Targeted Inhibition of the HGF/c-Met Pathway by Merestinib Augments the Effects of Albumin-Bound **Paclitaxel in Gastric Cancer**

SCHOOL OF MEDICINE

INDIANA UNIVERSITY

¹Department of Surgery, Indiana University School of Medicine, South Bend, IN; ²Harper Cancer Research Institute, University of Notre Dame, South Bend, IN

Abstract

Background and Hypothesis: Combination chemotherapy regimens are commonly used to treat gastric adenocarcinoma (GAC), but the median survival time remains less than one year. *Nab*-paclitaxel has demonstrated high antitumor activity in previous GAC studies. Many growth factors and their receptors are overexpressed in GAC and have been implicated in its pathophysiology. We hypothesize that merestinib, a small-molecule inhibitor targeting c-Met, Axl, and DDR1/2 pathways, will have significant antitumor effects and will enhance the response to *nab*-paclitaxel in GAC preclinical models.

Project Methods: *In vitro* proliferation and protein expression were assessed using WST-1 and immunoblot assays. Subcutaneous xenografts of MKN-45 and SNU-1 cell lines were implanted in mice to study tumor growth inhibition. Immunohistochemistry was performed to examine intratumor proliferation and microvessel density.

Results: *In vitro* assays showed that *nab*-paclitaxel and merestinib decreased cell proliferation in all three cell lines, with an additive effect in combination. Reduction in cell proliferation at low doses of *nab*-paclitaxel (10 nM), merestinib (100 nM), and their combination was 87%, 82%, and 94% (MKN-45 cell line, high phospho-c-Met expression), 59%, 50%, and 82% (SNU-1 cell line, low phospho-c-Met expression), and 53%, 19%, and 66% in gastric fibroblasts. Immunoblot analysis of merestinib treated MKN-45 cells revealed increased expression of apoptotic proteins and decreased expression of phospho-c-Met, phospho-EGFR, phospho-IGF-1R, phospho-ERK, and phospho-AKT. In gastric fibroblasts, merestinib decreased phospho-ERK and increased apoptotic protein expression. Phospho-c-Met and phospho-EGFR were not detected in SNU-1 immunoblots; however, phospho-ERK, phospho-VEGFR, and apoptotic protein expression increased after treatment. In MKN-45 xenografts, net tumor growth in control, *nab*-paclitaxel, merestinib, and combination groups was 503 mm³, 115 mm³, 91 mm³, and -9.7 mm³. Immunohistochemistry analysis of tumor cell proliferation and microvessel density corroborated tumor growth study results. **Conclusion:** The data suggest that merestinib in combination with nab-paclitaxel carry a promising potential for improving clinical GAC therapy.

Background

• Gastric Cancer

- Fifth most common cancer and third most common cause of cancer-related deaths worldwide
- Previously most common cause of cancer-related deaths worldwide up to the mid-1990s. – Decline in prevalence and mortality reflects changes in diet, smoking, and *H. pylori*
- infections, which are risk factors for gastric cancer development
- In US, 33% five-year survival rate overall.
- For those with distant metastasis, which is most common at diagnosis, five-year survival rate is 5.9%

•Nab-Paclitaxel (NPT)

- Water soluble, solvent-free, albumin-bound paclitaxel
- Cell mitosis inhibitor
- Enhanced delivery to tumor leading to superior antitumor activity and less toxicity •Merestinib
- Small-molecule type II ATP competitive, slow-off inhibitor
- of MET kinase, as well as many other receptor tyrosine kinases implicated in cancer
- Low dissociation constants for relevant receptor tyrosine kinases, including Met, Axl, and DDR1/2
- Current clinical trial for non-small cell lung cancer and advanced biliary tract cancer •C-met signaling pathway
- Receptor tyrosine kinases are often overactivated or overexpressed in many types of cancer, including gastric adenocarcinoma
- Involved in cell proliferation, survival, motility, cell cycle progression, and invasion – Activates Ras, PI3K, STAT, beta-catenin, and Notch signal transduction pathways
- Activation of the c-Met pathway reported in a significant proportion of gastric adenocarcinoma patients (10-50%)

Methods

- Cell lines used: MKN-45, SNU-1, and human gastric fibroblasts
- Protein expression: Immunoblot analysis
- *In vitro* cell proliferation: WST-1 assay
- Tumor growth: Subcutaneous xenografts in NOD/SCID mice using MKN-45 and SNU-1 cells
- Cancer cell proliferation and microvessel density: Immunohistochemistry

Quinn Kaurich¹, Jennifer Huang¹, Niranjan Awasthi^{1,2}

		SNU-1			-45	MKN		
		Control NPT Mer NPT+Mer		NFI+Mer	Mer NPT+Mer	NPT	Control	
Phospho-ERK	44/42 kDa		Phospho-ERK	145 kDa		-	-	Phospho-c-Met
ERK	44/42 kDa		ERK	145 kDa		-		Met
Bax	26 kDa		Bcl-2	138 kDa	面倒	1		Phospho-Axl
Phospho-VEGFR2	21 kDa	() () and and	Bax	175 kDa	-		-	Phospho-EGFR
Phospho-MEK	17,19 kDa	- And An a state and .	Cleaved Caspase 3	95 kDa	the second			Phospho-IGF-1R
Phospho-DDR1/2	89 kDa	ma ma ma	Cleaved PARP-1	60 kDa	1100	1.00	-	Phospho-AKT
Phospho-p70S6K	230 kDa		Phospho-VEGFR2	44/42 kDa		-		Phospho-ERK
p70S6K	45 kDa	with the stress strike	Phospho-MEK	44/42 kDa		-	-	ERK
Phospho-Stathmin	125 kDa		Phospho-DDR1/2	26 kDa		-		Bcl-2
Alpha-SMA	60 kDa		АКТ	• 21 kDa				Bax
GAPDH	37 kDa	-	САРОН	27 kDa	- 63	ee.	-	P27
	57 KDa	and brought and a second	un bi	17,19 kDa				Cleaved Caspase 3
				89 kDa	1	1	T.	Cleaved PARP-1
				3 7 kDa			-	GAPDH

