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Regenerative tissue filler 
for breast conserving surgery 
and other soft tissue restoration 
and reconstruction needs
Theodore J. Puls1, Carla S. Fisher2, Abigail Cox3, Jeannie M. Plantenga4, Emma L. McBride5,6, 
Jennifer L. Anderson5, Craig J. Goergen5, Melissa Bible5, Tracy Moller5 & 
Sherry L. Voytik‑Harbin5,7*

Complete removal of cancerous tissue and preservation of breast cosmesis with a single breast 
conserving surgery (BCS) is essential for surgeons. New and better options would allow them to 
more consistently achieve this goal and expand the number of women that receive this preferred 
therapy, while minimizing the need for re-excision and revision procedures or more aggressive 
surgical approaches (i.e., mastectomy). We have developed and evaluated a regenerative tissue filler 
that is applied as a liquid to defects during BCS prior to transitioning to a fibrillar collagen scaffold 
with soft tissue consistency. Using a porcine simulated BCS model, the collagen filler was shown 
to induce a regenerative healing response, characterized by rapid cellularization, vascularization, 
and progressive breast tissue neogenesis, including adipose tissue and mammary glands and ducts. 
Unlike conventional biomaterials, no foreign body response or inflammatory-mediated “active” 
biodegradation was observed. The collagen filler also did not compromise simulated surgical 
re-excision, radiography, or ultrasonography procedures, features that are important for clinical 
translation. When post-BCS radiation was applied, the collagen filler and its associated tissue response 
were largely similar to non-irradiated conditions; however, as expected, healing was modestly 
slower. This in situ scaffold-forming collagen is easy to apply, conforms to patient-specific defects, 
and regenerates complex soft tissues in the absence of inflammation. It has significant translational 
potential as the first regenerative tissue filler for BCS as well as other soft tissue restoration and 
reconstruction needs.

Breast cancer is the most commonly diagnosed cancer in women, with over 2 million new cases every year world-
wide and approximately 330,000 per year in the United States alone1,2. It is estimated that 60–70% of cases per 
year (~ 1.3 million globally) are treated with breast conserving surgery (BCS; otherwise known as lumpectomy). 
BCS involves removal of the tumor along with a cancer-free margin of healthy tissue (negative margins), prefer-
ably through a small, cosmetically placed incision. BCS with adjunct radiation is preferred over mastectomy 
(i.e., removal of the whole breast) for eligible patients, because it yields equivalent survival while preserving 
patients’ breasts and reducing surgery time, recovery time, and complications3–5. Since 5- and 10-year survival 
rates for women with breast cancer are relatively high, greater than 90%2, long-term outcomes and survivorship 
are especially important when treating this disease. Specifically, for BCS, complete removal of cancerous tissue 
and preservation of breast shape, appearance, and consistency (i.e., pleasing breast cosmesis) in a single surgery 
are paramount to achieving satisfactory outcomes and patient quality of life.

According to the American Society of Breast Surgeons, standard guidelines for BCS involve “closing the 
surgical defect in layers as cosmetically as possible” following resection of the tumor6. Healing of the complex 
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surgical wound follows, initially with a seroma or hematoma forming in the defect, followed by scar formation 
and contraction. For surgeons, it is extremely challenging, if not impossible, to predict the cosmetic outcome of 
BCS, especially given significant patient variation in breast tumor size, shape, and location, and the unpredictable 
nature of the tissue repair process, which is compounded by the effects of adjunct radiation therapy. Because 
of this, there remains a relatively high level of BCS-related breast deformities, with approximately one-third of 
women developing dents, distortions, and asymmetry between breasts7,8. Such outcomes are known to negatively 
impact the self-esteem, body image, and intimacy of breast cancer survivors, contributing to overall feelings of 
insecurity, anxiety, and depression9,10. Furthermore, the need for secondary surgical procedures, which increases 
healthcare costs, remains high for BCS, with estimates ranging from 20 to 40%11,12. This includes re-excisions 
due to positive margins as well as revision and reconstruction procedures to repair breast deformities. Due to 
these concerns, BCS may not be an ideal option for all women, especially those with tumors that are large in 
comparison to breast size (> 5 cm in diameter; tumor:breast volume percent greater than 1.5%) or positioned 
within the lower quadrants of the breast13–15. Therefore, breast surgeons are in need of new options to further 
optimize oncologic and cosmetic outcomes of BCS, enabling them to confidently offer this conservative therapy 
to more patients with satisfying outcomes.

At present, there are no commercial products that allow surgeons to predictably restore, reconstruct, or 
regenerate soft tissues, such as the breast. Furthermore, it is apparent that breast surgeons are actively look-
ing for solutions to this problem. For example, BioZorb represents a relatively new, three-dimensional, spiral-
shaped tumor bed marker intended to mark the surgical cavity for targeted post-operative radiation. However, 
breast surgeons have used this bioresorbable device with hopes that it would also assist in filling the tissue void 
and improving cosmetic results. Published clinical studies indicate that both surgeons and patients have been 
uniformly dissatisfied with BioZorb since this implant is relatively expensive, does not significantly improve 
outcomes, and gives rise to a hard, palpable lump that lasts for up to 2.8 years and causes patient discomfort16,17.

On the other hand, there are two surgical reconstruction options which aim to improve BCS cosmetic out-
comes, namely autologous fat grafting (also known as lipofilling or fat transfer) and oncoplastic surgery18,19. 
Fat grafting involves harvesting fat (adipose tissue) via liposuction from one area of the patient’s body and re-
injecting minimally processed fat cells into another region. Originally fat grafting was used for delayed breast 
reconstruction procedures, but more recently it has been investigated for use immediately following BCS. While 
this approach has seen some success, persistent challenges remain, including rapid reabsorption leading to sig-
nificant volume loss (ranging from 25 to 80%), fat necrosis, oil cyst formation, micro-calcifications, and questions 
around oncologic safety (i.e., cancer recurrence)20–23. As an alternative approach, oncoplastic surgery combines 
the skills of surgical oncology with the techniques of plastic surgery to reconstruct one or both breasts at the 
time of lumpectomy. Oncoplastic procedures include both volume displacement (rearrangement of remaining 
healthy breast tissue) and volume replacement (reconstruction with various autologous tissue flaps) techniques. 
While oncoplastic surgery offers the advantage of using the patient’s own tissue, this approach is limited by need 
for specialized training, involvement of multiple surgeons, longer surgical procedures, and increased cost18,24.

In the present study, we aimed to develop and evaluate a soft tissue filler that would (1) predictably restore and 
regenerate damaged tissue and tissue voids, (2) be easily applied, (3) conform to patient-specific defects varying 
broadly in size and geometry, and (4) not interfere or compromise routine clinical processes and procedures. 
In particular, type I oligomeric collagen (oligomer), a highly-purified molecular form of collagen that is readily 
soluble in dilute acid25,26, represents a tunable, in situ forming biomaterial with potential to address many of these 
design considerations. Unlike conventional monomeric collagen preparations, namely telocollagen and atelocol-
lagen, oligomer represents small aggregates of full-length triple-helical collagen molecules (i.e., tropocollagen) 
with carboxy- and amino-terminal telopeptide intact, held together by a naturally-occurring intermolecular 
crosslink. The preservation of these key molecular features provides this natural polymer with desirable but 
uncommon properties. More specifically, oligomer retains its fibril-forming (self-assembly) capacity, which is 
inherent to fibrillar collagen proteins and yields scaffolds which recreate the structural and biological signaling 
features of collagen scaffolds found in the extracellular matrix (ECM) component of tissues25,26. Further, upon 
neutralization to physiologic conditions (e.g., pH and ionic strength), oligomer solutions can be readily applied 
to fill complex contours and geometries, where the liquid rapidly transitions to a fibrillar collagen scaffold27–29. 
Upon in vivo implantation, these scaffolds persist, showing slow metabolic turnover and remodeling, resistance 
to proteolytic degradation, and no active biodegradation or foreign body response27–33. Finally, oligomer sup-
ports creation of materials with broadly tunable physical properties, including geometry, architecture (random 
or aligned fibrils, continuous fibril density gradients), and mechanical integrity30,31,33–37, making it an enabling 
platform for personalized regenerative medicine.

Here, we evaluated prototype oligomer formulations specifically designed to serve as a regenerative filler for 
damaged or defective soft tissues, such as the tissue void created by BCS. First, prototype in situ forming collagen 
scaffolds were characterized based on molecular purity, polymerization (self-assembly) time, and viscoelastic 
properties. To evaluate biocompatibility and effectiveness of these scaffolds, simulated lumpectomy procedures 
were performed on the breasts (mammary glands) of pigs. Prototype formulations were used to fill a subset of 
lumpectomy voids, and surgical outcomes were compared to untreated defects (no fill; negative control) and 
normal breasts on which no surgery was performed (positive controls). To define the tissue response timeline 
and gain insight into oligomer mechanism of action, a 16-week longitudinal study was performed. Additionally, a 
second study was conducted to assess how the collagen scaffold and its associated tissue response was affected by 
post-operative irradiation. Outcome measures included semi-quantitative visual and palpation-based examina-
tion, ultrasonography, radiography, and gross and histological analyses. Combined, these data provide preclinical 
support for the use of this regenerative tissue filler during breast conserving surgery.
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Results
Liquid collagen conforms to geometry and transitions to stable, fibrillar scaffold with proper‑
ties similar to soft tissues.  Prototype scaffold-forming collagen formulations were obtained as kits from 
GeniPhys (Zionsville, Indiana). As shown in Fig. 1a, the kit consisted of a syringe containing sterile type I oligo-
meric collagen in dilute acid (0.01 N hydrochloric acid), a syringe containing a sterile proprietary neutralization 
solution, a sterile luer-lock adapter, and a sterile applicator tip. Immediately prior to use, the two syringes were 
joined with the luer-lock adapter (Fig. 1b) and the collagen and neutralization reagent mixed at a ratio of 9 to 1, 
bringing the collagen solution to physiologic pH and ionic strength. After mixing, the viscous liquid could be 
injected into various geometries, where it conformed to the shape prior to transitioning into a physically-stable, 
fibrillar collagen scaffold (Fig. 1b, Supplementary Video S1). To demonstrate collagen purity, sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS–PAGE) was performed using 4–20% and 6% gels. Gels revealed 
a banding pattern characteristic of oligomeric collagen25 with no detectable contaminating non-collagenous 
proteins or other types of collagens (Fig. 1c, Supplementary Fig. S1). Other functional performance parameters, 
including polymerization time and viscoelastic properties of formed collagen scaffolds, were measured, with a 
summary provided in Fig. 1d. Specifically, the concentration of oligomer prior to neutralization was roughly 
7.7 mg/mL. Upon neutralization, the scaffold-forming reaction took, on average, just under 1 min, as measured 
rheometrically at 37 °C. When analyzed in oscillatory shear and unconfined compression, the formed scaffold 
exhibited solid-like behavior with shear storage (G′) and loss (G″) moduli of 3.16 ± 0.16 kPa and 0.40 ± 0.02 kPa, 
respectively, and a compressive modulus of 7.67 ± 0.42 kPa. Although scaffold properties are tunable across a 
broad range of elastic modulus and strength values, the formulations tested here were designed to exhibit vis-
coelastic properties similar to soft tissues.

Collagen scaffold maintains volume; induces vascularization and breast tissue regeneration 
with no inflammation.  To evaluate the effectiveness of the scaffold-forming collagen as a regenerative 
filler for soft tissue defects, a longitudinal study was performed involving simulated lumpectomy procedures 
on breasts of normal, healthy Yucatan mini-pigs (Fig. 2). Female mini-pigs represent the preferred large ani-
mal model for such translational studies based on their size and anatomical and physiological similarities to 

Figure 1.   Purified liquid collagen forms viscoelastic fibrillar scaffold with soft tissue-like properties. (a) Kit 
consisting of syringe containing sterile type I oligomeric collagen solution, a syringe of propriety neutralization 
(self-assembly) buffer, a luer-lock adapter, and applicator tip. (b) Images showing mixing of two reagents 
followed by injection into a plastic mold maintained at body temperature (37 °C), where the liquid transitions 
into a stable, shape-retaining fibrillar collagen scaffold. (c) SDS–PAGE (4–20% and 6% gels) documenting purity 
and characteristic banding pattern of type I oligomeric collagen. Images represent full length gels and show all 
relevant lanes. Lane 1: molecular weight standard. Lane 2: type I oligomeric collagen. Uncropped images of the 
full gel length are shown in Supplementary Figure S1. (d) Table summarizing collagen polymerization kinetics 
and performance specifications (mean ± SD; N = 4, n = 6–8) of prototype collagen scaffold.
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humans38. Additionally, pigs generally have twelve mammary glands (breasts), which reduced the total number 
of animals required for the studies since each breast could serve as an experimental or control group. Roughly one 
quarter of breast tissue volume was excised (Fig. 2e), which ranged from 2 to 5.5 mL of tissue (average ~ 3 mL) 
depending upon individual breast size (Fig. 2a). For collagen-treated breasts, the liquid collagen was mixed and 
immediately injected into the tissue void, where it conformed to the complex geometry prior to transitioning to 
a fibrillar collagen scaffold in less than 5 min under these circumstances (Fig. 2b–d). The breast surgeon used 
her discretion when filling each defect, with applied collagen volumes varying with defect size and geometry. 
Surgical voids were filled with at least the same volume of collagen as tissue removed, with the majority receiv-
ing 1–2 mL more collagen volume. Negative control sites were left untreated (no fill), which is consistent with 
standard-of-care BCS procedures. All incisions were closed using resorbable sutures and bandaged (Fig. 2f). All 
animals maintained weight (± 5 kg), surgical sites remained closed, and no procedural complications occurred 
throughout the duration of the study (Fig. 2g).

Consistent with what is observed amongst women and men, pig breasts were found to vary in volume, consist-
ency, and composition both within and between individual animals. At the microscopic level (Supplementary 
Fig. S2), mammary glands consisted of multiple lobes, composed of smaller secretory lobules organized as 
clusters and a system of ducts (channels) that eventually exited the skin via the nipple. The lobules and ducts 
were supported by an intralobular stroma, composed predominantly of fibrous type I collagen. Additionally, 
collagenous connective tissue was found between lobes (interlobular stroma), providing support to the breast 
and determining its shape. Adipose tissue, which primarily determines breast size, filled the space between the 
glandular and fibrous connective tissue. When evaluated in unconfined compression, breasts located cranially 
(toward the head) were relatively stiff, with an average compression modulus of 19.0 ± 12.9 kPa. Progressing 

Figure 2.   Overview of simulated lumpectomy procedure. (a) Table summarizing surgically excised mammary 
tissue volume, which represented roughly one-fourth total breast tissue volume. Data (mean ± SD) compiled 
from both longitudinal and radiation studies (1 week: collagen filler: n = 12, no fill = 6; 4 weeks: collagen filler: 
n = 18, no fill: n = 9; 16 weeks: collagen filler: n = 18, no fill: n = 9). Surgical void (b) before and (c) after filling 
with collagen. (d) Application of scaffold-forming collagen. (e) Excised mammary tissue. Surgical sites (f) 
immediately following surgery showing bandaging and (g) 16 weeks following simulated lumpectomy with 
irradiation.
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caudally (toward the tail), breasts increased in fat composition and were softer, with an average compression 
modulus of 6.56 ± 2.51 kPa for the most caudal breasts.

To assess biocompatibility and tissue response of the collagen filler, animals were anesthetized at designated 
time points of 1, 4, and 16 weeks. All breasts were examined visually, palpated, and semi-quantitatively scored 
in a blinded fashion according to criteria in Supplementary Fig. S3. Collagen-treated and no fill control breasts 
showed no evidence of erythema (redness) or eschar (sloughing, dead tissue) at any time point. Mild edema was 
evident at 1 week in breasts on which surgery was performed; however, the extent of swelling was similar for both 
collagen and no fill groups and subsided shortly thereafter. Uniformity/consistency scores for collagen-treated 
breasts were similar to no fill controls at all three time points, decreasing from roughly 1.2 at 1 week to 0.25 
by 16 weeks (Fig. 3a). Such findings are important because they indicate that the collagen filler does not create 
breast inconsistencies that could be interpreted clinically as residual disease or a source of patient discomfort. 
All normal breasts received a score of zero. Additionally, when the breast surgeon performed simulated surgical 
re-excision on collagen-treated breasts, the fill material did not compromise or interfere with the procedure.

Biocompatibility and tissue response of the collagen filler were further defined based on gross and histological 
examination of transverse sections of breast explants, with comparisons to no fill and normal breast controls. 
From these analyses, it was apparent that the collagen filler maintained its volume (minimized defect contrac-
tion), was highly biocompatible, and exhibited a regenerative tissue response in absence of an inflammatory 
reaction or foreign body response. As cells infiltrated the scaffold and new breast tissue was generated, it took 
on a tissue-like appearance that was difficult to discern grossly from surrounding normal tissue (Fig. 3b). In 
this case, the surgical clips were useful as markers of the original defect margins (Figs. 3b, 4). Upon histological 
analysis at 1 week, the collagen filler was evident within the tissue void, where it appeared as a homogenous, light 
pink (eosinophilic) staining material (Fig. 4a). Often surrounding the filler was a band of hemorrhage, fibrin, 
and a few leukocytes, which was attributable to the surgical manipulation of the tissue (Fig. 4a). At the filler-
host tissue interface, there were focally extensive areas of proliferating fibroblasts (mesenchymal cells) with few 
small-caliber vessels infiltrating the scaffold edges. The surrounding breast tissue appeared largely normal, with 
remodeling areas adjacent to the surgical site. These regions contained aggregates of remodeling epithelial cells, 
some of which appeared to be ductules while others were more irregularly shaped, suggestive of rudimentary 
lobules (Fig. 4a). It is noteworthy that there was no evidence of an inflammatory-mediated foreign body reac-
tion or active biodegradation that is characteristic of conventional implantable materials39. At the 4-week time 
point, fibroblasts, along with newly formed vasculature, extended into deeper portions of the collagen filler, 
with infiltrating cells most abundant at the periphery and dwindling further into the center (Fig. 4a). Multifocal 
aggregates of epithelial cells were observed, which were again consistent with precursors of glandular structures 
(Fig. 4a). By 16 weeks, the scaffold was completely cellularized, appearing as mature, remodeled collagen fibers 
and bundles, with some sites displaying small discernible regions of acellular eosinophilic filler material. Small 
caliber vessels were present diffusely and evenly distributed throughout the scaffold (Fig. 4a). Within the vas-
cularized collagen scaffold, adipose tissue and cytokeratin-positive lobules and ducts were present, especially at 

Figure 3.   Collagen filler persists and induces site-appropriate tissue regeneration. (a) Graph showing breast 
uniformity/consistency scores (mean ± SD; collagen: n = 12; no fill: n = 6) assigned by breast surgeon for 
collagen and no fill (negative control) treated voids at various time points following simulated lumpectomy. 
All no surgery breasts scored 0. (b) Cross-sections of surgical voids following treatment with collagen or no fill 
compared to normal breast tissue. Arrows represent surgical clips placed to mark boundaries of surgical void.
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the periphery (Fig. 4a, Supplementary Fig. S4). The glandular morphology was well developed and mature with 
no remarkable pathology.

By contrast, at 1 week, hematoma formation was evident upon both gross and histological evaluation of no fill 
breast explants (Figs. 3b, 4b). Hemorrhage, fibrin clot, and leukocytes were evident within the lumpectomy site. 
Intermixed within areas of hemorrhage were proliferating fibroblasts with few small caliber vessels, consistent 
with fibrovascular tissue associated with reparative wound healing. Scattered necrotic regions with active inflam-
mation were also apparent surrounding the defect area. By 4 weeks, these tissue defects contracted as evidenced 
by significant clip displacement grossly and a star-like, constricted appearance histologically (Fig. 4b). Fibrovas-
cular scar tissue was prominent within the defect area, with multiple, small regions of necrosis and inflamma-
tion noted throughout and near the defect border (Fig. 4b). Active remodeling of glandular and adipose tissue 
was observed in tissue regions surrounding the defect (Fig. 4b). By 16 weeks, the fibrous scar tissue increased 
in density, appearing as differentially oriented swirls of parallel-aligned fibrous tissue densely populated by 
myofibroblasts. While lobules, ducts, and adipose tissue were identified surrounding the defect, multiple glands 
with poorly developed morphological features were found within the scar tissue periphery, as evidenced by the 
presence of inflammatory cells and low-level, diffuse cytokeratin staining. (Fig. 4b, Supplementary Fig. S4).

Collagen scaffold does not compromise interpretation of sonograms and radiographs.  Mam-
mography and ultrasonography are routinely used as follow-up diagnostic procedures to BCS to monitor for 
cancer recurrence. To ensure that the collagen filler did not compromise or interfere with image interpretation, 
ultrasound was performed on all pig breasts prior to euthanasia and radiographs were taken of each individual 
whole breast following mastectomy. Sonograms obtained over the 16-week study showed that the collagen scaf-
fold did not obscure or prevent interrogation of breast tissue and did not produce any regions of unexpected 
echogenicity (Fig. 5a). At 1 week, a large, irregularly-shaped hypoechoic region was observed within collagen-
treated breasts containing varying degrees of heterogeneous echoes (Fig.  5a). Such signals were not surpris-
ing given that the filler microstructure represents a randomly-oriented meshwork of collagen fibrils measuring 
roughly 400 μm in diameter25. While these regions appeared to maintain their volume over time, they gradually 
took on the appearance of normal tissue, which corroborated the cellularization and vascularization observed 
within gross explants and histologically (Fig. 5a). No fill treated voids also showed an irregular-shaped hypo-
echoic region consistent with seroma and hemorrhage at 1 week (Fig. 5a). By 4- and 16-week time points, these 
regions diminished in size, producing a heterogeneous signal consistent with contraction and scar formation 
(Fig. 5a).

The collagen scaffold also did not interfere with radiograph interpretation, but rather displayed an opacity 
consistent with normal tissue throughout the duration of the study (Fig. 5b). Additionally, radiographs provided 
further evidence that the collagen scaffold maintained the void volume with limited clip displacement over time 
(Fig. 5b). The majority of untreated (no fill) surgical voids also produced radiographs that appeared consistent 
with normal tissue at 1 week, with a small number of sites displaying obvious darkened regions consistent with 
an air pocket, seroma, or hematoma (Fig. 5b). The progressive displacement of surgical clips observed at 4- and 
16-week time points provided further evidence of defect contraction and scarring over time (Fig. 5b).

Irradiation does not adversely affect collagen filler or regenerative response.  To determine if 
the collagen filler was compatible with radiation therapy, a cohort of animals was subjected to ventral irradiation 
two weeks following the simulated lumpectomy procedure, with each animal receiving a total dose of 20 Gy over 
5 consecutive days. Irradiated animals displayed an increase in skin pigmentation over time as evidenced by a 
darkening of skin color (Fig. 2g), which would be expected in humans undergoing therapeutic irradiation as 
well. At the microscopic level, moderate hyperplasia or thickening of the epidermis was evident with increased 
melanin deposition especially within the basal epidermis (Supplementary Fig. S2). At 16 weeks, breast tissue was 
noticeably stiffer, again a common change observed with radiation therapy40. Additionally, signs of fat necrosis 
and atypical hyperplasia of ducts and glands were evident (Supplementary Fig. S2)41.

With the exception of differences in skin pigmentation, all breasts and surgical sites healed well, appearing 
similar to those of non-irradiated animals. Average breast uniformity/consistency scores for collagen-treated and 
no fill groups were somewhat higher in irradiated versus non-irradiated animals at the respective time points, 
with the only exception being the 16-week collagen-treated group, where scores were similar (Figs. 6a, 3a). 
Examination of gross explants and histological cross-sections revealed no obvious adverse effect of irradiation 
on the collagen scaffold or its associated tissue response; however, subjectively, the overall healing timeline of 
irradiated sites appeared modestly delayed (Fig. 6b,c). Over the 16-week study period, the collagen filler persisted 
within the surgical site, inducing progressive cellularization, vascularization, and breast tissue regeneration, 
which proceeded inward from the filler-host tissue interface. As expected, the no fill group showed contraction 
and the development of fibrous scar tissue (Fig. 6b,d). Sonograms (Fig. 7a) and radiographs (Fig. 7b) were largely 
similar for irradiated and non-irradiated animals, again confirming that the collagen filler was not negatively 
affected by irradiation and did not produce any suspicious imaging anomalies.

Discussion
Identifying a therapeutic approach that more predictably and consistently preserves breast shape and appearance 
following BCS would bring more confidence to both surgeons and patients when selecting conservative therapy 
such as BCS. Additionally, it would assist in maintaining the quality of life and emotional well-being of millions 
of breast cancer survivors each year worldwide. Such an approach would also benefit other patient populations 
in need of soft tissue restoration or reconstruction, including children with congenital defects, individuals suf-
fering from traumatic injuries, and cancer patients requiring resection of tumors within tissues other than breast 
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Figure 4.   Collagen filler supports breast tissue neogenesis without evoking an inflammatory response. (a) Cross-sections (H&E) 
of collagen filled voids at 1 week, 4 weeks, and 16 weeks following simulated lumpectomy. Low magnification images show treated 
voids and their interface with the surrounding host tissue (large arrows indicate surgical clip sites). High magnification images feature 
the central region of the collagen filler and the filler/host tissue interface. Cellular infiltration, vascularization, and site-appropriate 
tissue generation of the scaffold occur over time. By 16 weeks, the collagen is completely cellularized and vascularized (small arrows 
indicated blood vessels) with evidence of regenerated mammary gland (RG) and adipose tissue (RF). Onc: oligomer scaffold with no 
cell infiltration, Oc: oligomer scaffold with cellular infiltrate. (b) Cross-sections (H&E) of untreated (no fill) surgical voids at 1 week, 
4 weeks, and 16 weeks following simulated lumpectomy. Low magnification images show voids and the surrounding host tissue. High 
magnification images feature the central region of the voids and the void/host tissue interface. Hematomas (H) were commonplace at 
1 week, followed by progressive defect contraction and scar tissue formation (S).
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Figure 5.   Collagen filler does not interfere with radiography or ultrasonography. Representative (a) ultrasound 
images and (b) radiographs of surgical voids treated with collagen or no fill compared to normal breast tissue 
at 1-week, 4-week, and 16-week time points. Radiopaque marker clips evident within radiographs indicate 
boundaries of surgical void and show evidence of contraction for no fill voids.
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(e.g., skin, muscle). The mammary glands of miniature swine have been routinely used to evaluate innovative 
strategies to improve outcomes of breast surgical procedures42,43. Here, by performing simulated lumpectomy 
procedures on female mini-pigs, we show that an in situ forming scaffold formulated from type I oligomeric 
collagen addresses a number of surgeon and patient needs, with the potential to translate as the first regenerative 
soft tissue filler. More specifically, our findings show that this specially formulated collagen is easy to use and can 
be readily applied as part of a surgical procedure (e.g., tumor excision) without disrupting normal workflow. Its 
liquid format readily fills and conforms to patient-specific defect geometries and contours and is amenable to 
minimally invasive procedures27–29. Once injected into the site, oligomer rapidly transitions to a physically-stable 
fibrillar collagen scaffold that persists and maintains its volume. As a natural and unmodified fibrillar collagen 
scaffold, it restores critical biochemical and biomechanical signaling to cells, inducing site-appropriate regenera-
tion of complex tissue compositions, including those found in the breast, in absence of an inflammatory reaction 
or foreign body response. Finally, we show that the material is compatible with a number of standard clinical 
procedures, including irradiation, radiography, ultrasonography, and surgical re-excision.

The collagen filler described here is fundamentally different from conventional flowable and injectable col-
lagen products that are or have previously been used for soft tissue augmentation (e.g., cosmetic procedures), 
management of skin wounds (e.g., ulcers), and tissue bulking (e.g., urinary incontinence). Such products, which 
include Zyderm, Zyplast, Integra Flowable, and Contigen, are fashioned from reconstituted, enzymatically-treated 
collagen (atelocollagen) or granulated tissue particulate derived from bovine, porcine, or human tissue sources. 
To make these materials injectable, the insoluble fibrous collagen or tissue particulate is suspended in physiologic 
saline solutions to create dispersions or suspensions. All of these implantable collagens are temporary and exhibit 
rapid biodegradation (reabsorption; 1–6 months), where they are actively degraded via inflammatory-mediated 
processes, including phagocytosis by macrophages/giant cells and proteolytic degradation by secreted matrix 
metalloproteinases44. To slow degradation and improve persistence, many of these products are treated with 
glutaraldehyde or other exogenous crosslinking processes45.

By contrast, oligomer represents a molecular subdomain found within natural tissue collagen fibers (e.g., 
porcine dermis), which can be extracted and purified so that it is free from cellular and other immunogenic 
tissue components. The type I collagen protein and crosslink chemistry comprising this subdomain are highly 
conserved across species46, documenting the significance of this major structural element within the body. Physi-
ologic conditions induce fibril formation, where oligomer molecules assemble into staggered arrays, giving rise 
to interconnected networks or scaffolds of fibrils25,26,36. Published studies show that formed scaffolds are largely 
similar to those found naturally within the extracellular matrix, comprising fibrils with regular D-banding pat-
terns that readily engage in biosignaling36. The natural crosslink chemistry present in oligomer, but not found in 
polymerizable monomeric collagens, is the primary contributor to the rapid scaffold-forming reaction as well as 
the improved mechanical integrity, slow metabolic turnover, and resistance to proteolytic degradation exhibited 
by oligomer scaffolds25,26,36. Collectively, these distinguishing features contribute to the uncommon mechanism 
of action and regenerative tissue response displayed by oligomer scaffolds when compared to conventional 
biodegradable collagen materials.

The ability to restore and regenerate tissue that is diseased, damaged, or dysfunctional has been one of the 
greatest challenges in medicine. In fact, researchers have been working to identify biomaterials and/or anti-
inflammatory agents with the goal of achieving a more desirable healing outcome (i.e., regeneration) or bioma-
terial/device implant response47–50. For the breast, this challenge is particularly difficult, since it is comprised 
of multiple tissue types with distinct functions, including secretory (i.e., milk-producing) glands and ducts, 
supportive collagenous connective tissue, and volume-filling adipose tissue. At present, tissue engineering and 
regenerative medicine strategies for soft tissue and breast reconstruction remain in their infancy, with only a few 
strategies evaluated in large animal models to date (for reviews see49–51). The majority of approaches have focused 
on engineering adipose tissue from biologic or synthetic scaffolds, incorporating lipofilling, patient-derived cell 
populations, and growth factors to encourage adipogenesis and vascularization. For example, Santerre and co-
workers developed a porous, biodegradable breast filler from polycarbonate-urethane for BCS applications. In a 
recent study, scaffold pellets designed with breast-like mechanical properties were used to fill lumpectomy cavities 
in mini-pigs. These scaffolds showed evidence of primarily an inflammatory cell infiltrate at 6 weeks, with 20–40% 
scaffold degradation and limited breast tissue regeneration at 9 months52. As an alternative approach, Hutmacher 
and co-workers are applying additive manufacturing techniques to create patient-specific polycaprolactone scaf-
folds for breast reconstruction. To improve adipose tissue generation, these scaffolds are implanted within the 
subglandular space of mini-pigs and allowed to accumulate fibrovascular tissue 2 weeks prior to injection of a 
lipoaspirate43. A major drawback to both of these synthetic scaffold approaches is the inability of the materials 
to signal cells, resulting in foreign body responses and slow cellularization and vascularization51.

In this study, porcine breasts varied in size and tissue composition, giving rise to consistency differences that 
were apparent both qualitatively and quantitatively. The measured compressive modulus range (approximately 
6–19 kPa) encompassed breast consistencies observed in women, which reportedly ranges from 0.7 to 66 kPa 
depending on breast composition (e.g., fibroglandular versus fatty) and testing parameters (e.g., strain rate, 
preconditioning)53,54. The healing response of untreated breast defects was similar to that observed in women 
following BCS, yielding scar tissue that was structurally and functionally distinct from normal breast tissue. The 
16-week longitudinal study showed progression through the classic overlapping phases of reparative wound 
healing that results in scarring, including hemostasis and inflammation, proliferation, and remodeling as shown 
in Fig. 8a. Substantial contraction of the defect, as evidenced by clip displacement and star-like scar tissue mor-
phology, was facilitated by the initial fibrin clot and provisional matrix which are mechanically weak compared 
to normal breast ECM. The process of scar formation and remodeling over time is perhaps the most unpredict-
able and troubling aspect of BCS, since it is known to contribute to pain, distortions in the breast contour and 
consistency, and loss of sensation, all of which negatively affect women emotionally and psychologically55.
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Filling the defect volume with a long-lasting fibrillar collagen, that is naturally metabolized and remodeled 
rather than actively degraded, resulted in a healing response where immune mediators were largely absent, and 
the outcome was more regenerative rather than reparative. Based on these results, the proposed regenerative 
healing response for the collagen filler is depicted in Fig. 8b. Since the injectable scaffold filled and conformed 
to defects and effectively integrated with surrounding host tissue, it re-established a structural and mechanical 
continuum across the tissue, which is known to be important to scar-free healing and tissue morphogenesis56,57. 
Notably, the compression modulus (7.67 ± 0.42 kPa) of the collagen filler fell within the range of both pig and 
human breast mechanical properties. The dense microstructure and compression properties of the collagen 
filler effectively resisted contraction forces exerted by the surrounding normal tissue as well as infiltrating cells. 
Additionally, since scaffold mechanical properties were similar to soft tissues, they did not yield any concerning 
palpable breast inconsistencies. From a translational perspective, this is important for patient satisfaction and 
comfort, as well as for maintaining the ability to detect recurrent cancer through palpation.

Because collagen fibrils contain multiple functional cellular and molecular binding domains58, the scaffold 
could effectively participate in both biochemical and mechanochemical signaling, as is performed by tissue 
ECMs. Unlike conventional implantable materials, the scaffold was initially populated by fibroblast-like mesen-
chymal cells, along with vessel-forming cells, rather than inflammatory mediators. The rapid and robust neovas-
cularization response was consistent with other in vivo studies where oligomer has been implanted into other 
microenvironments27,29–33 and used for in vitro investigations of underlying mechanisms of vessel formation26,35,59. 
As these front-line cells progressed deeper toward the scaffold center with time, tissue neogenesis followed, with 
formation of adipose tissue and mammary glands, including secretory lobules and ducts. Interestingly, newly 
formed lobules, which were especially apparent at 4- and 16-week time points, were reminiscent of those found 
in nulliparous (pre-pregnancy) breasts since they were largely lacking in macrophage infiltration60. Collectively, 
the regenerative tissue response observed with the collagen fill has many similarities to processes associated with 
tissue development and morphogenesis, including mammary glands61, highlighting the importance of maintain-
ing stromal collagen and its associated mechanobiological continuum.

As part of this study, we also documented that the collagen filler was not negatively impacted by radiation 
therapy and did not compromise interpretation of diagnostic imaging procedures. In the present study, irra-
diation was applied 2 weeks following simulated lumpectomy, which is within the range of adjuvant radiation 
administration following BCS. Tumors and tissues with rapid cell turnover, such as the epidermal layer of the 
skin, are most sensitive to irradiation effects, with the extent of damage depending on the total radiation dose and 
time over which the radiation is delivered62. Irradiation resulted in hyperpigmentation of skin, an expected side 
effect that is analogous to sunburn or tanning responses displayed in humans, as well as moderate levels of fat 
necrosis and hyperplasia of glands and ducts. For both collagen and no fill treated groups, the healing progressed 
similarly to respective non-irradiated groups; however, the healing rate appeared modestly slower based on breast 
consistency scores and histopathological analysis. Such results were not surprising since irradiation is known to 
cause delays in wound healing63. Based on combined histopathology, x-ray and ultrasound analyses, the collagen 
filler and its associated signaling capacity were determined to be largely unaffected by irradiation. Radiographs 
and ultrasonograms also indicated that the collagen fill yielded no suspicious artifacts. This has been a major 
drawback with fat grafting, where a wide spectrum of alterations in breast tissue have been detected via these 
diagnostic imaging techniques, ranging from benign-looking lipid cysts to findings suspicious for malignancy 
such as micro-calcification, focal masses, and speculated areas of increased opacity64,65.

Given that this work represented an early proof-of-principle evaluation, these studies are not without limi-
tations. First, owing to breast size differences between pig and human, a quadrantectomy was performed with 
removal of roughly 25% pig breast volume. Defect volumes ranged from 2 to 5.5 mL, with an average defect 
volume of about 3 mL. While quadrantectomies are rarely, if ever, performed on women, these absolute defect 
volumes fell within the range of human clinical procedures. Specifically, published human clinical reports indi-
cate that 67% and 82% of breast tumors are ≤ 1.9 cm (≤ 3.6 mL) and ≤ 2.9 cm (≤ 12.8 mL) in diameter (volume), 
respectively66. While additional studies are needed to determine how defect size affects material performance, no 
detrimental outcomes are anticipated based on observed material mode of action. However, it is anticipated that 
time to complete cellularization and healing would vary directly with defect volume. Second, since the longest 

Figure 6.   Radiation has little to no effect on collagen filler and associated tissue response. (a) Graph showing 
breast uniformity/consistency scores (mean ± SD; collagen: n = 6; no fill: n = 3) assigned by breast surgeon for 
collagen treated and no fill (negative control) voids at various time points following simulated lumpectomy 
and radiation. All no surgery breasts scored 0. (b) Cross-sections of surgical voids following treatment with 
collagen or no fill and radiation compared to no surgery normal breast tissue. Arrows represent surgical clips 
placed to mark boundaries of surgical void. (c) Cross-sections (H&E) of collagen filled voids at 4 weeks and 
16 weeks following simulated lumpectomy with irradiation. Low magnification images show treated voids and 
their interface with the surrounding host tissue. High magnification images feature the central region of the 
collagen filler and the filler/host tissue interface. Cellular infiltration, vascularization, and site-appropriate tissue 
generation of the collagen implant occur over time, albeit at a slower rate than sites from non-irradiated animals. 
By 16 weeks, the collagen is completely cellularized and vascularized (small arrows indicated blood vessels) with 
evidence of regenerated adipose tissue (RF). Onc: oligomer scaffold with no cell infiltration, Oc: oligomer scaffold 
with cellular infiltrate. (d) Cross-sections (H&E) of untreated (no fill) surgical voids at 4 weeks and 16 weeks 
following simulated lumpectomy with radiation. Low magnification images show voids and the surrounding 
host tissue, with scar tissue (S) and a suture-related granuloma (G) evident at 4 weeks (large arrow indicates 
surgical clip site). High magnification images feature the central region of the scar tissue and the scar/host tissue 
interface.
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timepoint evaluated was 16 weeks, additional animal and human clinical studies are needed to define long-term 
(i.e., 6 months or greater) collagen filler outcomes. A third limitation of these large-animal studies was that 
pigs were cancer free. As such, the effect of collagen filler on tumor promotion and recurrence cannot be fully 
evaluated. For a number of reasons, it is not anticipated that the collagen filler would pose a risk to oncologic 
safety. First, since breast surgeons would be able to more predictably maintain breast contour and consistency, 
they would have increased confidence about excising more tissue to achieve negative margins. We also show 
that the collagen filler induces no inflammatory or foreign body response, which is especially important since 
macrophage infiltration and other processes (e.g., cytokine release) associated with inflammation have been 
implicated in tumor promotion67–69. Additionally, when tested with various cancer cell types in vitro, high fibril 
density/stiffness of oligomer scaffolds was found to limit tumor cell proliferation and migration70. Finally, to 
further combat tumor recurrence, a chemotherapeutic or other anti-cancer agents could be readily added to 
the scaffold-forming reaction to achieve targeted and localized delivery. This would dramatically decrease the 
amount of drug administered and minimize side effects associated with systemic administration.

In conclusion, our work shows that a regenerative tissue filler that forms in situ and is fashioned from a 
natural collagen polymer appears to address surgeon needs and overcome major limitations associated with 

Figure 7.   Collagen filler does not compromise interpretation of diagnostic images of breast tissue even after 
irradiation. Representative (a) ultrasound images and (b) radiographs of surgical voids treated with collagen or 
no fill and irradiation compared to normal breasts at 4-week and 16-week time points. Radiopaque marker clips 
evident within radiographs indicate boundaries of surgical void and show evidence of contraction for no fill 
voids.
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conventional implantable materials. To the best of our knowledge, this is the first report of a breast filler that 
persists, maintains its volume, and induces progressive breast tissue regeneration, including mammary glands, 
ducts, and adipose tissue. Additionally, study findings have important implications to regenerative medicine, 
suggesting that decreased inflammation and maintenance of a collagen structural and mechanical continuum 
tilts the healing balance from repair (scar formation) towards regeneration. This work sets the stage for future 
pre-clinical and clinical studies where the translation potential of this prototype regenerative tissue filler can be 
further validated for BCS and other soft tissue restoration and reconstruction needs.

Methods
Scaffold‑forming Type I Collagen.  The scaffold-forming collagen was obtained as a kit from GeniPhys 
(Zionsville, Indiana) as shown if Fig. 1a. The oligomeric collagen component of these kits was manufactured 
and quality-controlled from hides (dermis) of closed herd pigs in accordance with patented procedures and 

Figure 8.   Timelines and processes of healing responses observed in porcine simulated lumpectomy model. 
Schematics comparing and contrasting the phases and processes associated with the (a) normal reparative 
response observed with no fill and the (b) proposed regenerative response observed with the collagen filler.
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ASTM International F3089-14 guidelines for polymerizable collagens71,72. Two collagen formulations that dif-
fered by a single, proprietary manufacturing step were evaluated; however, since no difference in performance 
was observed, results were combined and presented as a single formulation. To evaluate collagen purity, sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) was performed on collagen samples and molec-
ular weight standards (Novex SeeBlue Plus2, Invitrogen, Carlsbad, CA) using 4–20% and 6% gels (Invitrogen) 
and stained with Coomassie Blue (Sigma-Aldrich, St. Louis, MO) according to established methods25. Collagen 
concentration was determined using a Sirius Red (Direct Red 80, Sigma-Aldrich) assay. Time-dependent oscil-
latory shear rheometry was performed to determine self-assembly kinetics and shear storage (G′) and loss (G″) 
moduli. Briefly, neutralized oligomeric collagen samples were tested on an AR2000 rheometer (TA Instruments, 
New Castle, DE), with a 40-mm parallel plate geometry and solvent trap. Prior to sample loading and during 
the first 2 min of testing, the Peltier plate was maintained at 4 °C. Oscillatory shear measurements were taken 
at 1% strain for this initial 2 min and continued for 10 min after the temperature was increased to 37 °C. Fol-
lowing oscillatory shear testing, the sample was subjected to unconfined compression testing at a strain rate of 
20 µm/s. To define the kinetics of scaffold formation, a plot of shear storage modulus over time was created, and 
the time at which the collagen reached its maximum stiffness (G′) was defined as the polymerization time. This 
point was also used to define scaffold G′ and G″ values. To obtain the compression modulus, stress–strain curves 
were created from the unconfined compression data and the slope was calculated in a specified low strain region 
(20–40% strain), corresponding to the low stress/strain moduli that are reported in literature for human breast 
tissue54,73. Four independent batches of prototype collagens were tested with 6–8 replicates per batch (N = 4 
batches; n = 6–8 replicates per batch).

Porcine simulated lumpectomy model.  Simulated lumpectomies were performed on female Yucatan 
mini-pigs (retired breeders) weighing between 45 and 65 kg using a protocol that was approved by the Purdue 
Animal Care and Use Committee. All handling and care of animals was performed in accordance with relevant 
NIH and AAALAC guidelines. Prior to surgery, all of the breasts of an individual pig (12 breasts per pig) were 
randomly assigned to experimental (6 breasts per pig) and control groups, with no fill (3 breasts per pig) and 
no surgery (3 breasts per pig) serving as negative and positive controls, respectively. Animals were anesthetized, 
intubated, and placed in dorsal recumbency. For each simulated lumpectomy, a 3-cm skin incision was made 
using a scalpel, with incisions oriented transversely and placed immediately lateral to the nipple-areolar com-
plex of each breast. Approximately one quarter of the mammary tissue was excised using electrocautery and its 
volume measured using a standard volume displacement method. A subset of excised normal mammary tissue 
was subjected to unconfined compression testing (strain rate: 1 mm/min, compression modulus determined in 
linear region of 20–40% strain) for characterization of mechanical properties. Titanium marker clips (Ethicon 
Small LIGACLIP, West CMR, Clearwater, FL) were placed in a subset of animals to facilitate margin identifica-
tion of collagen and no fill treated surgical sites. For collagen-treated sites, the collagen solution and neutraliza-
tion reagent were mixed according to instructions, and the resultant neutralized liquid collagen used to fill the 
surgical void. Negative control sites received no fill (untreated). A subset of pig breasts that were not subjected 
to surgery served as positive controls. All surgical sites were closed using resorbable sutures and bandaged with 
a non-adherent pad (McKesson, San Francisco, CA) and Tegaderm (3 M, St. Paul, MN) dressing. The animals’ 
health status was monitored daily based on appetite, attitude, movement, and elimination.

Longitudinal study.  A longitudinal study was performed with post-surgical assessment performed at 1-, 4-, and 
16-week time points (2 animals per time point) to achieve twelve replicates (n = 12) for the collagen filler group 
and six replicates (n = 6) for each the no fill and no surgery control groups.

Radiation study.  To address the question of how radiation therapy affects the tissue response to collagen 
soft-tissue fillers, two animals were treated with radiation following simulated lumpectomy and treatment. Pig 
breasts were again randomly assigned to treatment groups, with no fill treatment and breasts on which no sur-
gery was performed serving as negative and positive controls, respectively. Computed tomography (CT) based, 
three-dimensional conformal treatment (3D-CRT) plans were generated for each animal. Two weeks following 
surgery, a 6 MV Varian EX linear accelerator and 120-leaf multi-leaf collimator was used to apply 4 Gy radiation 
to the ventral surface daily for 5 days for a total dose of 20 Gy. Post-surgical assessments were performed 4 and 
16 weeks following surgery with six replicates (n = 6) for the collagen filler group, three replicates (n = 3) for the 
no fill group, and one (n = 1) replicate for the no surgery group. The most caudal pair of mammary glands served 
as non-irradiated no surgery controls. Outcomes from irradiated animals were compared to non-irradiated ani-
mals from the longitudinal study.

Post‑surgical procedures and assessment.  At designated time points, the animals were anesthetized, 
and each breast evaluated using a semi-quantitative scoring system for gross breast/surgical site appearance, 
including erythema/eschar formation and edema formation, and breast uniformity/consistency scoring as 
shown in Supplementary Fig. S3. Additionally, ultrasound imaging of each mammary gland was performed with 
a Mindray M7 ultrasound machine (Mindray North America, Mahwah, NJ) and a linear 4–7 MHz transducer. 
Following euthanasia, a mastectomy was performed on each breast, maintaining all surgical sites, any implant, 
and the surrounding tissue. Each breast was placed in 10% buffered formalin and radiographed using an InnoVet 
Select Radiograph unit (Summit, Niles, IL) with a Genesis Vet DR plate installed using Genesis VxVue acquisi-
tion software (Genesis Digital Imaging, Los Angeles, CA), prior to processing for histopathological analysis. 
Formalin-fixed explanted tissues were bisected and imaged prior to paraffin embedding and sectioning. Sec-
tions were stained with hematoxylin and eosin (H&E). To detect epithelial cells, sections were stained for pan 
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cytokeratin (ab9377, Abcam, Cambridge, MA) at a dilution of 1:100 and then treated with secondary DyLight 
488 goat anti-rabbit (DI-1488, Vector Labs, Burlingame, CA) at 6 μg/mL. Nuclei were counterstained with DAPI 
(4′, 6-diamidino-2′-phenylindole, dihydrochloride; EN62248, Pierce Biotechnology, Rockford, IL). Images were 
acquired using a Aperio VERSA 8 whole-slide scanner (Leica Biosystems, Buffalo Grove, IL).

Data availability
All data are included in this paper or the Supplementary Materials. Additional materials can be obtained by 
request to T.J.P. and S.V.-H. and may be subject to non-disclosure and material-transfer agreement requirement 
with GeniPhys.
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