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Abstract
Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants
in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage
disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between
alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data
from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze
allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls.
Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms
(SNPs) in the 3′ untranslated regions (3′UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437
SNPs in the 3′UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel
assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels
in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites
of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential
ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful
strategy to uncover functionally relevant variants associated with the risk for AUD.

Introduction

Alcohol use disorder (AUD) is a major public health problem
[1–3]. Alcohol is a central nervous system depressant, and
high levels of consumption over a long period may alter brain
function to promote AUD and damage the brain, in part by
altering gene expression levels [4, 5]. Understanding the
molecular mechanisms by which alcohol affects the brain is
important and might provide clues to the causes of AUD and
ways to reverse the impact on the brain of heavy drinking.

Variations in many genes influence the risk for AUD;
however, aside from functional variants in two alcohol-
metabolizing enzymes, alcohol dehydrogenase and alde-
hyde dehydrogenase, each individual variant has only a
small effect [1, 3, 6, 7]. In addition to genetic differences,
environmental factors, and interactions among the variants
also affect AUD risk [1, 3, 6]. Genome-wide association
studies (GWAS) identify regions in the genome that
affect risk for complex diseases [8], but to date, only a few
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AUD-associated loci have been unambiguously identified
[7]. Most identified regions contain many variants that are
inherited together (linkage disequilibrium), and identifying
the causal variant amongst all the associated ones is a major
challenge.

A powerful method to study the effects of genetic var-
iants on gene regulation is to examine allele-specific
expression (ASE). ASE measures the difference in expres-
sion between the alternative alleles and is regulated by cis-
acting DNA elements, since both alleles are exposed to the
same trans-acting environment in the cell. ASE analysis can
be used as a marker to identify strong candidate genes with
AUD-associated differential expression. ASE in genes
could be influenced by several mechanisms; one is by
functional variants in the 3′ untranslated regions (3′UTRs).
Single nucleotide polymorphisms (SNPs) within 3′UTRs
can modulate gene expression as target sites for micro-
RNAs (miRNAs) or RNA-binding proteins (RBPs). A high-
throughput reporter assay offers a powerful tool to screen
hundreds of genomic variants associated with a specific
phenotype to determine which variants affect gene regula-
tion. The combination of ASE analysis and a high-
throughput assay provides a unique strategy to uncover
candidate genes contributing to AUD risk and to identify
functionally relevant variants in those genes. Together,
these complementary approaches provide a mechanism of
action and thereby advance our understanding of the biol-
ogy of AUD.

Here, we integrated deep RNA-seq and SNP genotyping
data from four different brain regions of 30 subjects with
AUD and 30 social/non-drinking control subjects to detect
genes whose ASE differs. The brain regions were: (i) the
basolateral nucleus of the amygdala (BLA), which plays
crucial roles in stimulus value coding and alcohol
withdrawal-induced increase in anxiety [9]; (ii) the central
nucleus of amygdala (CE), which mediates alcohol-related
behaviors and alcohol dependency [10]; (iii) the nucleus
accumbens (NAC), in which alcohol promotes dopamine
release [11]; and (iv) the superior frontal cortex (SFC),
which is implicated in cognitive control and experiences
neuronal cell loss after long-term alcohol abuse [12].
We then used a high-throughput reporter assay called
PASSPORT-seq (parallel assessment of polymorphisms in
miRNA target-sites by sequencing) [13] to systematically
screen all the SNPs in the 3′UTR regions of the genes that
demonstrated differential ASE between AUD and control
subjects, in any of the four brain regions, to determine
which variants altered RNA levels in cells of neural origin.
We identified 25 functional SNPs that altered gene
expression in the same direction in both SH-SY5Y and SK-
N-BE(2) cell lines. Many of these SNPs are located on the
binding sites of miRNAs and RBPs.

Materials and methods

Human brain tissues

The human brain tissues were obtained postmortem
from four brain regions of 60 individuals (30 subjects
with AUD and 30 social/non-drinkers) from the New
South Wales Brain Tissue Resource Center (NSWBTRC)
at the University of Sydney. Alcohol-dependent diagnoses
of the 30 AUD subjects met the American Psychiatric
Association DSM-IV criteria [14], and were confirmed
by physician interviews, review of hospital medical
records, questionnaires to next-of-kin, and from pathol-
ogy, radiology, and neuropsychology reports. The control
group consisted of 30 social/non-drinker samples, which
were matched with the 30 AUD subjects based on
age, sex, postmortem interval, pH of tissue, and cause
of death. Additional selection criteria included >18 years
of age, no head injury at time of death, lack of
developmental disorder, no recent cerebral stroke, no
history of other psychiatric or neurological disorders, no
history of intravenous or polydrug abuse, negative screen
for AIDS and hepatitis B/C, and postmortem interval
within 48 h.

RNA-seq and genotyping

RNA was extracted from the brain tissues using the Qiagen
RNeasy kit (Qiagen, Germantown, MD, USA). The RNA-
seq samples were prepared using the TruSeq RNA Library
Pre Kit v2 (Illumina, Inc., San Diego, CA, USA) and
sequenced on the Illumina HiSeq 2000. Paired-end libraries
with an average insert size of 180 bp were obtained. Raw
reads were aligned to human genome 19 (hg19) using
STAR aligner version 2.5.3.a [15]. FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was used to
evaluate RNA sequence quality. The RNA-seq data is
available through the NCBI BioProject database (BLA:
PRJNA551909, CE: PRJNA551908, NAC: PRJNA551775,
SFC: PRJNA530758).

DNA was obtained from the same brain tissues. The
Axiom Biobank Genotyping Array (Thermo Fisher Sci-
entific, Waltham, MA, USA) was used for genotyping.
Monomorphic variants, variants with call rate ≤0.98 or
Hardy–Weinberg equilibrium p < 10−5, and samples with
call rate <0.90 were removed using PLINK [16]. Phasing
was done using SHAPEIT2 [17]. IMPUTE2 [18] was
used for imputation using the 1000 Genomes Phase 1
integrated panel (excluding singleton variants) as the
reference. Variants with imputation score ≥0.8 and esti-
mated minor allele frequency (MAF) ≥0.5 were included
in the analysis.
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ASE analysis

GATK ASEReadCounter was used to obtain reference and
alternative allele counts at the exonic SNPs [19]. We only
analyzed SNPs that were heterozygous in at least five
control and five AUD groups, and that also had more than
10 reads, to ensure that samples with sufficient reliable read
counts were used for analysis.

We used a generalized linear mixed effect model
(GLMM) to model the number of RNA-seq reads for each
allele based on its allelic type (reference or alternative
allele), study group (AUD or social/non-drinkers), and the
interaction terms between the two variables. A random
variable was used to account for the reads from the two
alleles within the same individual. To adjust for the over-
dispersion effects of the RNA-seq reads, a negative bino-
mial distribution was used in the GLMM model.

logðμÞ ¼ β0 þ β1X1 þ β2X2 þ β12X1X2 þ bXS

where μ is the expected number of sequencing reads for one
allele (reference or alternative) in one specific subject, X1 is
the allele type (0: reference allele and 1: alternative allele),
X2 is the subject study group (0: control group and 1: AUD
group), and XS is the subject ID. In this model, β0, β1, β2,
and β12 are coefficients of fixed effects, while b is the
coefficient for random effect that models the differences
between subjects. Our null hypothesis (H0) is: β12= 0.
Rejecting the null hypothesis indicates that the allelic
imbalance differs between the AUD and control groups.
False discovery rate (FDR) was calculated using the
Benjamini–Hochberg procedure [20]. Ingenuity pathway
analysis (IPA) (Qiagen) was used for deriving the pathways
of the genes with AUD-associated allelic differences.

Screening for functional SNPs in the 3′UTR

The PASSPORT-seq assay was conducted as previously
described [13] with some modifications described in Sup-
plementary Materials. Briefly, the procedure includes the
following steps: oligonucleotide synthesis, plasmid library
construction, transfection, DNA/RNA extraction, and
sequencing. The oligonucleotide pool was synthesized com-
mercially (Oligomix®, LC Sciences, Houston, TX, USA), and
included 874 DNA oligos to target both alleles of 437 SNPs
in the 3′UTR of genes that showed differences in allelic ratio
between control and AUD groups. These were cloned in
parallel into the 3′UTR of the luciferase gene in the pIS-0
vector (12178, Addgene, Cambridge, MA, USA). The
resulting plasmid pool was purified from transformed
DH5alpha bacteria and transfected into two human neuro-
blastoma cell lines, SH-SY5Y and SK-N-BE(2). Each trans-
fection was repeated six independent times. Both plasmid
DNA and cellular RNA were extracted from the cells 42 h

post-transfection. Plasmid DNA and cDNA sequences con-
taining the cloned SNPs were amplified using PCR primers
that also incorporated sample barcodes, unique molecular
indices (UMI), and Illumina-sequencing adapters. The
resulting PCR products were sequenced using one lane of
Illumina HiSeq 4000 using a 75 bp paired-end protocol. The
detailed experimental protocol is provided in the Supple-
mentary Materials. A schematic of the overall procedure is
shown in Fig. 1.

FASTQ files were demultiplexed using cutadapt [21]
based upon barcodes identifying DNA source and replicate
number, and the barcodes and adapter sequences were
trimmed from each read. The UMI was then trimmed and
stored in the read name using umi_tools [22]. Using bwa-
mem [23], remaining reads were mapped to the reference
sequences defined by the reference and alternative sequence
for each SNP of interest. Finally, umi_tools was used to
count the number of UMI-unique reads for each sequence.

To identify the functional 3′UTR SNPs, i.e. those whose
ratio between reference and alternative allele was sig-
nificantly different between the vector-expressed RNA and
the plasmid DNA extracted from the same transfected cells,
a generalized linear model was used. Similar to ASE ana-
lysis, a negative binomial distribution was used to account
for the over-dispersion effects on the UMI count data.

Annotation of the functional 3′UTR SNPs

For each SNP, expression quantitative trait loci (eQTLs),
RBP-binding sites, and miRNA target sites were annotated.
The eQTL information was retrieved from the Genotype-
Tissue Expression (GTEx) database (version V7; accessed
December 17, 2018) [24] to find SNPs that are eQTLs for
the same gene, and also to determine whether miRNAs were
expressed in brain. The UCSC Genome Browser database
[25] was used to annotate whether a specific SNP
was located in the binding site of an RBP using the
ENCODE RNA-Binding Protein track [26]. The Polymirts
database [27] was used to predict the potential miRNAs
whose binding can be altered by a candidate SNP, where the
binding of an miRNA on a specific target sequence was
evaluated by TargetScan [28].

Ethanol treatment of cells

To evaluate the potential effect of alcohol on the function of
the 3′UTR SNPs, untransfected SK-N-BE(2) cells were
grown to confluence in a 9.5 cm2 CellBIND six-well dish
(Corning, Corning, NY, USA) and then treated with physio-
logical concentrations of ethanol (10 or 20 mM) or left
untreated. Following 24 and 42 h ethanol treatment, cells were
harvested for RNA isolation, library preparation, and RNA
sequencing. For the 42 h treatment condition, media was
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replaced with fresh media with or without ethanol in both
ethanol treated and control cells, respectively, at 24 h. Four
independent biological replicates were conducted for each
condition. The mRNA was extracted from the cells using the
Qiagen RNeasy kit (Qiagen). The RNA-seq samples were
prepared using the TruSeq RNA Library Pre Kit v2 (Illumina)
and sequenced on the Illumina HiSeq 4000 using 2 × 75 bp

paired-end configuration. A GLMM model was used to
identify the variants whose allelic frequencies were altered by
ethanol treatment (see Supplementary Materials). The RNA-
seq data is available through Gene Expression Omnibus
(GEO) database (accession number: GSE131470).

Results

AUD-associated differential ASE

We performed deep RNA-seq experiments (>100 million
reads per sample) from each of four brain regions (BLA, CE,
NAC, SFC) from 60 individuals, 30 with and 30 without
AUD (240 total samples). In addition, we obtained geno-
types for all 60 subjects. After aligning RNA-seq reads to
the human genome and imputing the SNP array genotyping
to ~10 million SNPs, we retrieved allele counts from the
RNA-seq data for all SNPs for which at least one sample
was heterozygous, for a total of 250,007 SNPs. We focused
on the ~17,000–24,000 SNPs in each of the four brain
regions that had more than 10 reads in at least five hetero-
zygous samples in both the AUD and control groups. The
overall strategy is summarized in Supplementary Fig. 1 and
Supplementary Table 1.

To examine whether there were allele-specific differ-
ences that varied between subjects with AUD and controls,
a GLMM was implemented; the coefficient of the interac-
tion between allele and experimental group, β12, estimates
the log2 ratio of the fraction of alternative allele reads
between the control and AUD samples, and was used to
evaluate whether the ASE at a specific locus was sig-
nificantly different between AUD and control groups.

We identified 88 SNPs with ASE in at least one brain
region that significantly differed between subjects with and
without AUD (Fig. 2a) at an FDR < 0.05 and |β12| > 1.
Among these SNPs, 58 showed an increased fraction of the
alternative allele in AUD samples, while 32 showed a
decreased fraction. There were 26 SNPs in the BLA, 9 in
the CE, 31 in the NAC, and 22 in the SFC. Examples of
SNPs with significant differential ASE in each brain region
are shown in Fig. 2b. An annotated list of these 88 SNPs,
including their loci, allele frequencies, gene, and functional
location, is provided in Supplementary Table 3. In addition,
we developed an R-shiny-based interactive website (https://
yunlongliulab.shinyapps.io/aud_ase/) to provide a direct
visualization of the ASE findings. This data portal exhibits
the RNA-seq read counts on both reference and alternative
alleles at each significant ASE locus for every subject.

Among the SNPs with differential ASE, many showed
the same direction of effect (p < 0.05) in more than one
brain region (although the FDR might have been >0.05 in
another region). For example, among the 92 SNPs with

Fig. 1 Schematic representation of the PASSPORT-seq assay. A pool
of oligonucleotides flanking both alleles of 437 SNPs were cloned in
parallel into the 3′UTR of the luciferase gene in pIS-0 vector. Colonies
were pooled and DNA purified. The resulting plasmid library was
transiently transfected into two neuroblastoma cells lines, SH-SY5Y
and SK-N-BE(2). The cDNAs were synthesized from the total RNA.
The target sequences were amplified from the cDNAs and the plasmid
DNA extracted from the transfected cells using two-step-PCR with
unique barcodes for each cell line and each biological replicate. Fol-
lowing next-generation sequencing, the reads were aligned to the
reference library consisting of all the test sequences and ASE was
measured for each SNPs. ss single-stranded, ds double-stranded
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Fig. 2 Allele-specific expression in the postmortem brain samples
from subjects with and without AUD. a Volcano plot comparing the
adjusted log2 fold change (adj log2 FC) and false discovery rate (FDR)
of the percentage of alternative alleles between AUD subjects and
controls. SNPs with FDR < 0.05 and adjusted log2(fold change) >1 or
<−1 were color-coded by brain region. BLA basolateral nucleus of the
amygdala, CE central nucleus of the amygdala, NAC nucleus
accumbens, and SFC superior frontal cortex; alt alternative. b Alter-
native allele frequency box plot and a scatter-plot of the number of
reference and alternative reads for one significant SNP from each brain
region (symbols noted above). alt freq alternative allele frequency;
Ctl= social/non-drinking control subjects; Alc=AUD subjects;

ref= reference. c Consistency in the adj log2 FC in different brain
regions. SNPs with FDR < 0.05 in BLA and p < 0.05 in another brain
region are plotted by adjusted fold change, color-coded by the other
brain region. Of the 24 SNPs, 20 had consistent fold change direction
in the two brain regions. d Heatmap of adjusted fold change of SNPs
with FDR < 0.05 in at least one brain region shows consistency in fold
change among all four brain regions. Dark and light colors indicate
genome-wide significant (FDR < 0.05), or borderline significant (FDR
> 0.05 but p < 0.05), respectively. Red and blue indicate increased and
decreased percentage of alternative allele in the AUD brain comparing
to control group. e Ingenuity pathway analysis results of genes enri-
ched in nervous system development and function
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ASE in BLA that had FDR < 0.05 (no requirement for β12),
24 also showed changes in other brain regions (p < 0.05), of
which 20 had consistent β12 direction in at least one of the
other regions (Fig. 2c). Similar consistency was observed in
significant SNPs (FDR < 0.05) in CE, NAC, and SFC
(Supplementary Fig. 2). As shown in the heatmap (Fig. 2d),
among the SNPs with FDR < 0.05 in at least one brain
region, a similar trend of AUD-associated allelic bias was
also observed in at least one other region.

The genes containing the 88 ASE SNPs were analyzed
using IPA; 17 were involved in nervous system develop-
ment and function or neurological disease (enrichment
p-value ranged from 8.8E−04 to 3.7E−02), including
neurotransmission and coordination (Fig. 2e), movement
disorders and neuromuscular disease.

Functional SNPs in 3′UTRs

To understand a potential mechanism of action responsible
for the ASE, we tested 3′UTR SNPs of the genes with ASE
to determine whether they affected gene regulation. Because
both heterozygous alleles exist in the same cell and are
exposed to the same environment, ASE differences arise
due to regulation in cis. Among the genes with AUD-
associated differences in ASE in at least one of the four
brain regions, we identified 565 SNPs in the 3′UTR regions;
437 SNPs in 61 genes had at least one heterozygote in either
the AUD or control group (Supplementary Table 3). We
adapted a high-throughput reporter assay, PASSPORT-seq
[13], to identify 3′UTR variants that affected gene expres-
sion (RNA levels) in two human neuroblastoma cell lines,
SH-SY5Y and SK-N-BE(2) (Supplementary Table 4). We
detected expression of the reference and alternative alleles
in both SH-SY5Y and SK-N-BE(2) cells in 362 (82.8%) of
the 437 SNPs screened. UMIs were counted to quantify the

expression of the reference and alternative alleles for each
SNP, and a generalized linear model was applied to identify
the variants that showed ASE.

As shown in Fig. 3a, 53 of the detected SNPs showed
significant differences in ASE (FDR < 0.05) in SH-SY5Y
cells and 130 in SK-N-BE(2) cells. Thirty of these SNPs
showed significant ASE in both cell lines, with a consistent
direction of allele imbalance in 25 SNPs: 2 from BLA, 5
from CE, 6 from NAC, and 12 from SFC (Fig. 3a). The
alternative allele frequencies and sequencing depths of four
representative SNPs (one from each region) are shown in
Fig. 3b. Significant variants in all brain regions are shown in
Supplementary Fig. 3.

We annotated the 25 variants that showed ASE in the
same direction in both SH-SY5Y and SK-N-BE(2) cells
(Table 1). Eighteen were found to be in eQTL regions of
their own genes, based on the GTEx database [22], which
provides additional evidence that the identified genes are, at
least in part, regulated by the cis-acting variants. In addi-
tion, 14 SNPs coincided with the binding site of one or
more RBPs. Interestingly, poly(A)-binding protein cyto-
plasmic 1 (PABPC1) was associated with the location of 11
SNPs, while ELAV-like RBP (ELAVL1) was associated
with 7. TargetScan matching of miRNA seed sites at each
variant location using PolymiRTS [27] found 10 SNPs that
disrupt or introduce a miRNA-binding site. Four of these
SNPs interfere with the seed sites of 13 miRNAs that are
known to be expressed in brains (Table 1).

Ethanol treatment changes the ASE in SNPs of
interest

To evaluate the impact of alcohol treatment on the ASE of
endogenous SNPs, we examined their expression in SK-N-
BE(2) cells before and after treatment with two concentrations

Fig. 3 PASSPORT-seq results in
SH-SY5Y and SK-N-BE(2) cell
lines. a Plot of the adjusted log2
(fold change) of alternative
allele frequency between RNA
and DNA in SH-SY5Y [SH] and
SK-N-BE(2) [SK] cell lines in
the four brain regions. SNPs
with FDR < 0.05 in both cell
lines were color-coded by the
brain region. b Alternative allele
frequency and read depth for
significant SNPs derived from
each brain region

Allele-specific expression and high-throughput reporter assay reveal functional genetic variants. . . 1147



of ethanol, 10 and 20mM. Among the 130 PASSPORT-seq
SNPs showing ASE in SK-N-BE(2) cells, 17 had an average
read depth per sample >15 and had at least 10% of their reads
supporting the minor allele in either the ethanol-treated or
untreated SK-N-BE(2) cells. Of these, we identified six SNPs
whose ratios between reference and alternative alleles were
significantly altered by alcohol treatment in a dose-responsive
manner: rs45474901 (p= 0.014), rs2950846 (p= 0.017),
rs45522239 (p= 0.022), rs45548238 (p= 0.027), rs1968676
(p= 0.029), and rs2338530 (p= 0.041). Three of these SNPs
are located in the 3′UTR of TMEM25 (transmembrane pro-
tein 25), two are within PCDHB16 (protocadherin beta 16),
and one is in SMPD4 (sphingomyelin phosphodiesterase 4).
The SNP with the smallest p-value in each gene is shown in
Fig. 4 (the other three SNPs are shown in Supplementary
Fig. 4). For five of these six SNPs, the effects of acute ethanol
treatment were in the opposite direction of that seen in the
brains of subjects with AUD. For example, the variant

rs45474901 allele in the 3′UTR of TMEM25 exhibited higher
expression in the PASSPORT-seq assay and in SFC of het-
erozygous subjects with AUD, but lower expression after
ethanol exposure in SK-N-BE(2) cells. Conversely, for
rs1968676, a SNP in SMPD4, and rs2950846, a SNP in
PCDHB16, the variant alleles were expressed at lower levels
in AUD subjects and in PASSPORT-seq but at higher levels
after ethanol treatment.

Discussion

In this study, we used two tightly coupled approaches, ASE
analysis together with a high-throughput reporter assay, as an
innovative strategy to discover the roles of cis-acting variants
on gene regulation in AUD. We identified 88 genes whose
ASE differed between AUD and control subjects in at least
one of four brain regions; many of the differences were

Table 1 Annotations for SNPs that showed significant and consistent impacts in both SH-SY5Y and SK-N-BE(2) cell lines by PASSPORT-seq

Region Gene SNP MAF (%) eQTL RBP binding Potential miRNA target

BLA PEAK1 rs17381821 18 Yes miR-3913-3pa

BLA PNP rs1079375 32 Yes

CE HELQ rs4693089 34 Yes PABPC1, ELAVL1

CE KIF1B rs1065828 33 Yes IGF2BP1

CE KIF1B rs1536262 45 Yes IGF2BP1

CE PACRGL rs6812257 31 Yes ELAVL1, PABPC1

CE ZNF625 rs59816741 1 No

NAC LYPD5 rs4525602 3 No

NAC PCDHB16 rs2338530 10 Yes PABPC1

NAC PRLR rs173627 24 No PABPC1

NAC SLC16A4 rs11120 18 Yes ELAVL1, PABPC1 miR-200b-3pb, miR-200c-3pa, miR-374c-5pa, miR-429c, miR-4330b,
miR-510-5pa, miR-512-5pb, miR-655-3pb, miR-8084a, miR-3942-3pc,
miR-506-5pc, miR-5100b, miR-6074a, miR-889-3pc, miR-892c-5pa

NAC SMPD4 rs10909567 38 Yes IGF2BP1

NAC SYT9 rs10732510 48 No miR-3925-3pb, miR-136-5pc, miR-4695-3pa, miR-665a, miR-766-3pc

SFC CA13 rs4617148 45 Yes ELAVL1, PABPC1, IGF2BP1 miR-3125c, miR-3916c, miR-6859-5pa, miR-6866-5pa, miR-877-5pc,
miR-4496c

SFC CA13 rs4740047 42 Yes ELAVL1, PABPC1, IGF2BP1

SFC FKTN rs2010861 13 Yes ELAVL1, PABPC1 miR-6840-3pa

SFC LRPAP1 rs11723071 20 Yes

SFC LRPAP1 rs11729369 25 Yes

SFC LRPAP1 rs13325 13 No

SFC LRPAP1 rs140653273 1 No

SFC MAVS rs6515831 31 Yes miR-4289a

SFC PODN rs899974 19 No

SFC PPARA rs10154348 7 Yes ELAVL1, PABPC1, CELF1 miR-7155-5pa

SFC SNX18 rs2565014 35 Yes PABPC1 miR-4655-3pa

miR-7848-3pa

SFC UQCC1 rs3764732 14 No PABPC1 miR-3922-5pa, miR-513c-5pb, miR-514b-5pc, miR-330-3pc, miR-
371a-5pa, miR-371b-5pc, miR-372-5pa, miR-373-5pb, miR-616-5pc,
miR-7109-3pa

Brain regions: BLA basolateral nucleus of the amygdala, CE central nucleus of amygdala, NAC nucleus accumbens, SFC superior frontal cortex.
MAF minor allele frequency, eQTL whether the SNP had a significant eQTL for its gene in GTEx, RBP RNA-binding proteins whose binding sites
overlapped the SNP, and miRNAs whose binding potential was changed by the alternative allele
amiRNA expression unknown
bmiRNA not expressed in brain
cmiRNA expressed in brain
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consistent in direction across brain regions. Pathway analysis
showed enrichment of these genes in pathways related to
neurological disorders and neurodegenerative diseases. High-
throughput screening in SH-SY5Y and SK-N-BE(2) cell lines
identified 53 and 130 SNPs in the 3′UTR of these genes,
respectively, that showed significant ASE, among which 25
SNPs lead to ASE in the same direction in both cell lines.

Differences in ASE between subjects with and without
AUD could be preexisting or the result of decades of
excessive alcohol consumption. The functional SNPs,
however, were detected by PASSPORT-seq in cultured cells
in the absence of ethanol and therefore likely affect
expression in the brain even in absence of ethanol exposure.
Interestingly, the ASE of six SNPs in SK-N-BE(2) cells was
altered by pharmacologically relevant concentrations of
ethanol (10–20mM); the direction of the acute alcohol
response was opposite to the direction in the brain regions.
Similar trends have been observed by others, e.g. acute
alcohol exposure favors an anti-inflammatory response and
chronic alcohol consumption favors proinflammatory cyto-
kine release [29, 30]. The SNPs with in vitro ethanol-
induced changes in allelic ratio are located in the 3′UTR of
the three genes, PCDHB16, TMEM25, and SMPD4.
PCDHB16 is a potential calcium-dependent cell-adhesion
protein that may be involved in the establishment and
maintenance of specific neuronal connections in the brain.
The expression of clustered protocadherins has been shown

to be strongly linked with selection for ethanol preference in
mice [31, 32]. In addition, the expression of PCDHB16 is
increased in the mouse NAC (the same region we found
ASE in this study) in response to cocaine [33]. TMEM25
encodes a transmembrane protein that is expressed in mul-
tiple brain regions, including the cerebellar cortex and hip-
pocampus, as well as in neuroblastoma and brain tumors,
and may be involved in the promotion of axon growth and
the regulation of cell migration [34, 35]. SMPD4 encodes an
enzyme sphingomyelinase that catalyzes the hydrolysis of
sphingomyelin into phosphorylcholine and ceramide and is
important in maintaining sphingolipid metabolism. It is one
of the neutral sphingomyelinases whose activity is increased
in HepG2 cells [36] and in astrocytes [37] in response to
alcohol. Neutral sphingomyelinases are highly active in
brain regions [38] and are suggested to play an important
role in neurological disorders [39, 40]. For example, in brain
injury, the activity of neutral sphingomyelinase is induced
and the ceramide level accumulates in astrocytes after cer-
ebral ischemia [39]. Another study showed that the activity
of neutral ceramidase (an enzyme that cleaves fatty acid
from ceramide) was increased in Alzheimer’s disease brain
fractions [41]. In addition, treating neuronal cultures with
amyloid beta peptide has been shown to elevate neutral
sphingomyelinase and ceramide activities [41, 42].

ASE analysis identifies genes whose expression levels are
influenced by the cis-acting elements and complements eQTL
analysis, but with higher statistical power, because the
expression signals of the two alleles in the same sample serve
as internal controls for each other. Despite these advantages,
ASE analysis has several challenges. First, it can only address
heterozygous loci. Second, it is only powered for genomic
loci with at least modest sequencing coverage (we used at
least 10 reads); thus, the requirement for RNA-sequencing
depth is high. In our study, the average depth for each sample
was ~100 million reads. A detailed discussion about the
relationship between read depth, number of samples, and
statistical power for identifying ASE differences between two
conditions is provided in the Supplementary Materials. Third,
the ASE changes we identified could have existed prior to the
excessive alcohol consumption characteristic of AUD or
could have resulted from it; they may not reflect etiology of
AUD. However, our approach could have broad importance
as a follow-up to well-powered genetic studies by identifying
variants that have functional effects on gene expression within
the usually broad loci identified in such studies. Finally, ASE
analysis from RNA-seq data is subject to technical challenges
due to the differences in our ability to align sequence reads to
two alleles. Most alignment algorithms more readily align the
sequencing reads with the reference sequence, which can lead
to depressed expression signals for the alternative allele.
Fortunately, this potential bias can be avoided by comparing
the allelic imbalances between two experimental conditions,

Fig. 4 ASE, PASSPORT-seq, and ethanol treatment results for
selected SNPs. Three SNPs (rs2950846, rs1968676, rs45474901) that
had alternative allele frequency significantly different in PASSPORT-
seq results (FDR < 0.05) and significantly different across 0, 10, and
20 mM ethanol treatment dosages in SK-N-BE(2) cells (p < 0.05) were
identified. The differences in the alternative allele frequency in the
brains of heterozygous social/non-drinkers (Ctl) and AUD subjects
(Alc) are also shown. SK= SK-N-BE(2) cells
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since the biases due to alignment algorithms will be the same
in both. Thus, we focused our analysis on the differences in
allelic imbalance between subjects with and without AUD.
This strategy also allowed us to focus our analysis on the
genetic variants that were associated with AUD.

It should be noted that the heterozygous SNPs used to
identify ASE are markers and not necessarily causal.
Therefore, screening multiple variant loci in regulatory
regions of those genes is a logical next step. Therefore, we
examined the 3′UTR of the genes identified in ASE to test
one potential mechanism of gene regulation. We used a
high-throughput reporter assay, PASSPORT-seq [13], to
screen isolated 3′UTR variants to detect those that lead to
gene expression changes. We modified the original protocol
to improve the quality of the data. First, we introduced UMIs
during the reverse transcription of the mRNA and in the first
PCR of the plasmid DNA used as a control to overcome
potential PCR biases during the library construction. Sec-
ond, we added staggered sequences to the PCR primers to
reduce problems associated with low sequencing complexity
at the beginning of the reads (see Supplementary Materials).
A limitation is that we only screened 3′UTR variants; var-
iants in other regulatory regions, such as enhancers and
promoters, also play important roles in cis-acting regulation.

In summary, this study identified a subset of genes that
show differential ASE between subjects with and without
AUD; the differences might preexist and affect the risk for
AUD or might result from alcohol-induced neurological
damage. Within those genes, we identified SNPs that affect
gene expression levels in neuronal cells, and are likely to
affect expression in the brain, by performing PASSPORT-
seq. We believe similar assays should be routinely imple-
mented to screen genetic variants identified by GWAS to
identify those that affect gene regulation.
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