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Abstract

Brain imaging genetics becomes an important research topic since it can reveal complex 

associations between genetic factors and the structures or functions of the human brain. Sparse 

canonical correlation analysis (SCCA) is a popular bi-multivariate association identification 

method. To mine the complex genetic basis of brain imaging phenotypes, there arise many SCCA 

methods with a variety of norms for incorporating different structures of interest. They often use 

the group lasso penalty, the fused lasso or the graph/network guided fused lasso ones. However, 

the group lasso methods have limited capability because of the incomplete or unavailable prior 

knowledge in real applications. The fused lasso and graph/network guided methods are sensitive to 

the sign of the sample correlation which may be incorrectly estimated. In this paper, we introduce 

two new penalties to improve the fused lasso and the graph/network guided lasso penalties in 

structured sparse learning. We impose both penalties to the SCCA model and propose an 

optimization algorithm to solve it. The proposed SCCA method has a strong upper bound of 

grouping effect for both positively and negatively highly correlated variables. We show that, on 

both synthetic and real neuroimaging genetics data, the proposed SCCA method performs better 

than or equally to the conventional methods using fused lasso or graph/network guided fused 

lasso. In particular, the proposed method identifies higher canonical correlation coefficients and 

captures clearer canonical weight patterns, demonstrating its promising capability in revealing 

biologically meaningful imaging genetic associations.
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1. Introduction

Recently, brain imaging genetics becomes more and more popular in biomedical and 

bioinformatics studies. Brain imaging genetics aims to detect genetic associations with brain 

imaging phenotypes, and further to uncover how genetic factors influence the structure or 

function of the human brain using imaging measurements as the quantitative endophenotype 

(Potkin et al., 2009b; Vounou et al., 2010; Kim et al., 2013; Saykin et al., 2015). The genetic 

factors, such as the single nucleotide polymorphisms (SNPs), and imaging quantitative traits 

(QTs) are all multivariate. Therefore, identifying complex bi-multivariate associations that 

cannot be achieved by univariate methods is an important task in brain imaging genetics.

Sparse canonical correlation analysis (SCCA) gains wide attention in brain imaging genetics 

for its powerful capability in bi-multivariate association identification and feature selection. 

There are many SCCA methods depending on different type of sparsity-inducing techniques. 

The ℓ1-norm penalty is among the most popular ones; however, it only pursuits individual 

feature level sparsity (Witten et al., 2009; Witten and Tibshirani, 2009; Parkhomenko et al., 

2009; Hardoon and Shawe-Taylor, 2011; Chi et al., 2013). The biomarkers usually function 

jointly other than individually (Shen et al., 2010) in biomedical studies. For example, 

correlations usually exists between SNPs in a linkage disequilibrium (LD) block in the 

genome, and also among voxels in a region of interest (ROI) in the brain. Therefore, 

detecting the structural sparsity, such as the group level sparsity or the graph/network level 

sparsity, is of great interest and importance in brain imaging genetics (Shen et al., 2010, 

2014).

To accommodate the structural sparsity, several structured SCCA methods have been 

proposed. They can be roughly classified into two kinds based on their different penalties 

(Du et al., 2016). The first kind of SCCA methods use the group lasso penalty, which is an 
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intra-group ℓ2-norm and inter-group ℓ1-norm (Silver et al., 2012; Chen et al., 2012; Chen and 

Liu, 2012; Chen et al., 2013; Lin et al., 2014; Du et al., 2014; Yan et al., 2014; Du et al., 

2018, 2019). The group lasso tends to perform variable selection at the group level, and each 

group will be shrunk to zero or not as a whole (Yuan and Lin, 2006). To our knowledge, 

these SCCA methods require the group structure to be provided in advance, which limits 

their applications as the precise prior knowledge is hard to obtain in real biomedical studies 

(Du et al., 2016). The second kind of SCCA methods recover the structure information via 

the graph or network guided penalty (Du et al., 2016; Chen et al., 2012; Chen and Liu, 2012; 

Chen et al., 2013; Yan et al., 2014; Du et al., 2017). They are more flexible than the previous 

type since they can either use any available prior knowledge to recover the specific structure, 

or operate in a structure pursuing mode (Du et al., 2016; Chen et al., 2012). There are three 

types of graph guided penalties: (1) the graph guided fused lasso penalty and its variants (Du 

et al., 2016; Chen et al., 2012; Chen and Liu, 2012; Chen et al., 2013), (2) the sample 

correlation sign based graph guided fused ℓ2-norm penalty (Chen and Liu, 2012; Yan et al., 

2014), and (3) the graph guided absolute fused ℓ2-norm penalty (Du et al., 2016). Du et al. 

(2016) has shown that the first two types of graph guided penalties can introduce estimation 

bias since the sign of the sample correlations may be incorrectly calculated. The reason 

could be that the sign can be easily swapped when removing a fraction of the data or 

perturbing the data as in bootstrap or sub-sampling. The third type of SCCA methods 

impose ℓ2-norm on the structure penalty terms, which might not produce desirable structural 

sparsity (Du et al., 2017).

Inspired by the success of group lasso, we consider a case where each group consists of only 

two variables. Both variables will be simultaneously shrunk to zero or not with equal or 

similar weights. This motivates us to introduce two novel penalties, i.e. the fused pairwise 

group lasso (FGL) and the graph guided pairwise group lasso (GGL). The FGL imposes 

pairwise group lasso onto adjacent variables to introduce a chain of smoothness, and the 

GGL imposes pairwise group lasso terms guided by an undirect graph. The FGL encourages 

adjacent smoothness, and thus can identify successively highly correlated signals even 

though their signs are opposite. The GGL is more powerful than those conventional 

graphical lasso based methods as it is sample correlation sign independent too. Both FGL 

and GGL can be used in the data-driven mode where no prior knowledge is given, while 

FGL does assume that the genetic data has a sequential structure. Besides, GGL bridges the 

gap between the group lasso and graph guided penalties. As stated earlier, there usually 

exists a chain relationship across SNPs and a graphical relationship among voxels. To better 

solve these brain imaging genetic problems, we here propose a novel SCCA model (FGL-

SCCA) which imposes the FGL penalty onto the genetic markers and GGL penalty onto the 

imaging measurements. FGL-SCCA intends to recover the adjacent and graphical 

smoothness and structure information automatically. It is sample correlation sign 

independent, which means it can assign equal or similar weights for those correlated 

variables no matter whether they are positively or negatively correlated. Thus FGL-SCCA is 

more robust than those existing SCCA methods using fused lasso and graph guided 

penalties. Meanwhile, we propose an efficient optimization algorithm to solve the FGL-

SCCA problem. We also provide a quantitative upper bound for the grouping effect of FGL-

SCCA to demonstrate its structure identification capability. Compared with three state-of-
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the-art SCCA methods FL-SCCA (Witten and Tibshirani, 2009), NS-SCCA (Chen and Liu, 

2012) and AGN-SCCA (Du et al., 2016), FGL-SCCA obtains higher or equal and more 

stable correlation coefficients on both synthetic data and real imaging genetic data from an 

Alzheimer’s disease (AD) cohort. Besides, our method also identifies cleaner and sparser 

canonical weights than those benchmarks, and thus has the potential to provide an easier 

interpretation to guide subsequent analysis.

2. Methods

In this paper, we denote scalars as italic letters, column vectors as boldface lowercase letters, 

and matrices as boldface capitals. The Euclidean norm of a vector u is denoted as ∥u∥. 
X ∈ ℛn × p is a matrix representing the SNP data, where n is the number of participants and 

p is the number of SNPs. Y ∈ ℛn × q is the matrix of QT data with q being the number of 

imaging measurements.

2.1. The Fused Pairwise Group Lasso (FGL)

To recover the fused associations from the genetic data, we define the FGL penalty as 

follows

ΩFGL(u) = λ1 ∑
i = 1

p − 1
wi, i + 1 ui2 + ui + 1

2 , (1)

where wi,i+1 is the weight for two adjacent variables, and λ1 is a positive tuning parameter.

The FGL absorbs the advantages of both group lasso and fused lasso. Thus its merits are 

twofold. On one hand, the pairwise group lasso constraint introduces a chain of smoothness 

across all elements of the vector u. This makes two adjacent as well as strongly associated 

variables being equal or similar with respect to their estimated weights. On the other hand, 

owing to the ℓ2-norm, the FGL penalty is sample correlation sign independent. Therefore, it 

can extract signals that the fused lasso cannot, e.g. two adjacent features with negative 

correlation. We will demonstrate this later in Theorem 2.

2.2. The Graph Guided Pairwise Group Lasso (GGL)

Though the FGL could mine structure information, the smoothness is only imposed on 

adjacent variables. We sometimes are more interested in the network or graph structure 

hidden in the data. As discussed earlier, both functional and structural mechanisms of the 

human brain show a network structure rather than a group structure. Therefore, imposing the 

group-like constraint such as the group lasso or FGL might not be the best option. On this 

account, we extend the FGL to the graphical mode. Mapping the feature space in terms of v 
onto an undirected graph G, we define the graph guided pairwise group lasso (GGL) as

ΩGGL(v) = λ2 ∑
(j, k) ∈ E

ωj, k vj2 + vk
2, (2)

where E is the edge set guided by the graph G, and wj,k is the edge weight. λ2 is a positive 

tuning parameter to control the amount of regularization.
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The GGL penalty takes the advantage of both group lasso and graphical lasso. First, if there 

is no prior knowledge, every pairwise term will be included to encourage |vj| ≈ |vk| which is 

guaranteed by the pairwise group lasso. This holds for both positively and negatively 

correlated features, which is supported by Theorem 2. Second, if the connectivity 

information, e.g. such as the human connectome, is available, the constraint will be guided 

by the connectivity information. This will encourage |vj| = |vk| if imaging markers j and k are 

in the same biological sub-network no matter whether they are positively or negatively 

correlated. Therefore, both imaging markers have a high probability to be selected.

2.3. The FGL-SCCA Model

Let both X and Y be centered and normalized, we impose FGL on the genetics data and 

GGL on the brain imaging data, and define the FGL-SCCA model as

min
u, v

− u⊤X⊤Yv + ΩFGL(u) + ΩGGL(v) s . t . Xu 2 ≤ 1, Yv 2 ≤ 1, (3)

where u and v are called canonical loadings or canonical weights; ΩFGL(u) is the newly 

introduced FGL penalty to induce adjacent smoothness, and ΩGGL(v) is used to induce 

graphical smoothness. We do not artificially assume the in-set covariance matrices X⊤X and 

Y⊤Y to be identity so that the auto-covariance information could be preserved in the 

proposed model. (Du et al., 2014).

The Lagrangian associated with the problem writes

ℒ(u, v) = − u⊤X⊤Yv + ΩFGL(u) + ΩGGL(v) + γ1
2 ( Xu 2 − 1) + γ2

2 ( Yv 2 − 1), (4)

with γ1 and γ2 are positive tuning parameters. The solution is attained when the KKT 

conditions are satisfied. Thus the main difficulty in solving (4) becomes how to deduce the 

KKT conditions. This involves calculating the partial derivative of ℒ(u, v) with respect to u 

and v, especially the derivatives of the FGL and GGL penalty functions, which are very 

complicated.

2.4. Smoothing the penalties

Suppose f(μ, v) = μ + v with both μ and u being non-negative variables, we have the 

following equation according to the Taylor’s theorem

f(μ, v) = μ + v = μ(t) + v(t) + fμ′ (μ(t), v(t))(μ − μ(t))
+ fv′(μ(t), v(t))(v − v(t)) + R(μ) + R(v), (5)

where (μ(t),v(t)) is the neighbour of (μ,v), fμ′ (μ(t), v(t)) = 1/(2 μ(t) + v(t)) is the gradient1 of 

f(μ,v) with respect to μ at (μ(t),v(t)), and fv′ (μ(t), v(t)) = 1/(2 μ(t) + v(t)) is that with respect to v 

at (μ(t),v(t)). R(μ) and R(v) are the remainder terms. We then define the function g(μ,v) by 

dropping the remainders
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g(μ, v) = μ(t) + v(t) + fμ′ (μ(t), v(t))(μ − μ(t)) + fv′(μ(t), v(t))(v − v(t))
= μ(t) + v(t) + 1

2 μ(t) + v(t) (μ − μ(t)) + 1
2 μ(t) + v(t) (v − v(t))

= μ + v
2 μ(t) + v(t) + μ(t) + v(t)

2 .

(6)

Obviously, g(μ,v) is an affine function of μ and v. Thus it is continuous and differentiable, 

and we have the following proposition.

Proposition 1—Given functions f(μ, v) = μ + v, g(μ,v) with the form of Eq. (6), and 
(μ(t),v(t)) is the neighbour of (μ,v), then the following three rules hold.

1. f(μ,v) and g(μ,v) are equal at (μ(t),v(t)), i.e. f(μ(t),v(t)) = g(μ(t),v(t));

2. f(μ,v) and g(μ,v) have the same partial derivatives at (μ(t),v(t)), i.e. 

fμ′ (μ(t), v(t)) = gμ′ (μ(t), v(t)) and fv′ (μ(t), v(t)) = gv′ (μ(t), v(t));

3. g(μ,v) is an upper bound of f(μ,v), i.e. f(μ,v) ≤ g(μ,v).

Proof. The first and the second rules are obvious. Thus we put emphases on the third rule. 

Note that fμ′ (μ(t), v(t)) = fv′ (μ(t), v(t)) = 1/(2 μ(t) + v(t)), the difference between f(μ,v) and 

g(μ,v) is

g(μ, v) − f(μ, v) = μ + v
2 μ(t) + v(t) + μ(t) + v(t)

2 − μ + v

= 1
2 μ(t) + v(t) ( μ(t) + v(t) − μ + v)2 ≥ 0 .

(7)

This yields f(μ,v) ≤ g(μ,v), which completes the proof. □

Substituting μ = ui2 and v = ui + 1
2  into Eq. (6), we obtain

g(ui2, ui + 1
2 ) =

ui2 + ui + 1
2

2 (ui
(t))2 + (ui + 1

(t) )2 +
(ui

(t))2 + (ui + 1
(t) )2

2 (8)

where ui
(t) and ui + 1

(t)  are respectively the estimates of ui and ui+1 in the t-th iteration in an 

optimizing procedure. Based on Poposition 1, g(ui2, ui + 1
2 ) is a quadratic approximation to 

f(ui2, ui + 1
2 ) at (ui

(t), ui + 1
(t) ), and moreover it is an upper bound on f(ui2, ui + 1

2 ). Thus embedding 

them into convex loss functions will lead to the same solution path. We then use g(ui2, ui + 1
2 )

1Note that the gradient fμ′ (μ(t), v(t)) = 1/(2 μ(t) + v(t)) will not exist if μ(t) + v(t) = 0. We handle this issue by using 

μ(t) + v(t) + ζ for regularization, where ζ is a tiny positive number. It is easy to verify that fμ′ (μ(t), v(t)) = 1/(2 μ(t) + v(t) + ζ)
is the sub-gradient and thus inherits the same properties to the gradient in optimizing problems when ζ → 0.
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as a surrogate of f(ui2, ui + 1
2 ) in the remainder of this paper. Specifically, we have the 

surrogate function of the FGL penalty

ΩFGL
App (u) = λ1 ∑

i = 1

p − 1
wi, i + 1 ⋅ g(ui2, ui + 1

2 )

= λ1 ∑
i = 1

p − 1
wi, i + 1 ⋅

ui2 + ui + 1
2

2 (ui
(t))2 + (ui + 1

(t) )2 +
(ui

(t))2 + (ui + 1
(t) )2

2 .
(9)

Since GGL has a similar form to FGL, it is easy to obtain the surrogate function of the GGL 

penalty with respect to v, i.e.

ΩGGL
App (v) = λ2 ∑

(j, k) ∈ E
ωj, k ⋅ g(vj2, vk

2)

= λ2 ∑
(j, k) ∈ E

ωj, k
vj2 + vk

2

2 (vj
(t))2 + (vk

(t))2 +
(vj

(t))2 + (vk
(t))2

2 .
(10)

2.5. The Surrogate Objective and Algorithm

Substituting ΩFGL(u) and ΩGGL(v) in Eq. (4) by ΩFGL
App (u) and ΩGGL

App (v) in Eqs. (9)–(10), 

respectively, we have the surrogate objective

ℒ(u, v) = − u⊤X⊤Yv + ΩFGL
App (u) + ΩGGL

App (v) + γ1
2 ( Xu 2 − 1)

+ γ2
2 ( Yv 2 − 1) .

(11)

This objective is continuous, biconvex and differentiable with respect to u and v, and thus it 

is easy to solve. By respectively taking the partial derivatives of ℒ(u, v) with respect to u, v 

and then setting the results to zero, we have the following equations.

0 = − X⊤Yv + (λ1D1 + γ1X⊤X)u, Xu 2 − 1 = 0,
0 = − Y⊤Xu + (λ2D2 + γ2Y⊤Y)v, Yv 2 − 1 = 0,

(12)

where D1 is a diagonal matrix as follows
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D1 =

w1, 2

(u1
(t))2 + (u2

(t))2

⋱
wi − 1, i

(ui − 1
(t) )2 + (ui

(t))2 + wi, i + 1

(ui
(t))2 + (ui + 1

(t) )2

⋱
wp − 1, p

(up − 1
(t) )2 + (up(t))

2

(13)

and
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D2 =

∑
k = 1, (1, k) ∈ E

q ω1, k

(v1
(t))2 + (vk

(t))2

⋱

∑
k = 1, (j, k) ∈ E

q ωj, k

(vj
(t))2 + (vk

(t))2

⋱

∑
k = 1, (q, k) ∈ E

q ωq, k

(vq(t))
2 + (vk

(t))2

(14)

is also a diagonal matrix.

Now we have the closed-form updating rules

u(t + 1) = (λ1D1
(t) + γ1X⊤X)−1X⊤Yv(t), u(t + 1) = u(t + 1)/ Xu(t + 1) 2, (15)

v(t + 1) = (λ2D2
(t) + γ2Y⊤Y)−1Y⊤Xu(t + 1), v(t + 1) = v(t + 1)/ Yv(t + 1) 2, (16)

where D1
(t) and D2

(t) denotes the t-th iteration of D1 and D2 respectively.

The procedure of the FGL-SCCA is shown in Algorithm 1. u and v are updated alternatively 

until the convergence criterion is met, such as the predefined termination condition or 

number of maximum iterations. In Algorithm 1, Steps 3–6 are repeated until convergence. In 

each iteration, Step 3 is easy to calculate as D1 can be computed via matrix computation to 

avoid time consuming loop. This is the same case for Step 5. Step 4 and Step 6 are the key 

steps, and we compute them by solving a system of linear equations with approximative 
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quadratic complexity rather than computing the matrix inverse with cubic complexity. Thus 

the computation burden is dramatically reduced.

Algorithm 1

The FGL-SCCA Algorithm

Require:

X ∈ ℛn × p
, Y ∈ ℛn × q

, λ1, λ2, γ1, γ2

Ensure:

Canonical weights u and v.

1: Initialize u ∈ ℛp × 1
, v ∈ ℛq × 1

;

2: while not converged do

3:  Update the diagonal matrix D1 according to Eq. (13);

4:  Solve u according to Eq. (15);

5:  Update the diagonal matrix D2 according to Eq. (14);

6:  Solve v according to Eq. (16);

7: end while

2.6. Convergence Analysis

We have the following theorem for Algorithm 1.

Theorem 1—Solving the objective (11) is equivalent to solving the objective (4).

Proof. The objective (11) and the objective (4) are only different in the penalties. According 

to Proposition 1 in Section 2.4, the three rules also hold for both objective (4) and (11): (1) 

ℒ(u(t), v(t)) = ℒ(u(t), v(t)), (2) ℒu′ (u(t), v(t)) = ℒu′ (u(t), v(t)) and ℒv′ (u(t), v(t)) = ℒv′ (u(t), v(t)), 
and (3) ℒ(u, v) ≤ ℒ(u, v). Thus the objective (11) approximates to the objective (4) point-by-

point during the iteration. Therefore, solving (11) is equivalent to solving (4). □

Actually, the Algorithm 1 is an alternating minimization method which will converge to the 

leading canonical pair (Golub and Zha, 1995). We further verify that u = {1, 0, …, 0} and v 
= {1, 0, …, 0} are a pair of feasible solution to the objective (11). This implies that the 

Slater’s condition holds. Therefore, satisfying the KKT condition guarantees that Algorithm 

1 will converge to one local optimum of objective (11), which is also the local optimum of 

the objective (4) as supported by Theorem 1. In the implementation, we solve a system of 

linear equations with quadratic complexity to update both u and v, without computing the 

inverse of the large covariance matrix with cubic complexity. Thus the whole algorithm is of 

desired efficiency.

2.7. The Grouping Effect

The grouping effect of FGL-SCCA refers to estimating equal or similar values for 

successive variables of u and for connected variables of v. This implies the simultaneous 

selection of adjacent genetic features and of correlated imaging features, which is 

guaranteed by the following theorem.
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Theorem 2—Given two views of data X and Y that have been centered and normalized, 
and the tuned parameters (λ, γ). Let u* be the solution to the FGL-SCCA problem. For the 
sake of simplicity, we assume that only xi and xi+1 are correlated. Let ρi,i+1 be their sample 
correlation. Then the optimal ui* and ui + 1*  associated with xi and xi+1 satisfy,

ui* − ui + 1*

(ui*)2 + (ui + 1* )2 ≤ 1 + γ1
λ1wi, i + 1

2(1 − ρi, i + 1 ) . (17)

Proof. (1) We first prove the inequations when ρi,i+1 ≥ 0, indicating xi and xi+1 are positively 

correlated. Since u* is the solution, we have ∂ℒ
∂ui ui*

= 0 and ∂ℒ
∂ui + 1 ui + 1* = 0, i.e.,

λ1D1, iui* + γ1xi⊤Xu* = xi⊤Yv*, λ1D1, i + 1ui + 1* + γ1xi + 1
⊤ Xu* = xi + 1

⊤ Yv* . (18)

According to the definition of D1, we obtain

λ1wi, i + 1

(ui*)2 + (ui + 1* )2ui* + γ1xi⊤Xu* = xi⊤Yv*,

λ1wi, i + 1

(ui*)2 + (ui + 1* )2ui + 1* + γ1xi + 1
⊤ Xu* = xi + 1

⊤ Yv* .
(19)

Subtracting these two equations, we arrive at

λ1wi, i + 1

(ui*)2 + (ui + 1* )2 (ui* − ui + 1* ) = (xi − xi + 1)⊤(Yv* − γ1Xu*) (20)

Taking ℓ2-norm on both sides, we arrive at

λ1wi, i + 1

(ui*)2 + (ui + 1* )2 ui* − ui + 1* ≤ xi − xi + 1 ‖Yv* − γ1Xu*‖

= xi − xi + 1 Yv* 2 − 2γ1(u*)⊤X⊤Yv* + γ1
2 Xu* 2

(21)

Since X and Y are centered and normalized, we have xi − xi + 1 = 2(1 − ρi, i + 1). Then 

using ∥Xu*∥ = 1, ∥Yv*∥ = 1, −(u*)⊤X⊤Yv* ≤ 1, we obtain the upper bound

ui* − ui + 1*

(ui*)2 + (ui + 1* )2 ≤ 1 + γ1
λ1wi, i + 1

2(1 − ρi, i + 1) . (22)

(2) If ρi,i+1 < 0, it is clear that sgn(ui*) = − sgn(uj*). By adding both equations in Eq. (19) 

instead of subtracting them, we finally arrive at,
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ui* + ui + 1*

(ui*)2 + (ui + 1* )2 ≤ 1 + γ1
λ1wi, i + 1

2(1 + ρi, i + 1) . (23)

Combining Eqs. (22) and (23) together yields

|ui* | − |ui + 1* |

(ui*)2 + (ui + 1* )2 ≤ 1 + γ1
λ1wi, i + 1

2(1 − |ρi, i + 1|), (24)

which completes the proof. □

The GGL has similar entries to the FGL by extending the adjacent smoothness to the 

graphical smoothness. Thus similar argument yields the upper bound of grouping effect in 

terms of canonical weight v, i.e.

|vj* | − |vk* |

(vj*)2 + (vk*)2 ≤ 1 + γ2
λ2ωj, k

2(1 − |ρj, k|) . (25)

It is interesting that the Eqs. (24–25) give a normalized distance measurement for two 

variables. The range for this normalized distance varies from 0 to 1. This can clearly tell the 

similarity strength between two variables.

For the FGL penalizing canonical weight u, Theorem 2 provides a qualitative description of 

the bound accommodating the absolute value of differences between two successive 

variables. The bound directly depends on their sample correlation strength. If ρi,i+1 ≥ 0, a 

higher correlation between two variables pushes toward a smaller difference between their 

estimated coefficients. If ρi,i+1 < 0, a smaller value promotes a smaller sum between their 

coefficients. This implies that the two coefficients will be equal or similar in amplitude. 

Therefore, the FGL-SCCA will strongly smooth between two highly correlated successive 

variables in terms of u. As for the GGL penalizing v, the same result exists between two 

connected variables which are not necessary to be neighbours.

3. Results

3.1. Benchmarks and Experimental Setup

One goal of this paper is to investigate the structure detection ability without requiring the 

prior knowledge. Three benchmark methods are used in this study for comparison. They are 

the FL-SCCA (fused lasso based SCCA) method which imposes the smoothness constraint 

between adjacent variables (Witten et al., 2009), the NS-SCCA (network structured SCCA) 

method whose penalty terms are network guided fused lasso (Chen and Liu, 2012), and the 

AGN-SCCA (absolute GraphNet SCCA) method whose penalty terms are also guided by 

graph but different to that of NS-SCCA (Du et al., 2016). The latter two methods are 

different in both modeling and optimizing techniques, and are deemed to be among the best 

structured SCCA methods by now. The group lasso based SCCA methods require prior 
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knowledge regarding the group information of variables, and hence we do not include them 

in the empirical study.

There are four parameters for all the SCCA methods, including the proposed FGL-SCCA. 

Blindly tuning them will incur heavy computation burden. For the efficiency purpose, we 

employ some heuristic strategy to lower down the computation burden regarding parameters 

tuning. Firstly, we observe that λi and γi (i ∈ {1, 2}) contribute oppositely to the grouping 

effect as shown in Theorem 2. Thus simultaneously increasing or decreasing both λi and γi 

(i ∈ {1, 2}) will lead to similar grouping results. Secondly, in this study, we prefer the 

structure pattern which is more sensitive to λi (i ∈ {1, 2}). Therefore, we fix γ1 and γ2, and 

only tune the remaining two parameters λ1 and λ2. Thirdly, an SCCA method and a 

conventional CCA will yield similar results if parameters of SCCA are too small. On the 

contrary, SCCA will over-penalize the result when the parameters are too large. So a neither 

too large nor too small parameter is more reasonable (Du et al., 2016). As a result, we 

optimally tune them via a grid search from 10i (i = −5, −4, …, 0, …, 4, 5) through the nested 

five-fold cross-validation. Specifically, in the inner loop where the whole data are the 

training set of the external loop, we keep calculating CV(λ, γ) = 1
5 ∑j = 1

5 Corr(X−juj, Y−jvj)

by changing only λ1 or λ2, where X_j and Y_j are the j-th subset of the inner testing set, and 

uj and vj are the canonical weights estimated from the inner training set. We choose 

parameters that generate the highest correlation coefficients (argmaxCV(λ, γ)) as the 

optimal parameters and use them in the external loop to generate the final results. All these 

methods utilize the same partition during cross-validation to make a fair comparison. 

Besides, we set the edge weight to be one i.e. wi,i+1 = 1 for FGL penalty and wj,k = 1 for 

GGL penalty, and other type of weights can also be employed, e.g. wi,i+1 = |ρi,i+1|d, where d 
is a positive integer to model the strength of the feature correlation. Finally, for each 

parameter setup we repeat the experiment 50 times and report the average results, which 

could further assure a stable performance.

For the proposed FGL-SCCA, we terminate the algorithm when both of the two conditions 

are satisfied, i.e. maxi ui
(t + 1) − ui

(t) ≤ ϵ and maxj vj
(t + 1) − vj

(t) ≤ ϵ where ϵ is the tolerable 

error. We empirically set ϵ = 10−5 from experiments in this paper. The implementation of the 

proposed method is available at github (https://github.com/dulei323/SCCA-FGL).

3.2. Simulation Study

We generate six data sets with different properties in this simulation study to assess the 

performance of FGL-SCCA in different situations. The properties, such as different ground 

truths, sparsity levels, and mix of positively/negatively cross-correlated features, of these six 

data sets are distinct to assure diversity, which could make a thorough comparison. The 

details of each data set are described as follows, and the true signal of every data set is also 

shown in Fig. 1 (top row).

• Data 1: This data set is generated with n = 80, p = 120, and q = 100. We first 

generate the vector u = (0, …, 0
60

, 2, …, 2
40

, 0, …, 0
40

)⊤ and v = (0, …, 0
25

, 3, …, 3
25

, 0, …, 0
50

)⊤. 

Then we create a latent variable z ~ N(0, In×n). After that, X is created by 
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xℓ ∼ N(zℓu⊤, 0.1Σx), where xℓ is the ℓ-th row of X, and (Σx)i, i + 1 = e− ui − ui + 1 . 

Similarly, Y is created by yℓ N(zℓv⊤, 0.1Σy), where (Σy)jk = e−|vj − vk|.

• Data 2: This data set is created similarly to the first data set, where n = 50, p = 

150 and q = 200. u = (0, …, 0
58

, 1, − 1, 1, 0, …, 0
89

)⊤ and 

v = (0, …, 0
40

, 2, …, 2
40

, 0, …, 0
40

, −3, …, − 3
40

, 0, …, 0
40

)⊤, xℓ N(zℓu⊤, 0.2Σx) with 

(Σx)i, i + 1 = e− ui2 + ui + 1
2

 and yℓ N(zℓv⊤, 0.2Σy), where (Σy)jk = e−|vj − vk|.

• Data 3: This data set is created by n = 50, p = 150 and q = 200, where 

u = (0, …, 0
58

, 2, − 2, 0, …, 0
90

)⊤, v = (0, …, 0
40

, −1, 1, − 1, 1, …, − 1, 1
40

, 0, …, 0
120

)⊤, 

xℓ N(zℓu⊤, 0.2Σx) with (Σx)i, i + 1 = e− ui2 + ui + 1
2

 and yℓ N(zℓv⊤, 0.2Σy) with 

(Σy)jk = e−|vj − vk|.

• Data 4: This data set is created by n = 50, p = 150 and q = 200, where 

u = (0, …, 0
60

, −6, 6, − 6, 6, …, − 6, 6
30

, 0, …, 0
60

)⊤, 

v = (0, …, 0
40

, −2, …, − 2
20

, 2, …, 2
20

, 0, …, 0
120

)⊤, xℓ N(zℓu⊤, 0.2Σx) with 

(Σx)i, i + 1 = e− ui2 + ui + 1
2

 and yℓ N(zℓv⊤, 0.2Σy) with (Σy)jk = e− vj2 + vk
2
.

• Data 5: This data set is created by n = 50, p = 150 and q = 200, where 

u = (0, …, 0
58

, 2, − 2, − 1, 0, …, 0
89

)⊤, v = (0, …, 0
40

, −2, …, − 2
20

, 2, …, 2
20

, 0, …, 0
120

)⊤, 

xℓ N(zℓu⊤, 0.2Σx) with (Σx)i, i + 1 = e− ui2 + ui + 1
2

 and yℓ N(zℓv⊤, 0.2Σy) with 

(Σy)jk = e− vj2 + vk
2
.

• Data 6: This data set is created by n = 50, p = 150 and q = 200, where 

u = (0, …, 0
58

, 1, − 1, 1, 0, …, 0
89

)⊤, v = (0, …, 0
40

, −2, 2, − 2, 2, …, − 2, 2
40

, 0, …, 0
120

)⊤, 

xℓ N(zℓu⊤, 0.1Σx) with (Σx)i, i + 1 = e− ui2 + ui + 1
2

 and yℓ N(zℓv⊤, 0.1Σy) with 

(Σy)jk = e− vj2 + vk
2
.

The ground truth and estimated canonical weights u and v of each method are presented in 

Fig. 1. In each subfigure, the vertical axis represents the indices of each u (left panel) or v 
(right panel), and the horizontal axis represents 250 runs of experiments (50 times of 5-fold 

cross-validation). Our FGL-SCCA identifies similar canonical weights that are consistent 

with the ground truth across all six data sets. Interestingly, when the true signals have group 

structures of both X and Y, i.e. data 1 and data 4, almost every method can find the true 

signals correctly. This demonstrates the group information identification ability of these 

SCCA methods which have been analyzed in their respective papers (Witten et al., 2009; 

Chen and Liu, 2012; Du et al., 2016). However, when the true signals of X involve only two 
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successive negatively correlated variables, i.e. data 3, the FGL-SCCA still correctly find out 

them with a clear pattern. Those competing methods, on the contrary, report too many 

nonzero signals which cannot easily help find out true signals. For the remaining three data 

sets, i.e. data 2, data 5 and data 6, there are three successive nonzero variables with negative 

relationship on X, while different group structures on Y. We observe that FGL-SCCA can 

also accurately find out the true signals, and those benchmarks cannot.

We consider a feature as relevant if its estimated weight ui (or vj) is larger in absolute value 

than a predefined threshold. The larger the ui  (or vj ) is, the more contribution the i-th 

genetic feature (or the j-th imaging feature) makes to the canonical correlation. We then sort 

the features in descending order of their ui  (or vj ), and vary the threshold to obtain a 

sequence of true positive rate (TPR) - false positive rate (FPR) pairs and to calculate the area 

under the ROC curve (AUC). Table 1 shows the area under ROC (AUC) which stands for the 

sensitivity and specificity in terms of canonical weights. We observe that the proposed FGL-

SCCA obtains the highest value on all six data sets in terms of both u and v. NS-SCCA and 

AGN-SCCA are suboptimal and FL-SCCA performs the worst in terms of these evaluation 

criteria. This means that FGL-SCCA could be the best choice in structure information 

extraction followed by NS-SCCA and AGN-SCCA. In addition, we also show the training 

and testing correlation coefficients calculated from the trained SCCA models in Table 2. It is 

clear that all methods obtain good results on all training sets. Interestingly, the proposed 

FGL-SCCA outperforms those competing methods on the testing sets. This indicates that 

FGL-SCCA possesses better generalization ability than fused lasso and graphical penalty 

based benchmarks. To summarize, results on these six diverse data sets demonstrate that 

FGL-SCCA can not only identify similar or higher training and testing bi-multivariate 

associations, but also better canonical weights profiles.

3.3. Real Neuroimaging Genetics Study

We also compared the proposed structure-aware SCCA method with benchmarks using real 

neuroimaging and genetics data. Data used in the preparation of this article were obtained 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). 

The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 

(AD). Determination of sensitive and specific markers of very early AD progression is 

intended to aid researchers and clinicians to develop new treatments and monitor their 

effectiveness, as well as lessen the time and cost of clinical trials. For up-to-date 

information, see www.adni-info.org.

The brain imaging measurements data (i.e., amyloid imaging data) of 567 non-Hispanic 

Caucasian participants at the ADNI-GO/2 baseline were downloaded from the LONI 

website (adni.loni.usc.edu). Shown in Table 3 are the characteristics of these subjects, 

including 196 healthy control (HC), 343 MCI and 28 AD participants. The [11C] Florbetapir 

PET scans were averaged, aligned to a standard space, resampled to a standard image and 
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voxel size, smoothed to a uniform resolution and normalized to a cerebellar gray matter 

reference region resulting in standardized uptake value ratio (SUVR) images as previously 

described (Jagust et al., 2010). After this, the images were aligned to each participant’s same 

visit MRI scan and normalized to MNI space as 2×2×2 m3 voxels using parameters from the 

MRI segmentation. We further extracted region of interest (ROI) level amyloid 

measurements, and generated 191 mean amyloid measurements spanning all brain ROI level 

based on the MarsBaR AAL atlas.

The single nucleotide polymorphism (SNP) data were also downloaded from the ADNI 

website. They were genotyped using the Human 610-Quad or OmniExpress Array (Illumina, 

Inc., San Diego, CA), and preprocessed using the standard quality control (QC) and 

imputation steps. The QC criteria for the SNP data include (1) call rate check per subject and 

per SNP marker, (2) gender check, (3) sibling pair identification, (4) the Hardy-Weinberg 

equilibrium test, (5) marker removal by the minor allele frequency and (6) population 

stratification. As the second pre-processing step, the quality-controlled SNPs were imputed 

using the MaCH software (Li et al., 2010) to estimate the missing genotypes. The 

genotyping data here includes 1,000 SNP markers from chromosome 19 near the APOE 
gene. The aim is to detect the associations between SNPs and amyloid measurements, as 

well as which SNPs and amyloid markers are simultaneously correlated with diagnostic 

status.

All four SCCA methods were applied to this real neuroimaging genetics data. Fig. 2 presents 

the canonical weights estimated from the training set by each method, showing those 

relevant SNPs and imaging measurements. In each subfigure, the horizontal axis represents 

the reference number of each individual SNP (left panel) or imaging ROI (right panel), and 

the vertical axis represents every run and there are 250 runs in total (50 times of 5-fold 

cross-validation). We can clearly observe that FGL-SCCA identifies two relevant groups of 

successive SNPs and a very small proportion of ROIs for easy interpretation due to the novel 

FGL and GGL penalties. The peak signal on the genetic data originates from rs429358, 

which codes for the APOE ε4 allele. This locus has been confirmed to be associated with 

AD previously (Ramanan et al., 2014). The locus rs56131196 with the second highest 

weight comes from the APOC1 gene, which is recently identified to be correlated with both 

Type 2 Diabetes (T2D) and AD (Gao et al., 2016). The two strongest imaging ROIs are from 

the frontal brain area. They are the right superior frontal gyrus and the left middle frontal 

gyrus, which have been demonstrated to be correlated with AD. The non-zero signal with 

the third largest weight is from the caudate nucleus, which has been reported as an AD 

related brain area (Jiji et al., 2013). Those competing methods, such as the FL-SCCA, NS-

SCCA and the AGN-SCCA, find out many interfering signals for both imaging markers 

across the brain and genetic markers of chromosome 19. FL-SCCA reports the most non-

zero signals for both imaging and genetics markers, followed by NS-SCCA and AGN-

SCCA. In biomedical studies, results with many non-zero signals are very hard to interpret 

since they cannot imply a clear clue for further investigation. We also show the training and 

testing correlation coefficients in Table 4. In the table, both mean and std are contained, and 

the p-values which are calculated between each benchmark and FGL-SCCA are also shown. 

The proposed FGL-SCCA obtains better canonical correlation coefficients on both training 

set and testing set. Moreover, all p-values are significant (< 0.05) indicating that FGL-SCCA 
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outperform those benchmarks on this real imaging genetic data set. Table 5 shows the 

runtime results on this real data, in which we could observe that FL-SCCA, NS-SCCA and 

FGL-SCCA run much faster than AGN-SCCA. In summary, the results on this real data 

reveal that FGL-SCCA has better bi-multivariate identification capability than both fused 

lasso and graphical lasso based SCCA methods in this ADNI cohort study.

4. Discussion

To further investigate the performance of our FGL-SCCA method, we average the canonical 

weights across five folds and select the top ten SNPs and top ten ROI measurements and 

show them in Tables 6 and 7.

4.1. Top Selected Genetic Markers

In Table 6, the first column shows the reference number of each identified SNP, the second 

one shows the gene name, the third column is the averaged weight across 250 runs (50 times 

of 5-fold cross-validation), and the fourth column is the percent showing that each SNP is 

selected as top ten markers in 250 runs. The last column is the p-value of the main effect of 

each SNP on the diagnosis. There are three groups of loci associated with the top ten SNPs. 

The first group are rs429358, rs769449, rs769450, rs1081105, and they all locate in the 

APOE gene which is related to AD. Interestingly, the sign of SNP rs769450 is different from 

its neighbouring SNPs (rs769449, rs429358 and rs1081105). This demonstrates that the 

FGL-SCCA can perform feature grouping as long as two adjacent variables exhibit high 

similarity in absolute values. Moreover, although rs769450 and rs1081105 are non-

significant in this data, they both are jointly selected by the newly introduced FGL penalty. 

The second group of loci are all from APOC1 gene. They are rs12721051, rs56131196 and 

rs4420638, and are recently identified to be shared genetic factors between T2D and AD 

(Gao et al., 2016). The third group of loci are rs10414043, rs7256200 and rs483082 located 

between the APOE and APOC1 gene, and they also have been identified to show association 

with the longevity in humans (Zeng et al., 2016).

4.2. Top Selected Brain Imaging ROIs

Table 7 presents the top ten brain imaging ROIs identified by the averaged canonical 

weights. In this table, the first column exhibits the name of the brain region, the second one 

shows the averaged weight across 250 runs, and the third column is the percent showing that 

each ROI is selected as top ten risk markers in 250 runs. The p-value of the diagnostic effect 

measured by ANOVA was shown for each imaging ROI in the last column. In our 

experimental setting, there might be more than one variable associated with the same label 

in the automated anatomical labeling (AAL) atlas because we have 191 brain regions 

corresponding to 116 AAL regions. Thus the first and the fifth imaging measures are from 

the same AAL region. The p-values of all the ten markers are relatively small indicating that 

they are significantly correlated with diagnostic status. At the same time, a literature search 

also shows that all these ten imaging markers have been reported to be more or less 

associated with AD, such as the frontal gyrus (Hirono et al., 1998; Bi et al., 2018) and the 

caudate nucleus (Jiji et al., 2013). The first two markers, i.e., the left middle frontal gyrus 

and the right superior frontal gyrus, have similar estimated weights owing to the newly 
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introduced graphical GGL penalty. We further find that the correlation between them is 

0.8827 which is a very high value in this data set. This demonstrates that FGL-SCCA could 

group a pair of highly correlated variables if they both are associated with diagnostic status. 

We note that the highest correlation value exists between the orbital part of left middle 

frontal gyrus and the right one after looking into the pairwise correlation matrix. It looks 

strange that FGL-SCCA does not estimate similar weights for both of them. The reason 

might boil down to three aspects: (1) both variables should be correlated with each other; (2) 

both variables should be correlated with those SNPs identified by our algorithm; and (3) a 

brain ROI is connected to more than one ROI according to the GGL penalty. Thus the final 

weight of an ROI will be affected by the combination of several grouping effects. This also 

explains why all the top ten brain imaging measurements and top ten SNPs hold very high 

correlations (0.485) in this study, which dominates the relationship between this leading pair 

of canonical weights. To give a clear spatial view, we map the averaged canonical weights 

regarding these imaging measurements of FGL-SCCA onto the brain atlas. Fig. 3 shows that 

our method only highlights a small region of the whole brain. This is quite meaningful since 

it provides a clear and clean clue for further targeted analysis.

As a structured method, it is very important to verify the performance on the identified graph 

structure. In this study, the estimated canonical weights v imply the identified graph 

structure of the brain ROIs. If two ROIs have the same or similar weight values, they will be 

in the same subgraph according to Theorem 2. Based on this, we could obtain the graph with 

two considerations. First, both vi and vj, i.e. the weight values of ROIi and ROIj, should be 

important, which means their weight values are larger than a threshold τ1, i.e. |vi| > τ1 and |

vj| > τ1. Second, vi and vj should be equal or similar, indicating that their difference is small 

enough, e.g. ∥vi| − |vj∥ / |vj| < τ2, where τ2 is the maximum tolerance difference. Suppose τ1 

= 0.0001 and τ2 = 0.1 (both thresholds could be changed accordingly), the identified graph 

structure is shown in Fig. 4. We clearly observe that there are three subgraphs identified by 

FGL-SCCA. Interestingly, all the nodes (ROIs) in these three subgraphs have been verified 

to be correlated to AD. This demonstrates the effectiveness of our method in identifying 

meaningful subgraphs in this ADNI study, which verifies the correctness of our model 

design.

4.3. Refined Analysis

Based on the top ten selected SNPs and brain ROIs, Fig. 5 shows the heat map of pairwise 

correlations of every brain ROI-SNP pair. As expected, most ROI-SNP pairs have 

considerable correlation values. We observe that rs769450 from the APOE gene has the 

negative correlation with all these ten ROIs. In order to further understand this, we choose to 

use rs429358 as the comparison based on the following considerations. First, rs429358 has 

been confirmed to be the top risk factor for late onset AD via affecting multiple brain 

structures (Potkin et al., 2009a). Second, both rs429358 and rs769450 are from the APOE 
gene and they are jointly selected by the FGL-SCCA method. Besides, they hold opposite 

coefficient signs in our model. The frontal lobe region is a well-known AD related brain 

area, and the clumping together of beta-amyloid proteins could be a major AD hallmark. 

Therefore, we use the beta-amyloid deposition measurement in the frontal lobe as the target 

imaging marker.
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Using the amyloid accumulation in the left middle frontal gyrus as the response, we 

conducted the two-way ANOVA to show that the main effects of rs769450 genotype, 

diagnosis and their SNP-by-diagnosis interaction effect. As shown in Fig. 6(a), the main 

effects of rs769450 genotype (p < 0.01), diagnosis (p < 0.01) and their SNP-by-diagnosis 

interaction effect (p < 0.01) all reached the significant level when age, gender, education and 

handedness were included as covariates. The pairwise comparison results showed that the 

amyloid accumulation in AD participants was significantly higher than that of both MCI and 

HC groups (all p < 0.01). In addition, MCI participants also showed a significantly increased 

amyloid deposition than HCs (p < 0.01). In order to investigate the genotype effect within 

each baseline diagnosis group separately, we conducted pairwise comparisons among the 

heterozygotes AG, homozygous AA and GG within ADs, MCIs and HCs respectively. The 

results showed that within ADs, those patients holding the homozygous AA have lower beta-

amyloid deposition measurements compared with those holding GG and AG. This pattern 

can also be observed within the MCI participants but not in the HCs. By contrast, in Fig. 

6(b), the two-way ANOVA results from rs429358 showed that within both ADs and MCIs, 

participants holding the homozygous CC have higher beta-amyloid deposition compared 

with those having TT. It is easy to observe that the genotype polymorphisms of rs769450 

and rs429358 have opposite effects on the beta-amyloid deposition in the group of ADs and 

MCIs. Specifically, the major homozygote of rs769450 in AD patients were vulnerable to 

increase beta-amyloid deposition in left middle frontal gyrus. On the contrary, AD patients 

with the minor homozygote of rs429358 were vulnerable to have higher beta-amyloid 

deposition measurement in this ADNI cohort.

5. Conclusions

We have introduced two novel penalties such as the fused pairwise group lasso (FGL) and 

graph guided pairwise group lasso (GGL). We proposed a novel structure-aware sparse 

canonical correlation analysis (SCCA) method using FGL and GGL as constraints to 

identify associations between brain imaging measurements and genetic factors. The existing 

group lasso based methods (Chen et al., 2013; Du et al., 2014) were dependent on the prior 

knowledge which usually was not always available. The graph/network guided fused lasso 

based methods (Chen et al., 2012; Du et al., 2014; Chen and Liu, 2012; Du et al., 2016) 

focus on the positively correlated variables, or depended on the signs of the sample 

correlation which were sensitive to the partition of data. The proposed SCCA method 

combines the advantages of both group lasso and graphical fused lasso, which is 

independent of the sign of the sample correlation. Moreover, FGL-SCCA can be used in 

data-driven mode which means it does not require the prior knowledge, and can incorporate 

the prior knowledge to recover specific structures, too. FGL-SCCA recovers a chain of 

smoothness on the genetic factors and graphical smoothness on the brain imaging 

measurements.

We have compared FGL-SCCA with three state-of-the-art structure-aware SCCA methods 

on both synthetic data and real imaging genetic data. The results on the synthetic data show 

that FGL-SCCA performs similarly or better than all three benchmarks. The results on real 

data show that, FGL-SCCA not only estimates better canonical correlation coefficients than 

the competing methods, but also obtains more clear, cleaner and sparser canonical weights. 
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FGL-SCCA detects a strong association between a few group of loci (from APOE and 

APOC1) and frontal and caudate morphometries. All three group of loci, including the SNP 

rs429358 etc., and the imaging measurements such as the frontal gyrus have been identified 

to be highly associated with AD, demonstrating FGL-SCCA’s power in brain imaging 

genetics. Since the GGL penalty becomes quite complicated as the number of variables 

increases, one interesting future direction is to improve the efficiency and scalability for 

FGL-SCCA in more realistic settings. Moreover, given the prominent role of the APOE 
signal in this application, it is also of great importance to identify other AD-relevant SNPs. 

Therefore, another future direction is to use our method to identify the new AD-relevant 

SNPs in addition to those from APOE.
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Highlights

• We present a novel fused penalty and a new graph-guided penalty.

• A novel structured SCCA model and optimization algorithm are proposed.

• Our method has a qualitative upper bound for the grouping effect.

• Our SCCA improves state-of-the-art methods with more reasonable canonical 

weights.
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Figure 1: 
Canonical weights estimated on synthetic data. The first row is the ground truth, and each 

remaining row corresponds to an SCCA method: (1) FL-SCCA, (2) NS-SCCA, (3) AGN-

SCCA, and (4) FGL-SCCA. For each method, the estimated weights of u are shown on the 

left panel, and those of v are shown on the right. In each subfigure, the vertical axis 

represents the indices of each u (left panel) or v (right panel), and the horizontal axis 

represents 250 runs of experiments (50 times of 5-fold cross-validation).
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Figure 2: 
Canonical weights estimated on real imaging genetics data set. Each row corresponds to a 

method: (1) FL-SCCA, (2) NS-SCCA, (3) AGN-SCCA, and (4) FGL-SCCA. For each 

method, the estimated weights of u are shown on the left panel, and those of v are shown on 

the right. In each subfigure, the horizontal axis represents the reference number of each 

individual SNP (left panel) or imaging ROI (right panel), and the vertical axis represents 

every run and there are 250 runs in total (50 times of 5-fold cross-validation).
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Figure 3: 
Mapping averaged canonical weights v of FGL-SCCA onto the brain.
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Figure 4: 
Heat map of brain ROI-SNP associations of top selected markers.
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Figure 5: 
Heat map of brain ROI-SNP associations of top selected markers.
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Figure 6: 
Pairwise comparisons in terms of genotype of rs769450 and rs429358 within ADs, MCIs 

and HCs respectively. Two-way ANOVA was applied to examine the effects of rs769450 and 

baseline diagnosis on left middle frontal gyrus (a). Age, gender, education, handedness were 

included as covariates. The results of rs429358 were also shown for comparison (b).
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Table 1:

The AUC (area under ROC curve) values (mean±std) of canonical weights are also shown.

Area under ROC Curve (AUC): u

FL-SCCA NS-SCCA AGN-SCCA FGL-SCCA

Data 1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 2 0.86±0.26 1.00±0.00 0.99±0.02 1.00±0.00

Data 3 0.37±0.04 1.00±0.04 0.99±0.02 1.00±0.00

Data 4 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 5 0.44±0.11 1.00±0.00 0.99±0.01 1.00±0.00

Data 6 0.96±0.04 1.00±0.00 0.98±0.03 1.00±0.00

Area under ROC Curve (AUC): v

Data 1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 2 0.78±0.41 0.75±0.00 1.00±0.00 1.00±0.00

Data 3 0.00±0.00 1.00±0.06 1.00±0.04 1.00±0.06

Data 4 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 5 0.00±0.06 1.00±0.00 1.00±0.00 1.00±0.00

Data 6 0.00±0.00 1.00±0.00 0.97±0.10 1.00±0.00
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Table 2:

Performance comparison on synthetic data. Training and testing correlation coefficients (mean±std.) of 5-fold 

cross-validation are shown for FL-SCCA, NS-SCCA, AGN-SCCA and FGL-SCCA. The best testing 

correlation coefficients with the smallest std. value are shown in boldface.

Training Resuilts

FL-SCCA NS-SCCA AGN-SCCA FGL-SCCA

Data 1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 2 0.91±0.05 0.95±0.01 0.87±0.19 0.93±0.01

Data 3 0.76±0.03 0.96±0.01 0.89±0.19 0.95±0.01

Data 4 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 5 0.76±0.04 0.96±0.01 0.92±0.14 0.95±0.01

Data 6 0.85±0.03 0.93±0.01 0.81±0.23 0.86±0.01

Testing Results

Data 1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 2 0.77±0.28 0.89±0.06 0.74±0.20 0.92±0.04

Data 3 0.34±0.19 0.91±0.06 0.80±0.20 0.95±0.07

Data 4 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Data 5 0.23±0.18 0.94±0.04 0.86±0.15 0.94±0.03

Data 6 0.38±0.22 0.82±0.10 0.59±0.23 0.86±0.06
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Table 3:

Participant characteristics.

HC MCI AD

Num 196 343 28

Gender(M/F, %) 52.04/47.96 59.18/40.82 64.29/35.71

Handedness(R/L, %) 90.82/9.18 90.09/9.91 82.14/17.86

Age (mean±std) 74.77±5.39 71.92±7.47 75.23±10.66

Education (mean±std) 15.61±2.74 15.99±2.75 15.61±2.74
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Table 4:

Performance comparison on real data. Averaged training and testing correlation coefficients by 50 times 5-fold 

cross-validation are shown for FL-SCCA, NS-SCCA, AGN-SCCA and FGL-SCCA (mean±std). The best 

mean±std is shown in boldface. The p-values of FL-SCCA, NS-SCCA and AGN-SCCA compared with FGL-

SCCA via Student’s t-tests are also shown.

Method Training Results p-value Testing Results p-value

FL-SCCA 0.41±0.02 4.89E-201 0.35±0.08 1.25E-75

NS-SCCA 0.44±0.02 8.03E-164 0.42±0.07 1.39E-37

AGN-SCCA 0.47±0.02 2.37E-105 0.43±0.07 3.43E-21

FGL-SCCA 0.49±0.02 - 0.45±0.07 -
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Table 5:

Runtime comparison on real data.

Method FL-SCCA NS-SCCA AGN-SCCA FGL-SCCA

time (sec.) 1.84 2.70 61.80 3.63
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Table 6:

Top ten SNPs selected by averaged canonical weights. The p-value of ANOVA results were shown to indicate 

the statistical significance of the relevance of each SNP to diagnostic status, where age, gender, education, 

handedness were included as covariates.

RS_NO Gene Weight Percent p-value

rs429358 APOE 5.45E-01 100% 2.30E-06

rs56131196 APOC1 1.65E-01 100% 1.14E-03

rs4420638 APOC1 1.24E-01 100% 1.14E-03

rs12721051 APOC1 1.24E-01 100% 1.14E-03

rs1081105 APOE 6.55E-02 96.40% 1.73E-01

rs7256200 APOE (dist=3285), APOC1 (dist=1642) 8.71E-03 76.40% 3.35E-05

rs10414043 APOE (dist=3061), APOC1 (dist=2208) 7.35E-03 72.40% 3.35E-05

rs769450 APOE −7.27E-03 63.20% 5.10E-02

rs769449 APOE 5.76E-03 64.80% 1.53E-05

rs483082 APOE (dist=3526), APOC1 (dist=1743) 4.67E-03 66.40% 7.98E-05
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Table 7:

Top ten brain imaging markers selected by averaged canonical weights. The p-value of ANOVA results were 

shown to indicate the statistical significance of the relevance of each brain imaging marker to diagnostic 

status, where age, gender, education, handedness were included as covariates.

Brain Region Weight Percent p-value

Left middle frontal gyrus 4.07E-01 100.00% 6.23E-07

Right superior frontal gyrus 3.96E-01 100.00% 8.65E-07

Right caudate nucleus 1.05E-01 98.80% 4.34E-06

Right middle frontal gyrus 7.43E-02 98.00% 1.49E-04

Left middle frontal gyrus 3.38E-02 78.00% 8.26E-03

Right inferior temporal gyrus 2.23E-02 69.60% 6.44E-05

Left caudate nucleus 1.46E-02 86.40% 6.01E-08

Right angular gyrus 9.03E-03 52.00% 9.01E-06

Superior parietal lobule 7.52E-03 41.60% 8.86E-04

Right frontal superior medial gyrus 4.47E-03 59.20% 2.36E-09
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