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Abstract

Mediation models have been employed in the study of brain disorders to detect the underlying mechanisms between
genetic variants and diagnostic outcomes implicitly mediated by intermediate imaging biomarkers. However, the
statistical power is influenced by the modest effects of individual genetic variants on both diagnostic and imaging
phenotypes and the limited sample sizes of imaging genetic cohorts. In this study, we propose a polygenic mediation
analysis that comprises a polygenic risk score (PRS) to aggregate genetic effects of a set of candidate variants and
then explore the implicit effect of imaging phenotypes between the PRS and disease status. We applied our proposed
method to an amyloid imaging genetic study of Alzheimer’s disease (AD), identified multiple imaging mediators linking
PRS with AD, and further demonstrated the promise of the PRS on mediator detection over individual variants alone.

Introduction

Genome-wide association study (GWAS) of complex brain disorders have discovered a few genetic risk variants for
diseases. For example, various case-control GWAS have been performed in Alzheimer’s disease (AD) and identified
multiple AD susceptible loci1–3. However, given the increasingly divergent and complex path from genes to disease, it
is a challenge to directly link genetic risk variants with brain disorders4. Imaging genetics, a rapidly growing research
field, has been developed to investigate the genetic effects on brain structures and functions, which represent a more
proximate biological link to genes and serve as obligatory intermediate of cognitive and behavioral outcomes. For
example, the amyloid accumulation in brain measured by AV45-PET imaging, which is also referred as “A” in the
“A/T/N” classifcation scheme of AD5, is one of the most promising biomarkers for diagnosis and classification of
AD. Imaging genetics6 has identified a few individual risk loci for brain imaging quantitative traits (iQTs)2, while
the gap between iQT associated variants with brain disorders still needs to be bridged - that is, incorporating brain
imaging information into the genetic analysis of brain disorders can help provide new insights into the phenotypic
characteristics and the implicit molecular mechanisms of disordered cognitive and behavioral outcomes.

Recently, mediation analysis, a statistic model aiming to identify the underlying mechanism of an observed relation-
ship between an independent variable and a dependent variable through a third hypothetical variable (i.e., mediator
variable), has been employed in genetic analysis of brain disorders to detect mechanisms between genetic variants and
disordered outcomes implicitly mediated by brain imaging phenotypes. For example, Bi et al.7 performed a genome-
wide mediation analysis of cognitive traits using neuroimaging measures as intermediates, and successfully detected
several genetic variants for their implicit effects on cognitive behaviors mediated through regional brain structures.

Mediation analysis requires associations of the independent variable with the dependent variable and with the mediator
to be both significant. This makes applying it in brain disorder studies a challenge due to the modest effect of an
individual genetic variant on both diagnostic and imaging phenotypes8, as well as the limited size of the study sample
with all genetic, imaging and diagnostic data available. Moreover, complex diseases are typically influenced by a
collective effect from multiple variants, instead of by a single variant alone. Hence, multivariate association approaches
involving multiple single nucleotide polymorphisms (SNPs) have been developed to consider the joint effect of a set
of SNPs, to increase the statistical power and biological interpretation.
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Table 1: Participant characteristics in AV45-PET mediation analysis.

Diagnosis HC EMCI LMCI AD p-value
Number 204 246 169 140 -
Gender(M/F) 100/104 128/118 90/79 76/64 7.72E-01
Age(mean±std) 75.70±6.46 71.33±7.32 73.78±8.72 75.10±8.01 4.20E-09
Education(mean±std) 16.32±2.72 16.04±2.63 16.18±2.87 15.64±2.69 1.39E-01
APOE ε4 present 27.59% 42.04% 49.11% 67.14% 8.13E-12

P-values were assessed to examine whether the differences among diagnosis groups are significant, and
were computed using one-way ANOVA (except for gender using χ2 test). The p values< 0.05 are shown
in bold. HC = Healthy Control; EMCI = Early Mild Cognitive Complaint; LMCI = Late Mild Cognitive
Complaint; AD = Alzheimer’s Disease

Polygenic risk score (PRS)9 is one of the popularly used multivariate association approaches, and has been widely
applied to many complex diseases, for example, Alzheimer’s disease (AD)10, to understand the underlying genetic
architecture. PRS aggregates the genetic effects of a set of trait-related SNPs which may not be individually significant
while may cumulatively contribute to the phenotypic variance. The PRS is typically calculated using the effect sizes
of SNPs from a large genetic association analysis of diagnostic traits to improve the power of detecting genetic factors.
For example, PRS studies of AD have been conducted by including significant SNPs from large AD meta-analysis,
and have successfully demonstrated the contribution of their collective effect on AD and its biomarkers10.

In this study, we propose to explore the intermediate role of imaging QTs in the study of AD. Given the modest
size of available samples having both imaging and genetic data, we perform a polygenic mediation analysis of AD
to detect brain imaging mediators which intermediately link the pathological path from gene to disease. Specifically,
we construct a PRS using a set of candidate disease SNPs with corresponding genetic effects obtained from a large
meta-analysis of AD, and apply the mediation model to detect the indirect effect of the PRS on disease via imaging
phenotypes. To show the effectiveness of our implemented polygenic mediation analysis, we compare the performance
of PRS with the well-known AD SNPs in the APOE gene on imaging mediator identification, as well as on the detection
of imaging mediators for their abilities of early stage prediction.

Materials and Methods

To demonstrate the power of polygenic mediation analysis for identifying imaging modulators, we apply it to the
amyloid imaging genetic analysis in the study of AD. “Amyloid cascade hypothesis” has been considered the leading
pathogenesis of AD for decades where brain amyloid deposition is thought to happen over years before the early
symptom of AD11, 12, and can be measured by brain imaging methods.

This study was approved by institutional review boards of all participating institutions and written informed consent
was obtained from all participants or authorized representatives.

Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu)13. The ADNI was launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early AD.
For up-to-date information, see www.adni-info.org.

AV45-PET data acquisition and processing

Preprocessed [18F]Florbetapir (or 18F-AV-45) PET scans (i.e., amyloid imaging data) were downloaded from the
ADNI website (adni.loni.usc.edu), then aligned to the corresponding MRI scans and normalized to the MNI
space as 2 × 2 × 2 mm voxels. Amyloid measures from 116 regions of interest (ROIs) were further extracted based
on the MarsBaR AAL atlas14. We excluded the cerebellar ROIs due to their lack of flubetapir tracer activity and
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Table 2: Details of AD candidate SNPs used to construct two polygenic risk scores PRS+ and PRS-: (1) PRS+ was
computed from all 23 SNPs, and (2) PRS- was computed from 22 SNPs without the APOE SNP rs41289512.

Closest gene CHR SNP BP A1 A2 Meta-GWAS beta Meta-GWAS p
ADAMTS4 1 rs4575098 161155392 A G 0.016 2.05E-10
CR1 1 rs2093760 207786828 A G 0.024 1.10E-18
BIN1 2 rs4663105 127891427 C A 0.030 3.38E-44
INPPD5 2 rs10933431 233981912 G C -0.015 8.92E-10
CLNK 4 rs6448453 11026028 A G 0.014 1.93E-09
HS3ST1 4 rs7657553 11723235 A G 0.005 5.09E-02
CD2AP 6 rs9381563 47432637 C T 0.014 2.52E-10
ZCWPW1 7 rs1859788 99971834 A G -0.018 2.22E-15
EPHA1 7 rs7810606 143108158 T C -0.014 3.59E-11
CLU/PTK2B 8 rs4236673 27464929 A G -0.020 2.61E-19
ECHDC3 10 rs11257238 11717397 C T 0.013 1.26E-08
MS4A6A 11 rs2081545 59958380 A C -0.017 1.55E-15
PICALM 11 rs867611 85776544 G A -0.020 2.19E-18
SLC24A4 14 rs12590654 92938855 A G -0.014 1.65E-10
ADAM10 15 rs442495 59022615 C T -0.013 1.31E-09
KAT8 16 rs59735493 31133100 A G -0.013 3.98E-08
SCIMP 17 rs113260531 5138980 A G 0.019 9.16E-10
ABI3 17 rs28394864 47450775 A G 0.012 1.87E-08
BZRAP1-AS1 17 rs2632516 56409089 C G -0.010 9.66E-07
ABCA7 19 rs111278892 1039323 G C 0.019 7.93E-11
APOE 19 rs41289512 45351516 G C 0.200 5.79E-276
CD33 19 rs3865444 51727962 A C -0.013 6.34E-09
CASS4 20 rs6014724 54998544 G A -0.022 6.56E-10

finally included 90 amyloid imaging measures in our analysis. 759 non-Hispanic Caucasian participants (Table 1)
with complete baseline ROI-level AV45 measurements were studied.

Genotyping data

Genotyping data were also obtained from ADNI, and were quality controlled (QCed) as described previously15.
Briefly, genotyping was performed on all ADNI participants following manufacturer’s protocol using blood genomic
DNA samples and Illumina GWAS arrays (610-Quad; OmniExpress, or HumanOmni2.5-4v1)16. QC was performed
in PLINK v1.9017 using the following criteria: 1) call rate per marker ≥ 95%, 2) minor allele frequency ≥ 5%, 3)
Hardy Weinberg Equilibrium test p ≥ 1.0E-6, and 4) call rate per participant ≥ 95%. Significant relatedness pairs
with PI HAT > 0.45 were identified and thereafter one individual from each pair was randomly excluded. Haplotype
patterns from the 1,000 Genomes Project reference panel were then applied to impute the SNPs that were not directly
genotyped from arrays. In total, 5,574,300 SNPs were obtained for 759 participants involved in this work.

Polygenic risk scores

A polygenic risk score (PRS) is typically calculated based on a set of trait-related SNPs as the sum of their genotype
values (i.e., numbers of minor alleles) weighted by their corresponding effect sizes on the diagnostic trait. In this
work, we propose to comprise PRSs using AD candidate SNPs. A most recent large scale meta analytical GWAS
(meta-GWAS) of clinically diagnosed AD and AD-by-proxy with totally 455, 258 samples (Phase 3, 71, 880 cases and
383, 378 controls)3 was conducted and identified a list of 32 AD SNPs in addition to APOE rs429358, which is the best
known AD genetic risk factor. Among these 32 SNPs, there were 23 available in our genotyping data. These 23 AD
candidate SNPs were employed in this study for PRS calculation. The summary statistics of all these AD candidate
SNPs were downloaded from https://ctg.cncr.nl/software/summary_statistics. Table 2 shows
the detailed information of these 23 SNPs, including their genetic effects on AD.
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Given the 23 candidate SNPs, we extracted their genotype values from the genotyping data of 759 ADNI participants
and obtained their effect sizes on AD from the large meta-GWAS of AD. Below we describe how a PRS is computed
based on a set of AD candidate SNPs. We use G = [gi,j ] to denote the genotype data from ADNI, where gi,j ∈ (0, 1, 2)
is the number of minor alleles of SNP j in subject i. For subject i, given a set of AD candidate SNPs S={s1, . . . , sn},
the PRS is calculated as follows:

PRSi =
n∑
j=1

βj · gi,j , (1)

where βj is the beta coefficient of SNP j obtained from the meta-GWAS of AD. We then standardized PRS across
subjects to have mean of zero and standard deviation of one.

To discover novel signals contributed by SNPs in addition to the well-known APOE region, we compared the perfor-
mances of two PRSs computed by including the APOE SNP or not. Although APOE e4 SNP rs429358 is not in the
list of 23 candidate SNPs, another SNP rs41289512 from the APOE region is part of the list. Given the linkage dis-
equilibrium (LD) between rs429358 and rs41289512 (r2 = 0.214, D′ = 0.967), we note that rs41289512 may share
some APOE e4 effect. With this observation, we constructed two different PRSs (PRS+ and PRS-) using summary
statistics of AD candidate SNPs, and performed a comparative mediation study of amyloid imaging phenotypes for
the following four genetic scores including two PRSs and two APOE SNPs:

• PRS+: PRS computed using all 23 AD candidate SNPs in Table 2

• PRS-: PRS computed using 22 AD candidate SNPs (without rs41289512) in Table 2

• rs429358: APOE e4 SNP, the best known AD genetic risk factor

• rs41289512: APOE SNP identified by the recent meta-GWAS study3

Mediation analysis

For each of the four genetic scores, we followed Baron and Kenny (1986)18 to perform standard mediation analysis
for identifying imaging phenotypes as potential disease mediators.

Let y ∈ {0, 1} be the dependent variable which is a diagnostic phenotype (0:control, 1:case) in our study, x be
the independent variable which is one of the four genetic scores, z be the covariates (age, sex and education), and
M = {mi}, i ∈ (1, . . . , 90) be the set of brain imaging mediators. Mediation analysis could be performed following
the three steps listed as below.

Step 1: We use logistic regression to regress the diagnostic outcome y against the genetic score x, controlling for z:

logit(Pr(y = 1)) = β11x+ β12z + ε1, (2)

where the coefficient β11 should be significant (p-value < 0.05) to pass the first step.

Step 2: We use linear regression to regress the imaging mediator mi against the genetic score x, controlling for z:

mi = β21,ix+ β22,iz + ε2,i, (3)

Here the coefficient β21,i should be significant after correcting for multiple comparisons. We employ Bonferroni
correction in this step, that is, the significant p-value threshold is 0.05/90 = 5.56E-04.

Step 3: We use logistic regression to regress diagnostic outcome y against both the genetic score x and the mediator
mi, controlling for z:

logit(Pr(y = 1)) = β31,ix+ β32,imi + β33,iz + ε3,i. (4)

Note step 3 is performed on only mediators passing the second step. We again employ Bonferroni correction for
multiple comparisons, that is, correct for the number of mediators surviving step 2. The coefficient β32,i should
be significant and |β31,i| < |β11| namely an indirect effect is present between outcome y and PRS x mediated
through mi.
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Table 3: Five diagnostic case-control groups included in mediation analysis.

Group Control Case # of subjects
1 HC AD+EMCI+LMCI 759
2 HC AD 344
3 HC LMCI 373
4 HC EMCI 450
5 HC EMCI+LMCI 619

Table 4: Pearson correlation coefficients among two PRSs and two studied SNPs.

PCC PRS+ PRS- rs41289512 rs429358
PRS+ 1 0.572 0.831 0.438
PRS- 0.572 1 0.018 0.073

rs41289512 0.831 0.018 1 0.484
rs429358 0.438 0.073 0.484 1

We perform mediation analysis to explore the underlying association between each genetic score and diagnosis. Given
that AD is a progressive disease where the dementia symptoms gradually worsen over a number of years, it is critical
to identify the biomarkers which can predict the disease at early stage. Therefore, we perform mediation analysis on
five case-control groups, which focus on different disease stages. The five grouping schemes are shown in Table 3.

Mediated effect comparison

As evidenced in the “Mediation Analysis” section, the total effect of a genetic score on the diagnostic outcome is
β11 = β31,i + (β32,i · β21,i), where the β31,i is the direct effect and β32,i · β21,i is the indirect effect. Indirect effect,
also called mediated effect, measures the amount of mediation, that is, the effect of the genetic score on outcome due
to the imaging mediator.

In order to compare the mediated effects across different brain regions, we follow Breen et al. (2013)19 to calculate
relative magnitude of the indirect effect to the total effect. The proportion of the effect mediated by mi is calculated
as follows:

prop mediation(i) =
β32,i · β21,i

β31,i + β32,i · β21,i
. (5)

Results
Correlation among studied PRSs and SNPs

Four genetic scores, including two PRSs and two APOE SNPs, are compared in the mediation analysis to detect the
additional effect of AD candidate SNPs beyond the well-known APOE SNPs. We first compute the Pearson correlation
coefficients (PCCs) among the four genetic scores to evaluate their relationships (see Table 4). Even though the
calculation of PRS+ involves the SNP rs41289512 that is in LD with APOE SNP rs429358, correlation between PRS+
and rs429358 is not very strong (PCC = 0.438), suggesting that PRS+ provides additional, novel information outside
of the well-known APOE SNP rs429358. Further, we argue that from the moderately high correlation between PRS-
and PRS+ (PCC = 0.572), our construction of the PRS- as a latent variable can provide novel information outside of
the APOE region altogether.

Mediation analysis summary

For each genetic score, mediation analyses are performed across five different case-control grouping schemes. We
summarize the results in Table 5, by listing the p-values and odds ratios (ORs) of the first step as well as the number
of discovered mediators in each mediation analysis experiment.

From Table 5, PRS+, compared with other three genetic scores, obtains the largest number of mediators across different
diagnostic case-control experiments, except for HC vs AD group where APOE SNP rs429358 identifies 75 mediators.
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Table 5: Mediation analysis summary. For each experiment, the p-value and odds ratio of the first step in media-
tion analysis are listed, as well as the number of mediators discovered. The smallest p-value and largest number of
mediators across case-control groups are shown in bold.

Group Result PRS+ PRS- rs41289512 rs429358

HC vs MCI+AD (N = 759)
p-value 3.47E-04 2.20E-02 5.38E-03 1.53E-07

OR 1.42 1.22 1.33 1.71
# mediator 68 38 61 54

HC vs AD (N = 344)
p-value 7.08E-06 4.05E-03 2.49E-04 7.09E-13

OR 1.71 1.4 1.52 2.68
# mediator 16 0 0 75

HC vs LMCI (N = 373)
p-value 3.47E-03 6.52E-02 1.66E-02 8.86E-06

OR 1.38 1.22 1.3 1.67
# mediator 33 0 2 31

HC vs EMCI (N = 450)
p-value 4.48E-02 1.40E-01 1.72E-01 2.08E-02

OR 1.24 1.16 1.16 1.28
# mediator 20 0 0 11

HC vs MCI (N = 619)
p-value 7.00E-03 6.69E-02 4.28E-02 3.03E-04

OR 1.3 1.18 1.23 1.44
# mediator 41 0 39 27

This demonstrates the power of the collective effect of AD candidate SNPs for discovering additional brain imaging
mediators than only APOE SNPs. SNP rs429358 outperforms other PRSs in HC vs AD group, possibly because of
both the relatively small sample size (N = 344) and strong effect of rs429358 on AD. PRS- mediation analyses identify
mediators from only the first diagnostic grouping scheme (i.e., HC vs MCI+AD), since it could not pass the first step
for other grouping schemes. That is, in our data, PRS- is not significantly associated with each individual diagnosis.

Given the best performance of mediation analysis in the complete data (i.e., HC vs MCI+AD), we compare the me-
diators identified from different genetic scores. Figure 1(a) shows the intersections of mediators among PRSs on the
HC vs MCI+AD group. Totally 68 unique ROIs are identified across the four experiments, 33 of which are commonly
captured by mediation analyses of all four genetic scores. Mediation of PRS+ captures all 68 mediators, of which 3
mediators are not reported by any other PRSs. This additional findings from PRS+ mediation indicate the effective-
ness of combination of AD candidate SNPs beyond APOE rs429358 for mediator detection. Although rs41289512
and APOE SNP rs429358 are in the LD, rs41289512 and PRS+ which includes the genetic effect of rs41289512, still
capture additional 6 mediators than rs429358 and PRS-, suggesting the role of APOE region (containing additonal
information on top of the best-known APOE e4 SNP) in the path from gene to diagnosis. Compared with rs429358,
5 ROIs are identified by PRS+, PRS- and rs41289512, further demonstrating the complex and underlying molecular
mechanism of AD and the necessity of investigating the joint effect of genetic variants. To better illustrate the brain
location of these interesting imaging mediators, we map the ROIs labeled in Figure 1(a) to the brain, and show them
in Figure 1(b). We further discuss the detailed functions of identified imaging mediators in the next section.

Stagewise brain region indicators

It is critical and urgently required to predict AD in its early stage, which is also difficult due to the divergent and
complex path from gene to disease. Our mediation analysis of imaging phenotypes could help understand the under-
lying molecular mechanism, by discovering intermediate brain measures which have more proximate biological link
to genetic basis. Accordingly, the mediators identified from different disease diagnostic groups would help recognize
disease stage-specific brain regions.

Figure 2 shows two heatmaps of results from PRS+ and rs429358 mediation analyses, presenting the proportions of
indirect effect mediated by brain ROIs across experiments on different diagnostic groups, with brain ROIs exhibiting
similar effect sizes clustered together. A total of 8 clusters are formed and illustrated by red boundary lines. Figure 3
shows the brain map of these clusters. These clusters are further mapped to brain structural regions according to their
anatomical locations and shown in Table 6.

Overall, PRS+ which represents a more comprehensive genetic view of AD risk, presents more stable performance
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Figure 1: (a) Mediators discovered over different PRSs for HC vs. MCI+AD. (b) Brain mapping of regions discovered
without rs429358

Figure 2: Heatmaps of indirect effect sizes of brain regions as mediator across mediation analyses on different diag-
nostic groups. Top panel shows the result of PRS+ mediation analysis and bottom panel shows the result of APOE
rs429358. Color bar in the top row indicates brain region groups.

than only rs429358 on mediator discovery in the whole dataset (i.e., HC vs MCI+AD). While rs429358 performs more
stably in HC vs AD group, mostly due to its strong effect on AD. From both PRS+ and rs429358 mediation results,
regions included in the first two clusters are all located in the frontal lobe, and show strong mediation effects across
all stages of AD. Some ROIs are not picked up in PRS+, possibly due to the limited sample size. PRS+ allows the
discovery of more mediators for EMCI patients compared with using just rs429358, as shown in cluster 3 where most
ROIs in PRS+ analysis show mediation effects in HC vs EMCI group while none are captured by rs429358. This
indicates the sensitivity of comprised AD candidate SNPs for their collective effect on detection of early stage disease
biomarkers. ROIs grouped in clusters 4 and 5 distribute in various brain regions, and present different mediation effects
for different stages. For ROIs in cluster 4, both PRS+ and rs429358 detect their indirect effect in the HC vs MCI and
HC vs MCI+AD groups, while only left and right angular gyrus are captured by PRS+ in HC vs EMCI group. This
merit further examination on angular gyrus for its possible role as an early disease indicator.

Discussion

In this study, we have proposed to employ polygenic mediation analysis into imaging genetics of AD, to detect brain
regions mediators for linking the complex path from genetics to diagnosis. The discovered imaging mediators in-
termediate the molecular modulation of AD candidate variants on disease, which may not be directly detected from
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Table 6: Anatomical location of grouped brain regions from mediation analysis. For each cluster, the largest number
of ROIs across brain structural regions is shown in bold.

Cluster Subcortical Frontal Cingulate Parietal Temporal Occipital Insula Sensory-Motor Cortex
1 0 4 0 0 0 0 0 0
2 0 7 0 0 0 0 0 0
3 0 5 1 0 3 0 0 0
4 0 5 2 4 5 0 1 0
5 2 0 2 0 1 0 1 0
6 0 1 0 4 1 0 0 0
7 0 2 0 1 6 6 0 4
8 10 0 1 1 4 4 0 2
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Figure 3: Brain mapping of clustered regions from our mediation analyses (see clustering results in Figure 2).

traditional SNP-outcome association analysis. We assess the performance of PRS comprised from multiple AD can-
didate SNPs on mediator detection, and compare with the best-known AD genetic risk factor in the APOE gene. To
the best of our knowledge, this is among the first analysis in the study of AD for exploring mediation effect of imag-
ing features underlying the PRS and disease. Our polygenic mediation analysis has identified multiple brain imaging
mediators, a few of which present promises as early disease indicators.

We performed mediation analyses of two PRSs and two SNPs (i.e., PRS+, PRS-, rs41289512 and rs429358), among
which PRS+ shows more power on mediator detection than the others, especially on the complete set of participants
(N = 759; see Figure 1). In the HC vs MCI+AD study, PRS+ mediation model discovers three novel mediators
undetected by other genetic scores, including right calcarine sulcus, right paracentral lobule and right postcentral
gyrus. In addition, 6 mediators are detected by both PRS+ and rs41289512, and 5 mediators are detected by PRS+,
PRS- and rs41289512. These novel findings indicate the cumulative effect of combined AD candidate SNPs beyond
APOE e4 SNP rs429358 and may help provide more insights into the imaging genetic mediation mechanism of AD.

Based on the above observation, in the following, we focus on comparing the discoveries from PRS+ with those from
rs429358 for different diagnostic groups in comparison with HC. From Figure 2, mediators detected by PRS+ and
rs429358 illustrated both consistent and distinct patterns for different diagnostic groups across the 8 clusters. All 4
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frontal lobe regions contained in cluster 1 show consistent intermediate effects across all stratified analyses in both
PRS+ and rs429358 mediation models, suggesting the involvements of these four regions as intermediate modulators
from early to late stages of AD. In cluster 2, regions are located in the frontal lobe and consistently detected except
the PRS+ on HC vs AD group, possibly because of the modest sample size (N = 344) and the small PRS effect size.

From clusters 3 and 4, no regions are detected by rs429358 as mediators in the EMCI group, while PRS+ effects
in EMCI go through most cluster 3 regions as well as left and right angular gyri of cluster 4. This suggests that
in early stage PRS+ may start to affect brain mechanisms in these specific regions, while the effect of rs429358
appears at late stage. These regions can help serve as early indicators and provide valuable information for tracking
disease progression from very early stage. As mentioned above, the 3 novel detected mediators by PRS+ in the HC
vs MCI+AD group are located in clusters 6 and 7. These regions also exist in the rs429358 mediation result on HC
vs AD group, while are not identified from the whole dataset, suggesting the differential effects of PRS+ and APOE
on these regions. That is, these regions may have implicit effects in the paths from both PRS+ and APOE to disease
while in different stages.

From clusters 1 to 7, mediators detected by APOE are all from HC vs AD comparison, while mediators detected by
PRS+ are all from HC vs MCI+AD comparison. This confirms the strong effect of APOE rs429358 in late AD, which
however has not exhibited in the early stage. On the other hand, PRS+ may not have comparable effect on disease
as rs429358 especially given small sample size, but it conserves the ability of mediating biomarkers through various
stages given its joint effect from multiple candidate variants. This suggests the power of the collective effect of SNPs
which are not individually significant while cumulatively affecting disease.

Conclusions

In conclusion, we performed PRS mediation analyses of Alzheimer’s disease for detecting intermediate imaging phe-
notypes to bridge the gap between genetics and disease, by discovering the implicit effects of AD risk variants. We
discovered amyloid imaging mediators using PRS comprised from AD candidate SNPs, and compared its effective-
ness with the well-known APOE SNP rs429358. As it is critical to predict the disease in early stage, we further
evaluated the power for early disease indicator discovery, where PRS outperformed the APOE SNP alone, showing
the promise of PRS on biomarker detection. This work can be further expanded towards several future directions.
For example, different strategies can be used to construct the PRS, like threshold-based approaches which evaluate
the performance of different number of top SNPs from GWAS results. Another direction is to apply PRS mediation
analysis to multi-modal imaging data for understanding genetic mechanisms from a more comprehensive perspective.
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