659) is indicated. The eQTL results of LILRA2 are plotted for 

ADNI (C) and AddNeuroMed (D) with an indication of the SNP with the lowest p-value 

(rs28516458) in a meta-analysis.

Abbreviation: eQTL: expression quantitative trait locus
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Table 1.

Demographics of study population

Cohort Diagnosis No. of participants Female (%) Age, mean (SD) RIN, mean (SD)

ADNI (N=661) CN 213 107 (50%) 76.4 (6.4) 6.91 (0.51)

MCI 345 144 (42%) 73.2 (7.9) 6.98 (0.55)

AD 103 38 (37%) 77.6 (7.8) 6.98 (0.64)

AddNeuroMed (N=674) CN 243 147 (60%) 74.2 (6.6) 8.96 (0.73)

MCI 208 120 (58%) 75.5 (6.5) 8.50 (0.59)

AD 223 146 (65%) 76.8 (6.8) 8.43 (0.64)

Key: AD: Alzheimer’s disease; CN: cognitively normal older adults; MCI: mild cognitive impairment; RIN: RNA integrity number; SD: standard 
deviation
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Table 2.

Biological pathways identified in enrichment analysis

ADNI

Module (Direction of association between ME and diagnosis) KEGG pathway FDR- corrected p-value

Lightgreen (↓ ME in AD) B cell receptor signaling 7.44×10−5

Red (↓ ME in AD) Ribosome 3.35×10−21

Brown (↑ ME in AD) Fc gamma receptor-mediated phagocytosis 8.49×10−4

Osteoclast differentiation 1.58×10−5

Tuberculosis 2.42×10−6

Endocytosis 2.51×10−2

B cell receptor signaling 2.25×10−2

Hepatitis B 1.89×10−2

Lysosome 2.22×10−3

Estrogen signaling 1.98×10−2

AddNeuroMed

Yellow (↑ ME in AD) Fc gamma receptor-mediated phagocytosis 4.58×10−5

Osteoclast differentiation 2.31×10−7

Tuberculosis 4.26×10−5

Turquoise (↑ ME in AD) Ribosome 3.25×10−17

Values were derived from the DAVID bioinformatic resources (Huang et al., 2009).

No KEGG pathways were enriched at darkturquoise module in ADNI and black, green and tan modules in AddNeuroMed (FDR-corrected p-value 
< 0.05).

In AddNeuroMed, we only demonstrated KEGG pathways which were identified in ADNI and were significantly enriched (FDR-corrected p-value 
< 0.05).

Key: FDR: false discovery rate; KEGG: Kyoto Encyclopedia of Genes and Genomes
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Table 3.

Association between the brown module of ADNI and various AD biomarkers

AD biomarker t-value FDR-corrected p-value

ADNI-EF
a −2.779 1.71×10−2

ADNI-MEM −2.677 1.71×10−2

Hippocampal volume in MRI
b −3.148 1.55×10−2

Averaged cortical uptake of [18F] florbetapir PET
c 2.684 1.71×10−2

t-values and p-values were derived from a linear regression analysis between module eigengene of the brown module and AD biomarkers.

a
Data for 2 participants were unavailable.

b
Data for 44 participants were unavailable.

c
Data for 99 participants were unavailable.

Key: AD: Alzheimer’s disease; ADNI-EF: Composite score of executive function in ADNI; ADNI-MEM: Composite score of memory in ADNI; 
FDR: false discovery rate
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Table 4.

Gene-based association analysis with AD biomarkers

AD biomarker Gene set No. of SNP No. of significant 
SNP

Empirical p-value Independent significant SNPs

ADNI-MEM PRKCD 132 30 2.55×10−3 rs6764111, rs11130350

ADNI-EF
a PRKCD 132 50 2.61×10−2 rs6764111, rs62254274, rs3821689, 

rs2358617, rs12495976

CSF p-tau/Aβ42
b PRKCD 132 43 4.18×10−2 rs17052826, rs1872037, rs6778939, 

rs11130347, rs55685362

ADNI-MEM LILRB3 216 9 6.25×10−3 rs11878556, rs17841905, rs117107587

ADNI-EF
a LILRB3 216 22 1.50×10−2 rs6509855, rs620207, rs11084325, 

rs4442928, rs16960152

CSF p-tau/Aβ42
b LILRB3 216 10 3.88×10−2 rs6509855, rs34810796, rs606851, 

rs202131060

a
Data for 2 participants were unavailable.

b
Data for 206 participants were unavailable.

Key: AD: Alzheimer’s disease; Aβ42: amyloid-β42; ADNI-EF: Composite score of executive function in ADNI; ADNI-MEM: Composite score of 

memory in ADNI; p-tau: phosphorylated tau181p
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