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Abstract
Strategic placement of urban agriculture such as community gardens can expand

alternate food supply, support physical activity, and promote social interactions.

While social and health benefits are critical priorities when planning new urban agri-

culture locations, no widely accepted site selection methods have been established.

We developed a spatial optimization model to identify new urban agriculture loca-

tions in the City of Indianapolis, Marion County, Indiana. Considering block groups

with vacant parcels as potential locations, the study uses p-median optimization to

identify the 25 best locations that would minimize travel from any block group in the

city to potential garden locations. We weighted each block group based on food access

and prevalence of obesity, where food access was characterized on three dimensions:

economic, geographical, and informational. The model was simulated for three pol-

icy scenarios with equal, stakeholder-driven, and obesity-driven weights, and the

results were compared with randomly selected locations. We found that optimally

selected locations were 52% more efficient than randomly chosen locations in terms

of the average distance traveled by residents based on the p-median solution. How-

ever, there was no significant difference in travel distance among the three policy

scenarios. The spatial optimization model can help policymakers and practitioners

strategically locate urban agriculture sites.

1 INTRODUCTION

Many U.S. cities are facing challenges with food access, obe-

sity, and vacant lots. For example, in 2015, approximately 74%

of Americans lived in urban areas, of which 12% of house-

holds without a vehicle had to travel more than 1.6 km for a

food store (Rhone et al., 2019). Limited access to food stores

can contribute to obesity, affecting 94 million residents in

Abbreviations: AHP, analytic hierarchy process; MCPHD, Marion County

Public Health Department; NP-hardness, nondeterministic polynomial time

hardness; USDA, United States Department of Agriculture.
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U.S. urban metropolitan areas (Lundeen et al., 2018). Sim-

ilarly, due to deindustrialization, disinvestment, and subur-

banization, vacant and abandoned properties are increasing

in U.S. cities (Bonanno & Li, 2015; Newman et al., 2016).

Approximately 17% of urban land is considered vacant in the

United States, with the highest vacancy rates in Midwestern

and Southern cities (Newman et al., 2016).

Cities have developed innovative mechanisms to address

these challenges. One of the solutions implemented by many

cities is converting vacant parcels into urban agriculture and

other forms of green space (Colasanti & Hamm, 2010; Santo

et al., 2017; Schilling & Logan, 2008). These policies are
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informed in part by the emerging research on the poten-

tial benefits of community-based urban agriculture, includ-

ing improved food access, urban environment, and commu-

nity health (Al-Delaimy & Webb, 2017; Santo et al., 2017).

While food production in urban areas has a long tradi-

tion, it has entered the mainstream in developing and devel-

oped countries in the last two decades. In several coun-

tries, including the United States, Australia, and the United

Kingdom, government support for urban agriculture sprang

from crises such as the Great Depression and World Wars

(Mok et al., 2014). It is promoted to address a systemic prob-

lem of structural disparities in food access in impoverished

and underserved urban areas (Opitz et al., 2016; Siegner et al.,

2018). Currently, there is an increasing trend in urban agricul-

ture in many parts of the world, including the United States,

due to the availability of unused lands and innovative policies

(Palmer, 2018).

However, urban agriculture is not without tradeoffs. For

example, residential gardens typically require single-family

homes, and commercial gardeners try to balance the tension

between a viable income for urban farmers and food access

for low-income consumers (Siegner et al., 2018). Depending

on the practices, the gardens can become a source of soil con-

taminants (Taylor & Ard, 2017). This paper focuses on urban

agriculture as an avenue for communities to grow and access

fresh produce. We use urban agriculture and gardens inter-

changeably.

In terms of food access, food security requires that food

must not only be accessible and nutritionally adequate, but

it must also be culturally acceptable and available through

nonemergency sources, including urban agriculture (Larson

et al., 2009; Siegner et al., 2018). Lack of food access and

security create food deserts that have been defined as “areas

of relative exclusion where people experience physical and

economic barriers to accessing healthy food” (Shaw, 2006).

Food access, food (in)security, and food deserts have been

repeatedly correlated with non-White and low-income neigh-

borhoods (Horst et al., 2017; Mok et al., 2014; R. E. Walker

et al., 2010).

Food insecurity has multiple causes, such as economic

divestment in low-income areas and poor distribution chan-

nels, necessitating multifaceted solutions, including urban

agriculture (Horst et al., 2017; Siegner et al., 2018). Research

has shown that agricultural place-based projects can con-

tribute to overcoming food insecurity and increasing self-

reliance in communities (Barthel & Isendahl, 2013; Grewal &

Grewal, 2012; Horst et al., 2017; Siegner et al., 2018). More-

over, spatial optimization to select agricultural sites within

a city can more efficiently serve disadvantaged communities

and individuals living in food deserts (Mack et al., 2017).

Site selection has been extensively studied in location sci-

ence. The primary goal of location science is to identify

the location of one or more facilities that provide some

Core Ideas
∙ The study uses p-median optimization to identify

new urban agriculture locations.

∙ p-Median optimization minimizes travel distance

while incorporating parameters of food access and

obesity.

∙ Optimally selected locations were 52% more effi-

cient than randomly chosen locations.

∙ No significant differences were noted in travel dis-

tance among the policy scenarios.

level of coverage (Church & Murray, 2018). In the seminal

work of 1964, S. L. Hakimi proposed to locate p-facilities,

later called p-median, to minimize the total weighted dis-

tance associated with serving all demand (Church & Murray,

2018). p-Median and other spatial optimization models have

been leveraged to locate facilities such as schools (Ndiaye

et al., 2012), defense buildings (Bell et al., 2011), commercial

structures (Dantrakul et al., 2014), and health care facilities

(Baray & Cliquet, 2013). These techniques have also been

applied in agricultural economics for identifying the optimal

location of warehouses (Bornstein & de Castro Villela, 1990),

the optimal size of processing plants (von Oppen & Scott,

1976), and the optimal location of vegetable cooling facilities

(Chu, 1989).

Spatial optimization techniques have recently been used in

urban agriculture research. Mack et al. (2017) used maximum

covering spatial optimization to locate urban gardens for food

desert residents. Similarly, Tong et al. (2012) developed a spa-

tial optimization model to locate farmer’s markets by incorpo-

rating temporal and spatial constraints. Though these papers

connect food deserts and urban agriculture, research incor-

porating stakeholder feedback into urban agriculture-related

optimization models is yet to emerge. In addition, there are

no widely accepted methods that include social and public

health variables into urban agricultural site selection. Doing

so can help address food inaccessibility and obesity by lever-

aging urban agriculture as an intervention strategy. Optimized

selection of locations for intervention can help support social

and public health goals and provide opportunities to identify

vacant areas that can best serve the community needs.

This paper presents a novel approach for identifying new

urban agriculture locations using stakeholder priorities within

a spatial optimization framework. This research aims to iden-

tify optimal locations for establishing new urban agriculture

sites that improve access to urban agriculture under different

planning scenarios. Using the case of the City of Indianapolis

in Marion County, Indiana, we develop a spatial optimization

model that incorporates parameters of food access and obesity
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as weights in the site selection process. We simulate the model

for three policy scenarios to understand the location sensitiv-

ity to the criteria values. The simulated results from policy

scenarios were compared with randomly selected locations.

This paper adds to the existing literature on food access and

urban agriculture in at least two ways. First, the study develops

a spatial optimization technique for selecting new urban agri-

culture locations while incorporating stakeholder feedback as

scenarios. The scenario-based approach allows policymak-

ers and practitioners to visualize the implications of their

choices. Second, the study captures multidimensional aspects

of food access by incorporating economic, geographic prox-

imity, and information access factors that are critical facets of

food access.

2 MATERIALS AND METHODS

2.1 Study area

This study was conducted in the consolidated City of Indi-

anapolis in Marion County, Indiana. Like many cities in the

Midwest, Indianapolis faces food accessibility, obesity, and

property vacancy challenges. Approximately 22% of Marion

County households have limited food access (Andres et al.,

2019). The county has an adult obesity rate of 39%, which

is higher than the state average of 34.1% (Mantinan et al.,

2019). Furthermore, obesity and food access are more promi-

nent among people of color. Approximately 2% of the city’s

parcels are abandoned and vacant (City of Indianapolis &

Marion County, 2019). We found that 257 out of 632 block

groups in Marion County had at least one vacant parcel 0.1

hectares or more in size (Figure 1).

Over the last decade, urban agriculture has emerged in

Indianapolis due in part to increased consumer interest in

locally grown products (Beverage & Toner, 2018). As of 2020,

there were more than 160 urban agriculture sites in the city

managed by nonprofits, communities, hospitals, and schools

(Environment Resilience Institute, 2021; Purdue Extension,

2019). The city has promoted urban agriculture in vacant

properties through various incentives; however, site selection

is based on individual cases.

2.2 Data preparation

The data preparation mainly involved estimating the weights

for the spatial model; that is, parameters of food access and

obesity weighted by population (Table 1). Following McEn-

tee and Agyeman (2010), we defined food access on three

dimensions—economic, information, and geographic access.

Economic access was defined as financial barriers that impact

one’s ability to purchase food, whereas information access

encompassed educational, cultural, and social constraints that

influence how and why people choose to eat certain foods.

Geographic access evaluates individuals’ proximity to gro-

cery stores and their ability to travel to the store. U.S. Census

Bureau block groups, which generally contain 600 to 3,000

people, were used as the unit of analysis (U.S. Census Bureau,

2019, September 16).

2.2.1 Economic and information access

Economic access was estimated using the percentage of

households below the poverty line in the past 12 mo. Sim-

ilarly, information access was estimated as the percentage of

the population 25 yr and over who had no high school diploma

or higher degrees. These information were compiled from

the American Community Survey (ACS) 2017 (U.S. Census

Bureau, 2017). All the socioeconomic data were converted

into percentages for comparability.

2.2.2 Geographic access

Geographic access was measured using two variables–

distance to the food store and vehicle ownership. Geocoded

locations of food stores in Marion County were derived from

the Polis Center (Polis Center, 2018) and the USDA. The

Polis Center provided information on the store name, address,

and type (i.e., supermarket, grocery stores, etc.); the data was

originally received from Marion County Department of Pub-

lic Health. We included supermarkets, grocery stores, conve-

nience stores, and fruit and vegetable markets for the study.

The geocoded locations of farmers’ markets were derived

from USDA Supplemental Nutrition Assistance Program.

To calculate the distance to stores, we created block group

centroids for 632 block groups of Marion County in ESRI

ArcMap 10.7. The Caliper Corporation’s TransCAD software

was used to calculate the minimum travel distance on the

road network from block group centroid to the nearest food

store using the in-built road network data. To control for edge

effect (i.e., to allow people to travel to nearby stores around

the county’s edge), we included grocery stores within 3.2 km

of the county border.

2.2.3 Obesity

We defined obesity as the percent of the population who

were obese or overweight based on the 2005 Obesity Survey

conducted by the Marion County Public Health Department

(MCPHD). The data were aggregated at the health township

level, which are groupings of census tracts delineated by the

MCPHD. We assigned the health township-level data to their

respective block group based on the spatial boundary.
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F I G U R E 1 Percent poverty in block groups with the vacant parcel(s). The poverty rate in nonvacant parcels is not displayed

T A B L E 1 Criteria variables for the weights

Variables Description Unit Sources
Economic access

Household poverty

in percentage

Percent of household below poverty

line in the past 12 months

Percent ACS 2017

Geographic access

Tenure with no

vehicles in

percentage

Percent of tenure (owner occupied

and renter occupied housing units)

with no vehicles

Percent ACS 2017

Distance to store Minimum travel distance of block

group centroid to the nearest food

store

Miles Polis Center 2017

Information access

Population with no

high school diploma

or higher

Percent of population 25 years and

over who have no high school diploma

(includes equivalency) or higher

Percent ACS 2017

Other variables

Obesity rate Percent of population who are obese

or overweight

Percent MCPHD 2005

Total population Total population of residents in a

block group

Count ACS 2017

Note. ACS, American Community Survey, MCPHD, Marion County Public Health Department.
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T A B L E 2 Weights for three scenarios

Variables Stakeholder-driven Equally weighted Obesity-focused
Poverty 0.434 0.20 0.125

Distance to store 0.245 0.20 0.125

No vehicles 0.197 0.20 0.125

Educational attainment 0.078 0.20 0.125

Obesity 0.045 0.20 0.50

2.2.4 Potential urban agriculture sites

The vacant parcels in the city were considered as potential

area for new urban agriculture sites. Block groups with one

or more abandoned or vacant housing parcels with at least 0.1

hectares in size were identified as potential block groups for

new urban agriculture. The vacant parcel data were obtained

from the City of Indianapolis (City of Indianapolis & Marion

County, 2019).

The five criteria variables (Table 1) were processed using

the following steps to generate the weights: (a) normalization

of the criteria variables, (b) stakeholder-driven weights gener-

ation using pairwise comparison, (c) development of scenario

weights, and (d) final weighted score.

2.2.5 Normalization of criteria variables

For each demand point (i.e., block group centroid), we used

five criteria—four measures of access (i.e., poverty, distance

to store, household without vehicles, and educational attain-

ment) and obesity rate (Table 2). Since the five criteria vari-

ables had different minimum and maximum values, we used

min-max scaling to shift to the range of 0 to 1 to facilitate

comparability across the variables.

𝑥normalized =
𝑥 − 𝑥min

𝑥max − 𝑥min

2.2.6 Stakeholder driven weights generation
using pairwise comparison

The normalized values were assigned stakeholder-derived

weights to resemble their relative importance using pairwise

comparison. Pairwise comparison is a popular method ini-

tially proposed by Saaty (1980) as a part of the analytic hier-

archy process (AHP). AHP is a method for developing a

hierarchy of multiple decision factors and determining their

relative importance. One of the key steps of AHP is develop-

ing weights through pairwise comparison (Chen et al., 2013).

The weight generation involved the following steps. First,

we conducted an online Qualtrics survey among stakehold-

ers (n = 11), mainly comprised of researchers, urban growers,

and municipal planners. The survey asked respondents to rank

their preference (e.g., poverty vs. obesity) for each pair of cri-

teria on a scale of 1 to 9 (1 = equal preference and 9 = high

preference). The survey had 10 unique pairs of criteria to

choose from: poverty vs. distance to store (distance), poverty

vs. no vehicle, poverty vs. educational attainment (education),

poverty vs. obesity, distance vs. no vehicle, distance vs. educa-

tion, distance vs. obesity, no vehicle vs. education, no vehicle

vs. obesity, and education vs. obesity. Following Saaty (1980),

matrix algebra was performed on the responses to generate

final weights for the five criteria (Table 2).

2.2.7 Development of scenario weights

Besides the weights generated from stakeholder input, we

also developed weights based on some hypothetical scenarios.

We designed two additional scenarios with different weight

values to understand how new agriculture locations might

change under these scenarios. The equally weighted scenario

gave equal weights of 0.2 to five variables, whereas 0.50 was

assigned to the obesity rate for the obesity-focused scenario.

2.2.8 Final weighted score

A final weighted score was generated at the block group level

for each scenario (Table 2). We multiplied the normalized cri-

teria variables with their respective weights and summed them

across each block group to generate the final weighted score.

The summed value was rescaled so that the total of all weights

was equal to 632 (total number of block group). The rescaled

weight was multiplied by 10% of the total population in each

block group to get the final weighted score under an assump-

tion that 10 percent of the population would utilize urban

agriculture.

2.3 Model

The p-median spatial optimization model was used to

identify the optimal location for establishing new urban

agriculture sites so that the total travel distance between each
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block group in the county and block group with the potential

new garden site was minimized. In other words, the model

aimed to distribute the gardens to different parts of the county

so that residents need to travel less to access gardens. Since

travel distance was weighted by five criteria variables (i.e.,

poverty, vehicle ownership, educational attainment, and obe-

sity rate), block groups with high criteria values received

higher preferences.

p-Median optimization uses integer programming, a spe-

cial case of mathematical programming that relies on linear

and nonlinear algebra to solve the optimization calculation.

The problem is challenging to solve due to nondeterministic

polynomial time hardness (NP-hardness). Brute force solu-

tions to the NP-hardness problem become impossible even

with the latest computer processing power, speed, and mem-

ory density. However, with proper heuristic algorithms, p-

median problems can be solved robustly.

p-Median locates p-facilities that minimize the total dis-

tance associated with serving all of the demand. We followed

the methodological parameters: (a) each block group with a

vacant parcel(s) was a potential site for new agriculture and

had the capability of handling the demand coming from all the

block groups; (b) new urban agriculture site was assigned to

their closest vacant block group; and (c) the garden site could

be located anywhere on the block group with vacant parcels

(Church & Murray, 2018).

We built the network model in TransCAD using the follow-

ing steps. The polygon shapefile containing all block groups

in Marion County was converted into centroids in ArcMap

and imported into TransCAD as demand nodes in the net-

work. Similarly, the block groups with vacant parcels were

converted into centroids and imported into TransCAD as sup-

ply nodes (i.e., potential new agricultural site locations). The

final weighted scores were processed in Excel and R pro-

gramming language and joined with the block group centroid.

The road network in-built in TrasnCAD was used to calculate

the shortest travel distance to generate a distance matrix. The

block group centroids were assigned to the nearest road net-

work node segments in TransCAD.

The p-median model notations are

𝑧𝑖𝑗 =
{
1, if demand 𝑖isassignedtofacility𝑗
0, otherwise

}

𝑧𝑗𝑗 =

{
if node 𝑗hasbeenselectedforafacilityandassignedtoitself
0, otherwise

}

p-median:

Minimize
∑

𝑖

∑
𝑗
𝑎𝑖𝑑𝑖𝑧𝑖𝑗 (1)

Subject to

𝑎𝑖 = 𝑞𝑖

5∑
𝑘=1

𝑤𝑘𝑡𝑖𝑘 (2)

∑
𝑗
𝑧𝑖𝑗 = 1∀𝑖 (3)

∑
𝑗
𝑧𝑖𝑗 = 𝑝 (4)

𝑧𝑖𝑗 ≤ 𝑧𝑗𝑗∀𝑖, 𝑗&𝑖 ≠ 𝑗 (5)

𝑧𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 (6)

The objective function minimizes the total weighted distance

of demand assignment (i.e., block group) given constraints

(Equation 1). The value ai for the demand point is the popu-

lation (qi) at demand i multiplied by the sum of five weighted

criteria tik (Equation 2). Each demand i was assigned to a

facility in constraints (Equation 3). Constraint established that

exactly p facilities located within the vacant block group were

to be sited (Equation 4). The constraint in Equation 5 ensured

that demand i couldn’t be assigned to facility j (i.e., zij = 1)

unless a facility at j had been sited (i.e., zij = 1). Integer restric-

tions were imposed in constraints (Equation 6) (Church &

Murray, 2018). We used p-median optimization to simulate

25 optimum block groups (i.e., p = 25) for three scenario

weights: equal, obesity-focused, and stakeholder-determined

weights.

3 RESULTS

The goal of the p-median optimization applied in this study

was to minimize the total travel distance by all residents.

Visual interpretation of the p-median simulation results

showed that obesity and equally weighted scores located

the optimal block groups in proximity, whereas stakeholder-

weighted results identified block groups in the northern and

southern parts of the city (Figure 2). The variation could be

due to differential weights of poverty and obesity. While obe-

sity received a high score in the obesity-weighted scenario,

poverty received a high score in the stakeholder-driven sce-

nario.

The result from the p-median simulation also showed

no significant difference in the average travel distance per

resident among the three scenarios. The average travel dis-

tance was 3 km per resident for stakeholder-weighted loca-
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F I G U R E 2 Optimal locations of 25 potential urban agriculture sites using (a) stakeholder-driven, (b) obesity-focused, (c) equal weights, and

(d) all weights overlayed

tions, 2.9 km for obesity-weighted locations, and 3 km for

equally weighted locations. If we located the urban agriculture

in the block group using weights derived from stakeholder

input, a resident of Marion county will only gain around 3%

efficiency in average travel distance compared to locations

derived using other weights. However, the total travel distance

saved is significant if we scale this up to the total population.

For example, assuming that only 10% of block group resi-

dents will visit the garden, the allocation would save around

1,609 km in a given time if we choose stakeholder-driven

locations over obesity-weighted locations.

To understand if optimally generated locations were more

efficient than randomly selected locations, we identified

25 random sites and estimated the average travel distance.

Like the three stakeholder-driven scenarios, the randomly

selected sites were limited to block groups with vacant

parcels. The result of the randomly identified locations was

compared with the obesity-driven weighted locations because

it had the lowest average travel distance. We found that loca-

tion derived from the optimization method had an average

travel distance of 1.87, whereas that from random selection

had a distance of 2.85. Therefore, the optimally selected loca-

tions reduced the average travel distance per resident by 52%

compared with random selection and hence would be more

efficient in improving residents’ accessibility to new agricul-

ture locations.
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4 DISCUSSION

The strategic placement of urban agriculture has the poten-

tial to address multiple issues. Our primary research goal

was to illustrate how spatial techniques can be applied for

establishing new urban agriculture sites while incorporating

different policy priorities. We used a spatial optimization

approach that included critical parameters on food access and

obesity as weights. The optimization model was evaluated

for three policy priorities represented by scenario weights:

equal, stakeholder-driven, and obesity-focused weights. We

found that the spatial optimization technique generated more

efficient locations than the random selection method. Com-

pared with randomly selected sites, the residents would travel

less miles to reach the urban agriculture sites selected by

the spatial optimization approach. Though policymakers are

very unlikely to distribute the resources randomly in prac-

tice, a science-based selection criterion is likely to identify

targeted areas for intervention. The weighted travel-distance-

based approach is valuable in addressing food accessibility

because the geographical proximity of fresh food sources is

one of the main determinants of food access (Luan et al., 2015;

Rhone et al., 2019).

However, the location of sites was influenced by the input

weights. Because obesity rates are prevalent around the west-

ern, eastern, and southern parts of the city, the optimal loca-

tions are more concentrated in those areas. The stakeholder-

weighted optimization had greater weights for poverty and

identified high-poverty areas in the northeastern parts of the

city as priority locations for new agriculture sites. Therefore,

the technique can be adapted to produce different results based

on the stakeholder priorities.

The goal of optimization is to minimize the total distance

traveled by all demand points. The p-median solution among

the three scenarios evaluated in this study showed no signifi-

cant difference in average travel distance, indicating that sites

can be efficiently selected to meet multiple planning objec-

tives.

Site location is a multifaceted decision-making process.

This study attempted to capture the complex dimension

of food access and obesity into the site selection process.

Although many studies on food access have primarily focused

on geographical proximity, this study included poverty, edu-

cational attainment, and vehicle ownership as critical vari-

ables for food access.

Spatial optimization techniques have important policy

implications, particularly in the context of social and health

equity. The goal of global optimization methods applied in

this study was to minimize the total travel distance to new

agriculture locations. The p-median approach tends to be the

most effective in reducing the total travel distance and can

contribute to food accessibility and other environmental ben-

efits through reduced travel distance.

In addition, the methodology incorporated critical social

parameters, including obesity, poverty, and food accessibil-

ity. The model will likely locate more agricultural sites in

population clusters with high obesity and low accessibility.

Therefore, the spatial optimization technique can be used for

strategic prioritization to achieve specific social goals, such

as obesity reduction and improving equity.

While the study incorporated multiple criteria, it had some

limitations. Site selection is a complex problem that needs

to consider multiple factors. Though food access and obesity

were incorporated in optimization, factors such as community

readiness for urban agriculture, public transit accessibility,

and food affordability are other variables that can influence

food access (Krikser et al., 2016; Walker, 2016). We also had

difficulty combing heterogeneous datasets with different tem-

poral and spatial scales. For example, our study used obesity

data from a 2005 survey, while the census data was for 2017.

However, Marion County as a whole did not have significant

changes in obesity rates between 2005 and 2018 based on a

model simulation done by “500 Cities Project” of the Center

for Disease Control and Prevention (CDC, 2021).

Future work can expand current research by including addi-

tional variables on travel time and traffic patterns. We can

also compare optimization results with other decision sup-

port tools such as multicriteria analysis (Malczewski & Rin-

ner, 2015). A survey of urban growers could shed insight on

nuances of food access. Similarly, the demand and supply-side

analysis of urban agriculture, such as crop seasonality, could

enrich our understanding of the linkages between supply and

demand.

5 CONCLUSION

This study identified potential locations for urban agriculture

using spatial optimization. The technique incorporated crit-

ical parameters on food access and obesity as weights. We

also evaluated the optimization under three different scenar-

ios to assess the impact of weight choice on site selection.

We found that optimally selected locations were 53% more

efficient than randomly chosen locations in terms of the aver-

age travel distance based on the p-median solution. However,

there was no significant difference in average travel distance

among the three policy scenarios. The spatial locations of

garden sites differed based on the weights used in the opti-

mization.

The p-median optimization technique has an important

implication on social equity. The optimization identifies

potential garden areas so that it reduces the average travel

distance of the residents. Since the study includes obesity

and accessibility as the weights, the model locates sites closer

to neighborhoods with high obesity and high inaccessibility.

The strategic and systematic approach to site selection can
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improve social outcomes by improving food accessibility and

potentially altering air quality through reduced travel miles.

We developed a methodology that incorporates biophysical

and social parameters, including stakeholders’ critical feed-

back for sustainable planning. A systematic process to strate-

gically locate urban agriculture using spatial techniques such

as spatial optimization can help address food inaccessibil-

ity, obesity, and property vacancy. However, we acknowledge

that site selection alone will not help address food access

and obesity challenges. A comprehensive program that pro-

motes nutrition education (Rose, 2010), economic revital-

ization (Bitler & Haider, 2011), and collective civic actions

(Pourias et al., 2016; Svendsen et al., 2016) are promising

strategies to address obesity and food accessibility.
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