
COVID CV: A System for Creating Holistic Academic CVs during a Global
Pandemic

Umesh Raja, Nahida Sultana Chowdhury, Rajeev R. Raje, Rachel Wheeler, Jane Williams, Aaron Ganci
Indiana University Purdue University Indianapolis

Indianapolis, Indiana, USA
{uraja, nschowdh, rraje, wheelerr, jrwillim, aganci}@iupui.edu

Abstract—The effects of the Covid pandemic have been, sim-
ilar to the population at-large, unequal on academicians – some
groups have been more susceptible than others. Traditional
CVs are inadequate to highlight these imbalances. CovidCV is
a framework for academicians that allows them to document
their life in a holistic way during the pandemic. It creates a
color-coded CV from the user’s data entries documenting the
work and home life and categorizing corresponding events as
good or bad. It, thus, provides a visual representation of an
academician’s life during the current pandemic. The user can
mark any event as major or minor indicating the impact of
the event on their life. The CovidCV prototypical system is
developed using a three tier architecture. The first tier, the
front-end, is a user interface layer that is a web application.
This prototype has a back-end layer consisting of two tiers
which are responsible for handling the business logic and the
data management respectively. The CovidCV system design is
described in this paper. A preliminary experimentation with
the prototype highlights the usefulness of CovidCV.

Keywords-Client-Server architectural model; Object-
relational mapping; Security; Web App.

I. INTRODUCTION

The current global COVID-19 pandemic has devastated,
similar to the population at-large, the academic community
as well. In addition, its effects are felt differently by different
populations in academia. Many studies have shown that
women and people of color are bearing a disproportionate
burden of service work [1] during the pandemic. Preliminary
data also shows a significant decline of pre-prints and
journal submissions by women [2] since the beginning of the
pandemic. The fallout from the pandemic is expected to have
a long-lasting effect on academic environments. Hence, there
is a need for universities to devise alternative ways to address
these inequalities. One way to tackle this challenge is to
provide an innovative and adequate mechanism to the faculty
to document a holistic picture of their life – a deviation
from the traditional approach to create CVs, which only
documents typical scholarly artifacts such as publications,
grants, and presentations without providing the underlying
“invisible context”. Any alternate mechanism to document
the academic life in current unpredictable times will not only
assist the faculty and scholars to highlight this “invisible

context” but also will provide a different perspective to the
mentors and administrators in academia.

CovidCV is designed to address this challenge – it is a
web-based system that will be beneficial to academicians
to achieve their well-being and continuous advancement,
and at the same, it can be used to foster an institutional
change to achieve more diversity, equality, and inclusion.
CovidCV provides a framework that: a) helps individual
users with their professional development and well-being
by documenting their work/life balance in a simple color-
coded way; b) allows the creation of a comprehensive data-
set that can form a basis for scholarly investigations related
to gender and racial equity in the academy; and c) can be
used as an effective tool by academic institutions to foster
an inclusive environment. The CovidCV prototypical system
(henceforth referred as the “CovidCV system”) creates a
color-coded CV from the user’s data entries document-
ing work and home life, thus, providing in a simple, yet
effective, visual representation of the real-life context of
an academic life. CovidCV documents not only typical
academic successes such as publications, promotions, grants,
and awards, but also academic failures and struggles such
as rejections, missed opportunities, instances of harassment,
and disappointments. In addition, CovidCV allows recording
of various aspects of home life such as important family
events (e.g., birthday celebrations), life changing events
(e.g., loss of a loved one), or ongoing struggles (e.g.,
caring for an elderly parent in the pandemic). The CovidCV
system allows marking any event as Major or a minor event.
CovidCV, hence, provides a comprehensive and holistic view
of the conditions that significantly impact a faculty member’s
work life, thereby providing an appropriate context about the
underlying invisible factors and make them visible.

In this paper, the design of the CovidCV system is
discussed. The rest of the paper is organized as follows:
Second section presents related work. Section III describes
the CovidCV system architecture. Section IV explains the
implementation details of the CovidCV system along with
a discussion of a few experiments. The paper concludes by
highlighting the insights gained and presents directions for
future work.

_______________________________________________

This is the author's manuscript of the article published in final edited form as:

Raja, U., Chowdhury, N. S., Raje, R. R., Wheeler, R., Williams, J., & Ganci, A. (2021). COVID CV: A System for Creating Holistic Academic CVs during a 
Global Pandemic. 2021 IEEE International Conference on Electro Information Technology (EIT), 146–150. https://doi.org/10.1109/EIT51626.2021.9491917

https://doi.org/10.1109/EIT51626.2021.9491917


II. RELATED WORK

University administrators across the country are struggling
to develop appropriate responses to the impacts of Covid,
from pausing tenure clocks to debating changes to review
criteria to reflect the altered workload and increased burdens,
to “reinvent[ing] what success in academia looks like” [3]
[4]. They note that the pandemic is increasing the amount
of time faculty will spend on teaching and service, leaving
less time for scholarly endeavors. In addition, with women
and minority faculty more likely to engage in mentoring
and other service work, the impact is even more severe.
Interestingly, a follow up letter to the paper noted above
[3] insists that promotion and tenure committees need to
carefully consider all activities faculty engage in during
this time to promote equity. They recognize that the CV
is the primary tool faculty use to communicate their work
and that committees use to assess. They promote a COVID
matrix as a mechanism to account for all the extra work
and disruptions [5]. However, this matrix has been criticized
because it does not necessarily reflect the inequitable out-
comes that are more likely to occur to women and faculty
of color [6]. The matrix does not comprehensively capture
all aspects of faculty work and life. National foundations
such as the American Council of Learned Societies [7]
have shifted their funding priorities towards early-career
scholars acknowledging the devastating impact, particularly
on younger scholars who are more likely to have children at
home. We believe that CovidCV addresses these shortfalls,
as it captures the work and non-work changes that have
impacted faculty life.

III. COVIDCV SYSTEM ARCHITECTURE

The CovidCV system, as shown in Figure 1, is designed
as a web-based client-server application and has a 3-tier ar-
chitecture. The front-end is a GUI-based tier that is separated
from the back end layer containing business logic and the
database tiers. The advantages of this separation are: a) all
tiers can evolve independently, b) the front-end carries out
minimal data management resulting in a thin client and thus,
achieves quick response, and c) additional front-end layers,
such as a mobile interface, when created will be able to
utilize a single back-end. Below each of these layers are
discussed.

A. Front-end Layer

The front-end layer or the user interface layer is built
using JavaScript framework called React.js [8]. The frame-
work considers a website as single page application – i.e.,
it instead of rending the entire web-page in the event of
any changes renders only the modified content based on
the user input. Such rendering improves the response time
and provides a better user experience – both features that
are critical for an interactive application such as CovidCV.
The elements displayed on interactive pages are built using

Figure 1: CovidCV System Architecture.

HTML and are styled using CSS. The React.js framework
is built on top of the Node.js [9] framework that contains
the Node Package manager (NPM). The NPM helps to
resolve external dependencies and provides necessary tools
and servers to run node applications. Therefore, the front-
end is deployed using the NPM and we have used the nginx
server [10] to deploy the CovidCV system.

B. Back-end Layer

The application logic layer is programmed in Java-8.0 us-
ing the Spring boot framework [11]. The Spring boot frame-
work provides powerful methods to build RESTful APIs that
enable clients to execute the code from different endpoints.
This framework has a module called Spring Security [12]
that allows many different login methods depending on
application domain. The Spring boot framework, in addition,
supports Aspect oriented programming to separate cross-
cutting concerns such as login and transaction management
from core application logic. The application logic layer
utilizes Hibernate framework that is built on top of Java
Persistence API (JPA) [13]. The purpose of Hibernate is
to provide object-relational mapping to map Java objects to
tables in a relational database. The Liquibase [14] is used
to set up the database before running the application logic
code. In order to satisfy the external dependencies, Apache
Maven [15] is also used in this layer. The application logic
layer requires a web container to accept https requests from
clients and to transfer them to execute appropriate endpoints
– Tomcat [14] server is used in the application logic layer
as the web container.

C. Database Layer

The database layer is the third tier of the CovidCV system
where the data actually resides. MySQL [16] database is used
in the CovidCV prototype because it is open source. The
only action that is needed in this tier for the setup process is
to create a database named covidcv. The back-end code then
automatically creates all the necessary data tables within the
covidcv database and pre-populates it appropriately.

2



D. Communication

Currently, all three tiers are deployed on virtual machines
running on different ports. The front-end layer communi-
cates with the back-end layer by calling APIs over the secure
HTTP (https) protocol. Using https, the data is encrypted
before sending it over the network. Hence, the requests sent
to the server are protected from eavesdropping or man in
the middle attacks. The application logic tier communicates
with the database tier for necessary Create, Read, Update or
Delete (CRUD) operations.

E. Security

Since CovidCV documents many specific personal details
of users, the privacy and security of that data is an inherent
requirement of the CovidCV system. As mentioned earlier,
the communication from the front-end layer to the applica-
tion logic layer is carried over https, so that the data sent over
the network is encrypted. In addition, critical data items of
users such as name, email, and password are stored in the
database in an encrypted format. The encryption of name
and email is being achieved using JPA’s built-in support
that is based on Advanced Encryption Standard (AES) [17].
The password is encrypted using the bcrypt cipher that
even developers themselves cannot decrypt. Spring security
provides PasswordEncoder class that achieve this bcrypt
encryption. However, to change a password, an user’s current
password needs to be properly matched. PasswordEncoder at
that point only returns true/false if the user’s input password
matches the password stored in the database or not.

IV. COVIDCV SYSTEM IMPLEMENTATION

A. Front-end Design

As users of the CovidCV system are expected to be
academicians from various fields, they may not be computer
savvy, the user interface of the CovidCV system had to
be friendly, yet effective. The design of the user interface
was developed using a user-centered, iterative process. We
first identified the type of users that we were targeting with
this application: underrepresented academic faculty in the
U.S. who are already overloaded with tasks at home and
work. With this in mind, we designed the application with a
priority on ease of use and familiarity. We used a principle in
Human-Computer Interaction called “Jakob’s Law” that puts
forth the notion that users spend most of their time on sites
other than your own and that, to work well, they should act
in ways they are already accustomed [18]. To that end, we
followed many established interface and interaction patterns
found in social media and institutional digital measures
software. Inside the interface, functionality that was similar
in nature was grouped visually according to the principle
of uniform connectedness [19]. Drafts of the design were
reviewed by potential users at several points to confirm that
the design was working as intended.

Figure 2: CovidCV Visual representation.

The conceptual user interface was designed using Adobe
XD [20]. Instead of developing the HTML and CSS from
scratch, a plugin called Web Export [21] was used while
translating the XD design to the corresponding code. A
sample representation of CovidCV, created using XD and
implemented programmatically, is shown in Figure 2. Users
can access their CV only after successful login and associ-
ated data input. An authorized user is allowed to download
and share the CV with others - based on specific user
preferences.

Figure 3: CovidCV - User Dashboard.

B. Login and Authentication Process

Authentication, a necessary feature for the CovidCV sys-
tem, was designed using the OAuth standard 2.0 [22] [23]
and is used to grant authorized access to third party appli-
cations on behalf of end users. In the CovidCV system, the
Resource owner password credentials grant type of OAuth

3



is used – this is used when an application authenticates
itself as well as the end-user. More specifically, using this
grant type during the login process, the front-end sends its
own credentials as well as user credentials to the back end.
The back-end first checks if the credentials of the front-end
(client) are valid. If they are, it checks the credentials of
the end-user in the database, and if that check is successful,
then the back-end issues an access token to the front-end.

A new user initially is requested to sign up. Once the
signup process is successfully completed, the user can log in
to the CovidCV system to provide their work and home life
entries. A sample dashboard for a simulated user, containing
representative entries, is indicated in Figure 3.

C. Type of APIs

In the CovidCV system, the REST standard [24] to is used
to design the necessary APIs. Four different types of APIs
are used: a) GET, b) POST, C) PUT, and d) DELETE. The
GET method is used when the purpose of the endpoint is
just to supply the necessary data without any state changes
(e.g., displaying the entries on the dashboard). The POST
endpoints are used when it is necessary to insert a new row to
any table in the database (e.g., adding an user’s activity). The
PUT method is used when the purpose of the endpoint is to
update a row in the database (e.g., updating an user’s email).
Lastly, the DELETE method is used when the purpose of
the endpoint is to delete a row from the database for any
specific reason. In such a case, the CovidCV system simply
returns success 200 status and a null response.

D. Request handling

The application logic tier of the CovidCV system is fur-
ther subdivided into four layers: a) Controller Layer (CL), b)
Business Logic Layer (BLL), c) Service Layer (SL), and d)
Repository Layer (RL). When a request arrives at the Tomcat
web container, it is verified for all security and validity
checks. If the request passes these checks, the Tomcat sends
it to the CL for further processing. When the CL accepts the
request from Tomcat, it simply forwards it to the BLL for
further processing. The BLL performs additional validation
checks, such as duplicate user’s names during the signup
process, and issues any necessary error messages. Once, all
business logic checks are performed, the request parameters
are forwarded to the SL. The SL is responsible for creating
necessary objects using the parameters provided by the
client. After creating the objects that correspond to database
tables, they are forwarded to the RL. The RL performs
queries on the database such as insert, update, delete and
read. If connection with database is not available, the RL
throws an error and advises the user to retry at a later time.

E. DTO vs. Payload vs. Model classes

In CovidCV system, there are three types of plain old
Java objects (POJOs): a) Data Transfer Objects (DTOs), b)

Payload Classes (PCs), and c) Model Classes (MCs). The
purpose of the DTOs is to transfer data across multiple
components in the CovidCV system or return the response
of the request to the user. The DTOs are necessary because
sometimes it is not necessary to return every column of
the database entry to the user. For example, the password
of a user is stored in the database, and that user wants
to see his/her data. In this case, the back end should not
transfer sensitive data to the client. Therefore, in this case,
the DTOs are used to provide only the necessary fields to the
clients. The purpose of the PCs is to get data from clients.
For example, if a user wants to sign up into the CovidCV
system, the back-end needs that user’s specific data. The
PCs are made part of the interface that is visible to clients
in order to know what attributes are required for a request
to get it processed successfully. Finally, the purpose of MCs
is to emulate database tables in terms of Java objects to
achieve object relational mapping. For any interaction with
the database, these MCs are used. Therefore, for any table
in database, a corresponding MC is defined in the back-end
layer. When specific items are retrieved from the database
using the JPA repositories, MCs are returned. Using these
attributes, from the MCs, DTOs are created to supply only
the necessary information to the clients (and eventually end
users).

Table I: Timing breakdown of a single user request.

Timing Phases GET (ms) POST (ms) PUT (ms) DELETE (ms)

Resource Scheduling

Queueing 42.32 58.5 3.52 3.05

Connection Start

Stalled 23.37 0.94 1.85 1.3
DNS Lookup - 52.6 50.26 -

Initial Connection 5.2 45.71 70.47 -
SSL 5.19 27.12 46.04 -

Request/Response

Request Sent 0.39 0.53 0.36 0.51
Waiting (TTFB) 93.85 139.78 189.84 71.98

Content Download 24.15 2.29 2.01 1.32

Total 194.67 327.47 364.35 78.16

F. Scalability

In our experiments, scalability is measured by observing
the relation between the number of requests and their
average execution time for different types of requested APIs
(GET, POST, PUT, and DELETE). We have experimented
with the CovidCV system by implementing a test module
for firing single user and multiple (three) user requests
simultaneously. We compute the end-to-end response time
for a user request by combining the individual times required
by the front-end and back-end layers.

The POST, GET, PUT, and DELETE APIs correspond to
the each of the CRUD operations, respectively. These timing

4



details, for a single user, are shown in Table I. The entries
in Table I indicate that the Create and Update operations
require more time than other operations. The total time
required for each operation, as shown in Table I, is broken
down into three individual times: Resource Scheduling time,
Connection Start time, and Request/Response time. We have
also conducted a similar experiment for multiple (three)
simultaneous user requests. Apart from, changes in the
Waiting (TTFB - Time To First Byte) and Queuing times,
we did not see changes to the other individual times. The
average waiting time and the average Queuing time, for
all APIs combined, were 928.64 msec and 538.98 msec
respectively. These two values contribute to the end-to-end
response time – for multiple users, the average value of the
end-to-end time was 1.48 sec; whereas for a single user, it
was 241.2 msec.

V. CONCLUSION AND FUTURE WORK

The CovidCV system is a web-based App for faculty
and scholars to document their entire holistic life in the
recent pandemic. It is intended to provide multiple function-
alities: a) self-improvement, b) possible mentorship, and c)
addressing inherent problem of inequality in academy. The
CovidCV system is capable of storing and displaying many
different life activities of the users unlike traditional CVs.
The CovidCV system allows the user to record different
events by categorizing them in various types (e.g., good,
bad, or neither) and the corresponding locations (e.g., home,
work or both). Any event can be marked as major or a
regular event. The CovidCV system keeps track of the time
spent by user on various activities. It also records for any
week, the feelings and emotions of the user. All these details
are provided via an effective and user friendly graphical
interface. Currently, the CovidCV system is designed for
faculty members and scholars as the intended users of the
system. The CovidCV system has been internally deployed
and preliminary feedback has been encouraging. Soon it will
be used in a larger campus-wide study. Various extensions
are possible to the CovidCV system. Specifically:

• To develop a admin portal to see a comprehensive and
aggregated view of all users of the CovidCV system.

• To create a mobile-based front-end to the CovidCV
system.

• To deploy multiple replicas of the back-end layer with
a load balancer can be introduced to distribute load
among replicas and provide necessary fault-tolerance.

VI. ACKNOWLEDGEMENTS

This project is supported in part by the IU Office of
the Vice President for Research and the IUPUI Arts and
Humanities Institute.

REFERENCES

[1] S. M. Bianchi, L. C. Sayer, M. A. Milkie, and J. P. Robinson,
“Housework: Who did, does or will do it, and how much does
it matter?” Social Forces, Vol. 91, Issue 1, 2012.

[2] G. Viglione, “Are women publishing less during the pan-
demic? here’s what the data say.” Nature 581, no. 7809, 2020.

[3] J. L. Malisch, B. N. Harris, S. M. Sherrer, K. A. Lewis,
S. L. Shepherd, P. C. McCarthy, J. L. Spott, E. P. Karam,
N. Moustaid-Moussa, J. M. Calarco, L. Ramalingam, A. E.
Talley, J. E. Cañas-Carrell, K. Ardon-Dryer, D. A. Weiser,
X. E. Bernal, and J. Deitloff, “Opinion: In the wake of covid-
19, academia needs new solutions to ensure gender equity,”
Proceedings of the National Academy of Sciences, 2020.

[4] C. Michelle, I, D. Natalie, and M.-W. Diana, “Preventing a
secondary epidemic of lost early career scientists. effects of
covid-19 pandemic on women with children,” Annals of the
American Thoracic Society, 2020.

[5] A. Vineet, M., W. Charles, M., O. Avital, Y., S. Mark, and
S. Jain, “Using the curriculum vitae to promote gender equity
during the COVID-19 pandemic,” Proceedings of the National
Academy of Sciences, 2020.

[6] J. L. Malisch, B. N. Harris, S. M. Sherrer, K. A. Lewis,
S. L. Shepherd, P. C. McCarthy, J. L. Spott, E. P. Karam,
N. Moustaid-Moussa, J. M. Calarco, L. Ramalingam, A. E.
Talley, J. E. Cañas-Carrell, K. Ardon-Dryer, D. A. Weiser,
X. E. Bernal, and J. Deitloff, “Reply to Arora et al.: Concerns
and considerations about using the CV as an equity tool,”
Proceedings of the National Academy of Science, 2020.

[7] “The American Council of Learned Societies Awards
45 Emerging Voices Fellowships,” https: / /www.acls .org/
ACLS - News / ACLS - News / August - 2020 / The - American -
Council-of-Learned-Societies-Awards-45-Emerging-Voices-
Fellowships/?category=fellowshipandgrantcompetitions.

[8] “A JavaScript library for building user interfaces,” https://
reactjs.org.

[9] “Node.js®, A JavaScript runtime built on Chrome’s V8
JavaScript engine,” https://nodejs.org/en/.

[10] “ngnix,” https://www.nginx.com.
[11] “Spring Boot, Create stand-alone applications,” https://spring.

io/projects/spring-boot.
[12] “Spring Security, a powerful and highly customizable au-

thentication and access-control framework,” https://spring.io/
projects/spring-boot.

[13] “Hibernate Architecture,” https : / / www . javatpoint . com /
hibernate-architecture.

[14] “Apache Tomcat. Open source implementation of the Java
Servlet, JavaServer Pages, Java Expression Language and
Java WebSocket technologies,” http://tomcat.apache.org/.

[15] “Apache Maven,” https://maven.apache.org/.
[16] “MySQL,” https://www.mysql.com/.
[17] “Database column-level encryption with Spring Data JPA,”

https://sultanov.dev/blog/database-column-level-encryption-
with-spring-data-jpa/.

[18] J. Nielsen, “Jakob’s Law of Internet User Experience,” https:
//www.nngroup.com/videos/ jakobs-law-internet-ux/ , 2017.

[19] H. S., H. G., W., and C. L., “Uniform connectedness and
classical gestalt principles of perceptual grouping,” Perception
Psychophysics, 1999.

[20] “Adobe XD,” https://www.adobe.com/products/xd.html.
[21] “Web Export ,” https://velara-3.gitbook.io/web-export/.
[22] “OAuth 2.0,” https://oauth.net/2/.
[23] “The OAuth 2.0 Authorization Framework,” https://tools.ietf.

org/html/rfc6749.
[24] “HTTP Methods,” https://restfulapi.net/http-methods/.

5


