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Abstract

The 2019 Necrotizing Enterocolitis (NEC) Symposium expanded upon the NEC Society’s goals of 

bringing stakeholders together to discuss cutting-edge science, potential therapeutics and 

preventative measures, as well as the patient-family perspectives of NEC. The Symposium 

facilitated discussions and shared knowledge with the overarching goal of creating “A World 

Without NEC.” To accomplish this goal, new research to advance the state of the science is 

necessary. Over the last decade, several established investigators have significantly improved our 

understanding of the pathophysiology of NEC and they have paved the way for the next generation 

of clinician-scientists funded to perform NEC research. This article will serve to highlight the 

contributions of these young clinician-scientists that seek to elucidate how immune, microbial and 

nervous system dysregulation contributes to the pathophysiology of NEC.
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INTRODUCTION

Necrotizing enterocolitis (NEC) is a catastrophic intestinal disease that can result in sepsis, 

multiorgan failure, short gut syndrome and requires long-term intravenous nutrition, 

subsequent liver damage, and death.1 While premature neonates are the most susceptible to 

NEC, it is impossible to predict which infants will develop the disease and the severity of 

their disease process. Accordingly, families and clinicians are often blindsided by the 

diagnosis, as tools for early detection and strategies for prevention are nonexistent or 

underdeveloped. Without sufficient research to improve the standards of care on how to 

prevent and treat NEC, patient-families receive variable care and often feel disempowered.

Many established investigators have contributed immensely to the understanding of NEC 

pathophysiology; however, several knowledge gaps still remain. Studies surrounding the 

importance of the innate immune receptor toll-like receptor 4 (TLR4),2 nitric oxide,3 and 

bacteria4 in NEC pathogenesis have been crucial to advancing our understanding of the 

disease. Furthermore, established investigators have developed several novel therapies, 

including heparin-binding epidermal growth factor,5 next-generation probiotics,6 and the use 

of stem cells and exosomes,7,8 which have paved the road for young investigators who are 

now beginning to make an impact in the field. This article reviews the work of these young 

clinician-scientists with a focus on how maternal stress impacts intestinal development and 

immunity, the dysregulated signaling pathways during NEC, the microbiome, gut barrier 

dysfunction and enteric nervous system dysregulation contribute to the pathophysiology of 

NEC; how paracrine signals in stem cell therapy may protect against NEC; and how tool kits 

can assist in NEC prevention and diagnosis (Fig. 1).

BASIC AND TRANSLATIONAL SCIENCE

It has long been thought NEC results from prematurity, systemic stress (i.e., sepsis, hypoxia, 

etc.), formula feeding, and an aberrant microbiome.9 Together these factors result in an 

exaggerated immune response, intestinal ischemia and necrosis, and gut barrier disruption, 

leading to fulminant organ failure10 (Fig. 2). Understanding how these predisposing factors 

trigger NEC onset can allow for a deeper understanding of NEC pathophysiology, which 

may open the door to novel treatment options.

Maternal stress

The Martin lab has focused on how the external environment can shape the neonatal immune 

system.11 Their work has recently been expanded to better understand the effects of maternal 

psychological stress on the developing immune system. Stress can be defined as emotional 

tension or strain resulting from adverse circumstances. Some examples of stress during 

pregnancy are financial hardship, emotional and physical abuse, or lack of prenatal care. 

Stress has a major impact on biological and immune defense mechanisms. A tightly 

regulated and homeostatic intrauterine environment is needed for fetal and newborn immune 

development. Excessive psychological stress during pregnancy is harmful to the fetus and 

increases the incidence of poor neuropsychological outcomes.12 Children subjected to 

gestational stress have higher rates of depression, ADHD, autism, and bipolar disorder.13 

Goodman and Emory14 described the link between maternal psychopathology and neonatal 
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outcomes by showing that low birth weight infants and infants with low APGAR scores 

more likely had mothers with emotional and psychological disturbances when they were 

pregnant.14 Early fetal cortisol exposure is termed fetal programming and results in reduced 

blood flow and impaired delivery of oxygen and vital nutrients to the fetus.15 Intriguingly, 

maternal cortisol levels are inversely proportionate to gestational age and birth weight,16 all 

of which could predispose infants to NEC development. However, these effects of early fetal 

cortisol exposure on the neonatal immune system and subsequent mechanisms are not clear. 

To understand these effects on the developing immune system, Martin et al. utilized a well-

established restraint stress model, in which pregnant mice were placed in a ventilated 50 ml 

conical tube for 1 h daily. Using this model, they observed that serum levels of the stress 

hormone corticosterone are significantly higher in 2-week-old newborn mice and their 

intestines have a phenotype of shorter intestinal villi and crypts. In addition, pups from 

stressed mothers had decreased levels of the intestinal stem cell marker LGR5.17 Taken 

together, this suggests that in the setting of maternal stress, offspring develop altered 

intestinal architecture and growth, which can play a significant role in the development of 

intestinal immunity.

Sentinel work from Warner et al. demonstrated that premature infants that develop NEC 

have a relative abundance of Gamma-proteobacteria (Gram-negative facultative bacilli) and 

a decrease in the anaerobic bacteria Negativicutes prior to disease onset.18 These data 

suggest that prenatal maternal and environmental factors may shape the developing fetal and 

neonatal immune systems. To begin to understand the mechanisms involved, investigators 

have demonstrated that 2-week-old pups from stressed mothers had intestinal dysbiosis and 

complement dysfunction (unpublished data). The complement pathway is a critical 

component of the innate immune system and is activated by antigen/antibody binding.19 

Complement activation within the intestine results after intestinal immunoglobulins bind 

luminal pathogens. Ultimately, complement function allows the host to neutralize pathogenic 

bacteria by forming holes in the cell membrane.20 Understanding the mechanisms by which 

maternal prenatal psychological stress alters the immunity of her offspring may allow for the 

development of novel therapies that could prevent neonatal intestinal dysfunction.

Signaling pathways involved in necrotizing enterocolitis

Elucidating the signaling pathways that regulate the uncontrolled innate and adaptive 

immune responses in NEC is of particular importance.21 Previous studies by Good et al. 

demonstrated that activation of epidermal growth factor (EGF) receptor signaling with the 

EGF in amniotic fluid attenuated NEC-like intestinal injury by inhibiting the signaling of the 

innate immune receptor toll-like receptor 4 (TLR4).22 They also demonstrated that the EGF,
23 human milk oligosaccharides (HMOs),24 and probiotics25 found in breast milk26 are 

essential in protecting against intestinal inflammation in animal models of NEC. Notably, 

HMOs are an intense area of investigation from several laboratories and consistently 

demonstrate protection against NEC.27–29

The translational significance of these findings is also being pursued through the 

development of a large multicenter NEC biorepository in the United States, similar to the 

U.K. Biobank30 for the dedicated pursuit of molecular indicators of disease.31 Using a 
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personalized medicine approach, young investigators are evaluating the susceptibility of 

infants to NEC,32 and in particular, seek to advance the knowledge with regards to the 

biological signatures33 and genetic predisposition34,35 of infants with NEC. Precision 

medicine approaches performed include “NEC-on-a chip,” which utilizes a microfluidic 

device for the in vitro study of 3D cellular environments to test various therapeutics on 

multiple cell types derived from the human intestine.36 Towards this end, investigators have 

discovered that by manipulating the cytokine environment within the intestine, the NEC-

mediated inflammatory response can be attenuated. Current pursuits with the Food and Drug 

Administration are underway to pursue a clinical trial related to these findings to provide a 

novel therapy for NEC.

Other molecular mechanisms, such as that of extracellular histones, are major mediators and 

therapeutic targets in sepsis, the systemic inflammatory response, and thrombosis.37–39 

Histones are released into the extracellular environment actively, through neutrophil 

extracellular traps (NETs), and passively, during cell death.40 While extracellular histones 

play an important role in innate immune defense, they also induce extensive “collateral 

damage.” Neutralizing histones with specific antibodies prevented thrombocytopenia, 

platelet activation, and improved survival in mice administered lipopolysaccharide or E. coli.
38,39 Investigators showed that an endogenous serine protease inhibitor, known as inter-alpha 

inhibitor protein (IAIP), binds to extracellular histones and neutralizes their toxic effects 

through high molecular weight hyaluronic acid and chondroitin sulfate.41 Notably, levels of 

IAIP are significantly decreased in infants with NEC42,43 and sepsis.42 Ongoing studies to 

investigate the role of histones and NETs in NEC will determine whether histone levels 

could serve as biomarkers or prognostic indicators for NEC. Additional studies are planned 

to investigate the effects of histone inhibitors, such as IAIP, as well as NET formation in 

NEC.

Microbiome and gut barrier function

The intestinal microbiome, and the balance between beneficial and harmful bacteria, play a 

significant role in neonatal intestinal health.44 Studies have investigated the impact that 

bacterial administration has on enterocyte apoptosis and the signaling mechanisms involved.
45 Investigators have appreciated that the cyclic adenosine monophosphate pathway (cAMP) 

is an important mediator of the inflammasome and promotion of apoptosis. In addition, 

protein-kinase-A (PKA) and Rho-kinase (ROCK) are critical in the pathogenesis of NEC.
45,46 PKA, a serine/threonine kinase, is the best characterized downstream target of cAMP,45 

while ROCK, also a serine/threonine kinase, affects apoptosis and tight junctional integrity.
46 By inhibiting these pathways, investigators have been able to reduce cellular apoptosis as 

well as the severity of NEC in animal models.

The intestinal barrier prevents the passage of microorganisms, xenobiotics, and various 

antigens into the host circulation via tight junctions between the epithelial cells.47 The 

interplay of the ROCK and PKA pathways on intestinal tight junctions appears to be 

significant.48 Studies have suggested that inhibition of the Rho-kinase pathway improves gut 

barrier integrity and increases the tight junction occludin in the small intestine.46
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Of particular interest is defining the role of bile acids and their metabolites on intestinal 

integrity, as well as how the microbiome alters the bile acid pool. Golden et al. recently 

demonstrated that ursodeoxycholic acid was able to protect against intestinal injury. This 

specific bile acid was able to promote intestinal restitution in both in vitro and in vivo 

models through COX-2 and EGFR signaling pathways.49 This group has also shown that the 

toxic metabolites of bile acids, specifically deoxycholic acid, inhibit intestinal cell 

proliferation via blockade of the EGFR/ERK pathway.50 Given that these secondary bile 

acids formed as a result of interaction with microbiota in the intestinal lumen, these studies 

may provide a mechanism through which an altered microbiota contributes to normal or 

abnormal intestinal epithelial cell proliferation.

Additional work using global and tissue-specific knockouts, as well as various animal 

models of intestinal injury, is planned to investigate the roles of the farnesoid X receptor and 

the G-protein-coupled bile receptor (TGR5) in maintaining gut homeostasis. By using 

natural and pharmacological agonists and antagonists, the mechanism of how these receptors 

control macrophage inflammatory states and intestinal barrier integrity can be elucidated.

Enteric nervous system

Understanding the effect of the enteric nervous system on intestinal physiology and 

pathology is also essential to the study of NEC. Enteric glial cells are an essential 

component of the enteric nervous system and are responsible for intestinal motility, 

endocrine secretion, and immune development. The enteric nervous system displays 

significant injury in both human and animal specimens following NEC, and in humans, 

these abnormalities often persisted after the acute injury.51 Segura et al. discovered an 

essential mechanistic understanding of the behavior of enteric glia. They demonstrated that 

the effect of lysophosphatidic acid mediated the stimulation of calcium secretion on enteric 

glial cells and endothelial cell differentiation gene expression.52 They also observed that 

lysophosphatidylcholine alters enteric monolayer permeability,53 which may have 

implications on NEC pathogenesis.

Enteric glial cells also produce multiple different growth factors, including glial-derived 

neurotrophic factor (GDNF), which is needed for proper intestinal function. Investigators 

have shown that morphine, a common medication given to neonates, activates the mu-opioid 

receptor and subsequently decreases GDNF function and epithelial barrier integrity.54 This 

is important as epithelial barrier integrity is disrupted during NEC and other neonatal 

intestinal pathologies.

Mesenchymal stem cell therapy

Mesenchymal stem cells have become a popular experimental treatment option in several 

diseases including myocardial infarction and stroke.55,56 The use of stem cells for the 

prevention of NEC has been proposed by several investigators.57,58 Mesenchymal stem cells, 

which can differentiate into cartilage, bone, fat, and other tissues of mesenchymal origin, are 

immunogenic, exhibit antioxidant properties,59 enhance neovascularization,60 reduce 

inflammation,61 and improve functional recovery of ischemic tissues.62 Administering 

mesenchymal stem cells to animals with intestinal ischemia or NEC has been shown to 
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improve survival and mesenteric perfusion while limiting histological injury.63 The tissue 

source of the stem cells (bone marrow, adipose, umbilical cord) also does not appear to alter 

their protective power.57,64

The exact mechanism by which stem cells provide their protection is not well understood. 

Multiple mechanisms of action have been postulated, including incorporation and 

differentiation, as well as heterotopic cell fusion. Still, it is likely that the stem cells release 

paracrine factors that decrease cellular apoptosis, limit inflammation, and improve 

functional recovery after injury.65,66 Hydrogen sulfide gas, previously considered as a toxic 

agent, could be a viable paracrine factor with potent biological properties. This 

gasotransmitter can increase mesenteric perfusion and limit inflammation in models of 

intestinal ischemia and NEC.67 Moreover, endothelial nitric oxide synthase (eNOS) is a 

critical mediator of H2S protection.68,69 Previous studies have shown that H2S interacts with 

an important cysteine moiety on eNOS, that when persulfidated, allows eNOS to dimerize 

and increase nitric oxide production.69 Understanding how stem cells mediate intestinal 

protection is critical prior to use in clinical applications.

CLINICAL RESEARCH ADVANCES IN NECROTIZING ENTEROCOLITIS

GutCheckNEC and NEC Zero

In addition to multiple basic science advancements by young investigators, there have been 

significant advances in clinical and outcomes-related research on NEC. Technical advances 

and parent-engaged solutions to decrease the burden of NEC in the neonatal intensive care 

unit (NICU) are of utmost importance. Specifically, the development of the diagnostic 

strategy called GutCheckNEC for the timely recognition of NEC has been quite 

advantageous.70 This tool kit creates a weighted composite risk score for NEC and was 

designed using a cohort of over 58,000 infants. It found that there were nine independent 

risk factors for developing NEC (gestational age, history of packed red blood cell (RBC) 

transfusion, unit NEC rate, late-onset sepsis, multiple infections, hypotension treated with 

inotropic medications, Black or Hispanic race, outborn status, and metabolic acidosis), as 

well as two protective factors (human milk feeding and probiotics). The highest contributing 

factor to the GutCheckNEC score was the unit’s NEC rate, which carried a risk three times 

higher than the infant’s gestational age. GutCheckNEC scores (0–58) were very good in 

their ability to predict surgical NEC (area under the curve (AUC) = 0.84, 95% confidence 

interval (CI) 0.82–0.84) and NEC leading to death (AUC = 0.83, 95% CI 0.81–0.85). The 

ability to predict medical NEC was good, but not as dependable as that for surgical NEC 

(AUC = 0.72, 95% CI 0.70–0.74). The GutCheckNEC platform is currently being developed 

for implementation into electronic medical records.71

An additional tool kit that has been developed by this same research team is designed to 

decrease NEC incidence to zero and is appropriately called the NEC-Zero project.72 This 

tool kit integrates parent engagement and promotes the administration of mother’s milk to 

their infants, utilizes the tool GutCheckNEC that provides structured communication when 

deterioration is anticipated or expected, limits the duration of antibiotic courses, and 

promotes strict adherence to standardized feeding regimens. The NEC-zero initiative 

performed a meta-analysis and found a significant decrease in NEC in the premature 
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population when mother’s own milk was used, a 64% lower odds of NEC when donor 

human fortifiers were used over bovine fortifiers, and a 67% reduction in NEC when 

standard feeding protocols were used. Furthermore, the NEC-zero team reviewed other 

collective studies and noted an increased risk of NEC when empiric antibiotics were used 

beyond 4 days of negative cultures, as well as increased risk of NEC when histamine 

blockers were used (OR = 1.78, 95% CI 1.4, 2.27, p < 0.00001).72

Together, this combination of critical measures in the NICU will hopefully improve the early 

recognition of deterioration related to NEC. These studies provide clinical decision-making 

support guided by an implementation science framework to prevent NEC and to improve 

timely diagnosis.

Transfusions

The relationship between common exposures in the NICU, specifically RBC, platelet 

transfusion, and probiotic use, may also play a role in NEC risk. Studies provide conflicting 

evidence on the effect of RBC transfusion and anemia on NEC.73–75 However, Patel et al.74 

showed in a prospective observational study of 598 very low birth infants that severe anemia, 

not RBC transfusion, was associated with an increased risk of NEC. They observed that the 

potential mechanism by which anemia increases NEC risk is through the promotion of 

intestinal inflammation and barrier disruption via macrophage activation.76

Investigators have also observed that platelet suspensions in storage contain a substantial 

amount of proinflammatory mediators such as neuropeptide Y (NPY).77 Neuropeptide Y is a 

potent vasoconstrictor, enhances neutrophil adhesion to endothelial cells, and stimulates 

macrophage adhesion, chemotaxis, phagocytosis, and superoxide anion production. In 

addition, NPY has detrimental gastrointestinal effects,78 and may partially explain the 

increased risk of adverse outcomes in infants with NEC who receive platelet transfusions. 

Further studies are underway to assess other transfusion-related effects in the NICU.

CONCLUSION

Although many great scientific discoveries have occurred in the field of NEC research over 

the last several years, their ability to make a clinical impact in reducing the incidence or 

severity of NEC remains largely unknown. The next generation of basic science and clinical 

investigators are eager to make an impact on NEC incidence through novel diagnostic tools, 

therapies, and clinical risk score calculators. We are hopeful that as a result of their diligent 

studies, the care of infants with NEC will improve over the next decade, and we can build 

“A World Without NEC” together.
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Fig. 1. Research summary of young clinician-scientists.
Young clinician-scientists are eager to create “A World Without NEC.” The primary focus of 

these investigators surrounds maternal stress, the protective ingredients in breast milk, 

histones, the enteric nervous system’s response to injury, stem cell therapy, the microbiome, 

intestinal barrier function, bile acids, transfusions, and patient-centered tool kits. PKA 

protein-kinase A, ROCK Rho kinase, IAIP inter-alpha inhibitor protein, GDNF glial-derived 

neurotrophic factor, NPY neuropeptide Y, H2S hydrogen sulfide. Figure created with 

Biorender.com.
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Fig. 2. Pathogenesis of necrotizing enterocolitis (NEC).
NEC is thought to result from a combination of prematurity, formula feeding, and dysbiosis. 

Together, these stressors eventually lead to a dysregulated immune response, gut barrier 

failure, and intestinal ischemia. This results in intestinal epithelial cell apoptosis and 

necrosis as well as sepsis, multiorgan failure, and death. Figure created with Biorender.com.
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