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Abstract

Purpose of Review: Acute kidney injury (AKI) and fluid overload affect a large number of 

children undergoing cardiac surgery, and confers an increased risk for adverse complications and 

outcomes including death. Survivors of AKI suffer long-term sequelae. The purpose of this 

narrative review is to discuss the short and long-term impact of cardiac surgery associated AKI 

and fluid overload, currently available tools for diagnosis and risk stratification, existing 

management strategies, and future management considerations.

Recent Findings: Improved risk stratification, diagnostic prediction tools and clinically 

available early markers of tubular injury have the ability to improve AKI-associated outcomes. 

One of the major challenges in diagnosing AKI is the diagnostic imprecision in serum creatinine, 

which is impacted by a variety of factors unrelated to renal disease. In addition, many of the 

pharmacologic interventions for either AKI prevention or treatment have failed to show any 

benefit, while peritoneal dialysis catheters, either for passive drainage or prophylactic dialysis may 

be able to mitigate the detrimental effects of fluid overload.

Summary: Until novel risk stratification and diagnostics tools are integrated into routine 

practice, supportive care will continue to be the mainstay of therapy for those affected by AKI and 
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fluid overload after pediatric cardiac surgery. A viable series of preventative measures can be taken 

to mitigate the risk and severity of AKI and fluid overload following cardiac surgery, and improve 

care.
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Introduction

Acute kidney injury (AKI) is common among critically-ill adult and pediatric patients. A 

recent large multi-national study among critically ill children admitted to the pediatric 

intensive care unit reported an overall AKI incidence of 27%. Severe AKI incidence, defined 

as Kidney Disease Improving Global Outcome (KDIGO) stage 2 or 3 occurred in 11.6% of 

patients (1, 2). Severe AKI in this study conferred increased odds of 28-day mortality (2●). 

Similarly, in a multi-national study of neonates admitted to a level 2 or 3 neonatal intensive 

care unit, AKI incidence was 30%, varied by gestational age, and conferred a greater risk for 

longer length of stay and mortality (3●). AKI after congenital heart surgery is common, 

with an incidence ranging from 20-60% (4-8). This wide variation in incidence is related to 

subject selection and the definition of AKI utilized. In fact, a recent multicenter report from 

the Neonatal and Pediatric Heart and Renal Outcomes Network reported significant center 

variability in AKI incidence among neonates undergoing cardiac surgery using the modified 

KDIGO definition (9●). AKI also confers a significantly greater odds of death in patients 

after cardiac surgery (10, 11).

Cardiac surgery associated AKI (CS-AKI) is unique from other causes of AKI. A known 

period of ischemia-reperfusion injury and hypothermia with concomitant host maladaptive 

inflammatory responses and oxidative stress occur during and after cardiopulmonary bypass. 

Endothelial dysfunction, capillary leak and vasomotor instability ensue. These factors 

contribute to ongoing kidney tubular injury (12, 13). Unfavorable intra or post-operative 

hemodynamics, low cardiac output syndrome, fluid overload and the concurrent use of 

nephrotoxic medications have the potential to worsen the already present tubular injury. A 

relative reduction in effective circulating volume in the presence of low cardiac output 

stimulates the kidneys to reabsorb salt and water ultimately leading to oliguria. 

Administration of resuscitation fluids leads to progressive fluid overload that independently 

and synergistically (with AKI) leads to worse outcomes (6●●, 14●-18). Together, CS-AKI 

is a syndrome carrying significant risks for patients and these risks are bidirectionally 

deleterious.

The purpose of this narrative review is to discuss the short and long-term impact of cardiac 

surgery associated AKI and fluid overload, currently available tools for diagnosis and risk 

stratification, existing management strategies, and future management considerations. We 

also provide a framework for consideration in these high-risk patients (Figure 1).
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Short and long-term complications and outcomes of AKI: A systemic 

disease

AKI confers an increased risk for both short and long-term adverse outcomes including 

death, longer duration of mechanical ventilation and hospitalization, irrespective of the 

underlying cause (4-8, 10). Infants, children and adults who develop acute kidney injury 

(AKI) after cardiopulmonary bypass (CPB) have at least a 5 times greater odds of dying 

compared to similar patients without AKI (5, 19, 20). These adverse effects are so 

significant that each episode of AKI imposes a substantial increase in health care costs 

(21-23).

The most well-known complications of AKI, including hyperkalemia, uremic platelet 

dysfunction and fluid overload can be managed with renal replacement therapy. However, it 

is now widely recognized that AKI is a systemic disease that predisposes patients to a 

variety of other complications for which renal replacement therapy is not helpful (24●). 

These systemic complications including sepsis, increased infection risk, respiratory failure 

and heart failure, are responsible for the high rate of death in patients with established AKI 

(25-30). This paradigm suggests that reducing the morbidity and mortality of AKI will 

require prevention and management of these complications.

In pediatric cardiac surgery, there are several established factors that increase the risk for 

CS-AKI. These include younger age at surgery, higher surgical complexity, presence of 

cyanotic lesions, longer cardiopulmonary bypass duration (typically greater than 180 

minutes), use of hypothermic circulatory arrest, fluid overload, and higher vasoactive 

requirements in the immediate post-operative period (7, 17, 31-33). In adults, identification 

of risk factors for the prediction of Major Adverse Kidney Events within 30 days 

(MAKE30), a composite outcome of persistent renal dysfunction, new renal replacement 

therapy and in-hospital mortality may allow for improved risk stratification, target therapy 

and facilitate the conduct of clinical trials. The risk of Major Adverse Cardiovascular Events 

(MACE) are highlighted by the hazard of death in adults who developed AKI after 

myocardial infarction being 3 to 7 times greater than in those without AKI (34).

While the immediate effects of CS-AKI can be detrimental, the long-term effects are also 

cause for concern. Repeated episodes of CS-AKI from a variety of causes, including 

unfavorable hemodynamics and high nephrotoxin burden may lead to acute and chronic 

kidney disease (CKD) (35-37). In the Follow-up Renal Assessment of Injury Long-Term 

After AKI (FRAIL-AKI) study, there was no difference in measures of CKD (glomerular 

filtration rate, proteinuria, and blood pressure) between those with and without AKI, but 

AKI positive patients had persistent elevation of urinary AKI biomarkers seven years after 

the initial CS-AKI event (35). The multicenter TRIBE-AKI study reported CKD and 

hypertension 5 years after pediatric cardiac surgery, but this was not associated with 

perioperative AKI (36). The data do demonstrate, however, even those who have complete 

recovery of AKI are still at risk for long-term morbidity such as infectious complications, 

MACE, and mortality (29, 38-40). Studies also show that patients with one prior episode of 

AKI after pediatric cardiac surgery may be at risk for subsequent AKI episodes (41, 42). 

Multiple AKI episodes may also increase the risk for earlier onset CKD.
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AKI and Fluid Overload, Synergistic and Problematic?

AKI and fluid overload (FO) demonstrate the physiology of bidirectional risk(43●●). The 

kidney is sensitive to expansion of the interstitial space and increased venous pressure, 

resulting in increased renal subcapsular pressure and lowered renal blood flow and 

glomerular filtration rate. Concurrently, decreased glomerular filtration rate and tubular 

dysfunction during AKI predisposes patients to volume retention and fluid accumulation. FO 

alone, or in conjunction with AKI is detrimental to patient outcomes (6, 44). It is associated 

with longer duration of ventilatory support, hospital stay, and higher risk of infection. 

Increased FO at initiation of renal replacement therapy in the intensive care unit has been 

associated with increased risk of death in both adults (45) and children (46, 47). In a recent 

secondary analysis of the prospective observational AKI in Children Expected by Renal 

Angina and Urinary Biomarkers (AKI-CHERUB) study, intensive care unit length of stay 

was significantly longer in the phenotypic classification of FO and AKI positivity after 

adjusting for severity of illness (14). In this same study, FO in the absence of AKI increased 

the odds of death (48). Finally, correcting creatinine for fluid balance may refine diagnosis 

and unmask AKI associated with associated significant complications. Thus, earlier 

initiation of interventions for fluid removal has the potential to decrease morbidity and 

mortality.

The traditional approach to post-operative FO often encompasses the administration of an 

intravenous diuretic either as intermittent bolus dosing or a continuous infusion. Loop 

diuretics such as furosemide and bumetanide are the most common first line agents with 

thiazide diuretics used for their synergistic effect with loop diuretics. Although the 

traditional dogma of diuretic use remains pervasive in the post-operative period, new 

experiences with peritoneal dialysis may mitigate FO in the initial post-operative period and 

are discussed further in the management section.

Diagnostics: Limitations of current modalities render opportunities for 

improvement

Existing diagnostic modalities render an imprecise definition of AKI. For example, serum 

creatinine during the first few days of life reflects maternal levels (48), thus there is inherent 

difficulty in defining a baseline for determination of the magnitude of rise in post-operative 

creatinine and possible misclassification of tubular injury. The co-existence of FO may mask 

AKI diagnosis because serum creatinine is diluted as demonstrated in 2 prior neonatal 

studies. Correction of creatinine for the degree of fluid overload leads to more sensitive 

detection of AKI and has strengthened the association of CS-AKI with poor outcomes (15, 

16). The multifactorial etiology of CS-AKI has made prevention and/or treatment 

challenging. To date, there is no single or consistently effective therapy for AKI, and 

supportive care continues to be the mainstay of management. Some of the lack of efficacy of 

the published studies may be due to limitations in appropriately stratifying and enrolling 

those most at risk for developing AKI, as well as limitations in the diagnostic methodology, 

specifically as they relate to the limitations of creatinine.
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Alternative strategies that identify AKI, or the risk for AKI before a rise in serum creatinine 

have the potential to improve outcomes through improved risk stratification and optimization 

of medical management. The renal angina index (RAI) is a context driven bedside tool that 

combines AKI risk factors and early signs of kidney injury for use in critically ill children 

(49). The RAI provides clinicians with tools to expedite AKI recognition on the day of 

admission for those at greatest risk for suffering day 3 AKI after intensive care unit (ICU) 

admission (49). Incorporation of urine NGAL into the RAI model significantly enhanced the 

predictive performance for day 3 AKI (50). Unfortunately, RAI utilization is not appropriate 

for assessment of AKI risk following pediatric cardiac surgery. Recent derivation and 

validation of a vasoactive-ventilation-renal score was found to be predictive of duration of 

mechanical ventilation and ICU length of stay encompasses creatinine measures (51, 52). 

Derivation of a cardiac renal angina index that encompasses pre-, peri and post-operative 

risk factors as well as early signs of kidney injury may facilitate improved AKI diagnostic 

precision, especially when combined with clinically available urinary biomarkers.

Markers of actual renal function may afford a more precise description of tubular injury. The 

action of furosemide requires the functional elements of proximal tubular migration, 

intraluminal transport, and handling at the basolateral membrane of the loop of Henle; a 

standardized assessment of the response to furosemide may offer clues to renal dysfunction. 

The furosemide stress test is a standardized assessment of urine output in response to a dose 

of furosemide. When tested in critically ill adults, urine flow rate at 2 and 6 hours after an 

index dose of furosemide was able to discriminate AKI progression and need for renal 

replacement therapy, and was superior to serum or AKI urinary biomarkers (53). Furosemide 

use is ubiquitous after pediatric cardiac surgery, and several pediatric cardiac surgery studies 

have demonstrated that lower urine output following furosemide administration was 

independently associated with subsequent CS-AKI and longer length of stay (54●-56). 

Ongoing prospective pediatric trials will likely better elucidate the dose response related to 

furosemide and aide in ongoing diagnosis of CS-AKI and management in the post-operative 

period.

Despite the widespread literature on the use of AKI biomarkers, only 2 are currently 

available for clinical use: neutrophil gelatinase associated lipocalin (NGAL) and the product 

of tissue inhibitor matrix metalloproteinase-2 and insulin like growth factor binding 

protein-7, (TIMP-2*IGFBP-7). There are many studies assessing the timing and predictive 

performance of both NGAL and TIMP-2*IGFBP-7 after pediatric cardiac surgery (57, 58), 

but incorporation into clinical practice is limited because of the availability of testing 

platforms within clinical laboratories. Varnell et al recently reported on the clinical utility of 

urine NGAL utilization in clinical practice in which several cases are presented in non-

cardiac surgical patients, and found it to be helpful in risk stratifying patients for need for 

dialysis or separating from dialysis (59).
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Existing Management Strategies of AKI and Fluid Overload: Some more 

effective than others

Numerous clinical trials have been conducted in order to assess the efficacy of a variety of 

pharmacologic interventions for the prevention and/or treatment of AKI. A summary of 

these trials is included in Table 1.

Fenoldapam, a selective dopamine-1 receptor agonist was administered to neonates (60) and 

infants (61) undergoing cardiac surgery. High dose fenoldapam utilization during 

biventricular repair (61) was associated with decreased diuretic and vasodilator utilization 

and the reduction in urinary levels of NGAL and cystatin C. Low dose fenoldapam in 

neonates did not augment urine output or reduce AKI incidence (60).

Aminophylline is a methylxanthine nonselective adenosine receptor antagonist that has been 

shown to increase glomerular blood flow. Intravenous theophylline administration carries a 

class 2B indication for neonates with severe perinatal asphyxia that are at high risk for AKI 

(1). Two recent clinical trials randomized patients to receive aminophylline for AKI 

prevention (62) or for the treatment of oliguria (63). Overall, there was no perceived benefit 

of aminophylline use after pediatric cardiac surgery.

The benefits of methylprednisolone/corticosteroids have also been explored for the 

prevention of AKI, with no perceived benefit (64-67). These data are supported by a recent 

large (n=7286) randomized controlled trial of adult patients undergoing cardiac surgery with 

cardiopulmonary bypass in which no benefit was demonstrated when steroids were 

administered for the prevention of CS-AKI in patients with moderate to high-risk of 

perioperative death (68). The role of acetaminophen and dexmedetomidine have also been 

evaluated in pediatric cardiac surgery patients (69-72). There appears to be a reduction in 

both AKI incidence and severity with both treatment strategies. However, for 

dexmedetomidine use, there was either no assessment on the impact of outcomes (71), or 

there was no effect on outcomes at all (72).

Despite these existing randomized controlled trials and retrospective studies assessing the 

benefits of a variety of pharmacologic therapies for AKI prevention and treatment, a recent 

meta-analysis found no firm evidence of the protective roles of the studied medications for 

pediatric patients undergoing cardiac surgery (73). With this, we continue to be left with 

supportive care strategies in these high-risk patients undergoing cardiac surgery.

Some patients experience complications after cardiac surgery that necessitate additional 

imaging such as contrast computed tomography or diagnostic/interventional cardiac 

catheterization. Both modalities utilize contrast, which can be associated with contrast 

induced nephropathy. Pediatric patients with existing AKI or marginal hemodynamics may 

be at risk for AKI progression with contrast exposure. The PRESERVE (Prevention of 

Serious Adverse Events Following Angiography) trial was a prospective randomized 

controlled trial that tested the effects of isotonic sodium bicarbonate versus intravenous 

isotonic saline and oral N-acetylcysteine versus oral placebo on the prevention of a 

composite outcome of need for urgent renal replacement therapy, 90-day acute kidney 
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disease and 90-day mortality (74). The study was terminated early due to lack of benefit in 

an interim analysis among patients at high risk for composite outcome (74). Thus, current 

strategies for these patients have shifted toward hydration and avoidance of concurrent 

nephrotoxic medications.

Early identification and mitigation of FO is crucial in the management of the post-operative 

patient. Strict monitoring of intake and output, daily weights, and careful mitigation of 

excess volume administration when able is a crucial aspect of the early post-operative 

management plan. Several studies have shown potential benefit related to the early use of 

prophylactic peritoneal dialysis in high-risk patients undergoing cardiac surgery (Table 2). 

Use of a peritoneal catheter for passive drainage or dialysis has been associated with a 

decreased duration of mechanical ventilation, improved urine output, lower vasoactive 

medication needs and earlier time to negative fluid balance (75-80). Kwiatkowski et al 
performed a single center randomized controlled of furosemide versus prophylactic 

peritoneal dialysis in high-risk patients less than 6 months of age who were undergoing 

cardiac surgery (80●●). Patients were randomized based on 4 hours of oliguria (<1ml/kg/

hour) during the first 24 post-operative hours. In this study, patients randomized to 

furosemide were 3 times more likely to develop >10% fluid overload, 3 times more likely to 

require prolonged mechanical ventilation and 1.6 times more likely to have a prolonged ICU 

length of stay. This was accompanied by a greater need for electrolyte replacement. There 

was no difference in mechanical ventilation duration and mortality between groups (80). A 

separate study by Ryerson and colleagues evaluated the time to negative fluid balance and 

outcomes in a cohort of neonates undergoing the Norwood operation (81). Patients who 

received a peritoneal catheter for either passive drainage or prophylactic dialysis did not 

achieve a faster time to negative fluid balance or difference in outcomes. In fact, nearly 50% 

of the patients with a peritoneal catheter experienced adverse events including cardiac arrest 

(81). These studies highlight the heterogeneity in outcomes and provides pause for a one-

size-fits-all approach to fluid removal through utilization of passive peritoneal drainage or 

prophylactic peritoneal dialysis in pediatric cardiac surgery.

Invariably a select group of patients will need renal replacement therapy despite judicious 

attempts at fluid management using either diuretics, passive peritoneal drainage or 

prophylactic peritoneal dialysis. Continuous renal replacement therapy (CRRT), of which 

continuous veno-venous hemodiafiltration (CVVHDF) is the most commonly utilized 

modality, allows for minute to minute adjustment in fluid removal rates which may be 

preferable for the hemodynamically unstable patient in the cardiac ICU. In addition, 

mitigation of azotemia and electrolyte dyscrasia is often easier with CRRT when compared 

with PD as rapid adjustments may be made to the dialysate and filtration rates. Although 

CRRT requires central venous access, it does not require an abdominal surgery.

Aquapheresis is a new modality which is gaining increasing traction for removal of fluid/

ultrafiltration in the smallest of patients in which either two, single-lumen catheters or a 

slightly larger double-lumen catheter can be used to achieve adequate fluid removal (82). 

Benefits of this therapy include lower priming volumes with tolerance of lower flow rates. 

Although large trials studying the efficacy of this technology are ongoing, aquapheresis may 
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provide a unique opportunity for mitigation of FO in the appropriately selected patient (82, 

83).

Next Generation Management Strategies: Opportunities to improve 

outcomes

Extraction of data from the electronic health record (EHR) and real-time incorporation into 

clinical decision support tools may allow us to successfully prevent AKI entirely, or prevent 

its progression to a more severe stage. Tools which alert the clinician to AKI diagnosis may 

also enhance apparent awareness of factors known to increase AKI severity through 

implementation of specific care bundles. A recent retrospective study reported that 

community-acquired AKI diagnosis was missed in 93% of patients who presented to a large 

quaternary care pediatric emergency department (84). Development of AKI alert tools 

accompanied by care bundles have shown to be beneficial in adult studies across a wide 

variety of disease states (85, 86). With respect to AKI, the implementation of a small set of 

reliably executed practices to minimize nephrotoxic injury, prevent volume overload, 

promote prompt treatment of underlying conditions and minimize nephrotoxin exposure can 

be incorporated into a care bundle to promote best practice (86). Recent studies have shown 

that proper implementation of care bundles in adult populations can lead to lower in hospital 

mortality and lower incidence of AKI progression (87). Wang et al recently reported on an 

EHR-based predictive model that would identify patients in whom serum creatinine testing 

should be performed (88). They derived separate models for ICU and non-ICU patients that 

were not reliant on existing creatinine measures, but rather incorporated variables that were 

associated with development of AKI. The c-statistic for both models was in the 0.7 range 

suggesting good model performance (88). Incorporating such a model across different 

EHR’s may be challenging and costly and is not yet ready for clinical use.

Finally, a quality improvement program targeting reduced nephrotoxin exposure 

implemented across a non-ICU cohort of children has demonstrated the ability to reduce 

both exposure rate and AKI incidence (37, 89, 90). EHR based nephrotoxin medication alert 

tools are already in place in some pediatric hospitals. There has been both an initial and 

sustained reduction in AKI incidence utilizing these tools in the non-intensive care unit 

setting (89, 90). Incorporation and assessment into the cardiac intensive care unit may 

provide additional tools to mitigate AKI incidence and severity. Because nephrotoxin 

medication exposure is potentially modifiable, there is the potential to reduce post-operative 

AKI incidence if addressed in at-risk patients. A recent retrospective study evaluated the 

epidemiology of nephrotoxin exposure and nephrotoxin-associated AKI among children 

undergoing cardiac surgery (91). In this study, at least one nephrotoxin was used in 85% of 

patients, with 20% receiving ≥ 3. While AKI occurred more commonly in those exposed to 

≥ 3 nephrotoxins, there was no independent association with nephrotoxin use on AKI 

suggesting the multifactorial etiology of AKI in this population (91). Future incorporation of 

nephrotoxin medication alert systems that leverage the EHR have the potential to reduce 

AKI incidence and severity in the highest risk patients.
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Conclusion

In conclusion, AKI is common after pediatric cardiac surgery and significantly impacts short 

and long-term outcomes. Current pharmacologic therapies have failed to show any benefit in 

AKI prevention and treatment. Improved AKI diagnostics and risk stratification in 

conjunction with next generation management strategies have the potential to improve both 

AKI incidence and outcomes.
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Figure 1. Framework for risk stratification, improved diagnostic prediction tools and laboratory 
measures and treatment strategies for AKI and its complications.
In this construct, the presence of fluid overload independently and synergistically (with 

AKI) leads to worse outcomes.

AKI = acute kidney injury, RRT = renal replacement therapy, LCOS = low cardiac output 

syndrome, CPB = cardiopulmonary bypass. Adapted with permission from RK Basu.
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