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Abstract

The level of response (LR) to alcohol as measured with the Self-Report of the Effects of alcohol 

retrospective questionnaire (SRE) evaluates the number of standard drinks usually required for up 

to four effects. The need for a higher number of drinks for effects is genetically influenced and 

predicts higher risks for heavy drinking and alcohol problems. We conducted GWAS in the 

African-American (COGA-AA, N=1,527 from 309 families) and European-American (COGA-

EA, N=4,723 from 956 families) subsamples of the Collaborative Studies on the Genetics of 

Alcoholism (COGA) for two SRE scores: SRE-T (average of first 5 times of drinking, the period 

of heaviest drinking, and the most recent three months of consumption) and SRE-5 (the first 5 time 

of drinking). We then meta-analyzed the two COGA subsamples (COGA-AA+EA). Both SRE-T 

and SRE-5 were modestly heritable (h2: 21%-31%) and genetically correlated with alcohol 

dependence (AD) and DSM-IV AD criterion count (rg: 0.35-0.76). Genomewide significant 

associations were observed (SRE-T: chromosomes 6, rs140154945, COGA-EA p=3.30E-08 and 

11, rs10647170, COGA-AA+EA p=3.53E-09; SRE-5: chromosome13, rs4770359, COGA-AA 

p=2.92E-08). Chromosome 11 was replicated in an EA dataset from the National Institute on 

Alcohol Abuse and Alcoholism intramural program. In silico functional analyses and RNA 

expression analyses suggest that the chromosome 6 locus is an eQTL for KIF25. Polygenic risk 

scores derived using the COGA SRE-T and SRE-5 GWAS predicted 0.47-2.48% of variances in 

AD and DSM-IV AD criterion count in independent datasets. This study highlights the genetic 

contribution of alcohol response phenotypes to the etiology of alcohol use disorders.

Keywords

Genomewide association study (GWAS); genetic correlation; heritability; RNA expression; 
polygenic risk score; Self-Rating of the Effects of Ethanol (SRE)

INTRODUCTION

A low level of response (LR) to alcohol, a measure of the intensity of reaction to alcohol as 

evaluated by either alcohol challenges or a self-report questionnaire regarding the number of 

standard drinks needed for a range of effects, is an important predictor of the future 

development of alcohol dependence (AD) (Schuckit et al., 1997a). AD is associated with 

considerable morbidity and affects about 12.5% of the U.S. population during their lifetime 

(Hasin and Grant, 2015). Typically, individuals who experience fewer intoxicating or 

sedating effects of alcohol are more likely to escalate their drinking behaviors (Schuckit et 

al., 2012). Thus, low LR has been related to future problems with alcohol primarily via 

heavy consumption (Schuckit et al., 2012), even after accounting for histories of heavy 

drinking (Schuckit et al., 2008b) and family history (Schuckit and Smith, 2000). Multiple 

putative pathways including overly positive expectations of the effects of alcohol, heavier 

peer drinking, and using alcohol to cope with stress (Schuckit et al., 2012) have also been 
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found to contribute to the heightened risk for AD in those with low LR. Interestingly, recent 

research suggests college-based prevention programs that target LR are effective in 

individuals with low, but not high, LR (Schuckit et al., 2016, Savage et al., 2015). Thus, even 

though low LR is a marker for predisposition to AD, largely via heavy consumption, 

individual differences in LR are also associated with unique sources of variance.

A person’s LR can be measured by administering an alcohol challenge, either through oral 

ingestion or intravenously, and recording the individual’s level of reaction over several 

hours. Such alcohol-administration paradigms are time consuming and costly, making it 

difficult to evaluate large numbers of subjects (Schuckit et al., 1997a). LR can also be 

measured by the retrospective Self-Report of the Effects of alcohol (SRE) questionnaire, in 

which participants estimate the number of standard drinks usually required to experience up 

to four different effects of alcohol (feel an effect; feel dizzy or slurring speech; stumble or 

walk in an uncoordinated manner; pass out or fall sleep) at three time periods (first 5 times 

of drinking, the period of heaviest drinking, and the most recent three months of 

consumption). SRE scores and LR measured during an alcohol challenge are correlated (r = 

0.3-0.6), suggesting that the easier to collect SRE can be used in large-scale studies to 

measure LR (Schuckit et al., 1997a, Schuckit et al., 2009b, Schuckit et al., 1997b). SRE 

scores also have an one year test-retest correlation between 0.72-0.82 and five-year retest of 

0.66, indicating high levels of reliability (Schuckit et al., 2009, Schuckit et al., 1997b). Their 

predictive validities regarding future heavy drinking and alcohol problems across different 

populations and sexes in studies conducted in the U.S., U.K., and Switzerland are also 

consistent (Daeppen et al., 2000, Kalu et al., 2012, Pedersen and McCarthy, 2013, Schuckit 

et al., 2007, Schuckit et al., 2008a, Schuckit et al., 2008b, Wall et al., 1999). These studies 

cumulatively indicate that an individual’s LR, as measured by the SRE, could serve as an 

additional risk marker for the development of problem drinking, and can be a useful tool in 

efforts to personalize prevention and treatment (Schuckit et al., 2016).

Both AD and LR (self-report or alcohol challenge results) are heritable (Viken et al., 2003, 

Kalu et al., 2012, Heath et al., 1999). While there have been numerous efforts to identify 

genetic variants for AD (Walters et al., 2018), there have been only a few studies examining 

the genetic contributions to SRE. Two linkage studies, one using 745 European ancestry 

individuals (included in this study) (Schuckit et al., 2001) and another in American Indians 

(Ehlers et al., 2010), detected modest evidence of linkage. Recently, a meta-analysis of 

genomewide association studies (GWAS) of SRE score of the first 5 times of drinking 

(SRE-5) did not identify genomewide significant loci (Edwards et al., 2018). Genetic 

analyses of the average SRE scores across the three time periods (SRE-T) have been limited 

to candidate gene studies (Schuckit, 2018). A recent analysis showed that polygenic risk 

scores derived from a GWAS of alcohol consumption in a large U.K. population of older 

adults explained minimal variance in SRE-T (Johnson and Agrawal, 2018) suggesting that 

even at a polygenic level, SRE scores might be associated with unique genetic variation. 

Given the importance of SRE as a predictor of problem drinking, and its role in intervention 

research, the identification of such variants is necessary.

We conducted genomewide association studies of SRE scores in the Collaborative Study on 

the Genetics of Alcoholism (COGA). First, using variance decomposition approaches for 
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family data, we estimated the heritability of the SRE scores in the African-American and 

European-American COGA subsamples. The covariance between SRE-T, SRE-5, AD 

(defined by DSM-IV) and DSM-IV AD criterion count (used as a measurement of severity 

of AD) was decomposed into its genetic and environmental sources. We then performed 

GWAS to identify genetic variants contributing to the variation in SRE-T and SRE-5 scores. 

Genomewide significant loci were examined in two independent datasets and in RNA 

expression analysis using brain tissue from individuals with AD and controls. Finally, we 

derived polygenic risk scores (PRS) from these discovery GWAS and evaluated whether the 

polygenic effects of SRE-related variants predicted AD and DSM-IV AD criterion count in 

four independent AA and EA datasets.

METHODS

Sample and Assessments

AD probands from alcohol use disorder inpatient and outpatient treatment facilities and their 

family members were recruited from the seven participating COGA sites. Comparison 

individuals and their families were ascertained from the community in the same seven areas 

(Bucholz et al., 1994). Institutional review boards at all sites approved the study and all 

participants provided informed consent.

The Self-Report of Effects of alcohol questionnaire (Schuckit et al., 1997b) is a self-report 

instrument used to measure the number of standard drinks required to produce up to four 

effects of alcohol at three different time periods: a) the first five times the subject used 

alcohol; b) the period of heaviest drinking; and c) the most recent three months of 

consumption. For each time period, the subject is asked: a) “how many (standard) drinks did 

it take for you to begin to feel an effect?”; b) “how many drinks did it take for you to feel a 

bit dizzy or begin to slur your speech?”; c) “how many drinks did it take you to begin to 

stumble or walk in an uncoordinated manner?”; d) “how many drinks did it take you to pass 

out or fall asleep when you did not want to?” Extreme observations were winsorized at the 

mean plus 2 standard deviations and only individuals who drank at least 2 drinks on one 

occasion were included in the analysis. Based on their distributions, the square root of SRE-

T and the natural logarithm of SRE-5 were used in analyses. Distributions of original and 

transformed SRE scores are in supplemental material.

The Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) interview and an 

adolescent version of the SSAGA (Bucholz et al., 1994) were administered to adults and 

individuals age 17 or under, respectively. An AD case was defined as an individual age 15 or 

older who met the DSM-IV criteria for AD, to exclude early onset AD, which may have 

different etiology (Dick et al., 2014). Control subjects were at least 21 years old and had 

consumed at least one full drink of alcohol in their lifetime, but who did not endorse more 

than one DSM-IV AD criterion. We set the minimum age as 21 to exclude individuals who 

had not have passed through the period of major risk for the onset of AD (Grant et al., 2004, 

Hingson et al., 2006). All others were not classified. Although these unclassified individuals 

were not used in any analysis related to DSM-IV AD, they were included in all other 

analysis (e.g. GWAS of SRE scores).
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Genotyping, Quality Review and Imputation

COGA samples were generated on four arrays: Illumina Human1M array (Illumina, San 

Diego, CA, USA) genotyped at the Center for Inherited Disease Research (CIDR), Johns 

Hopkins University; Illumina Human OmniExpress 12V1 array (Illumina, San Diego, CA, 

USA) genotyped at the Genome Technology Access Center, Washington University School 

of Medicine in St. Louis; Illumina 2.5M array (Illumina, San Diego, CA, USA) at CIDR; 

and Smokescreen genotyping array (Biorealm LLC, Walnut, CA, USA) genotyped at 

Rutgers University. Two to 127 samples were genotyped on at least two different arrays and 

pairwise concordance rates within subjects typed on more than one array exceeded 99.18% 

for those common SNPs, confirming limited batch or array effects. Sex and heterogeneity 

checks were performed and any discrepancies were removed.

To confirm pedigree structure, a set of 47,000 variants genotyped on all four arrays were 

used. These variants met the following criteria: 1. not in linkage disequilibrium (LD, defined 

as r2 <0.5); 2) minor allele frequency (MAF) >10%; 3) Hardy-Weinberg Equilibrium (HWE) 

p-value >0.001; and 4) missing rate <2%. Pairwise identity by descent was computed using 

PLINK (Purcell et al., 2007) to confirm family relationships. When necessary, family 

structures were altered accordingly. The same set of 47,000 variants was also used to 

estimate principal components (PCs) of population stratification using Eigenstrat (Price et 

al., 2006). Based on the first two PCs, each individual was assigned an ancestry (i.e. 

African-American, European-American, or Other). Family ancestry was assigned based on 

the individual ancestry of the greatest proportion of family members.

Prior to imputation, Mendelian inconsistences were detected using Pedcheck (O’Connell and 

Weeks, 1998), and genotype inconsistences were set to missing. Variants with missing rates 

>5%, MAF <3% and HWE p values <0.0001 were excluded. In addition, variants with A/T 

or C/G alleles were also removed to avoid ambiguities in strand designation. SHAPEIT2 

(Delaneau et al., 2013), which utilizes pedigree information to increase accuracy, was used 

to phase haplotypes of each sample. All samples were imputed to 1000 Genomes the 

cosmopolitan reference panel (Phase 3, version 5, http://www.internationalgenome.org/) 

using Minimac3 (Das et al., 2016). Due to the differences in the variants on each array, 

samples were imputed separately by array. After imputation, variants with R2 <0.30 were 

excluded. To allow for further Mendelian error checking, genotype probabilities were 

converted to genotypes if they were ≥0.90 (similar to procedures for QC and analysis of 

family data in Walters et al., 2018 (Walters et al., 2018); see also Kranzler et al., 2019 that 

used converted genotypes (Kranzler et al., 2019)). All genotype and imputed variants with 

missing rates <20%, MAF ≥1% and HWE p values >0.000001 were used in analyses. 

15,464,468 and 7,823,558 variants passed QC and were included in the AA and EA 

subsamples analyses, respectively. All variants were mapped to NCBI GRCh37.

Heritability, genetic correlations, and GWAS

All analyses were performed separately in COGA AA (COGA-AA) and EA (COGA-EA) 

subsamples, then meta-analyzed (COGA-AA+EA). Due to the complex pedigree structure in 

COGA, methods using genomewide genotype data such as Genomewide Complex Traits 

Analysis (Yang et al., 2011) could not be used to estimate heritability or genetic correlations. 
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Instead, using an approach similar to those applied in classical twin studies, the Sequential 

Oligogenic Linkage Analysis Routines (SOLAR8.3.1) (Almasy and Blangero, 1998) 

package, which was designed to partition variance in large pedigrees, was used to estimate 

heritability of SRE scores (i.e., proportion of total phenotypic variance attributable to latent 

genetic influences), as well as the genetic correlations between the SRE measures and AD 

and DSM-IV AD criterion count (Almasy and Blangero, 1998). Sex and birth cohorts (birth 

year: 1890-1929; 1930-1949; 1950-1969; >=1970) were important covariates as shown in 

previous studies (Grucza et al., 2008); therefore both of them and the first four PCs were 

used as covariates in SOLAR analyses.

GWAS was conducted using linear mixed models with random effects adjusting for 

relatedness within families using the R package GWAF (Chen and Yang, 2010). Sex, birth 

cohorts, array indicators, and the first four PCs were included as covariates. METAL (Willer 

et al., 2010) was used to perform meta-analysis with effect size of each variant weighted by 

the inverse of the estimated standard error from each subsample. Genomic control was 

applied to the results of each subsample as well as to the meta-analysis results. As SRE-T 

and SRE-5 were highly correlated (correlation coefficients were 0.75 and 0.78 in COGA-AA 

and COGA-EA, respectively), we used matSpD (Nyholt, 2004) to spectrally decompose the 

correlation matrix of SRE scores, resulting 1.44 effective test. Thus, the genomewide 

significance was set at p< 3.5 × 10-8. In regions of genomewide significance, conditional 

analyses were performed by including the most significant variant in the region as a 

covariate.

Gene prioritization

FUMA (Watanabe et al., 2017), a web-based tool that incorporates information from 

multiple public databases, was used to prioritize potentially causal genes. Three gene 

prioritization strategies are implemented in FUMA: positional mapping, expression 

Quantitative Trait Locus (eQTL) mapping, and chromatin interaction mapping. Positional 

mapping annotates variants based on their physical positions and functional consequences. 

For any region in which at least one variant met genomewide significance, all variants in that 

region with p values ≤1.0E-04 were annotated. If an annotated variant was in the promoter 

or untranslated regions (UTRs) of a gene, or in exonic or splicing regions of a gene and 

predicted to be deleterious, that gene was prioritized as a potential causal gene. Ensembl 

(build 85; http://www.ensembl.org/) was used to map variants to genes. For eQTL mapping, 

genes within 1 Mb of the most significant variant were tested, and those with significant 

associations (defined as FDR <0.05) were considered as potential causal genes. eQTL data 

from brain tissues in BRAINEAC (http://www.braineac.org/), CommonMind Consortium 

(https://www.synapse.org), and GTEx v7 (https://www.gtexportal.org/) were used. Genes 

prioritized by any of these three strategies were considered as potential causal genes and 

further examined by subsequent RNA expression analysis.

RNA expression analysis

To test the associations between the most significant variants and gene expressions, human 

autopsy brain samples were obtained from the New South Wales Brain Tissue Resource 

Centre (NSWBTRC) at the University of Sydney (http://sydney.edu.au/medicine/pathology/
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btrc/). Fresh frozen samples of the superior frontal cortex (Brodmann area 8) were used. 

This region was selected because a prior enrichment analysis suggests aggregation of AD-

associated GWAS signals in this brain region (Kapoor et al., 2018). In addition, there was an 

adequate sample size available for this region. The samples were sequenced on Illumina Hi-

Seq (Illumina, CA, USA) at the New York Sequencing center (N=83) and at the Waggoner 

Center for Alcohol and Addiction Research (N=60). Total RNA was extracted from frozen 

tissue and samples with contamination or degraded quality RNA (RNA integrity numbers 

(RIN) <5.0) were excluded. 138 samples passed quality review and were used in analysis 

(65 AD, 73 age and sex matched controls). The KAPA Stranded RNA-Seq Kit with 

RiboErase was used for library preparation. The library QC included a measurement of the 

average size of library fragments using the Fragment Analyzer (Advanced Analytical 

Technologies, IA, USA), and estimation of the total concentration of DNA by PicoGreen 

(Thermo Fisher Scientific, MA, USA). Raw reads were aligned to human genome 19 (hg19) 

using STAR aligner (Dobin et al., 2013). Quality control was assessed using RSeQC (Wang 

et al., 2012) and Picard (% GC, % duplicates, gene body coverage, unsupervised clustering, 

and library complexity, http://broadinstitute.github.io/picard/). The Picard “MarkDuplicates” 

option was used to flag and remove the duplicate reads. Gene quantification was performed 

with featureCounts using Gencode annotations. We filtered out all genes with lower 

expression in a substantial fraction of the cohort, with 18,463 genes with at least 1 CPM 

(counts per million) in at least 50% of the individuals; note that only these genes were 

carried forward in all subsequent analyses.

DNA was extracted from the same brain tissue samples used in the RNA analysis. 

Genotyping was performed on the Axiom™ Biobank Plus Genotyping Array (Catalog 

number: 000854). Initial QC was performed using PLINK (Purcell et al., 2007) to remove 

variants with: 1) no alternate alleles; 2) genotyping call rate ≤0.98; 3) Hardy-Weinberg 

Equilibrium p value <5E-5; and 4) samples with genotyping call rate <0.90. Phasing was 

performed on each chromosome using SHAPEIT2 (Delaneau et al., 2013) then imputation 

was done using IMPUTE2 (Marchini et al., 2007) with the 1,000 Genomes Phase 1 

integrated reference panel excluding singleton variants. Analysis was performed on the 

imputed variants with imputation score (INFO) ≥0.8 and estimated MAF ≥0.05.

eQTLs were computed using a linear model on the imputed genotype dosages using Matrix 

EQTL69 (Shabalin, 2012). If the most significant variant was filtered out in this sample due 

to QC, the next available variant with the lowest p value and in LD (r2>0.9) with the most 

significant variant was tested instead. The gene expression data were adjusted for sex, age, 

post-mortem interval, RIN, batch, and decedent phenotype (AD or control)

Replication samples

The first replication dataset was from the San Diego Sibling Pair investigation and 

genotyped on the Illumina HumanCNV370-duo array (Illumina, San Diego, CA, USA). This 

study was approved by the Human Subjects Protection Committee of the University of 

California, San Diego. The same quality review and imputation used in COGA were 

performed. This dataset included both unrelated and related individuals. Empirical kinships 

were estimated from genomewide genotype data using the vcf2kinship tool as implemented 
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in RVTESTS and adjusted in mixed models using RVTESTS (Zhan et al., 2016). The 

majority of the dataset had European ancestry; therefore, only EA samples was used (SD-

EA, N=206, 68 AD cases and 138 controls). Only sex was available and included as a 

covariate.

Two datasets from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) 

Intramural program were also used as replication. Participants were recruited under two NIH 

Institutional Review Board-approved screening and assessment protocols and were 

comprehensively assessed at the National Institutes of Health Clinical Center (Bethesda, 

Maryland, USA) between 2005 and 2015. All participants provided written informed 

consent. Genotyping was conducted at the NIAAA Laboratory of Neurogenetics (Rockville, 

MD, USA) using the Illumina Human OmniExpress and Human OmniExpressExome 

arrays. The same quality review and imputation as in COGA were performed. 169 (130 AD 

cases, 27 controls, 12 not classified) and 100 (36 AD cases, 27 controls, 12 not classified) 

unrelated AA (NIAAA-AA) and EA (NIAAA-EA) individuals were used in analyses, 

respectively. Sex and age were included as covariates. Only AA samples were adjusted for 

the first three PCs because unlike COGA-EA, EA samples in replication and PRS analysis 

didn’t include non EA individuals.

Polygenic risk scores analyses

Summary statistics from both SRE scores in COGA-AA and COGA-EA were used to derive 

PRS using PRSice-2 (Euesden et al., 2015). Four test datasets from the database of 

Genotypes and Phenotypes (dbGaP) were included: 1) AA subsample (SAGE-AA) in the 

Study of Addiction: Genetics and Environment (SAGE, phs000092.v1.p1); 2) AA 

subsample (Yale-Penn-AA) in Alcohol Dependence GWAS in European and African 

Americans (phs000425.v1.p1); 3) EA subsample in SAGE (SAGE-EA); and 4) EA 

subsample (OZALC-EA) in The Australian Twin-family Study of Alcohol Use Disorder 

(OZALC, phs000181.v1.p1). Overlapping COGA individuals were excluded from these 

independent datasets. PRSice-2 requires the analysis of unrelated samples; therefore, in 

datasets with related individuals, one individual was randomly selected from each family. 

Summary of each test dataset is shown in supplemental material. Any variant that was within 

500 kb from the index variant and had r2 >=0.25 with the index variant was clumped using 

PRSice-2. PRS was calculated based on effect size (Euesden et al., 2015). To reduce the 

burden of multiple testing, only variants that had p values <0.05 were included. For SAGE, 

sex and the same birth cohort as defined in COGA were included as covariates, while for 

Yale-Penn-AA and OZALC-EA, sex and age were used. The first 3 PCs were also adjusted 

in AA samples.

RESULTS

Sample summary, heritability, and genetic correlations

Table 1 summarizes the COGA-AA and COGA-EA subsamples. Compared to those in 

COGA-AA, individuals in COGA-EA had higher mean DSM-IV AD criterion count in both 

AD cases and controls, SRE-T, and SRE-5 scores. Latent genetic influences (familial h2) 

contributed to 21-31% of the variance in SRE scores, indicating moderate heritability (Table 
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2). Overall, genetic correlations (rg) with AD and DSM-IV AD criterion count were higher 

for SRE-T (rg=0.49 -0.76) than for SRE-5 (rg=0.35-0.48) (Table 2).

GWAS results

Two loci for SRE-T (chromosome 6 for COGA-EA; chromosome 11 for COGA-AA+EA) 

and one locus for SRE-5 (chromosome 13 for COGA-AA) reached genomewide significance 

(Table 3, Figure S2). Tables S1 and S2 provide a broader list of association results 

(P<1E-04) for SRE-T and SRE-5, respectively.

SRE-T: The most significant association results were with variants on chromosome 11 in 

COGA-AA+EA (most significant: rs10647170, p=3.53E-09), with both subsamples 

providing supporting evidence for the association. Evaluation of rs10647170 in independent 

datasets provided nominal evidence of replication in the NIAAA-AA (p=0.05), but not in the 

SD-EA or NIAAA-EA (Table 3) samples. Meta-analysis of COGA-EA+AA and the 3 

replication datasets resulted in a lower p-value of 6.45E-10.

In addition, a genomewide significant result was noted with a variant on chromosome 6 

(rs140154945, p=3.30E-08) in COGA-EA (Table 3) that not supported in COGA-AA. There 

was also no evidence of replication for rs140154945 in the EA replication datasets.

Regional association plots demonstrated strong LD support in both the chromosomes 6 and 

11 regions (Figures S3A, S3B, and S3C). Conditional analyses using the top variant in each 

region as a covariate confirmed that there were no additional association signals in these 

chromosomal regions associated with SRE-T.

SRE-5: Genomewide significant associations were identified in COGA-AA on 

chromosome 13 (rs4770359, p=2.92E-08), although it was not associated in COGA-EA 

(Table 3). The variant was not replicated in the NIAAA-AA. There was modest LD support 

in this region possibly due to unusual LD pattern as shown in 1000 Genomes data using 

LDlink (https://ldlink.nci.nih.gov/?tab=home) (Figures S3D, S4). Unlike SRE-T, conditional 

analyses found that some variants demonstrated modest association (p<0.001) after 

adjustment of the top variant, suggesting that additional independent associations might exist 

in each region, consistent with the LD patterns showing in Figure S3D. There were no 

genomewide significant association findings in COGA-AA+EA and COGA-EA GWAS.

The effect sizes of the most significant variants in each locus in discovery and replication 

samples are shown in the forest plots in Figure S5.

Gene prioritization and RNA expression analysis

For chromosome 11, one variant (rs2270678, COGA-AA+EA p=1.81E-08) was located in 

the 5’ UTR of PRMT3 (protein arginine methyltransferase 3). Another variant (rs3781679, 

COGA-AA+EA p = 3.58E-05, Table S1) was located in the 3’ UTR of HTATIP2 (HIV-1 Tat 

interactive protein 2). Therefore, both genes were prioritized in FUMA. Chromatin 

interaction mapping further prioritized DBX1 (developing brain homebox 1) and SLC6A5 
(solute carrier family 6 member 5) in this region. On chromosome 6, three variants were 

located in the 3’ UTR of AFDN (adherens junction formation factor) (Table S1) and this 
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gene was therefore prioritized by FUMA. eQTL analysis further prioritized the gene KIF25 
(kinesin family member 25) in this region (multiple variants had FDR<0.01). No genes were 

prioritized in the chromosome 13 region.

For the six genes prioritized by FUMA (Chromosome 11: PRMT3, HTATIP2, DBX1, 
SLC6A5; Chromosome 6: AFDN, KIF25), RNA expression in brain tissue obtained from 

NSWBRTC was examined. After adjusting for six tests, the Bonferroni correction threshold 

was set at p<0.0083. Rs140154945 did not pass QC in this smaller postmortem tissue 

sample, therefore the next most significant variant in high LD (rs3778662, COGA-EA 

p=7.24E-08, r2=0.92 with rs140154945) was used. After adjustment for covariates, 

including AD status of decedent, rs3778662 was identified as an eQTL of KIF25 
(p=6.62E-05).

PRS analyses

PRS analysis results are summarized in Table 4. For both SRE-T and SRE-5, there are four 

discovery-test dataset pairs (i.e., Bonferroni p<0.0125). Overall, PRS from SRE-T 

outperformed those from SRE-5 in prediction of AD phenotypes; PRS of both SRE-T and 

SRE-5 predicted greater variance in DSM-IV AD criterion count than AD; prediction was 

also higher in EA than in AA samples. The strongest finding was for polygenic scores based 

on the COGA-EA SRE-T GWAS, which predicted 2.48% of the variance in AD in the 

SAGE-EA.

DISCUSSION

This is the first GWAS to identify common variants associated with SRE-T and the first 

GWAS of SRE scores in AA samples. This is also the first study to report genomewide 

significant findings for any SRE score. These findings are not under linkage regions 

previously published (Ehlers et al., 2010, Schuckit et al., 2001) using SRE-5. Of the 

genomewide significant loci, the locus on chromosome 11 was nominally replicated in one 

sample, although the replication sample was small. Of the genes prioritized for SRE-T in the 

EA sample, KIF25 was supported by data from both in silico functional analyses and RNA 

expression analysis. In addition, PRS derived from these discovery GWAS of SRE predicted 

variance in AD-related phenotypes in independent datasets. Broadly, these GWAS analyses 

suggest that larger samples of SRE phenotypes, particularly SRE-T, might be highly 

informative in the identification of loci related to LR, which influences risk for development 

of AD and is emerging as a notable target for prevention.

SRE-T and SRE-5 represent self-reported assessments of LR. SRE-T and SRE-5 were 

moderately heritable, but our estimates were lower than some prior reports. For instance, a 

smaller (n=101) sibling study of non-alcohol-dependent individuals estimated the 

heritability of SRE-T at 67-71% (Kalu et al., 2012), although the corresponding estimate for 

an “early drinking period” was lower and statistically non-significant. Similar high 

heritability estimates have been noted for other assessments of subjective ratings (e.g., 

40-60%) (Heath and Martin, 1991, Viken et al., 2003). It is possible that our estimates are 

less precise than those from larger twin studies, as we relied on pedigree data. We did not 

utilize genomic data to estimate the SNP-heritability of SRE scores as our large pedigrees, 
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when reduced to a smaller cohort of unrelated individuals, is not well-powered to make such 

estimates. Nonetheless, our estimates suggest that future larger efforts should be successful 

in estimating the extent to which common variants explicate the heritability of SRE (Ray et 

al., 2010).

Our discovery GWAS in both COGA-AA and COGA-EA identified genomewide significant 

loci. The association signal on chromosome 11 was supported by both COGA-AA and 

COGA-EA. Genes prioritized in this region have been supported by other GWAS. In a 

recent GWAS of alcohol dependence in a Thai population, the region between DBX1 and 

PRMT3 showed suggestive association with AD (Gelernter et al., 2018). Another study 

reported an association between PRMT3 and smoking (Park et al., 2015). Variants upstream 

of PRMT3 demonstrated suggestive association with marijuana dependence criterion count 

in an African-American cohort (Sherva et al., 2016). Although HTAPIP2 in this region was 

also prioritized by FUMA, it was not reported to be related to any neuropsychiatric diseases. 

Two additional genes in this region, DBX1 and SLC6A5, were prioritized by chromatin 

interaction mapping. DBX1 has been linked to educational achievement (Rietveld et al., 

2014), which is negatively correlated with genetic liability to alcohol dependence (Walters et 

al., 2018), while SLC6A5 was reported to be related to schizophrenia (Deng et al., 2008), 

which is positively genetically correlated with AD (Walters et al., 2018). Thus, there is 

increasing evidence for the involvement of variants in this region to liability to problem 

drinking.

Analyses of RNA expression data in brain tissue identified KIF25 on chromosome 6 to be a 

gene of interest for SRE-T in the EA sample. The minor alleles of the associated variants in 

this region increased the SRE-T score, risk of AD, and expression of KIF25 in both curated 

brain tissue data (e.g., from GTEx) and RNA expression analysis that accounted for AD 

status. Due to the small sample size, there was insufficient statistical power to analyze the 

effects of variants stratified by cases and controls. This gene encodes a protein that belongs 

to the kinesin-like protein family. A region that is approximately 40 kb away from KIF25 
was shown to be associated with Attention Deficit Hyperactivity Disorder (Ebejer et al., 

2013). However, there are few functional studies of this gene and its exact role in alcohol-

related behaviors remains unknown. Nonetheless, these results highlight the importance of 

KIF25 expression in LR.

Individuals with low LR, and consequently, higher SRE scores are at increased likelihood of 

drinking heavily and developing problems AD (Schuckit et al., 1997a). The present study 

found that a preponderance of this correlation is attributable to genetic factors, as indexed by 

strong correlations in latent heritable factors influencing SRE and AD phenotypes. However, 

these high correlations should be interpreted within the context of our ascertainment 

strategy, which oversampled for individuals with family history of AD. It should also be 

distinguished from more recent SNP-based genetic correlations that examine the extent of 

similarity between genomewide effect sizes for two traits. In contrast to the high rg from the 

pedigree data, our study also added a novel exploration of the extent to which polygenic 

liability to SRE relates to AD. Overall, PRS mostly explained modest proportions of 

variance in AD phenotypes. Nearly 2.5% and 1.4% of the variance in AD diagnosis and 

criterion count, respectively, were explained by polygenic liability to SRE-T in the SAGE-
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EA data. Predictions were less significant in other target cohorts, potentially due to the 

similar ascertainment for alcohol dependence of SAGE and COGA. For example, even 

though Yale-Penn-AA was ascertained for alcohol dependence, it has a high rate of other 

illicit drug dependence which may have impacted predictions. Polygenic liability to SRE-5 

was poorly related to AD phenotypes, consistent with its lower genetic correlation with AD 

diagnosis and criterion count.

Our results suggest that some polygenic liability underlying SRE-T and AD is common but 

also highlight that each phenotype is likely to be influenced by unique genetic factors. For 

instance, the current strongest signal for AD, rs1229984 in ADH1B (Walters et al., 2018), 

was not associated at genomewide significant levels to SRE-T (EA p= 0.00027; AA 

p=0.019; rs2066702, strongest signal in AA, p=0.012). Similarly, the most significant 

variant for SRE-T in chromosome 11, rs10647170, was not associated with AD (p>0.18 in 

COGA-AA, COGA-EA, and COGA-AA-EA). Thus, the genetic variants associated with 

SRE and those relating to AD are likely to only modestly overlap. For example, the AD risk 

is associated with high impulsivity and sensation seeking, low conscientiousness, and the 

risk for some psychiatric disorders (e.g., schizophrenia), characteristics that have little, if 

any, links to LR.

This study has several limitations. Despite the size of the COGA discovery samples, power 

to detect association with low frequency variants is modest. Likewise, sample sizes of the 

replication datasets were small, raising the possibility that true findings were not replicated. 

Despite this, one association was confirmed by the NIAAA samples, and meta-analyses of 

all datasets resulted in increased significance of genomewide significant signals. 

Additionally, we used hard-called genotypes as necessitated by our family data requiring 

rigorous Mendelian error checking, which is not straightforward with dosage data (see also 

Walters et al., 2018 for a similar approach to family data (Walters et al., 2018)). Nonetheless, 

results for our top loci are similar when dosage data were used for a confirmatory analysis 

(e.g., rs10647170 P=1.53E-08). Another limitation inherent in both in silico functional 

analyses and RNA expression analysis is the source of the data, which are largely from 

subjects of European ancestry. As a result, conclusions from these functional data may be 

limited when analyzing associated variants identified in the COGA-AA sample. 

Nonetheless, this represents an important first step towards characterizing genetic risk in a 

key index of AD liability. This study is also further strengthened by investigation of both EA 

and AA individuals, who are known to differ in SRE scores.

We identified novel loci associated with SRE scores in both EA and AA samples. As 

additional samples with SRE data, specifically SRE-T, become available, individual loci and 

polygenic risk scores from such GWAS might explain even greater variance in LR. It will set 

the stage for future interventions that might aim to interrupt progression to AD (Roche and 

Ray, 2015, Schuckit et al., 2016). This boost in power necessitates further collection of SRE 

data. Since the assessment is brief and easily administered, and is included the PhenX tool 

kit (https://www.phenxtoolkit.org/), large biobanks and nation-wide data collection efforts 

are encouraged to gather data on SRE to capture greater variability to susceptibility to future 

problem drinking.
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Table 2:

Heritability, genetic correlations between AD, DSM-IV AD criterion count and SRE scores.

AD DSM-IV AD criterion count

Sample Phenotype Heritability (p value) Genetic correlation P value Genetic correlation P value

COGA-AA SRE-T 0.21 (4.10E-06) 0.76 1.25E-07 0.63 4.20E-06

COGA-AA SRE-5 0.20 (6.35E-05) 0.48 1.88E-03 0.40 6.13E-03

COGA-EA SRE-T 0.31 (1.14E-35) 0.61 4.55E-25 0.49 8.26E-19

COGA-EA SRE-5 0.31 (7.01E-34) 0.41 4.52E-11 0.35 9.44E-10
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Table 4:

Results of PRS derived using COGA SRE GWAS summary statistics. P<0.0125 are in bold.

AD DSM-IV AD criterion count

Discovery dataset Test dataset R2 p value R2 p value

SRE-T COGA-EA SAGE-EA 2.48% 4.13E-07 1.37% 8.55E-07

SRE-T COGA-EA OZALC-EA 0.34% 0.05 0.60% 1.14E-03

SRE-T COGA-AA SAGE-AA 1.49% 6.10E-03 1.04% 1.72E-03

SRE-T COGA-AA Yale-Penn-AA 0.36% 0.03 0.05% 0.33

SRE-5 COGA-EA SAGE-EA 0.88% 2.37E-03 0.61% 1.08E-03

SRE-5 COGA-EA OZALC-EA 0.14% 0.21 0.47% 3.85E-03

SRE-5 COGA-AA SAGE-AA 0.53% 0.10 0.34% 0.07

SRE-5 COGA-AA Yale-Penn-AA 0.0007% 0.92 0.03% 0.43
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