
Accelerating complex modeling workflows in
CyberWater using on-demand HPC/Cloud resources

Feng Li, Ranran Chen, Yuankun Fu,
Fengguang Song, Yao Liang

Indiana University-Purdue University
Indianapolis, United States
{lifen, ranrchen, fuyuan,

fgsong, yaoliang}@iupui.edu

Isuru Ranawaka, Sudhakar Pamidighantam
Indiana University

Bloomington, United States
{isjarana,pamidigs}@iu.edu

Daniel Luna, Xu Liang
University of Pittsburgh

Pittsburgh, United States
{del47,xuliang}@pitt.edu

Abstract—Workflow management systems (WMSs) are com-
monly used to organize/automate sequences of tasks as workflows
to accelerate scientific discoveries. During complex workflow
modeling, a local interactive workflow environment is desirable,
as users usually rely on their rich, local environments for fast
prototyping and refinements before they consider using more
powerful computing resources. However, existing WMSs do not
simultaneously support local interactive workflow environments
and HPC resources. In this paper, we present an on-demand
access mechanism to remote HPC resources from desktop/laptop-
based workflow management software to compose, monitor and
analyze scientific workflows in the CyberWater project. Cyber-
Water is an open-data and open-modeling software framework
for environmental and water communities. In this work, we
extend the open-model, open-data design of CyberWater with
on-demand HPC accessing capacity. In particular, we design and
implement the LaunchAgent library, which can be integrated
into the local desktop environment to allow on-demand usage
of remote resources for hydrology-related workflows. LaunchA-
gent manages authentication to remote resources, prepares the
computationally-intensive or data-intensive tasks as batch jobs,
submits jobs to remote resources, and monitors the quality of
services for the users. LaunchAgent interacts seamlessly with
other existing components in CyberWater, which is now able
to provide advantages of both feature-rich desktop software
experience and increased computation power through on-demand
HPC/Cloud usage. In our evaluations, we demonstrate how
a hydrology workflow that consists of both local and remote
tasks can be constructed and show that the added on-demand
HPC/Cloud usage helps speeding up hydrology workflows while
allowing intuitive workflow configurations and execution using a
desktop graphical user interface.

Index Terms—scientific workflow, hydrologic modeling, on-
demand HPC

I. INTRODUCTION

Scientific discovery often requires the execution of various
coupled computational tasks using diverse data from local and
remote resources. These tasks can be organized into stages,
based on their data dependencies. A workflow management

* Accepted by eScience ’21 (2021 IEEE 17th International Conference on
e-Science, Sept. 20-23, virtual).

system (WMS) is a type of software system where an end
user can describe the data dependencies of tasks, compose
workflows, and launch such workflows for execution in desig-
nated computing environments. Nowadays, different types of
computing environments are supported by popular WMSs. In
a typical WMS, workflows are described as directed acyclic
graphs (DAG) where each vertex is a computation task and the
edges describe the data dependency between tasks. Such DAGs
are then submitted to an execution environment, which can be
a Cloud system, an HPC system, or a local computer. For
example, in Pegasus WMS [1], one can provide the abstract
workflow as a “DAX” file, and Pegasus translates it to an
“execution workflow”, which is then submitted to one of the
supported execution environments. For a simple, small-sized
workflow, a local computer can be used as the execution
environment. For larger workloads, an HTCondor [2] pool of
worker nodes can be used instead, in which case the tasks are
mapped to a collection of worker nodes.

Although popular WMSs such as Pegasus allow users to
utilize various types of execution environments to launch com-
putation tasks, we find there are two limitations in practice.
Firstly, the choice between local and remote execution sites
is not flexible: workflows are typically only allowed to run in
their entirety in local or remote environments. For workflows
running in a local environment, computation power is limited;
for workflows running remotely, it can take much longer to
prototype, develop and debug. Secondly, from a workflow
user’s perspective, correctly preparing an abstract workflow
can require a lot of effort for large workflows. For example,
Pegasus WMS users must either manually create the DAX
file, or use one of the supported programming interfaces to
generate the DAX file. In contrast, desktop-based WMSs such
as VisTrails [3], provide a feature-rich GUI-based frontend,
which allows users to drag and drop widget boxes to form a
complex workflow, and also gives comprehensive and timely
information such as execution provenance.

To address these two practical issues, we present LaunchA-
gent, which provides desktop-based workflows with a mech-
anism of on-demand access to remote computing resources,
so that rich configurations and trivial computation tasks can
be done in the local environment, and only computation-___

This is the author's manuscript of the article published in final edited form as:

Li, F., Chen, R., Fu, Y., Song, F., Liang, Y., Ranawaka, I., Pamidighantam, S., Luna, D., & Liang, X. (2021). Accelerating complex modeling
workflows in CyberWater using on-demand HPC/Cloud resources. 2021 IEEE 17th International Conference on EScience (EScience), 196–
205. https://doi.org/10.1109/eScience51609.2021.00030

https://doi.org/10.1109/eScience51609.2021.00030

ally expensive tasks are offloaded to powerful HPC/Cloud
resources as needed. LaunchAgent began as a part of the
CyberWater project [4], which aims to create an open-model
and open-data framework to accelerate collaborative water
research. VisTrails, a Python-based desktop workflow manage-
ment software program, is currently adopted in the CyberWater
project to support tasks such as provenance management and
reproducible computing for exploratory computation tasks.
Salas et al. [5] show that, using the VisTrails WMS, one
can compose workflows consisting of different hydrological
data sources and computational models and enable model
coupling through its desktop graphical user interface (GUI).
However, the previous integration of VisTrails and the Cyber-
Water software framework only supports model execution on
desktop computers, which usually have limited computation
power and storage space. The proposed LaunchAgent library
extends the CyberWater software framework so that users
can select out specific computationally expensive tasks from
the entire workflow during the GUI workflow configuration,
and the chosen tasks are offloaded to HPC/Cloud resources
automatically.

LaunchAgent supports both direct Slurm-based [6] access
and Airavata gateway [7] access to remote computing re-
sources. Such a design allows us to use both mid-size campus-
based clusters and large-size grid computing resources (e.g.,
from XSEDE [8]). To illustrate the integration of LaunchA-
gent along with the CyberWater software framework and its
VisTrails desktop interface, we run a real-world hydrological
modeling workflow that has an HPC-enabled Variable Inflitra-
tion Capacity (VIC) model [9]. Our experiments show that by
utilizing various types of HPC/Cloud resources, LaunchAgent
is able to accelerate the VIC model significantly, with the
convenience of intuitive user interactions.

In the rest of the paper, we begin by introducing background
information on the CyberWater project and the Airavata gate-
way framework in Section II. Then, in Section III, we describe
the design of the extended CyberWater software framework
with the new on-demand HPC/Cloud mechanism. We present
our experimentation results in Section IV. Related work is
reviewed in Section V. Finally, we conclude the paper in
Section VI.

II. BACKGROUND

A. Cyberwater project

CyberWater is a collaborative project for creating a new
infrastructure with an open-data and open-modeling software
framework [4]. The CyberWater project aims at reducing user
time and effort needed for hydrologic modeling studies by
enabling flexible integration of diverse data sources and user
models needed for executing complex workflows with on-
demand remote HPC resources. It utilizes the Meta-Scientific-
Modeling (MSM) framework [5] to address challenges of
accessing heterogeneous data sources and integrating individ-
ual models. The MSM framework consists of four parts: a
core (the MSM core), an interface with the Workflow engine,
Data Agents, and Model Agents, as shown in the dashed

box in Figure 1. The Data Agents are dynamically loaded
components that describe how to connect to and retrieve
data from different external data providers through the inter-
net. The Model Agents are dynamically loaded components
that describe the input/output and execution specifications of
different hydrological models. The Core interacts with the
Workflow Engine through the Workflow Interface to prepare
and trigger individual tasks (e.g., data retrieving tasks and
model execution tasks) specified in workflows.

VisTrails [3], a Python-based graphical science workflow
system running in desktop environments, is currently adopted
in the CyberWater project as the workflow management
system, and provides the workflow engine that MSM core
interacts with. Users can compose complex hydrology work-
flows using VisTrails graphic user interfaces. Then, the tasks
defined in the workflow are captured by the MSM Core, which
triggers actions such as data fetching, model execution, data
processing/transformation, by means of Model Agents and
Data Agents.

Fig. 1: Broad Scheme of CyberWater.

An in-depth comparison between the CyberWater MSM
framework and other model/integration systems has been
demonstrated in [5]. Previously, the CyberWater MSM frame-
work allowed models to be executed in users’ local computing
environment (e.g., desktops) only. In this paper, we focus
on the infrastructure design and support that enable the on-
demand access to HPC/Cloud resources for better execution
efficiency and for saving end-to-end workflow time. In order
to integrate HPC/Cloud systems with the current CyberWa-
ter MSM framework, the Apache Airavata science gateway
framework described below is adopted.

B. Airavata gateway framework

Apache Airavata [7] is a science gateway software frame-
work to compose, execute, and monitor distributed applica-
tions from local clusters to computational grids and clouds.
The Airavata framework is a collection of distributed micro
service components of identity management, application and
experiment management, job and workflow management, and
digital object sharing management. Science Gateway Platform

2

(SciGaP) [10] provides Apache Airavata software as a hosted
middleware service on Indiana University (IU) Intelligent
Infrastructure systems1.

SciGaP exposes public APIs that science gateways can use
to outsource those general capabilities, as shown in Figure 2.
Through the API services, researchers can register an applica-
tion by specifying information such as executable script path,
environment variables, input/output arguments and data files.
The API services also allow the gateway administrator to add
computing resources (clusters) so that when a SciGaP gateway
user requests an experiment execution, the corresponding jobs
will be created, launched at a designated HPC cluster, and
monitored by the job management services.

Fig. 2: SciGaP Integration Overview. SciGaP can expose API
services to both browser-based and non-browser applications.

As illustrated in Figure 2, Science Gateways may have
web portals, non-browser desktop/device based apps, or a
combination thereof for their end-user researchers. To this
end, the Airavata framework provides software development
kits (SDKs) to connect with SciGaP and Apache Airavata
services. The API services provided by SciGaP have been
successfully used in different domains2. Web browser-based
interfaces using Django web framework have been developed
and provided as a reference to enable users to configure,
launch, and monitor jobs/workflows. However, the browser-
style integration is not always suitable for certain scientific
workflow applications such as CyberWater that require feature-
rich desktop based VisTrails workflow management tool. On
one hand, CyberWater uses the Django web interfaces for tasks
such as user registration, computing resource management, but
on the other hand, it utilizes the Python SDK to configure,
launch, and monitor applications. Integration of the SciGaP
API services into the CyberWater system is described in
Section III-B.

III. METHODOLOGY

In the CyberWater MSM framework, users’ models can be
plugged in easily, and without coding, using Generic Model

1https://uits.iu.edu/services/intelligent-infrastructure
2SciGaP collaborators and clients: https://scigap.org/pages/collaborations.

Agent Tools, in which the model’s execution environment is
local, as shown in the center part of Figure 3. The VisTrails
workflow system is currently adopted in the CyberWater
framework, with which users can simply drag and drop compo-
nent modules in their rich desktop environments to compose
complex workflows. When the workflow is launched, MSM
Core captures the computation tasks defined in the workflow,
and then executes the tasks locally, which only utilizes a local
desktop’s computation power to carry out all the tasks.

The new on-demand HPC/Cloud mechanism extends the
CyberWater software framework, which now includes a new
remote HPC/Cloud execution environment provided by the
LaunchAgent library to offload models specified in the Model
Agents to HPC/Cloud resources on demand. The newly im-
plemented LaunchAgent library, described in the following
section, advances the Generic Model Agent Tool even fur-
ther: it allows a model user to deploy the same models
easily to different remote computing environments for faster
task execution. Although we chose VisTrails as our current
workflow engine, the MSM framework described in Figure 3
has a generic design that can be adapted to other workflow
management systems.

Locally Installed WMS

MSM Core

Local Execution
Environment

LaunchAgent

XSEDE
HPCs

Public
Clouds

Campus
Clusters

Data Agents
NLDAS
USGS

Other data
agents

Model Agents

VIC
DHSVM

Other models

Workflow Engines

Rich GUI-based
WMS frontend

Workflow Interface

MSM Framework

Remote HPC/Cloud
Execution Environment

Generic Model Agent Tools

Fig. 3: The new HPC/Cloud-enabled CyberWater software
framework with LaunchAgent integration. LaunchAgent ex-
tends the open-model and open-data design of the CyberWater
MSM framework, and allows selection of computationally
expensive tasks to be launched as remote jobs in different
remote computing resources.

A. Design of LaunchAgent

LaunchAgent is a core component in providing on-demand
HPC/Cloud access in the CyberWater software framework.
LaunchAgent is designed to help workflow engines offload
computationally intensive tasks to remote HPC/Cloud re-
sources on demand through Python programming APIs. As
shown in Figure 3, a locally installed workflow engine (e.g.,
VisTrails) on a desktop can manage a workflow as a graph of
computational tasks. For the default local-computation setup,

3

https://uits.iu.edu/services/intelligent-infrastructure
https://scigap.org/pages/collaborations

tasks are scheduled by the local computer’s operating system
scheduler, and communication between tasks happens in the
form of memory objects/local files. However, the computa-
tional power on local computers is usually limited.

With the help of LaunchAgent, specific tasks along with
their input files can be offloaded to remote computing re-
sources to accelerate the workflow. LaunchAgent manages
user authorization so that users have proper access to remote
resources. It also composes, submits, and monitors the com-
putation tasks for the users. Through the design of a universal
Python API, a local workflow engine can periodically check
the tasks’ status in remote sites, and download output files
when the tasks are finished.

Listing 1 below shows how a VIC5 (VIC version 5.0)
application [11] can be deployed in the IU BigRed3 cluster
using the LaunchAgent interface. Firstly, a user can register
as a Cyberwater gateway user through the gateway web
portal3. Then, LaunchAgent can authorize the user based on
gateway credentials and grant permission for the requested
HPC resources (in the example of Listing 1, the IU BigRed3
system is requested from the user). The running environment
of VIC5 (including input files and configuration files) is stored
in the “vic” folder. The run_monitor_job function is a
blocking call and the control returns until the job is finished
on the HPC/Cloud side. The corresponding job’s exit status is
also returned and kept locally for provenance purposes.
1. Gateway authentication.
agent = GatewayAgent(gateway_username, gateway_passwd,

exp_name = "test-gateway-cyberwater",
site_name= "bigred3")

2. Upload local folder.
agent.upload_folder("vic")

3. Configure experiment, the run.sh file in the
uploaded folder shall define how the job will be run.
agent.configure_exp(nodes = 1, ntasks_per_node = 2,

email='somemail', walltime_in_mins= 5)

4. Run the job remotely and wait until job finishes.
agent.run_monitor_job()

5. Download all results to local directory.
agent.download_folder("./results_vic_gateway")

Listing 1: Example LaunchAgent usage with VIC hydrological
model.

Typically, researchers have access to two types of cluster
resources: on-campus clusters and remote clusters accessible
through services such as XSEDE. At IU, there are high-
performance/high-throughput clusters such as BigRed 3, Karst,
et al [12]. Those resources typically require University IDs to
operate and usually have limited computing power. On the
other hand, extreme-scale computing infrastructure provided
by XSEDE, such as TACC Stampede2 [13] and PSC Bridges-
2 [14] usually provide significantly higher computing power.
To this end, LaunchAgent has been designed to suit both
settings through two channels: a direct Slurm-based channel,

3https://cyberwater.scigap.org/

and an Airavata gateway based channel, both of which will be
discussed in detail next.

B. Gateway-based channel

The gateway-based channel in LaunchAgent utilizes both
Web-browser-based and non-browser-based interfaces pro-
vided by the SciGaP framework. First, the gateway admin-
istrator needs to configure the desired CyberWater application
for the gateway created on SciGaP. This step is done through
a web browser only once for all CyberWater gateway users,
and is used to initialize the gateway environment and to
prepare common metadata for all tasks submitted through
the non-browser Python SDK interfaces. Figure 4 illustrates
the main components of a gateway application and their
dependencies. The gateway administrator needs to define the
application inputs, outputs, and deployments. The application
input describes the required inputs to run experiments and the
output defines the experiment output results. The application
deployment refers to the metadata related to connecting to the
HPC clusters such as SSH Keys, job submission protocols, job
queue information, and login account details. This information
is configured in the Group Resource Profile (GRP) of the
SciGaP gateway. Moreover, GRP is a collection of comput-
ing resources metadata and common SSH Keys to access
computing resources (hosts). The gateway administrator can
share GRPs with specific users or user groups to give access
to computing hosts for their experiments. Data handling and
transfer information are bundled in the Gateway Resource
Profile (GwRP), which contains storage access information
for end users to upload and download experiment inputs and
outputs. Furthermore, users can share GRP with other users or
user groups to provide access for the data. Hence, GRP and
GwRP create another layer of abstraction to manage access
and data sharing easily with users and groups.

Fig. 4: Core components in an Airavata gateway application
and their dependencies.

After the successful configuration of the gateway applica-
tion, gateway end-users can submit experiments to the gateway
under the created application. Figure 5 illustrates the sequence
of operations supported by the Airavata Python SDK to
execute an experiment through SciGaP services. Firstly, when
a user initializes the LaunchAgent instance with a Gateway

4

https://cyberwater.scigap.org/

Fig. 5: LaunchAgent Operation Sequence with SciGaP services.

channel, LaunchAgent uses the Airavata Python SDK to au-
thenticate the user based on the user-provided credentials with
the SciGaP security service. Then an OAuth token is returned
by the security service, and this token is used to access each
subsequent API of SciGaP services via Python SDK. Secondly,
during the run monitor job call, an Airavata “experiment”
will be created and the required files will be uploaded and
launched into the job scheduler at the remote resource. The
agent.run monitor job function finishes when an exit status
is returned while querying SciGaP API/Data service.

Currently, we use several computing resources from
XSEDE, and the CyberWater gateway is registered in the
XSEDE science gateways listing4. An XSEDE community
account is set up and used to access the allocations on
systems like IU Jetstream [15] and Pittsburgh Supercomputing
Center (PSC) Bridges-2. We pre-configured those computing
sites in the Airavata web portal as a group resource profile.
Specifically, we allocate an SSH key-pair for this community
account and copy the public key to the selected remote sites
so that the gateway service can authenticate itself in order to
access the registered HPC/Cloud resources.

Once a user joins the CyberWater gateway and is approved
by the administrator, he/she gains access to the group of
pre-configured HPC systems defined by the group resource
profile. By using the CyberWater gateway username/password
during the agent initialization function (see Listing 1), the
LaunchAgent can use the selected site in the group resource
profile to launch computation tasks.

C. Direct Slurm-based channel

We initially developed the direct Slurm-based channel for
LaunchAgent using Paramiko SSH2 Python library5. The
direct Slurm-based LaunchAgent has an operation sequence

4https://www.xsede.org/web/site/ecosystem/science-gateways/
gateways-listing

5https://www.paramiko.org/

similar to the gateway-based method, as shown in Figure 5.
In the gateway environment, the gateway usually utilizes a
community account for all users, and works as middleware
that submits jobs to remote sites for each registered user.
Also, currently the gateway approach requires that comput-
ing resources be validated and registered in SciGap, before
gateway users can deploy applications on them. In contrast,
with the direct Slurm-based method, each user has his/her
own login credentials to remote resources, which gives direct
access to the HPC/Cloud systems without going through the
gateway. A typical use case of the Slurm-based LaunchAgent
is campus-based clusters, to which university students/faculties
have direct access.

Similar to the gateway programming interface example
shown at Listing 1, the user needs to configure the folder to
be uploaded, which includes input data and running configu-
rations. LaunchAgent automatically archives the user’s folder,
submits it to remote computing resources, and retrieves output
data once the job finishes. For authentication, Slurm-based
LaunchAgent allows users to authenticate themselves using
their HPC logins, with either passwords or SSH key pairs.
Here, each user provides his/her personal login credentials,
and such credentials are not saved in the Slurm-based Laun-
chAgent.

Initially we developed our prototype using IU BigRed3
supercomputer. Using the generic Slurm-based agent, we were
able to launch parallel programs from personal computers. To
accommodate larger computation, we also added support for
XSEDE supercomputers, such as PSC Bridges-2 and TACC
Stampede2. We realize that different systems have specific
requirements for user authorization and authentication, and
have dealt with them in the direct Slurm-based LaunchAgent
implementation. For example, PSC Bridges-2 requires a user
to upload his/her ssh login public key through a specific key
management web page (operated by PSC), and Stampede2 re-
quires multi-factor-authentication (MFA) for each ssh session.

5

https://www.xsede.org/web/site/ecosystem/science-gateways/gateways-listing
https://www.xsede.org/web/site/ecosystem/science-gateways/gateways-listing
https://www.paramiko.org/

Apart from the XSEDE HPC resources, the direct Slurm-
based LaunchAgent also supports cloud computing sources
such as Google Cloud Platform and JetStream Cloud. To
initialize the Slurm clusters from those Cloud providers, we
utilize the Slurm-GCP tool6 for Google Cloud Platform, and
JetStream Elastic Slurm Cluster tool7 for JetStream Cloud.
Both Slurm-GCP and JetStream Elastic Cluster allow dynamic
resizing of clusters by allocating more cloud virtual machines
on demand.

D. Integration with Cyberwater frontend

To incorporate the LaunchAgent component into the Cy-
berWater system, we have created an “HPC” module, which
can be dragged and dropped in the VisTrails WMS desktop
frontend. The HPC module extends the functionality of the
Generic Model Agent Tools (GT) to provide on-demand HPC
usage in the CyberWater system. Figure 6 shows the HPC
module and its configuration window in the CyberWater-
VisTrails GUI interface.

Fig. 6: The HPC Module and its configuration window.

In Figure 6, only part of the supported input configurations
(ports) are showed for demonstration purposes. We also pro-
vide a more complete list of the configurable ports in Table
I. A real-world example using the HPC module is described
in Section IV-A, where we configure the VIC5 executable for
remote execution at the PSC Bridges-2 supercomputer.

IV. USECASES AND PERFORMANCE EVALUATION

In this section, we demonstrate through a real-world hy-
drology workflow example how LaunchAgent can be used
in the CyberWater project to provide convenient, on-demand
access to HPC/Cloud systems. We then focus on the the most
computationally expensive VIC5 module in the workflow,
analyzing and comparing its performance when launching it
using LaunchAgent in different execution environments.

6https://cloud.google.com/solutions/deploying-slurm-cluster-compute-engine
7https://github.com/XSEDE/CRI Jetstream Cluster

Input Port Specification
Port name Explanation
DataSet Class To get DataSet Class brought in from Main-

Generator.
Email The email address for job notifications.
Execution File The path of the executable program file.
Execution Folder The path of the source code folder, which needs

to be compiled in HPC.
File Name Prefix The prefix of the output result files.
File Pos 01-05 To set the output dataset in the corresponding

column of output files.
GT Path To get GT Path brought in from MainGenerator

(the working directory where simulation files
are saved).

Gateway Platform To choose which HPC/Cloud platform to use
for the gateway-based channel, including IU
Karst and PSC Bridges-2.

Output Name 01-05 To output the dataset needed from these ports.
Project Name The name of project running in HPC.
Password The password used for logging on the specifed

platform.
Ready List To connect the output of ForcingDataFileGener-

ator, AreaWiseParamGenerator and InitialState-
FileGenerator if it exists.

Runtime Estimated duration of the task needed from
the platform to which user wants to apply, in
“hh:mm:ss” format.

SSH Platform To choose the HPC/Cloud platform to use
with the direct Slurm-based channel, including
BigRed3 supercomputer at IU, PSC Bridges-
2 (both extreme-memory and regular-memory
queues), TACC Stampede2, XSEDE JetStream
cloud and GCP (Google Cloud Platform) cloud.

Username The username used for logging on the specified
platform.

Output Port Specification
Port Name Explanation
Output01-05 To output the Dataset needed from these ports.

TABLE I: The input/ouput port specifications of the HPC
module configurable through the CyberWater GUI frontend.

A. HPC-enabled workflow with LaunchAgent

To demonstrate that LaunchAgent integrates seamlessly
with the current CyberWater framework, we use the
CyberWater-VisTrails graphical user interface (GUI) to com-
pose a hydrology workflow. This workflow uses the VIC5
model to study the West Branch Susquehanna8 river basin for
the period 1995-1996. This study area covers more than 17,700
square kilometers.

As shown in Figure 7, we define the time/space range
of the studied problem by configuring the TimeRange and
WBSusquehanna (SpaceRange) module. Then, from the NL-
DAS (North American Assessment-Land Data Assimililation
System [16], [17]), we use the Hourly NLDAS Forcing for
VIC5 group module, which internally contains 7 instances of
NLDASAgent data agents (temperature, longwave radiation,
shortwave radiation, precipitation, pressure, water vapor pres-
sure and wind speed) and the corresponding unit conversions.
This way, CyberWater will pull the seven chosen types of
datasets of the specified time/space range from the NLDAS
site to the local cache directories. After that, we use several

8USGS information used: https://waterdata.usgs.gov/pa/nwis/uv?site no=
01553500

6

https://cloud.google.com/solutions/deploying-slurm-cluster-compute-engine
https://github.com/XSEDE/CRI_Jetstream_Cluster
https://waterdata.usgs.gov/pa/nwis/uv?site_no=01553500
https://waterdata.usgs.gov/pa/nwis/uv?site_no=01553500

MainGenerator

TimeRange
WBSusquehanna
(SpaceRange)

ForcingDataFileGeneratorAreaWiseParamGenerator

Hourly NLDAS Forcing for VIC5
(Group)

Bridges2 Password
(PasswordDialog)

Bridges2
(HPC)

to m3/s
(msmUnitConversion)msmDatasetOperation

Total Runoff
(msmShowChart)

Fig. 7: An example of remote computing with HPC module.

“Generator” modules to prepare the forcing data and parameter
files for the VIC5 execution. Then, the Bridges-2 (HPC)
module is used to launch the VIC5 hydrological model to
the PSC Bridges-2 system. During the remote launch, all
prepared data are sent to the remote HPC/Cloud system;
the VIC5 model is then executed in the remote HPC/Cloud
environment; and, finally, all output results are downloaded to
the specified local output directory. This entire launch process
is conducted automatically by the execution of HPC module
in the workflow.

CyberWater also provides post-analysis and visualiza-
tion modules, such as the msmShowChart module. The
msmShowChart module is used to display useful information
such as surface runoff and baseflow for view. For example,
Figure 8 shows the the total runoff, which is the sum of
baseflow and surface runoff time series of the studied example
workflow. The “baseflow” means the portion of the streamflow
that is sustained between precipitation events, and it is con-
tributed by slowly moving water within the porous media due
to soil moisture or groundwater. “Surface runoff” describes the
excess amount of water from rain, snowmelt or other resources
that moves over the land surface. The msmDatasetOperation
module in Figure 7 sums the baseflow and surface runoff
computed from VIC5 to obtain the total runoff.

Note that all user interactions in this subsection happen in
graphical user interfaces in the local desktop/laptop workflow
environment, where the users have no need to login to remote
HPCs. By utilizing the “HPC” module in the CyberWater GUI,
we are able to launch the selected tasks remotely using more
powerful computing systems. Importantly, CyberWater allows

researchers to integrate the input/output of such remote exe-
cution seamlessly with local workflow management systems.
Also, it is convenient to substitute the HPC module with
the local execution module for VIC5 if the user’s workflow
does not require much computation power during the model
prototyping and debugging stages.

Fig. 8: VIC5 simulated total runoff from the workflow of Fig-
ure 7 for the West-Branch Susquehanna river basin, displayed
by the msmShowChart module in CyberWater-VisTrails GUI
interface.

B. Performance evaluation

We evaluated the performance gain of applying the HPC
resources over the default local execution by comparing the
elapsed time of the VIC5 computation module when we
use local desktop environment versus when we use different
remote execution sites. In this part of the experiments, we use
the same study area and time period as in Subsection IV-A, to
showcase the performance gains that CyberWater on-demand
HPC access can provide.

For both local and remote execution configurations, the
VIC5 workflow is launched from the same Windows 10
laptop system, which is equipped with 2 CPU cores and
16GB RAM. This laptop is connected to the IU campus
network through a wired Gigabit Ethernet switch installed in
a Computer Science research lab at the Indiana University-
Purdue University Indianapolis (IUPUI) campus.

In the local run, we use the VIC5 windows binary currently
shipped in the CyberWater installation9. For this local setup,
all software and data are self-contained: the VIC5 executable
reads data cached locally, and computation happens solely on
the local computer.

In a different setup with the proposed LaunchAgent tools
for on-demand access to HPC and Cloud, we use the same
laptop system, and change the default local execution mod-
ule for the LaunchAgent module. For the HPC computing

9This executable uses the “classic” VIC driver, and was originally built
with the Cygwin POSIX-compatible environment. For more details, please
refer to https://vic.readthedocs.io/en/vic.5.0.1/Documentation/Drivers/Classic/
ClassicDriver/.

7

https://vic.readthedocs.io/en/vic.5.0.1/Documentation/Drivers/Classic/ClassicDriver/
https://vic.readthedocs.io/en/vic.5.0.1/Documentation/Drivers/Classic/ClassicDriver/

environments, we use the SKX partition in the Stampede2
system and the Regular Memory (RM) partition for the
Bridges-2 system, which has 48 and 128 CPU cores on each
compute node, respectively. For the (IU) Jetstream Cloud,
we use a dynamically-sizing Slurm cluster created using
Jetstream Elastic Cluster toolkit. We include a copy of the
VIC5 source code and the corresponding build script during
the agent.upload folder step, so that the VIC5 executable is
built on the remote system at the beginning of each remote
execution. Note that LaunchAgent also allows the use of pre-
built packages, in which case the application executable and
its dependencies are pre-configured in the HPC system by the
administrators before the initialization of LaunchAgent.

Fig. 9: Time breakdown of running VIC5 module with Laun-
chAgent in different environments.

Figure 9 shows the comparison of the elapsed time of the
VIC5 module. While the VIC5 module takes over 12 minutes
in a local execution environment, we observe 1.8, 2.2 and
1.3 times speedup when we use LaunchAgent to launch the
same model to Stampede2, Bridges-2 HPC, and the Jetstream
cloud system, respectively. For each remote launch, the elapsed
time shown in the figure includes the time for uploading input,
waiting for remote execution and downloading output10. The
figure also shows the remote “prepare” time, which includes
the job queue waiting time and other work such as file-system
operations before and after the VIC5 execution. We have used
optimization techniques for different HPC systems, such as
AVX512 vectorization in Stampede2 and vendor-optimized
libraries for AMD CPUs in Bridges-2. From the figure, it’s
clear that HPC systems such as Bridges-2 and Stampede2
can greatly reduce the VIC5 model execution time, however,
they require longer preparation time due to shared job queues.
The Jetstream Cloud provides limited computation power for
model execution, but has advantages in data transfer since the
cloud instances are physically located closer to the end-user
(also hosted in the IU network). Jetstream also requires less
preparation time because resources (Cloud virtual machines)

10In all remote-launching experiments, a total of 70MB of compressed input
data are uploaded and 600MB of result data are downloaded.

can be allocated on demand. Overall, the results suggest
that for tasks with different characteristics (e.g., computation-
bound or communication-bound), LaunchAgent provides the
flexibility to utilize different types of resources for achieving
the best possible performance.

Note that in experimental results from Figure 9, each
individual remote execution only utilizes one process. To
examine the performance behavior of LaunchAgent with dif-
ferent resource allocation sizes, we ran a similar workflow
with various numbers of processes on the Bridges-2 system. In
this experiment, we use the same West-Branch Susquehanna
river basin study area, but with a longer 5-year simulation
period, which takes around 3440 seconds for local execution.
The uploaded/downloaded file archives for remote executions
are 352.8 MB and 1.17 GB, respectively. The time breakdown
results are shown in Figure 10, where we show the average
time breakdown for 3 runs. Figure 10 shows that we can
achieve at most 10.6 times speed up when 64 processes are
used, compared with the local execution. However, using a
process number larger than 32 does not bring much perfor-
mance benefit: although the VIC5 simulation scales well, the
overhead of upload, preparation, and download time becomes
more significant. We are currently working on adding heuris-
tics so that CyberWater users can get a suggested or preferred
number of processes for their applications. The suggested
number of processes can be estimated using information such
as the current occupation of job queues in the remote systems,
the I/O and scaling patterns of the applications.

Fig. 10: Time breakdown of running VIC5 module with
LaunchAgent on PSC Bridges-2 system with different numbers
of remote processes.

V. DISCUSSION AND RELATED WORK

Apart from the VIC5 model, the CyberWater software
framework currently also supports other hydrological mod-
els such as DHSVM (Distributed Hydrology Soil Vegetation
Model), VIC4 (an older version of the VIC model), and a

8

routing model. Researchers are encouraged to bring in their
own hydrological models and datasets. To serve such needs
more efficiently, we have prepared detailed manual documen-
tation so that collaborating researchers can follow the step-by-
step examples to integrate their own models and data. Also,
the CyberWater project team regularly holds study groups and
user workshop sessions, and recordings of such sessions are
also archived and openly available at the CyberWater project
page at CUAHSI website11.

Several water-science related collaborative information sys-
tems have been developed in recent years. Futurewater [18]
is an ongoing effort at Indiana University to answer crucial
questions such as the climate change effects on Indiana’s water
resources. WaterHub [19] uses a GIS-enabled model sharing
platform to allow users not only to run simulations online but
also to publish and share model results. Those methods typ-
ically utilize browser-based Web access, which is convenient
but can be less feature-rich than a local desktop solution such
as VisTrails. In comparison, the proposed HPC/Cloud enabled
CyberWater software framework combines the benefits of
the rich local environment and powerful remote executions
environments, so that trivial tasks such as format transfor-
mation, GUI operation can be efficiently done locally, with
the computationally expensive components offloaded to remote
sites.

Task-based workflow systems such as PyCOMPSs [20]
and Pegasus [1] provide Python-based interfaces for users
to define workflows containing multi-task dependencies. Parsl
[21] (Pervasive Parallel Programming in Python) is a Python-
based parallel scripting library; it allows developers to ex-
press parallelism in Python code. The advantages of those
workflow systems are perpendicular to the current CyberWater
system design. Although VisTrails is currently adopted in
CyberWater as the workflow management system, the on-
demand HPC/Cloud computing capacity can be adapted to
other workflow systems too, under the generic CyberWater
MSM workflow interface design.

The on-demand usage of remote computing resources has
been previously explored in works such as KNIME [22] and
Taverna [23], [24]. KNIME is a workflow management tool
largely used in the cheminformatics domain and it allows
users to compose data analytical pipelines through its GUI
frontend. KNIME allows selective components submitted to
remote clusters for more efficient executions. However, such
support is only available through its commercial KNIME
Cluster Executor extension12. In comparison, the on-demand
HPC/Cloud support in the CyberWater software framework
is freely available to all CyberWater users. Taverna allows
users to compose workflows from a mixture of distributed web
services, local scripts, and other service types [24]. Computa-
tionally intensive operations, such as genome-scale analyses,
can be performed remotely regardless of local infrastructure.

11https://www.cuahsi.org/projects/cyberwater/
12https://www.knime.com/sites/default/files/inline-images/KNIME

cluster-executor productsheet web.pdf

This approach brings challenges in reliability: the externally-
hosted services may not function correctly due to factors
such as service maintenance, outage, or interface upgrades.
By contrast, CyberWater with HPC/Cloud support does not
rely on designated remote service providers or computing
environments, and as a result, computationally intensive tasks
can be offloaded to various resources more flexibly and
interchangeably.

The CyberGIS-Jupyter framework [25] integrates cloud-
based Jupyter notebooks with HPC resources to form a hybrid
computing environment. CyberGIS-Jupyter uses the central-
ized JupyterHUB service to handle authentication and schedul-
ing Jupyter servers as containers in different virtual machines.
It requires users to write their workflows as Jupyter notebooks
(in Python language). In comparison, CyberWater allows users
to configure complex workflows all from the intuitive, feature-
rich VisTrails front-end. NASA’s NEX project [26] allows
researchers to design workflows in VisTrails and then launch
them to remote HPC resources. In NEX, workflows generated
from VisTrails are submitted as jobs to HPC. In comparison,
the CyberWater system lets researchers identify computation-
ally expensive tasks, and utilizes the power of HPC/Cloud
systems only for those selected tasks.

VI. CONCLUSION AND FUTURE WORK

This work introduces the efforts to extend the CyberWater
software framework with on-demand HPC/Cloud access. To
this end, we design and implement LaunchAgent in Cyber-
Water, which utilizes either a SciGaP channel or a direct
Slurm-based channel to offload computational/data-intensive
tasks to different computing environments such as campus-
based clusters and XSEDE/Grid computing systems. The Cy-
berWater system extended with LaunchAgent not only allows
the open-data and open-modeling framework to continue using
graphical-based workflows with rich GUI-based interactions,
but also enables on-demand access to HPC resources. By se-
lectively offloading computationally and data expensive tasks
rather than entire workflows, CyberWater provides a more
scalable and effective way to use HPC/Cloud resources. We
have demonstrated the expressiveness of our design through
a VIC5 based workflow constructed from CyberWater. Our
experiments show that the new HPC/Cloud enabled Cyber-
Water allows users to launch expensive computing tasks to
remote resources conveniently, gaining significant speed. We
are currently experimenting with more complex large-scale
tasks and adding support to various computationally expensive
models. We also plan to research the scheduling perspectives
of on-demand HPC/Cloud usage, intelligently scheduling tasks
and utilization across multiple types of resources.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation under [OAC-1835817] and [OAC-1835785]
to Indiana University-Purdue University Indianapolis
(IUPUI)/Indiana University (IU), and to University of
Pittsburgh, respectively. This work also used HPC and Cloud

9

https://www.cuahsi.org/projects/cyberwater/
https://www.knime.com/sites/default/files/inline-images/KNIME_cluster-executor_productsheet_web.pdf
https://www.knime.com/sites/default/files/inline-images/KNIME_cluster-executor_productsheet_web.pdf

resources provided by the Extreme Science and Engineering
Discovery Environment (XSEDE) under [TG-EAR200001],
and XSEDE is supported by NSF grant ACI-1548562.

REFERENCES

[1] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang
Mehta, Sonal Patil, Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus:
Mapping scientific workflows onto the grid. In European Across Grids
Conference, pages 11–20. Springer, 2004.

[2] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed
computing in practice: the Condor experience. Concurrency and
computation: practice and experience, 17(2-4):323–356, 2005.

[3] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheideg-
ger, Cláudio T Silva, and Huy T Vo. Vistrails: visualization meets data
management. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 745–747, 2006.

[4] Daniel Luna, Ranran Chen, Cao Yuan, et al. Cyberwater—an open
and sustainable framework for diverse data and model integration. In
American Geophysical Union Fall Meeting (AGU Fall Meeting 2019),
San Francisco, CA, Dec. 9-13 2019.

[5] Daniel Salas, Xu Liang, Miguel Navarro, Yao Liang, and Daniel Luna.
An open-data open-model framework for hydrological models’ integra-
tion, evaluation and application. Environmental Modelling & Software,
126:104622, 2020.

[6] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple
linux utility for resource management. In Workshop on job scheduling
strategies for parallel processing, pages 44–60. Springer, 2003.

[7] Suresh Marru, Lahiru Gunathilake, Chathura Herath, et al. Apache
airavata: a framework for distributed applications and computational
workflows. In Proceedings of the 2011 ACM workshop on Gateway
computing environments, pages 21–28, 2011.

[8] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly
Gaither, Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave
Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, and Nancy
Wilkins-Diehr. XSEDE: Accelerating Scientific Discovery. Computing
in Science Engineering, 16(5):62–74, September 2014.

[9] Xu Liang, Dennis P Lettenmaier, Eric F Wood, and Stephen J Burges.
A simple hydrologically based model of land surface water and energy
fluxes for general circulation models. Journal of Geophysical Research:
Atmospheres, 99(D7):14415–14428, 1994.

[10] Marlon Pierce, Suresh Marru, Eroma Abeysinghe, Sudhakar
Pamidighantam, Marcus Christie, and Dimuthu Wannipurage.
Supporting science gateways using apache airavata and scigap
services. In Proceedings of the Practice and Experience on Advanced
Research Computing, pages 1–4. 2018.

[11] Joseph J Hamman, Bart Nijssen, Theodore J Bohn, Diana R Gergel, and
Yixin Mao. The variable infiltration capacity model version 5 (vic-5):
Infrastructure improvements for new applications and reproducibility.
Geoscientific Model Development, 11(8):3481–3496, 2018.

[12] Indiana University. Supercomputers for academic research at IU, 2021.
https://kb.iu.edu/d/alde.

[13] Texas Advanced Computing Center. Stampede2 HPC system, 2021.
https://www.tacc.utexas.edu/systems/stampede2.

[14] Pittsburgh Supercomputing Center. The Bridges-2 HPC System, 2021.
https://www.psc.edu/resources/bridges-2.

[15] Craig A Stewart, Timothy M Cockerill, Ian Foster, et al. Jetstream: a
self-provisioned, scalable science and engineering cloud environment. In
Proceedings of the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure, pages 1–8, 2015.

[16] The NASA Goddard Earth Sciences Data and Information Services
Center (GES DISC). NLDAS-2 Model Data Description/Information,
2021. https://ldas.gsfc.nasa.gov/nldas/v2/models.

[17] Sujay V Kumar, Michael Jasinski, David M Mocko, et al. Nca-ldas land
analysis: Development and performance of a multisensor, multivariate
land data assimilation system for the national climate assessment.
Journal of Hydrometeorology, 20(8):1571–1593, 2019.

[18] Indiana University. About FutureWater, 2021. https://futurewater.
indiana.edu/about/index.html.

[19] Venkatesh Merwade, Wei Feng, Lan Zhao, and Carol X Song. Waterhub:
a resource for students and educators for learning hydrology. In Pro-
ceedings of the 1st Conference of the Extreme Science and Engineering
Discovery Environment: Bridging from the eXtreme to the campus and
beyond, pages 1–4, 2012.

[20] Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M
Badia, Jordi Torres, Toni Cortes, and Jesús Labarta. Pycompss: Parallel
computational workflows in python. The International Journal of High
Performance Computing Applications, 31(1):66–82, 2017.

[21] Yadu Babuji, Anna Woodard, Zhuozhao Li, et al. Parsl: Pervasive
parallel programming in python. In Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing,
pages 25–36, 2019.

[22] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel,
Tobias Kötter, Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd
Wiswedel. KNIME - the Konstanz information miner: Version 2.0
and beyond. ACM SIGKDD Explorations Newsletter, 11(1):26–31,
November 2009.

[23] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble,
Mathew R. Pocock, Peter Li, and Tom Oinn. Taverna: A tool for
building and running workflows of services. Nucleic Acids Research,
34(suppl 2):W729–W732, July 2006.

[24] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams,
David Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksan-
dra Nenadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall,
Alex Hardisty, Abraham Nieva de la Hidalga, Maria P. Balcazar Vargas,
Shoaib Sufi, and Carole Goble. The Taverna workflow suite: Designing
and executing workflows of Web Services on the desktop, web or in the
cloud. Nucleic Acids Research, 41(W1):W557–W561, July 2013.

[25] Dandong Yin, Yan Liu, Hao Hu, Jeff Terstriep, Xingchen Hong, Anand
Padmanabhan, and Shaowen Wang. Cybergis-jupyter for reproducible
and scalable geospatial analytics. Concurrency and Computation:
Practice and Experience, 31(11):e5040, 2019.

[26] Jia Zhang, Petr Votava, Tsengdar J Lee, Owen Chu, Clyde Li, David
Liu, Kate Liu, Norman Xin, and Ramakrishna Nemani. Bridging vistrails
scientific workflow management system to high performance computing.
In 2013 IEEE Ninth World Congress on Services, pages 29–36. IEEE,
2013.

10

https://kb.iu.edu/d/alde
https://www.tacc.utexas.edu/systems/stampede2
https://www.psc.edu/resources/bridges-2
https://ldas.gsfc.nasa.gov/nldas/v2/models
https://futurewater.indiana.edu/about/index.html
https://futurewater.indiana.edu/about/index.html

	Introduction
	Background
	Cyberwater project
	Airavata gateway framework

	Methodology
	Design of LaunchAgent
	Gateway-based channel
	Direct Slurm-based channel
	Integration with Cyberwater frontend

	Usecases and performance evaluation
	HPC-enabled workflow with LaunchAgent
	Performance evaluation

	Discussion and Related work
	Conclusion and future work
	References

