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A single camera creates a bounding box (BB) for the detected object with certain accuracy
through a convolutional neural network (CNN). However, a single RGB camera may not be
able to capture the actual object within the BB even if the CNN detector accuracy is high for
the object. In this research, we present a solution to this limitation through the usage of
multiple cameras, projective transformation, and a fuzzy logic–based fusion. The proposed
algorithm generates a “confidence score” for each frame to check the trustworthiness of
the BB generated by the CNN detector. As a first step toward this solution, we created a
two-camera setup to detect objects. Agricultural weed is used as objects to be detected. A
CNN detector generates BB for each camera when weed is present. Then a projective
transformation is used to project one camera’s image plane to another camera’s image
plane. The intersect over union (IOU) overlap of the BB is computed when objects are
detected correctly. Four different scenarios are generated based on how far the object is
from the multi-camera setup, and IOU overlap is calculated for each scenario (ground
truth). When objects are detected correctly and bounding boxes are at correct distance,
the IOU overlap value should be close to the ground truth IOU overlap value. On the other
hand, the IOU overlap value should differ if BBs are at incorrect positions. Mamdani fuzzy
rules are generated using this reasoning, and three different confidence scores (“high,”
“ok,” and “low”) are given to each frame based on accuracy and position of BBs. The
proposed algorithm was then tested under different conditions to check its validity. The
confidence score of the proposed fuzzy system for three different scenarios supports the
hypothesis that the multi-camera–based fusion algorithm improved the overall robustness
of the detection system.
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1 INTRODUCTION

Real-time weed detection is an emerging field where agricultural robots apply deep neural networks
for real-time weed detection, crop management, and path planning extensively (Vougioukas, 2019;
Wang et al., 2019). With the emergence of agricultural robotics, accurate identification of weeds and
crops with deeper understanding of overall object detection technology becomes more important. In
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general, object detection systems detect a target object using
classical computer vision and deep learning techniques,
determine the category of the detected object, and create a
bounding box marking the position of the object (Russakovsky
et al., 2015; Zhiqiang and Jun, 2017). But real-time object
detection is a complex challenge due to the effect of
background, noise, occlusion, resolution, and scale affecting
the performance of the system (Zhiqiang and Jun, 2017). In
2013, R-CNN (regions with CNN features) (Girshick et al., 2014)
showed much improvement in object detection compared to
conventional computer vision techniques and started the trend
on CNN-based object detection.

Many state-of-the-art convolutional neural network (CNN)
detector models like SPP-net (He et al., 2015), Fast R-CNN
(Girshick et al., 2014), YOLO (Redmon et al., 2016), and
RetinaNet (Lin et al., 2017) improved detection accuracy on
standard image datasets using new CNN architectures. But in
most of the cases, CNN models are trained with images without
noise or degradation. During training, image augmentation is
used to introduce noise to increase the robustness of the model,
but sometimes, they may fail to capture the real scenario. It is not
possible to include all probable types of noise during the training
of a CNN. In the real scenario, noise can affect the quality of
image due to sensor quality, lighting, vibration, exposure time,
etc. It is already shown that introducing carefully selected noise
can produce wrong results even though they have no effect on
visual recognition (Moosavi-Dezfooli et al., 2016). Prasun et al.
(Roy et al., 2018) showed how different image degradations can
affect the performance of CNN models. They were unable to
come up with a solution which can produce a robust CNN
architecture against image degradation when a large number
of classes are present, such as ImageNet. Moreover, in recent
times, it is observed that the accuracy of CNNs reduces
significantly when only tested on negative images, which
shows an inherent bias toward positive training dataset
(Hosseini et al., 2017). In this research, we want to address
this inherent limitation of CNN regarding uncertainty toward
correct object detection and bounding box (BB) creation with a
multi-camera setup and fuzzy logic.

Fuzzy logic has high potential in understanding complex
systems where analytical solution may not exist or the system
is not understood properly but can be observed (Ross et al., 2004).
According to Ross, fuzzy systems are useful in two scenarios: “1)
in situations involving highly complex systems whose behaviors
are not well understood and 2) in situations where an
approximate, but fast, solution is warranted” (Ross et al.,
2004). In agricultural robotics, fuzzy neural network–based
sliding mode control is used to build an apple picking robot
(Chen et al., 2019). Romeo et al. used fuzzy clustering with
dynamic threshold for greenness identification (Romeo et al.,
2013). Meyer et al. used fuzzy clustering for classifying plant and
soil from color images (Meyer et al., 2004). A fuzzy classifier is
used to detect weeds in real time in sugarcane fields (Sujaritha
et al., 2017). A fuzzy expert system is used in soil management
(López et al., 2008), to predict cotton yield (Papageorgiou et al.,
2011), and in crop disease management with a text-to-talk user
interface (Kolhe et al., 2011). In general, fuzzy logic is used as a

classifier for crop or weed detection and as an expert system for
crop, weed, and soil management. But no thorough research
studies are found which used fuzzy logic to improve weed
detection accuracy using a multi-camera setup.

The goal of this research was to implement a multi-
sensor–based fuzzy fusion algorithm to improve the robustness
of any CNN-based object detection system. In this article, Section
2 presents the research steps. Section 3 shows the experimental
setup of the multi-camera system. It also shows how the
homography matrix is calculated for this setup. Section 4
describes the CNN-based object detection method with
classification results. Section 5 describes the fuzzy rules and
membership functions. Section 6 shows the results of the
fuzzy fusion system.

2 METHODOLOGY

Weed can be detected with a CNN-based detector with very high
accuracy and in real time. If we use multiple cameras, then the
robustness of the overall system increases. When we use a
detector to create a BB, it gives us the accuracy percentage of
objects inside the BB and the position of the BB. In this article,
we explore the possibility of improving the overall system
robustness by measuring the “confidence” of the BB position
of multiple cameras. The detector will give us the position of BB
on each image plane. But how do we know for sure that the
position of the BB is correct? When we are detecting an object
using multiple cameras, the position of the BB on the camera
image plane may appear in different places based on the
detection accuracy and the position of the cameras. But in
3D space, the object is at the exact same position for both
cameras. We will manipulate this information to calculate the
confidence score of the BB position using projective
transformation, IoU overlap value, and fuzzy logic–based
fusion. We will complete the following steps to calculate the
confidence score:

• Create a two-camera setup and calculate the homography
between the two cameras.

• Place weed (object) at different specific distances from the
camera setup.

• Use a CNN detector to create BB of detected weed on both
cameras. Use best possible detection BB so that the weed is
perfectly detected and inside the BB.

• Use the homography matrix to project one camera image
plane over another, and then calculate the IoU overlap values
of the BBs after projection for different weed positions.

• The logic is as follows: if perfect BB is created at a certain
distance of weed position, then it will have a specific IOU
overlap value. We will have “high” confidence for this
scenario. If the position or IOU value deviates from the
perfect condition, then we will have “less than high”
confidence on the detection. Use fuzzy “IF...THEN” rules
to capture these conditions.

• Use defuzzification to get the crisp “confidence” value for
different scenarios.
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3 PROJECTIVE TRANSFORMATION

In a pinhole camera model, a point in 3D space is projected onto
an imaging surface which is called an image plane (Kaehler and
Bradski, 2016). All rays (or points) of light pass through a single
point which is called a camera center. The size of the object on the
image plane can be calculated from a similar triangle. Assuming
the camera is calibrated or there are no distortions (radial and
barrel distortion), a point (X,Y ,Z) in the physical world is
projected onto the image plane at (x, y) location with
following equations:

x � f X/Z, (1)

y � f Y/Z, (2)

where f is the focal length.
The relationship that maps a set of points from one image

plane to a set of points to another image plane is called projective
transformation. Planar homography is the projective mapping
from one plane to another. According to Hartley and Zisserman
(Hartley and Zisserman, 2003), projective transformation is
defined as “A planar projective transformation is a linear
transformation on homogeneous 3-vectors represented by a
non-singular 3-by-3 matrix.”

⎛⎜⎜⎝ x′1
x′2
x′3

⎞⎟⎟⎠ � ⎡⎢⎢⎢⎢⎢⎣ h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ x1
x2
x3

⎞⎟⎠. (3)

Or in short, x′ � H.x, where H is the homography matrix.
This homography matrix relates the position of a point from a
source image plane (image plane 1 in Figure 1A) to a
destination image plane (image plane 2 in Figure 1A).
(x′1.x′2, x′3)T are coordinates of a single point on two image
planes. Also, H is a homogeneous matrix, which means only the
ratio of the matrix elements is important. There are eight
independent ratios in H (h33 is a scaling factor), which
means a projective transformation has eight degrees of
freedom (Hartley and Zisserman, 2003).

Let us consider a pair of inhomogeneous matching points
(x, y) and (x′, y′) on image planes 1 and 2, respectively. We are
considering inhomogeneous coordinates because they can be
measured directly from the image plane (coordinates of points
in pixel). From Eq. 7.3:

x′ � x′1
x′3

� h11x + h12y + h13
h31x + h32y + h33

, (4)

y′ � x′2
x′3

� h21x + h22y + h23
h31x + h32y + h33

. (5)

After rearranging:

x′(h31x + h32y + h33) � h11x + h12y + h13, (6)

y′(h31x + h32y + h33) � h21x + h22y + h23. (7)

Four points on each image plane will create eight linear
equations, and these four points are sufficient to solve for H
between two image planes. If only four points are used, then the
only condition is no three points can be colinear (Hartley and
Zisserman, 2003). If more than four points are used, then no
(n − 1) points can be colinear, where n is the total number of
points used. After the H matrix is calculated, it is then applied to
the whole image plane 1 to convert it to image plane 2.

Important remarks:

1. Camera intrinsic parameters or pose are not needed to
calculate H.

2. If only four points are used to calculateH, then outliers can
create the incorrect H matrix.

3. Including more points and using a robust method to
minimize a reprojection error will help to calculate the
correct H matrix.

3.1 Homography Matrix Calculation
We have established that no camera or pose parameters are
needed to calculate the homography matrix, H. As a result,
the following steps are followed to calculate H:

FIGURE 1 | (A) For multiple cameras, image planes are related by projective transformation when all world points are coplanar. (B) Actual setup of two cameras
with coplanar checkerboard points.
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1. Place a printed checkerboard pattern in front of the
cameras (Figure 1B).

2. Measure the pixel locations of checkerboard corners for
each camera (Figure 2 and Figure 3).

3. Calculate the reprojection error which is the sum of
squared Euclidean distances betweenH times the camera 2
checkerboard corner points and camera 1 checkerboard
corner points.

4. Use an optimization algorithm to minimize the
reprojection error for a specific H matrix.

We have tested four different optimization algorithms for H
matrix calculation. The goal is to find a H matrix that minimizes
the reprojection error. Least mean square minimizes the mean
squared distance between checkerboard’s corner points of the two
image planes. RANSAC is an iterative method, and it tries to find
the correct corner points and eliminates the outlier corner points.
PROSAC is a weighted RANSAC method, which is faster in case
of many outliers. Least median square minimizes the squared
median distances and more robust than least mean square when
outlier is present. Then we calculated the projection error
between the actual checkerboard corner locations and
projected checkerboard corner locations. The error is
calculated in terms of how much each corner point deviates
from the actual corner location in terms of pixels. All results are
presented in Table 1. Once the H matrix is calculated, that will
remain the same as long as camera positions are constant. As
Table 1 shows, both least mean square and least median square
resulted in minimum reprojection errors. The H matrix
calculated is

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
9.29968576e − 01 −8.34785721e − 01 3.28368011e + 02

3.21580417e − 01 9.89425377e − 01 −3.15245367e + 02

−7.93435882e − 05 5.73575359e − 05 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(8)

Figure 4 shows how theHmatrix is used to reproject camera 2
view into camera 1 view. The left image of Figure 4 is the actual
left camera view (Figure 2) multiplied byHwhich projects the left
camera view into the right camera view.

4 CNN-BASED WEED DETECTION

For this study, we considered a VGG16-based (Simonyan and
Zisserman, 2014) model architecture with transfer learning. This
model is retrained using a small weed dataset, and final layers are
rearranged to classify three different weeds. Transfer learning
retrains the final layers of the VGG16 model to classify new
objects from a new dataset by using the large amount of features
already learned from the ImageNet database. Previous research
(Karpathy et al., 2014; Mohanty et al., 2016) has shown that
transfer learning has much lower computational requirements
than learning from scratch and can be applied to various types of
classification. All the training simulations are run on an Intel

core-i7, 8gb ram, Nvidia GTX 1060 6gb workstation. Models are
built with Keras library on TensorFlow backend in Python 3.5.

Images of common cocklebur, redroot pigweed, and giant
ragweed are captured to generate a weed dataset. These three
types of commonly found corn weeds were grown in the IUPUI
Greenhouse in order to collect images. Also, images were
captured from actual corn fields. Maximum input image size
used in this study is 150-by-150 pixels (input dimension of the
CNN network).

4.1 Transfer Learning With VGG16
VGG16 is a 16-layer CNN which introduced the idea of multiple
small kernel filters. Trained on the ImageNet dataset from 2012, it

FIGURE 2 | Checkerboard corner points for the left camera (camera 2).

FIGURE 3 |Checkerboard corner points for the right camera (camera 1).

TABLE 1 | Optimization methods and the reprojection error.

Method Reprojection
error (pixel/point)

Least mean square 1.621
RANSAC (Fischler and Bolles, 1981) 1.715
Least median square (Inui et al., 2003) 1.621
PROSAC (Bazargani et al., 2018) 1.961
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was able to classify 1,000 classes. The top-5 error rate of VGG16
was 7.4% (Simonyan and Zisserman, 2014). The model
parameters implemented in this study include learning rate
(1e-05), optimizer (Adam), and loss (sparse categorical cross-
entropy).

Now, we fit a detector on top of the classifier to get the BB. We
should mention that we are just fitting a detector, and we are not
training the detector for better performance. First, an image
pyramid is created to deal with different scale factors. The
reason is to detect objects at different scales. As the image
pyramid grows bigger, it will help to detect bigger objects.
Then we run a sliding window at each scale of the pyramid.
The size of the sliding window should depend on the size of the
object to be detected. At each position of the sliding window, we
are passing it through the CNN classifier and saving the class label
with % accuracy. Basically, we are creating a lot of bounding
boxes with class label accuracy and saving their location. Then we
pass all the BBs through an algorithm called non-maximum
suppression (NMS). NMS takes a BB, and then calculates IOU
with all the other BBs. If the IOU value is over some
predetermined threshold, then that BB is discarded, else that
BB is kept. Basically, NMS tries to figure out which one is the
unique BB. These steps are standard and close to the steps
followed in SSD (Liu et al., 2016) but without the training.

From classification report in Table 2, we can say that
Cocklebur shows near-perfect recall. Pigweed is the hardest
one to classify as the CNN model shows only 0.89 recall.
Inference time is an important parameter for real-time
classification from the video feed. This inference time (without
GPU acceleration) seems adequate (about four frames per second
(FPS)) for our test case. With GPU acceleration (Nvidia GTX
1060 Ti), this model performs at around 30 FPS.

4.2 IOU Overlap Calculation
Now that we have the BB from the detector, we want to calculate
the IOU value for left and right camera BBs. We want to see how
the IOU value changes before and after reprojection when weed is
detected correctly and the BB is created. We also want to see how
the IOU value changes when weed is detected at different
distances from the camera.

Figure 5 shows how BBs from both cameras overlap each
other at different distances. “Too far” is about 36 inches away
from the camera, and “too close” is about 8 inches away from the
camera. BB sizes are fixed for both the cameras. We also assume
perfect detection. As the weed moves closer to the camera, we can
see that the BB overlap is decreasing, and for the “Too close”
position, without reprojection, the BB overlap is zero. With
reprojection (the left camera image is reprojected using H),
the BB overlap still decreases as weed moves closer to the
camera. Homography is 2D transformation from one camera
image plane to another camera image plane. But the object (weed)
we are detecting is actually 3D. As a result, as we move closer to
camera, BB overlap decreases because projection of the 3D object
onto a 2D plane deviates more. If the objects we are detecting
were 2D then after reprojection, BB overlap would remained
more or less the same.

Figure 6 shows how the IOU value changes when weed
distance (position of BB) changes. As an example, for “close”
position and for perfect detection, the IOU overlap between two
cameras should be 15%. The IOU overlap after reprojection is
always bigger than that before reprojection. As we move farther,
the difference between two different systems reduces. In the
actual scenario, a CNN detector will create a BB based on the
size or shape of the object, and they will be different based on the
scenario. But for this study, we have kept the BB size constant (BB
width: 500 pixels, height: 350 pixels). But in future, different BB
sizes could be considered, and the IOU value should be calculated
for a range of BB sizes.

FIGURE 4 | Reprojection of camera 2 image to camera 1 image using the homography matrix.

TABLE 2 |Classification report of the trained CNNmodel. Inference time tested on
a Core-i5, 8 gb ram machine.

Cocklebur Pigweed Ragweed

Precision 0.94 0.94 0.96
Recall 1.0 0.89 0.94
F1 score 0.96 0.94 0.95
Training accuracy 0.99
Validation accuracy 0.97
Testing accuracy 0.94
Inference time 0.266°s
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5 FUZZY LOGIC–BASED FUSION

Fuzzy logic was invented by Lotfi Zadeh (Zadeh, 1965) by
combining crisp logic and set theory. In reality, many
concepts are better defined by human words than by
mathematics. Zadeh tried to capture that link between human
language and mathematics. Zadeh used fuzzy sets to capture that

relationship. If there is uncertainty about membership data
regarding those data belonging to a particular set, fuzzy sets
are used to define those data to a partial set: as an example, if fuzzy
sets are used to define the bounding box position of weed that can
be defined as “too close,” “close,” “far,” or “too far”; and for
confidence of fused bounding box as “low,” “ok,” and “high.” The
membership degree quantifies the level of how those data belong
to that set. As an example, in the case of bounding box distance
from the camera center:

mdistan ce(y) ∈ [0, 1], (9)

where mdistance(y) is the degree of membership y has in fuzzy set
of “distance in camera view” and y is the vertical distance from
top of the camera view in pixel value. Figure 7A shows this.

Membership function expresses various degrees of strength
between the elements in fuzzy set. If likelihood is higher that an
element belongs to a certain set, then the membership strength is
also higher. Membership strength of zero means that the element
does not belong to that set, and membership strength of one
means that the element definitely belongs to that set. In this study,
fuzzy sets are used to define the distance of bounding box, IOU
overlap, and confidence in the bounding box position.

The membership function design is based on a combination of
our personal experience and the knowledge we gained from the
camera setup testing. In Figures 7A,B, the membership function
for the right and left camera bounding box position is presented,
respectively. Weed is placed at four different distances in front of
the camera, as shown in Figure 5. Fuzzy names are selected based

FIGURE 5 |HowBB overlap changes when weed is placed at different distances from the camera. “too far,” “far,” “close,” and “too close” represent the distance of
the weed from the camera. “After reprojection” shows the BB overlap when the left camera image is reprojected using H. BB size, width: 500 pixels; height: 350 pixels.

FIGURE 6 | IOU overlap value with respect to distance from the camera.
(A) BB size, width: 500 pixels; height: 350 pixels. (B) BB size, width: 450
pixels; height: 300 pixels.
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on their position (“too far,” “close,” etc.). Triangular membership
functions are selected to represent their strength. As an example, in
Figure 7A, for “too far” position, the BB distance has a maximum
degree ofmembership (one) at position 150 (pixel), whichmeanswhen
weed is placed at “too far” position and the best BB is generated by the
CNN detector, the BB y-position center (vertical distance) is found at
150 pixels from the top position of the camera view. In Figure 7C, the
membership function for IOU overlap is presented. It is derived from
Figure 6. As an example, for the “close”position, the IOUoverlap value
from Figure 6 is 15%, which means that when weed is placed at the
“close” position and BB is created from the CNN detector, for perfect
detection (best possible fit of BB over the weed), the IOU overlap value
will be 15%. The overlap value will be different if it is not a perfect
detection at this position. The Gaussian membership function is used
to represent this. Figure 7D shows the confidence membership
function. If the BB distance and IOU overlap value perfectly match,
then they will have “high” confidence and based on their deviation
fromperfect condition and the fuzzy rule set, they can be “ok” or “low.”

5.1 Fuzzy Steps and Rule Set
The overall fuzzy system with inputs, rule evaluations, and
defuzzification (output) is presented in Figure 8. Following
steps are followed for the application of fuzzy analysis:

1. Identify inputs with their ranges and name them: In this
study, the subsets for weed distance and IOU overlap are
too close, close, far, and too far.

2. Identify output with their ranges and name them: In this
study, the subsets for confidence are low, ok, and high.

3. Create a degree of the fuzzy membership function for
inputs and outputs: Figure 7 shows this.

4. Construct the rule base for the system based on expert
judgment: The rules creates a linguistic relationship
between the input variables and the output. In a fuzzy
“IF..THEN” rule, the IF part is the premise and the THEN
part is the output based on premise. The rules can be
combined with logical “OR” or logical “AND.” Here, the
three input variables are the following: RightCamBB (right
camera BB distance), LeftCam BB (left camera BB
distance, and IOU overlap, and the output variable is
Confidence. The generic conditional statement used in
this study is as follows:

Rn : IF Camerai BB is A(n) and Cameraj BB is B(n)
and IOU overlap is C(n)
THEN Confidence is D(n).

(10)

where i≠ j; i, j are the number of cameras; A(n), B(n), and C(n)
are too close, close, far, and too far; and D(n) is low, ok, and high.
Twenty fuzzy rules were designed to optimize for the relationship
between output and inputs. All rules are not valid for this
problem. Some rules might not get triggered at all based on
the BB position and IOU overlap value. All rules are given equal

FIGURE 7 | (A) Fuzzy set for the weed bounding box distance in camera view for the right camera [Input]. (B) Fuzzy set for the weed bounding box distance in
camera view for the left camera [Input]. (C) Fuzzy set for bounding box overlap between the left and right cameras [Input]. (D) Fuzzy set for fusion confidence [Output].

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 6389517

Khan et al. Detection Confidence Measurement

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


weight of one. The final output, that is, Confidence, is the union of
the output fuzzy subsets for the activated rules. In this research,
the Mamdani (Mamdani, 1974) inference is used. All the rules are
presented in Table 3.

5. Defuzzification: A centroid defuzzification method is used
in this research (Ross et al., 2004).

6 RESULTS

Three scenarios are created and tested to check the performance
of the fuzzy system. In all the following scenarios, we are
assuming that the CNN detector is detecting the weed with
100% accuracy inside the BB, the whole weed plant is visible
from both cameras, and there is no occlusion.

6.1 Scenario 1: High Confidence
Weed at position “too close” is chosen to test the performance
of the system. Figure 9 shows all the steps of the fuzzy
confidence score measurement system. For “high
confidence” situation, the CNN detector detects the weed
correctly. The BB covers the whole weed for both cameras,
and the weed is usually at the center of the BB. As three inputs,
we measure the vertical center distance of the BB for both the
cameras and the IOU overlap score. All three inputs goes into
the fuzzy rule set. For a specific position of the weed in the 3D
world, if the weed is detected by both cameras correctly, then
they should have a specific IOU overlap value. As a result, all
these inputs trigger the fuzzy rule four (R4 in Table 3). This
follows one of the rules for high confidence. After
defuzzification, we receive a confidence score of 88.6%. The
fuzzy system gives a high confidence score because the weed is
detected correctly by both the cameras. One important thing is
because we are using the Gaussian membership function and
centroid defuzzification, high confidence score will always
provide a value between 70 and 100% but not exactly 100%
even if the detection meets all the criteria (rules) for perfect
detection.

6.2 Scenario 2: OK Confidence
Weed at position “too close” is chosen to test the performance of
the system. Figure 10 shows all the steps of the fuzzy confidence
score measurement system for “ok confidence” situation. Here,
the right camera detects the weed correctly, but the left camera
detection is partially correct and detecting the weed at a slightly
left position than the actual position. However, the BB center
vertical distance for both right and left cameras is correct and
comparable to “high confidence” situation. But because the left
camera is detecting at a partially correct position, this deviates the
IOU overlap value and triggers rule 20 (R20 in Table 3). As a
result, the fuzzy system gives it a confidence score of 50% which is
a reasonable value given the partial detection.

6.3 Scenario 3: Low Confidence
Weed at position “too close” is chosen to test the performance of
the system. Figure 11 shows all the steps of the fuzzy confidence
score measurement system for “low confidence” situation. Here,
the right camera detects the weed correctly, but the left camera
detection is less than partially correct and detecting the weed at a
higher position than the actual position. As a result, the BB center
vertical distance is not comparable with the “high confidence”
situation. This triggers rule 15 (R15 in Table 3). As a result, the
fuzzy system gives it a confidence score of 10.8% which is a
reasonable value given the less than partial detection.

One limitation of this fuzzy confidence measurement system is
this inherently assumes one of the camera detection is correct. But
if both of them are incorrect, then this system may produce a less
than ideal confidence score. There are two ways to tackle this
limitation. First, for video input, we can incorporate a tracking
algorithm for each BB. If a BB position deviates more than a
threshold value or more than the previous position, and does not
follow a trend, then we can either discard that frame or discard
that BB from the fuzzy system to produce better results. Second,
we can incorporate more than two cameras into the system. Then
we can calculate the evidence distance (in this case BB position)
for each camera and then discard or give lower weight to the BB
which deviates from usual norm. If we incorporate these into the
fuzzy system, then the system becomes more complex and loses

FIGURE 8 | Basic configuration of the fuzzy system.
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the inherent advantage of a fuzzy system which is easy to
interpret. If more than two cameras are used, then it is
recommended to use uneven number of cameras ((2n+1)
numbers of cameras, where n � 1, 2, 3, . . .). As an example, if
five cameras are used, then the H matrix should be calculated to
reproject the other four camera planes onto the center camera

plane. IOU overlap values should be recalibrated based on new
test cases. Basic configuration (Figure 8) will change. The inputs
will be “LeftCam-1-y,” “LeftCam-2-y,” “CenterCam-y,”
“RightCam-1-y,” “RightCam-2-y,” and “IOU-overlap.” But the
number of fuzzy rules will increase with increasing number of
cameras.

FIGURE 9 | Fuzzy confidence score measurement (high confidence). Left-hand side images show the position of detected BB and IoU overlap. Then the position
value of the BB and IoU overlap goes into the fuzzy rules defined in Table 3. After the defuzzification step, we receive the confidence score of the detection.

TABLE 3 | Fuzzy rules.

Rules description

R1 IF (RightCam BB is too far) and (IOU overlap is too far) and (LeftCam BB is too far) THEN (Confidence is High)
R2 IF (RightCam BB is far) and (IOU overlap is far) and (LeftCam BB is far) THEN (Confidence is High)
R3 IF (RightCam BB is close) and (IOU overlap is close) and (LeftCam BB is close) THEN (Confidence is High)
R4 IF (RightCam BB is too close) and (IOU overlap is too close) and (LeftCam BB is too close) THEN (Confidence is High)
R5 IF (RightCam BB is too far) and (LeftCam BB is too close) THEN (Confidence is Low)
R6 IF (RightCam BB is too far) and (LeftCam BB is close) THEN (Confidence is Low)
R7 IF (RightCam BB is too far) and (LeftCam BB is far) THEN (Confidence is Low)
R8 IF (RightCam BB is far) and (LeftCam BB is too far) THEN (Confidence is Low)
R9 IF (RightCam BB is far) and (LeftCam BB is close) THEN (Confidence is Low)
R10 IF (RightCam BB is far) and (LeftCam BB is too close) THEN (Confidence is Low)
R11 IF (RightCam BB is close) and (LeftCam BB is too far) THEN (Confidence is Low)
R12 IF (RightCam BB is close) and (LeftCam BB is far) THEN (Confidence is Low)
R13 IF (RightCam BB is close) and (LeftCam BB is too close) THEN (Confidence is Low)
R14 IF (RightCam BB is too close) and (LeftCam BB is close) THEN (Confidence is Low)
R15 IF (RightCam BB is too close) and (LeftCam BB is far) THEN (Confidence is Low)
R16 IF (RightCam BB is too close) and (LeftCam BB is too far) THEN (Confidence is Low)
R17 IF (RightCam BB is too far) and (IOU overlap is Not too far) and (LeftCam BB is too far) THEN (Confidence is OK)
R18 IF (RightCam BB is far) and (IOU overlap is Not far) and (LeftCam BB is far) THEN (Confidence is OK)
R19 IF (RightCam BB is close) and (IOU overlap is Not close) and (LeftCam BB is close) THEN (Confidence is OK)
R20 IF (RightCam BB is too close) and (IOU overlap is Not too close) and (LeftCam BB is too close) THEN (Confidence is OK)
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7 CONCLUSION

In this research, we developed and used a fuzzy logic–based
fusion algorithm to calculate the confidence score of the BB
position and IOU overlap obtained from a multi-camera–based

CNN object detector. First, a CNN-based object detector was used
to detect weed at multiple positions in front of the multi-camera
setup. Then a projective transformation was used to project one
camera’s image onto another camera’s image plane. Then we
calculated the IOU overlap value at each of the different positions

FIGURE 11 | Fuzzy confidence score measurement (low confidence).

FIGURE 10 | Fuzzy confidence score measurement (ok confidence).
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of the weed for perfect detection. When detecting an object using
multiple cameras, the position of the BB on the camera image
plane may appear in different places based on the detection
accuracy and the position of the cameras. But in 3D space, the
object is at the exact same position for all cameras. As a result, a
relationship can be established between the IOU overlap value of
the BBs and the position of the BBs on a camera image plane. If
the BB position or the IOU overlap value deviates from the ideal
condition, then that would indicate a less than perfect detection.
We generated a fuzzy rule set using this relationship between the
BB position of each camera and IOU overlap value. The proposed
fuzzy system was tested for three different scenarios, which are
ideal detection (high confidence), less than ideal detection (ok
confidence), and wrong detection (low confidence). The
confidence score of the proposed fuzzy system for three
different scenarios proved the hypothesis regarding a
relationship between IOU overlap and BB position and offered

a more robust overall multi-camera–based object detection
system.
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