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ABSTRACT

As more and more datasets with self-exciting properties become available, the demand

for robust models that capture contagion across events is also getting stronger.

Hawkes processes stands out given their ability to capture a wide range of contagion and

self-excitation patterns, including transmission of infectious disease, earthquake aftershock

distributions, near-repeat crime patterns, and overdose clusters. The Hawkes process is flex-

ible in modeling these various applications through parametric and non-parametric kernels

that model event dependencies in space, time and on networks. In this thesis, we develop

new frameworks that integrate Hawkes Process models with multi-armed bandit algorithms,

high dimensional marks, and high-dimensional auxiliary data to solve problems in search

and rescue, forecasting infectious disease, and early detection of overdose spikes.

In Chapter  3 , we develop a method applications to the crisis of increasing overdose

mortality over the last decade. We first encode the molecular substructures found in a

drug overdose toxicology report. We then cluster these overdose encodings into different

overdose categories and model these categories with spatio-temporal multivariate Hawkes

processes. Our results demonstrate that the proposed methodology can improve estimation

of the magnitude of an overdose spike based on the substances found in an initial overdose.

In Chapter  4 , we build a framework for multi-armed bandit problems arising in event

detection where the underlying process is self-exciting. We derive the expected number of

events for Hawkes processes given a parametric model for the intensity and then analyze

the regret bound of a Hawkes process UCB-normal algorithm. By introducing the Hawkes

Processes modeling into the upper confidence bound construction, our models can detect

more events of interest under the multi-armed bandit problem setting. We apply the Hawkes

bandit model to spatio-temporal data on crime events and earthquake aftershocks. We show

that the model can quickly learn to detect hotspot regions, when events are unobserved,

while striking a balance between exploitation and exploration.

In Chapter  5 , we present a new spatio-temporal framework for integrating Hawkes pro-

cesses with multi-armed bandit algorithms. Compared to the methods proposed in Chap-

ter  4 , the upper confidence bound is constructed through Bayesian estimation of a spatial

11



Hawkes process to balance the trade-off between exploiting and exploring geographic regions.

The model is validated through simulated datasets and real-world datasets such as flooding

events and improvised explosive devices (IEDs) attack records. The experimental results

show that our model outperforms baseline spatial MAB algorithms through rewards and

ranking metrics.

In Chapter  6 , we demonstrate that the Hawkes process is a powerful tool to model the

infectious disease transmission. We develop models using Hawkes processes with spatial-

temporal covariates to forecast COVID-19 transmission at the county level. In the proposed

framework, we show how to estimate the dynamic reproduction number of the virus within

an EM algorithm through a regression on Google mobility indices. We also include demo-

graphic covariates as spatial information to enhance the accuracy. Such an approach is tested

on both short-term and long-term forecasting tasks. The results show that the Hawkes pro-

cess outperforms several benchmark models published in a public forecast repository. The

model also provides insights on important covariates and mobility that impact COVID-19

transmission in the U.S. Finally, in chapter  7 , we discuss implications of the research and

future research directions.

12



1. INTRODUCTION

1.1 Motivation

1.1.1 Early Warning for Overdose Spike

Criminology and public health disciplines have leveraged spatio-temporal event modeling

in attempts to predict social harm for effective interventions [ 1 ]–[ 3 ]. Fifty percent of crime

has been shown to concentrate within just 5 percent of an urban geography [ 4 ]. Geographic

concentrations of drug-related emergency medical calls for service [ 5 ], drug activity [  6 ], and

opioid overdose deaths mirror those of crime [ 7 ]. Patterns of repeat and near-repeat crime in

space and time further suggest that not only does crime concentrate in place but that such

events are an artifact of a contagion effect resulting from an initiating criminal event [ 8 ].

Similar observations have also explained the diffusion of homicide events [ 9 ]. Experiments

of predicting policing models using spatio-temporal Hawkes and self-exciting point processes

demonstrates that such empirical realities can be harnessed to direct police resources to

reduce crime [ 10 ]. Thus, the inter-dependence and chronological occurrence of event types

in crime and public health lend promise to how to best predict other social harm events,

such as opioid overdoses.

The United States is experiencing an overdose epidemic with more than a half million

drug overdose deaths since 2000 and over 70,000 drug overdose deaths in 2017 alone [ 11 ].

A majority of these deaths have been opioid-related overdoses; however, the role of opioids

has varied dramatically across three waves of the epidemic, each resulting in increasing

death rates [ 12 ]. This first wave began in the 1990s and was driven by prescription opioid-

related deaths [ 13 ]. The reduced availability of these prescription medications is said to

have resulted in the second wave of the epidemic, which began in 2010, and was driving by

heroin-related deaths [  13 ]–[ 15 ]. The third wave started in 2013 and has largely been driven

by illicit fentanyl, a synthetic opioid that is 50 to 100 times more potent than morphine

[ 16 ]. National estimates suggest that in 2016 nearly half of opioid-related deaths contained

fentanyl [ 17 ], and there is evidence showing that fentanyl is being mixed into heroin and

cocaine which is likely contributing overdose deaths involving these substances [ 18 ], [ 19 ].

13



Recent research has also shown that opioid overdoses cluster in space and time, where over

half of opioid overdose deaths may occur in less than 5% of a city [ 7 ].

As the overdose epidemic has progressed researchers and policy makers have revealed

shortcomings in official data sources, namely vital records data. One limitation is that vital

records data rely on the International Classification of Diseases, 10th Revision (ICD-10)

codes which do not record the specific substances related to an overdose fatality [ 20 ]–[ 23 ];

for example, there is no ICD code for fentanyl. Another limitation though has been the

undercounting of opioid-related fatalities as 20 to 35 percent of drug overdose deaths are

unspecified [ 24 ], meaning no substance was indicated as a primary or contributing cause of

death. Moreover, rates of undercounting vary geographically as they are the result of state

policies for death investigation procedures [ 24 ]. While researchers have developed measures

to adjust for these limitations [ 24 ], better data collection systems are being implemented

[ 25 ], and state policies are changing [ 26 ], it remains clear that we lacked sufficient data to

quickly detect and identify the substances driving this overdose epidemic at the national

level. However, one source of local information that can be used to address these gaps are

toxicology results collected as part of an overdose death investigation. Our goal in the present

work is to develop a statistical framework for modeling and prediction of opioid overdose

clusters in space and time, leveraging information provided in the toxicology report of the

initial overdose in the cluster.

1.1.2 Search and Rescue Resource Management

There are a variety of scenarios where a sequential set of decisions is made, each followed

by some gain in information, that allows us to refine our future decisions or “strategies”.

Often this information may come in the form of a reward or payoff (that may be negative).

Examples of such scenarios include online advertising [ 27 ] where spending can occur in a

known, profitable channel or in a new, possibly better channel, personalized recommenda-

tions [ 28 ], [ 29 ] of a past product purchase or a new, possibly better product, and clinical

trials [  30 ] between an established drug and a new treatment. In each of these cases a balance

14



must be struck between maximizing payoffs using known information on treatment units and

retrieving more information from those under-sampled treatment units.

One application area where such a decision process occurs is that of disaster search and

rescue. During hurricane Harvey in 2017, Houston experienced significant flooding and a

number of citizens required rescue by boat. Information on when and where these rescues

needed to occur resided in disparate data feeds, for example some citizens were rescued by

government first responders via 911 or 311 calls, others were rescued through social media

posts by the “Cajun Navy,” a volunteer rescue group [  31 ]. During disasters, a particular

dataset may be over sampled in one area and undersampled in another due to power outages,

cell tower outages, demographic disparities on the use of social media, etc. For a group

like the Cajun Navy who relied on under-sampled social media data, along with random

search, machine learning based optimal search strategies that can adapt to spatio-temporal

clustering in disaster event data would be beneficial. Similar strategies are also needed in

other space-time searching scenarios, such as searching for and clearing improvised explosive

devices (IED). Certain regions of a road network may be over-sampled due to previously

identified or detonated devices, whereas other areas may be unknown and contain IEDs yet

to be detonated.

We believe multi-armed bandits (MAB) are well suited for this task of balancing geo-

graphical exploration during disaster search and rescue vs. exploiting known, biased data

on locations needing help. In the classic MAB problem setup, a gambler chooses a lever

to play at each round over a planning horizon and only the reward from the pulled lever is

observed. The gambler’s goal is to maximize the total reward while using some trials (with

negative payoff) to improve understanding of the distribution of the under-observed levers.

For the disaster search and rescue scenario, each geographic region and window of time may

be viewed as a lever, where information may be known about areas previously visited or

having historical data, but is not known about other areas. Here the reward is discovery of

a citizen needing rescue. We note there has been past research on mining spatio-temporal

disaster data. Some research has been dedicated to disaster mitigation and management in

order to minimize casualties [ 32 ]. Data mining tasks include but are not limited to decision

tree modeling for flood damage assessment [  33 ], statistical model ensembles for susceptible
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flood regions prediction [ 34 ], and text mining social media for key rescue resource identi-

fication [ 35 ]. However, no work to date has tackled the problem from a MAB framework.

Furthermore, there are few existing spatial MAB algorithms and, to our knowledge, no MAB

algorithm has been developed for data exhibiting clustering both in space and time. For this

purpose, we develop the Hawkes process multi-armed bandit. The method is capable of de-

tecting spatio-temporal clustering patterns in data, while capturing uncertainty of estimated

risk in under-sampled geographical regions. The output of the model is a decision strategy

for optimizing spatio-temporal search and rescue decisions.

1.1.3 Forecasting of Pandemic Spread

Mathematical modeling and forecasting are playing a pivotal role in the ongoing SARS-

CoV-2 (COVID-19) pandemic. In mid-March 2020, a report out of Imperial College London

[ 36 ] forecasted severe consequences in the U.S. and U.K. in the absence of significant pub-

lic health interventions. In both nations, governments responded by closing schools, non-

essential businesses and releasing general stay-at-home (shelter-in-place) orders. In the U.S.,

state and local policymakers are using mathematical models and projections to inform deci-

sions about when and how to relax public health measures that have been put in place. By

and large, compartmental models that explicitly incorporate transmission characteristics of

infectious diseases have been favored over other statistical modeling approaches. High profile

Susceptible-Exposed-Infected-Removed (SEIR) models include those out of the Institute for

Health Metrics and Evaluation (IHME) [ 37 ], Columbia University [ 38 ], MIT [  39 ], The Johns

Hopkins University [ 40 ], and UCLA [ 41 ] (in the case of the UCLA model, an SEIR-variant

with an unreported compartment is fit using least-squares to reported infection and recovery

data).

Other strategies apart from SEIR models are CMU-TimeSeries  

1
 and GT-DeepCOVID

 

2
 . CMU-TimeSeries uses an auto-regressive time series model fit to case counts and deaths.

GT-DeepCOVID is a purely data-driven approach using end-to-end deep learning models to

predict mortality on a weekly basis.
1

 ↑ https://delphi.cmu.edu/
2

 ↑ https://deepcovid.github.io/
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Our goal is to show that Hawkes processes, widely used in the statistical learning commu-

nity to model contagion patterns in event data, are well suited for modeling and forecasting

COVID-19 case and mortality data. They have several advantages that we will highlight,

including being highly flexible in accommodating auxiliary spatio-temporal features such

as county-level demographics and temporal mobility patterns, yet mathematically they are

connected to compartmental models [ 42 ] and allow for explicit incorporation of transmission

dynamics (which we briefly review in the following section). Furthermore, extensive research

has been conducted in the past several years on incorporating machine learning techniques

into the point process framework. Non-parametric Hawkes processes can be constructed

where the triggering kernel is learned [ 43 ] and, more recently, fully neural network based

point processes have been developed [ 44 ], [ 45 ]. Sparse linear combinations of Hawkes pro-

cesses were a winning solution in the 2017 NIJ Crime Forecasting Challenge [ 46 ]. In certain

cases a mixture of Hawkes processes may be needed to model more complex event contagion

with high dimensional marks through Dirichlet processes [ 47 ], [  48 ]. Hawkes processes can

also be used for causal inference on networks [ 49 ] and recent efforts have also focused on

training point processes through reinforcement learning [  50 ], [ 51 ]. Hawkes processes also can

take as input auxiliary covariates [ 1 ], [  52 ], [  53 ], including spatio-temporal features to model

earthquake occurrences [  54 ]–[ 57 ] and environmental and demographic variables to model

crime [ 1 ], [ 53 ]. We believe all of these methods have potential applications to modeling

infectious diseases that are highly complex due to heterogeneity in the population, environ-

ment, and disparate public policies across regional and local jurisdictions. Despite these

advantages, to our knowledge, the only U.S. state where a Hawkes process is being used to

inform COVID-19 policy is in New Jersey (a collaboration with Facebook AI Research)  

3
 . In

this work, we develop our Hawkes process model whose productivity (reproduction number)

is dynamic and depends on spatio-temporal covariates. We also investigate which covariates

and mobility indices are most important for building forecasts of COVID-19 in the U.S.

3
 ↑ https://ai.facebook.com/blog/using-ai-to-help-health-experts-address-the-covid-19-pandemic
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Table 1.1. Changes for each model based on the application
Model How model changes for each application according to the applications

SOS− EW (Chapter  3 )

In modeling the popularity of social media posts such as Twitter and Reddit, we
can categorize the posts by topic based on the texts. In the application of
modeling earthquakes, following the same framework, we can cluster the events
based on their geolocation. We can replace the drug structure vector with
longitude and latitude.

HpUCB (Chapter  4 ) and
HpSpUCB (Chapter  5 )

Some financial research application has also formulated the portfolio choice
problems as MAB problem. In our model, the Hawkes processes component can
be used to model the risk-at-value. Most recently, a line of work uses MAB to
maximize influence on social media. As viral content can be infectious, our
model can be applied to this type of application. The geolocation covariates can
be replaced by the contexts in the content, and Hawkes process components can
be used to model the popularity.

HawkPR (Chapter  6 )

In infectious disease modeling, R(t) depends on time t, whereas in earthquake
modeling it depends on magnitude and the space-time kernel is a power law. In
other application such as modeling criminal activities, the covariates can be
changed to crime types and officer demographics to infer the association.
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2. BACKGROUND

2.1 A Brief Review of Hawkes Processes

Given a set of N events with corresponding timestamps, t1, t2, · · · , tN , we first consider

a temporal point process where the set of timestamps is modeled by its conditional intensity

function λ(t). The conditional intensity function represents the rate of events happening at

time t conditional on the previous event history before time t, denoted as Ht. In specific,

the conditional intensity function λ(t) is defined as follows:

λ(t) = lim
∆t→0

E[N(t+ δt)−N(t)
∆t ]

∣∣∣Ht, (2.1)

where N(t) is the counting process, i.e., number of events up to time t.

One type of point-process model is the Poisson process. In the Poisson process, the

number of events in any time interval follows a Poisson distribution. Such Poisson process is

homogeneous when its rate remains constant, i.e., λ(t) = constant. Therefore, the expected

number of events to occur given a unit time is constant. When the conditional intensity

function λ(t) changes throughout the time, e.g., λ(t) = e−t, such process is considered to be

inhomogeneous.

We consider one specific type of inhomogeneous point process, the Hawkes process, a self-

exciting point process where the occurrence of past points makes the occurrence of future

points more probable. The conditional intensity function of a uni-variate temporal Hawkes

process is defined as follows:

λ(t) = µ(t) +
∑
ti<t

Kg(t− ti), (2.2)

where productivity K > 0 is the expected number of events that are triggered by one single

event. The productivity K is typically 0 ≤ K < 1 to ensure the process is stationary and

stable. The background rate µ(t) > 0 is to describe how the likelihood evolves through

time. These characteristics are independent of the previous historical events. For example,

crime events are more likely to occur during the night than during the day. The flooding
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events tend to happen in the rainy season. On the other hand, the summation of g(t − ti)

represents the self-excitation. The past events can increase the current intensity. Here, g(t)

is often referred as the triggering density and
∫∞
t=0 g(t)dt = 1. It describes the distribution

of infectivity of an event at different times. One example is a Hawkes Process where the

kernel follows an exponential distribution g(t) = ωe−ωt. The influence on the intensity of

each event decays exponentially and ω governs how fast the influence decays to zero.

2.1.1 Multi-variate Hawkes Processes

We consider a multivariate Hawkes process, where there are U different Hawkes processes

(nodes) and we denote their conditional intensity function as λu(t) (u = 1, · · · , U). One

example is the multivariate Hawkes process with an exponential decay kernel. The intensity

of such a multivariate Hawkes process takes the following form:

λu(t) = µu(t) +
∑
ti<t

Kui,ugui(t− ti), (2.3)

where event ti belongs to Hawkes processes ui and Kui,u > 0 is the expected number of

events in ui that are triggered by events in u. In this form, each node has its own triggering

kernel, and the influence of intensity from an event depends on to which node it belongs. For

simplicity, we can assume a uniform background rate in time µu and the spectral norm of a

triggering matrixK ∈ RU×U satisfy that ‖K‖ < 1. The triggering kernel follows exponential

decay distribution:
λu(t) = µu +

∑
ti<t

Kui,uωe−ω(t−ti). (2.4)

2.1.2 Spatio-temporal Hawkes Processes

In the real-world datasets, sometimes they don’t include only just timestamps but also

the corresponding spatial information, such as the longitude and latitude at which the event

occurs. This information can be important for us to better understand the dynamics within

the dataset. For example, a major earthquake can trigger some aftershocks, and usually,

those aftershocks tend to occur in the neighboring area geographically. Moreover, when
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modeling crime activity, the incidents may cluster in space due to the limited mobility of

offenders and hotspots in the cities. These situations indicate that we can benefit from

examining spatiotemporal point processes rather than just temporal ones. Considering a

spatiotemporal point process, the conditional intensity λ is as the following:

λ(t, x, y) = µ(x, y) +K
∑
t>ti

g(x− xi, y − yi, t− ti). (2.5)

In this scenario, one event is likely to trigger events locally in time and space. Choices of

triggering kernel g(t, x, y) include a modified Omori formula (a power-law) and other more

specific kernels (e.g. exponential kernels) that are easy to compute. In this work, we use an

exponential kernel to model the overdose spikes decaying in space and time. More details

are discussed in Chapter  3 .

2.1.3 Model Inference

One approach to infer the parameters for point processes is to leverage its likelihood

function. The log-likelihood for the point process with the intensity λ(t) over a certain space

R is as the following:

logp(X|Θ) =
N∑

i=1
log(λ(ti))−

∫
R
λ(t)dt, (2.6)

where the second term here can be seen as a normalization term for the likelihood. In the

case of the multivariate temporal point process, we can estimate the set of parameters Θ by

minimizing the following negative log-likelihood function:

−logp(L(Θ)) = −
N∑

i=1
log(λuk

(ti)) +
U∑
u=1

∫
R
λ(t)dt. (2.7)

Several approaches of MLE for the multivariate Hawkes process were proposed to estimate

the parameters. One of them is to impose regularization terms to improve the accuracy and

avoid over-fitting [ 58 ]. For example, [ 59 ] infer Hawkes processes by imposing some regularity

on the model parameters through maximum-penalized likelihood estimation. Some MLE

solutions focused on speeding up the estimation by learning the the matrix K through an
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online learning framework on streaming data [ 60 ]. In our work, we use an expectation-

maximization (EM) based maximum likelihood estimation (MLE) to infer the parameters

for our Hawkes processes model.

2.2 A Brief Review of Multi-armed Bandit Problems

The multi-armed bandit problem is an optimization problem of limited resource allocation

in a way that maximizes the expected gain. The properties of each action are only partially

observed during the time of allocation. As time passes or as we allocate more resources, the

properties of each action can become better understood. Such a problem falls down to the

category of a reinforcement learning problem that tackles the exploration-exploitation trade-

off dilemma. Considering a set of K choices, we repeatedly select a single every round. After

each selection, a reward is drawn from either an unknown distribution that may or may not

depend on the action that you selected. Each draw from this distribution is independent of

other draws, meaning that one action will not affect the rewards obtained from other actions.

Our goal is to maximize the total expected reward obtained over some time period. Another

approach to assessing the performance is to compare it against the best-arm benchmark.

Given the optimal action a∗, then the best-arm performance over the time period T is just

q(a∗) ∗ T , where q(.) is the function that returns the reward given an action. Therefore, we

can further define regret at round T , i.e., R(T ) as:

R(T ) = q(a∗) ∗ T −
T∑

i=1
Xi. (2.8)

Here we review existing literature on multi-armed bandits (MAB). Several categories of

algorithms exist, including ε-greedy, Bayes rule, and upper confidence bound algorithms.

In ε-greedy strategy, one action is selected with probability 1 − ε, and action is selected

randomly with probability ε. The algorithm, ε-greedy, is then presented in algorithm  1 .

Note that Q(A) is the average of rewards of action A.

In the case of ε-greedy algorithms, many adaptations have been proposed. [  61 ] follow a

probability distribution to select levers during the exploration phase, and such probability
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Algorithm 1 ε-greedy algorithm optimization
1: procedure ε-greedy(A, k, T )
2: Initialize, for a = 1 to k:
3: Q(a)← 0
4: N(a)← 0
5: for t = 1, 2, · · · , T do

6: A←

arg maxaQ(a), with probability1− ε.
a random action, with probabilityε.

.

7: R← bandit(A)
8: N(A)← N(A) + 1
9: Q(A)← Q(A) + 1

N(A) [R−Q(A)]
10: end for
11: end procedure

is calculated through a softmax function, where a “temperature” parameter is introduced to

adjust how often random actions are chosen during exploration. In the line of work from

[ 62 ], budgets for pulling levers are further considered. Levers are uniformly pulled within

the budget limit during the first ε rounds (i.e., the exploration phase). In the rest of 1 − ε

rounds, [ 62 ] then solve the exploitation optimization as an unbounded knapsack problem by

viewing costs, values, and budgets as weights, estimated rewards, and knapsack capacity,

respectively. One of the most popular approaches in the Bayes rule family of MAB problems

is Thompson sampling [  63 ]. It starts with a fictitious prior distribution of rewards, and the

posterior gets updated as actions are played. Here is an example of Thompson sampling for

Gaussian MAB. We consider a special case when observations/rewards are generated from

N (µ, 1). Our goal is to learn µ as we play more rounds. Starting with prior distribution

N (0, 1), the posterior distribution for parameter µ is N (µ̂n, 1/(n+1)), where µ̂n is empirical

average of the n samples (µ̂0isdef inedas0). The overall Thompson sampling MAB algorithm

is presented in algorithm  2 . While in some cases, sampling from the complex posterior may

be intractable, [ 64 ] replaces the posterior distribution with a bootstrap distribution. In the

work of [ 65 ], they focus on scenarios with drifting rewards and tackle such a problem by

assigning larger weights to more recent rewards when updating the posterior distribution.

Finally, upper confidence bound (UCB) algorithms [ 66 ] is one of the most popular strate-

gies in MAB. Essentially, a UCB algorithm builds a bounded interval that captures the true
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Algorithm 2 Thompson Sampling using Gaussian priors
1: procedure thompson sampling(A, k, T )
2: Initialize, for a = 1 to k:
3: Q(a)← 0
4: N(a)← 0
5: t← K + 1
6: end procedure

reward with high possibility, and levers with higher bounds tend to be selected. The follow-

ing is an example of one of the simplest UCB algorithms (algorithm  3 ). Under the condition

Algorithm 3 UCB1
1: procedure Upper Confidence Bound Algorithm(K)
2: Initialize, for a = 1 to k:
3: Q(a)← 0
4: N(a)← 0
5: Play each of the K arms once, and update Q(a) accordingly
6: for t = 1, 2, · · · , T do
7: Play arm at = arg maxaQ(a) +

√
2logt
N(a)

8: Observe reward rt and update Q(a)
9: N(a)← N(a) + 1

10: end for
11: end procedure

that reward distribution is with support [0, 1], the expectation regret after any number of

plays n is bounded by the following:

E[R(n)] ≤ 8
∑

i:ai 6=a∗

log n
∆i

+ (1 + π2

3 ), (2.9)

where ∆i = q(a∗) − q(ai). UCB algorithms are also widely studied within the setting of

contextual bandit problems where rewards or actions are characterized by features (i.e.,

context). Given the observations on the features of rewards, [ 67 ] and [ 68 ] model the re-

ward function through linear regression, and the predictive reward is further bounded by

predictive variance. Such an idea is shared by [  69 ] where the authors adopt Gaussian pro-

cess regression (GP) to bound the predicted rewards by the posterior mean and standard

deviation conditioned on the past observations. [ 70 ] take a further step by encoding geoloca-
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tion relations between levers into features when rewards are collected in a domain of space.

Even though GP regression modeling takes spatial relations among levers into account in

Wu, Schulz, Speekenbrink, et al.’s line of work, the lack of consideration for non-stationary

rewards or temporal clustering patterns makes it inapplicable in many real-world problems

such as those considered in this paper. To overcome such shortcomings, we develop an upper

confidence bound strategy using Bayesian Hawkes processes (HPs) in this work. HPs have

been widely studied and applied in many areas from earthquake modeling [ 71 ] and financial

contagion [  72 ], to event spike prediction [ 73 ] and crime prevention [ 74 ]. However, HPs have

not been combined with MAB strategies to date, and we show how they can be seamlessly

integrated with existing UCB algorithms to build a spatial and temporal aware MAB al-

gorithm. Furthermore, we will develop a Hawkes processes multi-armed bandits algorithm

that leverages the theoretical expected number of events to infer the potential optimal arms

and investigate its expected regret.
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3. SOS-EW: SYSTEM FOR OVERDOSE SPIKE EARLY

WARNING USING DRUG MOVER’S DISTANCE-BASED

HAWKES PROCESSES

In this study, we use a robust toxicology dataset from Marion County, Indiana [Indianapolis]

that were collected as part of the CDCs Prevention for States funding initiative [  75 ]–[ 77 ].

In the toxicology dataset, we observe spatio-temporal clustering patterns [ 7 ]. These shift

patterns demonstrate that overdose events concentrate within micro places in a short time

window and shift through time, which motivates our present work.  

1
 

Figure 3.1. Overview of the SOS− EW system for early warning of opioid spikes. The
initial overdose toxicology report shows fentanyl, benzodiazepine, and heroin present. Each
drug is vectorized using SMILES and the event is assigned an overdose category using spectral
clustering based on earth mover’s distance of the drug vectors (“drug mover’s distance”).
The increase in the intensity of the Hawkes process is determined by the category and allows
for the prediction of an opioid overdose spike, those events triggered in the branching process
by the initial overdose.

An overview of our proposed system, SOS-EW, is given in Figure  3.1 . We use a Hawkes

process to model overdoses as a branching process. Each event may trigger offspring events

nearby in space and time. The branching ratio of the process, determining the average

number of offspring, depends on the drugs contained in the toxicology report of each parent

event in the branching process. To reduce the dimension, we use spectral clustering with

earth mover’s distance on bags of drug SMILES [ 78 ] vectors corresponding to each toxicology
1

 ↑ This work has been accepted by the 4th Workshop on Data Science for Social Good. Chiang, Wen-Hao, et
al. ”Sos-EW: System for overdose spike early warning using drug mover’s distance-based Hawkes processes.”
Joint European conference on machine learning and knowledge discovery in databases. Springer, Cham, 2019.
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report (we refer to in the rest of the paper as “drug mover’s distance”). The resulting method

outperforms existing Dirichlet-based Hawkes topic models in the task of early warning of

opioid overdose spikes (clusters) based on an initial event and its toxicology report.

3.1 Method

SOS− EW system for early warning of opioid spikes is mainly comprised of the following

two components:

1. Overdose category clustering;

2. Marked spatio-temporal Hawkes process kernel estimation and simulation.

Given a toxicology report, overdose events are first clustered into several overdose categories

through spectral clustering [ 79 ]. The distance between overdose events in spectral cluster-

ing is measured based on earth mover’s distance [ 80 ] of drug vectors which characterize

drug’s two-dimensional molecular structure (in particular we use SMILES, one hot encoded

molecular substructures [ 78 ]). Drug overdose events over continuous time are then modeled

through spatio-temporal Hawkes processes. We estimate the productivity for each category

based on historical overdose events and simulate future events to generate a short ranked

list of hotspots containing overdose spikes. Figure  3.1 presents an overview of the SOS− EW

system.

3.1.1 Related Work

Self-exciting (Hawkes) point processes have been used to model space-time clustering

in urban crime patterns [ 81 ] and Hawkes process-based learning to rank algorithms were

recently a top-performing solution in the 2017 NIJ Crime Forecasting competition [ 46 ], which

focused on ranking the top crime hotspots in a city according to short-term crime risk. Other

point process models, for example, log-Gaussian Cox Processes, can model spatial diffusion

of events and have also proven accurate at modeling crime hotspots [  82 ], [  83 ]. More recently,

self-exciting point processes have been used to model clustering in emergency call data [ 84 ].
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In more extreme security settings spatio-temporal point process models for event prediction

have been applied to conflict [  85 ] and terrorism [ 86 ] datasets.

In the above studies, the models either only used as input the spatial coordinates and

time of the events, or in some cases an additional low-dimensional (< 10) event category.

However, event data often is accompanied by a high dimensional mark, for example, text

data, imagery, sensor data, or in our case a 133 dimensional vector indicating drugs in a

toxicology screen.

Recent work in the machine learning and information retrieval literature has focused on

extending temporal and network-based Hawkes processes to handle text information in the

events [ 87 ], [ 88 ]. Dirichlet Hawkes processes [ 47 ], [ 88 ] have been introduced for this purpose,

where document clustering is jointly learned with a temporal Hawkes process. In the network

setting, Hawkes processes have been used to model coupled information and event diffusion

on networks [  89 ]. However, these studies have not dealt with spatio-temporal data, which is

critical in studying the spread of opioid overdoses.

Our work offers several contributions to the above-related literature. First, we investigate

the applicability of existing Hawkes-topic models in the spatial setting and then we improve

upon the accuracy of these models in several prediction tasks related to early warning of

opioid overdose clusters. Second, we introduce a novel clustering method for drug overdoses

based upon drug mover’s distance. Related to word mover’s distance [ 90 ] that has shown

higher coherence than LDA based topic models, we believe our drug mover’s distance-based

spectral clustering may be useful in a variety of applications where sets of molecules need to

be compared and clustered.

3.1.2 Overdose Categorization

To categorize overdose events through clustering, we first measure the similarity between

two overdose events in terms of a “distance” based on the drugs involved in the events.

Each event consists of a mark indicating one or more drug substances found in the victim’s

system. We denote an event i containing m drug substances as Ei = {d1,d2, · · · ,dm},

where drug m is denoted as dm. Each drug is represented by a set of 2D substructures, i.e.,
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d ∈ {s1, s2, · · · , sk}, where the substructure k is denoted as sk. The distance between each

drug event is then calculated by earth mover’s distance [ 80 ].

Earth mover’s distance (EMD) is a metric to measure a distance between two distribu-

tions. EMD is based on the minimal cost that must be paid to move one distribution into

the other. Given two events, Ep and Eq, with m and n drugs, respectively, we want to find

a transportation flow F ∈ Zm×n2 , where Z2 = {0, 1}, that minimizes the overall cost:

min
m∑

i=1

n∑
j=1

FijCij,

subject to
n∑

j=1
Fij ≤ 1 1 ≤ i ≤ m,

m∑
i=1

Fij ≤ 1 1 ≤ j ≤ n,

m∑
i=1

n∑
j=1

Fij ≤ min(m,n).

(3.1)

Cij is the cost for moving di to dj. We define such cost as Jaccard distance [ 91 ] and it can

be calculated by dividing the difference of the sizes of the union and the intersection of two

sets of substructure by the size of the union:

Cij = |di ∪ dj| − |di ∩ dj|
|di ∪ dj|

. (3.2)

Such an optimization problem  3.1 can be further solved through the transportation simplex

method [ 92 ]. Once the optimal transportation flow is found, the EMD between event Ep

and Eq is defined as the resulting overall cost normalized by the total transportation flow:

EMD(Ep,Eq) =
∑m

i=1
∑n

j=1 FijCij∑m
i=1
∑n

j=1 Fij
. (3.3)

After calculating the EMD between each overdose events, we then construct a similarity

matrix (i.e., adjacency matrix). The similarity between Ep and Eq is calculated using a radial

basis function kernel, i.e., exp
( −EMD(Ep,Eq)2

2ε2
)
. To categorize drug overdose events into

different clusters, we apply spectral clustering [ 93 ] on all the events. The spectral clustering

algorithm takes in the adjacency matrix and uses the eigenvalues and eigenvectors from the
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adjacency matrix of the events to perform dimensionality reduction before clustering. Each

Figure 3.2. Gephi visualization of graph used for spectral clustering (edges corre-
spond to adjacency weight greater than .9) and the most frequent drugs in each of
the 5 overdose categories.

overdose event is then assigned to a category u. Therefore, each event Ei = (ti, xi, yi, ui)

consists of four pieces of information: ti is the timestamp of the date of death (D.o.D) of the

victim; xi and yi are the latitude and longitude of where the victim is found; and ui is the

drug overdose category. Our approach to overdose categorization can seamlessly integrate

the molecular substructure similarities across different drug overdoses and produce more

pharmacokinetic-aware categories. Figure  3.2 shows the top 5 overdose categories, along

with the most frequent drugs in each category, computed using our drug mover’s distance-

based spectral clustering approach.
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3.1.3 Spatio-temporal Hawkes Process

Clustering in space-time drug overdose event data may occur for a variety of reasons; for

example, an increase in the prevalence of a new street drug may appear in a neighborhood

leading to a spike in overdoses; or a particular batch of drugs may contain a higher than

usual amount of a dangerous substance, for example, fentanyl. Motivated by the observed

clustering of overdose data [ 7 ], we further characterize drug overdose events through a cross-

exciting spatio-temporal Hawkes process [ 94 ] that models the contagiousness of events across

overdose categories (computed using DMD spectral clustering).

Given a drug overdose sequence {Ei}Ni with N events, we characterize a multivariate

spatio-temporal Hawkes process through the following conditional intensity function for each

category u:

λu(x, y, t) = µu(x, y) +
∑
t>ti

Kuiug(x− xi, y − yi, t− ti). (3.4)

In Equation ( 3.4 ), the background rate µu(x, y) for each category is assumed to be a con-

stant in time, while inhomogeneous in space. The historical events increase the likeli-

hood of the near-future events through the spatio-temporal triggering density function g.

K(ui, uj) = Kui,uj is the productivity (or triggering) matrix to quantify the self or cross-

exciting impact of the events associated with category ui on the subsequent events in the

category uj. Specifically, Kui,uj denotes the mean number of events in process uj that are

triggered by each event in the process ui.

We introduce a parametric form of the triggering density with an exponential function

in time and a Gaussian density in space. These choices allow for a weighted sample mean

estimation of the parameters in the maximization (M) step of expectation-maximization

(EM) based maximum likelihood estimation (MLE) [ 95 ].
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Our kernel density-based background rate and triggering density function take the fol-

lowing form:

µu(x, y) =
N∑

i=1

βuiu

2πη2Tspan
× exp

− (x− xi)2 + (y − yi)2

2η2

,
g(x, y, t) = ωexp(−ωt)× 1

2πσ2 exp(−x
2 + y2

2σ2 ),

(3.5)

where Tspan denotes the time spanned through the whole training dataset; βuiu measures the

extent to which events in process ui contribute to the background rate in the process uj;

ω controls how fast the rate λu(x, y, t) returns to its baseline level µu(x, y) after an event

occurs; and η and σ dictate the spreading scale of the triggering effect in space.

We perform the M step of the EM-type algorithm following the framework of Algorithm

1 in [ 94 ] to estimate the parameters. We use the “optimal” parameters from the previous M

step to update the latent variables and alternately iterate E and M step. After parameter

estimation, we utilize the branching structures [ 96 ] of self-exciting point processes to simulate

self and cross-exciting events (See Algorithm 3 in [ 94 ]) for the next T days for 1, 000 times.

The simulated events are denoted as Ê = (t̂, x̂, ŷ, û).

To make recommendations for early warning of overdose spikes, we generate a short

ranked list of hotspots in the domain of interest. We first partition the domain of interest

into N ×N fine-grained grid cells by dividing the latitude and longitude span into N parts

with equal length. Based on the latitude and longitude (i.e., x̂ and ŷ) from the simulated

events, we calculate the average number of the simulated events for each grid cell from 1, 000

repeated simulations. We denote the average number of the simulated events in the ith and

jth grid in terms of latitude and longitude as χ(i, j). Finally, we sort the grids according to

the average number of the simulated events in descending order and retain the top-N grids

as the recommended short ranked list.

3.2 Comparison Methods

We compare our model with several state-of-the-art methods including the following:

Non-parametric temporal Hawkes Processes; Spatio-temporal univariate Hawkes Processes;
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and Dirichlet Hawkes Processes that learn the category assignment while estimating the

intensity function. None of the existing point process methods jointly learn the spatio-

temporal self and cross-exciting density together for different overdose categories based on

the drug substance structure; methods either exist for spatio-temporal point processes or for

time-only topic point processes, but not both. The details of our implementation for these

baseline methods are presented in the following sections.

3.2.1 Non-parametric Hawkes Processes:SimpHP

Our first baseline model utilizes a non-parametric Hawkes process [ 59 ] that takes a series

of time stamps and then uses a penalized MLE to simultaneously estimate the background

rate µ(t) and triggering kernel g(t) without prior knowledge of their form. Given a set of

overdose events, we partition the training dataset into N×N subsets according to which fine-

grained grid cell they belong (as defined in Section  3.1.3 ). Each subset of events corresponds

to an independent Hawkes process. Once the estimation is done, the simulation for the next

T interval is done through thinning [ 97 ]. Each Hawkes process is first simulated 1, 000 times

and the average number of simulated events is calculated. The top-N grids cell with the

largest average number of simulated events is recommended. We denote this baseline method

as SimpHP [ 59 ].

3.2.2 Spatial-temporal Hawkes Processes:SpatHP

We compare SOS− EW with a sub-model that only uses the geolocation and time stamps

for estimation, without clustering events into different categories (univariate). The model

estimation and recommendation follow the same framework in Section  3.1.3 . Such a baseline

model is denoted as SpatHP [ 94 ].

3.2.3 Dirichlet Hawkes Processes:SpatHP

The Dirichlet Hawkes process [ 88 ] is a random process which takes into account both

text information from documents and temporal dynamics of their arrival pattern to cluster

the document streams. The model is estimated through an online inference algorithm that
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jointly learns the pattern of the clusters and the parameters of the Hawkes process for each

cluster. To adapt to this model, we view each overdose event as a document and each drug

as a word. Spatial information is integrated into each event by adding a grid cell index as

an additional word. After model estimation, we then use thinning [  97 ] based simulation and

average the number of events for each grid cell and topic (over 1, 000 simulations) to generate

a recommendation of the top-N grid cells with the most number of simulated events.

3.3 Experiments

3.3.1 Data

We analyze a toxicology dataset from Marion County, Indiana that was collected as part

of the CDCs Prevention for States funding initiative [ 75 ]–[ 77 ]. The dataset contains toxi-

cology reports of 1,489 overdose death events in Indianapolis, Indiana, U.S.A. from 2010 to

2016. Each overdose event includes the date of death (D.o.D) of the victim and the geolo-

cation (latitude and longitude) of where the victim was found. In addition, every event also

contains forensic toxicology testing results that screen for 164 drug substances. A binary

indicator represents whether a specific drug substance was found in the victim’s body. In

our analysis, we restricted to a subset of 133 drugs whose 2D chemical structure represen-

tation can be found in the chemical molecules database, Pubchem [ 98 ], for further feature

generation. We also restricted our analysis to the 1,425 overdose events that include geolo-

cation information and occurred within the city of Indianapolis boundary, where the latitude

ranges from 39°37’58.8”N to 39°55’30.3”N and the longitude ranges from 87°06’41.1”W to

85°56’18.7”W. Table  3.1 presents the statics of the pruned dataset. Figure  3.4 presents the

example of some overdose events.

Features for each drug are extracted by identifying its molecular substructure fingerprints.

Specifically, each drug is represented by a set of substructures s (i.g., d ∈ {s1, s2, · · · , sk}).

We further used RDKit [ 99 ], open-source software that allows us to search the substructures

based on 2D chemical structures representation, to generate a feature vector of dimension

1,024 for each drug. The pruned dataset is then used for model evaluation.
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Table 3.1. Statistics on Overdoes Event
start date 01-14-2010
end date 12-30-2016

#event 1,425
#d 6.3698

#entd 68.2481

In this table, “#event” represents
the number of events in the toxicol-
ogy report; “#d” represents the av-
erage number of drug substances in
each event; and “#entd” is the aver-
age number of events involved in each
drug.
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Figure 3.3. Number of Events per Year

3.3.2 Evaluation Protocols and Metrics

The domain of Indianapolis covered by the pruned dataset is first partitioned into N×N

grid cells by dividing the latitude and longitude span into N parts with equal length in each

direction. For each time interval tth, we recommend a ranked list of grid cells based on

how likely those grid cells are to have overdose events in the near future, using the history

of the process up to tth time interval. The performance is then evaluated through walk

forward optimization [ 95 ]. Specifically, in our experimental setting, we first train our model

over a fixed amount of the most recent historical events, which is 255 events (the number

of events in the first two years). We then test the model on the next time period starting

on 01/01/2012 and report the performance. Finally, the overall performance is the average

from all the time periods that we have tested.

At each time interval T , models recommend a ranked list of size K for potential overdose

events. In our experimental setting, we set T as 5 days and partition the domain of interest

into 100× 100 grid cells. The time window is consistent with the time scale on which police

and health services can respond and the grid cell size is similar to those used in field trials

of predictive policing [  10 ]. The ranking performance is evaluated through normalized dis-

counted cumulative gain at K (NDCG@K), which is a measurement of ranking quality and
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Initial Event
Alcohols, Ethanol, Benzodiazepine, Fentanyl

Triggered Events
1. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Morphine, Codeine, Hydrocodone, Hydromorphone

2. Alcohols, Ethanol, Benzodiazepine, 6_MAM, 
Heroin_from_combo, Morphine, Codeine, 
Oxycodone, Oxymorphone

3. THC, Carboxy_THC, Oxycodone, Oxymorphone, 
Hydromorphone

4. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Cocaine, Morphine, Codeine, Fentanyl, Oxycodone, 
Oxymorphone

Figure 3.4. An illustration for an initial event and its triggered events in
one of the categories (i.e., one of the Hawks processes). The initial overdose
event marked in triangle symbol consists of four drug substances and it trig-
gered four neighboring events consisting of different number of drug substances
respectively.

commonly used in information retrieval. NDCG@K is calculated by normalizing discounted

cumulative gain (denoted as DCG@K) with ideal DCG@K (denoted as IDCG@K). The

definition are as follows:

DCG@K =
K∑

i=1

2reli − 1
log2(i + 1) , NDCG@K = DCG@K

IDCG@K , (3.6)

where reli is the ith relevance value of the ith grid in the ranked list r; IDCG@K is the ideal

DCG@K when the ranked list r is perfectly ranked based on its relevance values; and then

we define relevance value reli as the number of overdose events that happen in the ith grid

cell in the ranked list r and tth time interval.

In a certain time interval, a spike of overdose events may occur. To evaluate our model’s

ability to forecast future spikes, we first define an event spike at the tth time interval in a

grid cell (i, j) as follows: If the total number of events in the neighboring cells between the

(t− 1)th and (t+ 1)th intervals is more than a threshold, then we consider that there is an
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event spike in (i, j) grid within these time intervals. The set of grids with an event spike is

defined as the following:

s =
{

(i, j, t)
∣∣∣ i+w∑

î=i−w

j+w∑
ĵ=j−w

t+1∑
t̂=t−1

χ(̂i, ĵ, t̂) ≥ ξ
}

(3.7)

where χ(i, j, t) is the count of events in grid cell (i, j) and time interval t, w is the spatial

window size defining how many neighboring cells we should consider; and ξ is the spike

threshold: we set ξ = 2 (for w = 2 and 4) and ξ = 10 (for w = 10 and 15) in our evaluation

setting. With larger w and ξ, more gird cells will be considered to have an event spike. We

choose w and ξ to ensure a reasonable amount of event spikes for further evaluation while

an event spike includes a huge amount of overdose events. We adopt modified reciprocal hit

rank [ 100 ], precision and recall at different ranked list size K, denoted as MRHR, Prec,

and Rec to evaluate the performance. MRHR is a modified version of average reciprocal hit

rank (ARHR), which is feasible for ranking evaluations where there are multiples relevant

items (i.e., multiple spikes events), and it is calculated as the following:

MRHR = 1∣∣∣ s ∣∣∣
K∑

i=1

( hiti
ranki

)
,

where hiti =


1 if ri ∈ s

0 if ri, /∈ s
, ranki =


ranki−1 if hiti−1 = 1

ranki−1 + 1 if hiti−1 = 0,

(3.8)

where each hit is rewarded based on its position in the ranked list. Prec and Rec are

commonly used to evaluate the performance in recommendation system. Prec evaluates

how precisely the model can predict for future spike events while Rec measures the ability of

retrieving spikes. We also evaluate average precision, denoted as APC, to account for both

precision and recall without choosing K:

Prec =

∣∣∣ s ∩ r
∣∣∣∣∣∣ r

∣∣∣ , Rec =

∣∣∣ s ∩ r
∣∣∣∣∣∣ s

∣∣∣ , APC =
∑
{k:1,··· ,K|rk∈s} Prec@k

|s ∩ r|
. (3.9)
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3.3.3 Experimental Results

Table 3.2. Overall Performance on Different Spike Window Size w

w mdl MRHR Prec Rec
APC@1% @3% @5% @1% @3% @5% @1% @3% @5%

2

SOS− EW .0172 .0188 .0191 .0277 .0174 .0124 .2534 .5038 .6110 .0451
SimpHP .0088 .0089 .0090 .0034 .0019 .0018 .0289 .0496 .0842 .0103
SpatHP .0017 .0021 .0023 .0036 .0029 .0025 .0375 .1129 .1590 .0043

TopicHP .0080 .0082 .0082 .0130 .0085 .0055 .1258 .2386 .2748 .0125

4

SOS− EW .0218 .0236 .0240 .1091 .0724 .0555 .2690 .5196 .6699 .1187
SimpHP .0059 .0060 .0060 .0126 .0070 .0060 .0279 .0475 .0660 .0118
SpatHP .0016 .0018 .0020 .0114 .0111 .0112 .0274 .0784 .1294 .0102

TopicHP .0082 .0089 .0090 .0474 .0315 .0205 .1089 .2226 .2434 .0250

10

SOS− EW .0219 .0254 .0259 .2000 .1526 .1229 .1911 .6734 .8554 .1851
SimpHP .0029 .0031 .0032 .0189 .0119 .0111 .0128 .0662 .0854 .0125
SpatHP .0003 .0007 .0007 .0167 .0181 .0193 .0109 .0691 .1025 .0151

TopicHP .0096 .0097 .0098 .0856 .0548 .0360 .1974 .2868 .3121 .0335

15

SOS− EW .0620 .0718 .0726 .4387 .3275 .2549 .3234 .6470 .8025 .3644
SimpHP .0070 .0072 .0072 .0445 .0291 .0254 .0336 .0526 .0676 .0301
SpatHP .0016 .0019 .0020 .0516 .0506 .0503 .0220 .0746 .1119 .0387

TopicHP .0083 .0091 .0092 .1739 .1212 .0802 .1035 .2081 .2267 .0622
The column “mdl” corresponds to different models. The best overall performance is bold.

Table  5.1 presents the overall performances on overdose spikes prediction under different

breadth definition of spike events (Equation  3.7 ). Our SOS− EW system consistently outper-

forms other baseline methods by a large margin in terms of MRHR, Prec, Rec, and APC.

MRHR is used to evaluate the ranking quality while Prec, Rec, and APC evaluate the

retrieval for events spikes. This shows our proposed method not only can successfully rec-

ommend the regions with potential event spikes considering the ranking position but it can

also precisely generate a short ranked list for those event spikes precisely. As the ranking

list size increases, performances of MRHR remains similar after MRHR @3%; Prec de-

creases while Rec increases due to the natural trade-off between these two metrics. SOS− EW

estimates the model parameters and makes predictions specifically for different overdose

categories compared to SpatHP which estimates the same parameters for all event data ag-

gregated together. This indicates that strategically clustering overdose events based on the
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drug molecular structure can achieve better performances than the model which solely relies

on spatio-temporal information. TopicHP jointly learns the clustering structure and model

parameters and it can be viewed as a competitive baseline. However, only the drug distribu-

tion in each event is taken into account and drugs’ chemical structure is not included in the

model training. This may explain why TopicHP falls short of spikes recommendation metrics

compared to SOS− EW but is still better than other baselines. Overall, SOS− EW leverages

the information from geo-locations, event triggering dynamics, and drugs’ high level physical

and chemical properties based on 2D structures altogether and precisely makes the recom-

mendations for future overdose event spikes.

Table 3.3. Overall NDCG Performance
mdl @1% @3% @5%

SOS− EW .0322 .0637 .0842
SimpHP .0191 .0236 .0265
SpatHP .0092 .0179 .0262

TopicHP .0492 .0733 .0750
The column “mdl” corresponds to differ-
ent models. The best overall performance
is bold.

Table  3.3 presents the overall model performances on NDCG when only evaluating each

models ability to rank grid cells (equivalent to ω = 0). The ranking quality increases as the

size of the ranked list grows larger (i.e., from 1% to 5%). Our proposed SOS− EW outperforms

the second best baseline method TopicHP by 12.27% at NDCG @5%, however, TopicHP is

the top performing model at 1% and 3%. These results indicate that for the very highest

risk cells, spatial diffusion may play less of a role and TopicHP and SOS− EW have similar

performance. However, for flagging neighborhoods instead of individual cells for spikes,

SOS− EW is superior due to its ability to model spatial diffusion of risk.

3.4 Implications for Practice

Results from our proposed system can be translated into more effective social service

delivery and intervention programming. When flagging the top 1% of predicted spikes defined

in neighborhoods of approximatelyO(1km2) in size and 5 days in length, the method captures
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around 25% of opioid spikes. These spatial and temporal scales are similar in size to those

used in predictive policing [  10 ] and by efficiently predicting the geographic diffusion of opioid-

related toxins (such as fentanyl), social service programs and first responders can develop

dynamic programs to best target areas where people face the highest risk of overdose. Further

research is needed to verify whether or not the results found in Indianapolis in this study

extend to other cities and rural areas.

Studies have revealed polydrug patterns whereby fentanyl is being detected alongside

cocaine and methamphetamines, which is contributing to overdose deaths involving these

substances [ 18 ], [ 19 ]. Given the nature of this supply-side poisoning among illicit drugs,

the most feasible approach may be to empower and provide persons who used drugs with

the ability to test these substances. Drug testing technologies (i.e., fentanyl test strips)

allow drug users to understand whether the drugs they use are contaminated with lethal

substances, such as fentanyl, which can allow them to adjust behaviors and prevent a po-

tentially fatal overdose [  101 ]. Furthermore, the average of dispatch and response time for

emergency medical services (EMS) personnel to arrive when an overdose event is reported

is seven minutes on average  

2
 and the time to results of many drug test strips is usually less

then minutes nowadays. Therefore, our system can make a prediction in a short time so

that the health/social workers can react accordingly. More research is needed to extend the

method in this paper, that utilizes toxicology reports, to the application of drug test strips

and other drug testing tools (which may not be a thorough as a coroner’s report).

Public health services can deploy syringe services, such as retractable syringes or exchange

programs, that have been shown to reduce fatal opioid use [ 102 ], [  103 ]. From a policing

perspective, officers can be equipped with nasal naloxone (or Narcan) within high-risk opioid

locations to reduce the likelihood of death from an opioid overdose [  104 ], [  105 ].

2
 ↑ https://www.medicalnewsbulletin.com/response-time-emergency-medical-services/
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4. HAWKES PROCESS MULTI-ARMED BANDITS

4.1 Methodology

In this section, we introduce Hawkes Processes based UCB algorithm, denoted as HpUCB.

First, we define the problem setting and the reward distribution. We then derive the expected

number of events given the Hawkes processes parameters within a specific time period. After

we present the algorithm, we will attempt to analyze its regret bound following the regime

of UCB1-Normal.

4.1.1 Problem Formulation

Given a spatial domain, we first divide it into a set of subregions, where self-exciting

events take place. We then divide a time span T into several time intervals by δt. Each

round d, each multi-armed bandit (MAB) algorithm recommends a short ranked list of sub-

regions to visit and the events that happen in the visited regions are discovered. We then

consider the number of discovered events as rewards. The events in each subregion are

generated through its own independent Hawkes process. Each Hawkes process follows a

simple exponential decay kernel in the following form:

λk(t) = νk +
∑
t>ti
ti∈Tk

αke−βk(t−ti), (4.1)

where λk is the event intensity and Tk is the set of timestamps for events in arm k; and νk,

αk and βk represent the background rate, reproduce number and decay rate, respectively,

for arm k. We denote them as θk = (νk, αk, βk). The rewards of action k is then defined as

the number of events in round d, that is |T dk |. Each round lasts for δt.

Our goal is to maximize total rewards, i.e., the total number of observed events in the

visited sub-regions after a total of D visits.
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4.1.2 Theoretical Expected Number of Events

During each visit of the multi-armed bandit process, we observe a set of self-exciting

events. With these events, we can estimate a set of Hawkes process parameters based on the

observed events. For example, in the round d, we visit the subregion k and observe events

T dk . We then estimate the parameters based on T dk , denoted as θdk = (νdk , αdk, βdk). Given the

estimated parameters, we can infer the expected number of events for the future and build

upper confidence bound based on the inference. The key ingredient of such a strategy is the

derivation of the theoretical expected number of events for Hawkes processes.

In the work of [ 106 ], an elementary approach is introduced to obtain moments of Hawkes

processes and/or the intensity of a number of marked Hawkes processes, in which the detailed

outline is given step-by-step.

Following the framework in [ 106 ], one can obtain the expected number of events for a

simple Hawkes processes accumulated up to any time t given the parameter θ as the following:

E[N(t)|θ] =


−βν
α−β t+ αν

(α−β)2

[
exp

{
(α− β)t

}
− 1

]
α 6= β

νt+ 1
2ναt

2 α = β

 . (4.2)

For simplicity, we use θ to represent the parameters estimated at round d from region k (i.e.,

θdk) in general.

In the multi-armed problem setting, we are more interested in the expected number of

events during the time period/rounds when we visit the sub-region instead of an accumulation

up to any given time. Given the equation  4.2 , the expected number of events during round

d, denoted as E[Ψ(d)|θ] can be calculated as in equation  4.3 .

E[Ψ(d)|θ] = E
[
N
(
δt×D

)
−N

(
δt× (D − 1)

)
|θk
]

= E
[
N
(
δt×D

)]
− E

[
N
(
δt× (D − 1)

)
|θ
]

=


−βν
α−β δt+ αν

(α−β)2 exp
{

(α− β)δt× d
}[

exp
{

(α− β)δt
}
− 1

]
α 6= β

νδ + 1
2να(δt)2(2d+ 1) α = β

 .
(4.3)
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Figure 4.1. Expected number of events at the 2000th round (d = 2000) from a
simulated Hawkes processes dataset. We use the sets of estimated parameters
from j = 1 to j = 1999 to calculate the expect number of events at round
2000 and plot out the histogram. The distribution pass the D’Agostino and
Pearson’s normality test with a p-value of 1.07× 10−97.

4.1.3 Construction of Upper Confidence Bound on Future Expectation

After a couple of rounds of visits, we have visited region k possibly non-consecutively with

nk times. Combining with equation  4.3 , for any given round d in the future, we calculate

the expected number of events for each θj
k in Θk, respectively. We then denote them as

Ψj
k(d), where j = 1, · · · , nk. With a number of observations and multiple estimations, we

can construct upper confidence bound based on the estimation. Before we introduce the

overall algorithm, we assume that the estimation error of Ψk follows a normal distribution.

Therefore, as Ψk is significantly large, Ψk also follows a normal distribution. Fig.  4.1 

shows the example of the approximately normal distribution of Ψk from a realization of the

simulated Hawkes processes dataset.

Most of the UCB algorithms require the reward distribution to be bounded for the guar-

anteed regret bound [ 107 ]. One particular algorithm, UCB-normal [ 108 ], only requires the

reward distribution to be a normal distribution. Under the assumption of Ψk approximately
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following normal distribution, we then can build the upper confidence bound for Ψk at round

d using UCB-normal:

Ψk(d) +

√√√√√16η
∑nk

j=1

[
Ψj
k(d)

]2
− nk

[
Ψk(d)

]2
+ ε

nk − 1
ln(d-1)
nk

, (4.4)

where Ψk(d) = 1
nk

∑nk
j=1 Ψj

k(d) = 1
nk

∑nk
j=1E[Ψk(d)|θj

k]. Hyper-parameter η is used to adjust

the trade-off between the exploration and exploitation. A small number of ε can prevent the

case when the first couple rounds have no events and the model stops exploring.

Algorithm 4 Hawkes Processes Multi-armed bandit Algorithm
1: procedure HpUCB(K, η, ε)
2: for d = 1, 2, · · · , D do
3: If there exists an arm that is played less then d8ln(d)e, play the arm.

4: Otherwise play k̂ = arg maxk Ψk(d) +

√
η ∗ 16

∑nk
j=1

[
Ψj

k
(d)
]2
−nk

[
Ψk(d)

]2
+ε

nk−1
ln(d-1)
nk

,
5: Update nk
6: end for
7: end procedure

Overall algorithm is presented in algorithm  4 and we denoted it as HpUCB.

4.1.4 Regret Analysis of HpUCB

In this section, we demonstrate the regret analysis of HpUCB. To make the regret analysis

tractable, we consider the case where η and ε are set to 0. The performance of different

hyper-parameter settings is investigated empirically instead.

Following the work of [  108 ], we can adapt the regret analysis of UCB-Normal into HpUCB.

The regret bound in [ 108 ] for UCB-Normal is based on two conjectures which are only verified

numerically.

Conjecture 1. Given a Student random variable X with s degrees of freedom, for all 0 ≤

a ≤
√

2(s+ 1),

P (X ≥ a) ≤ e−a2
4 , (4.5)
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Conjecture 2. Given a random variable X following a Chi-squared distribution with s

degrees of freedom,

P (X ≥ 4s) ≤ e−
(s+1)

2 , (4.6)

We first define Qk(d) = ∑nk
j=1

[
Ψj
k(d)

]2
and Uk(d) =

√
16

Qk(d)−nk

[
Ψk(d)

]2

nk−1
ln(d-1)
nk

.

The expected regret can be calculated as the following:

E
[
R(D)

]
=

K∑
k=1

{ D∑
d=1

P (Ad = k)∆d
k

}
, (4.7)

where Ad is the random variable represents the action at round d; ∆d
k is the difference between

the optimal action and action k, that is, ∆d
k = qd(k∗)− qd(k). Note that qd(k) is a function

that returns the reward at region k at round d. To bound the regret, we take the maximal

of ∆d
k across all the rounds that we play up to D and denote it as ∆̃k = maxd ∆d

k, where

0 ≤ d ≤ D.

E
[
R(D)

]
≤

K∑
k=1

E
[
Tk(D)

]
∆̃k, (4.8)

where Tk(D) is the number of times arm ak is played in the first D trials. With this, our

goal is then to bound E
[
Tk(D)

]
. We start with initialization process where we play all the

arms one time:

Tk(D) ≤ 1 +
D∑

d=K+1
1(Ad = k). (4.9)

After the initialization, we select arms according to the upper confidence bounds. The bound

can be further loosen by assuming that arm ak has been played l times:

Tk(D) ≤ l +
D∑

d=K+1
1{Ad = k, Tk(D − 1) ≥ l}. (4.10)

In specific, the event Ad = k means that on the previous time step, the upper confidence

bound of action k was greater than that of the optimal one k∗ based on our estimates:

Tk(D) ≤l +
D∑

d=K+1
1
{

Ψk∗

(
d− 1

)
+ Uk∗(d− 1) ≤ Ψk

(
d− 1

)
+ Uk(d− 1),

Tk(D − 1) ≥ l
}
.

(4.11)
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where nk∗ in Uk∗(d− 1) is Tk∗(d− 1) and nk in Uk(d− 1) is Tk(d− 1).

Moreover, the minimum of the upper bounds on the optimal arm in all the time steps

must be less than the maximum of the upper bounds on the arm k (after l trials).

Tk(D) ≤l +
D∑

d=K+1
1
{

min
0<s<d

Ψk∗

(
s
)

+ Uk∗(s) ≤ max
l≤b≤d

Ψk

(
b
)

+ Uk(b)
}
, (4.12)

where nk∗ in Uk∗(s) is Tk∗(s) and nk in Uk(b) is Tk(b).

Since the particular indices for which they occur are unknown, we consider all possible

pairs of indices to loosen this bound further.

Tk(D) ≤l +
D∑

d=K

D−1∑
s=1

D−1∑
b=l

1
{

Ψk∗

(
s
)

+ Uk∗(s) ≤ Ψk

(
b
)

+ Uk(b)
}

E[Tk(D)] ≤l +
∞∑
d=1

D−1∑
s=1

D−1∑
b=l

P (
{

Ψk∗

(
s
)

+ Uk∗(s) ≤ Ψk

(
b
)

+ Uk(b)
}

).
(4.13)

To make sure the event Ψk∗

(
s
)

+Uk∗(s) ≤ Ψk

(
b
)

+Uk(b) happens, one of the following three

must also occur:

1. Ψk∗

(
s
)

+ Uk∗(s) ≤ qs(k∗);

2. Ψk

(
b
)
≥ qb(k) + Uk(b);

3. qs(k∗) < qb(k) + 2Uk(b).

We can loosen the bound through a union of three events.

E[Tk(D)] ≤l +
∞∑
d=1

D−1∑
s=1

D−1∑
b=l

P (
{

Ψk

(
b
)
≥ qb(k) + Uk(b)

}
+{

Ψk∗

(
s
)

+ Uk∗(s) ≤ qs(k∗)
}

+
{
qs(k∗) < qb(k) + 2Uk(b)

}
).

(4.14)
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In [ 108 ], they show that the random variable
Ψk

(
b

)
−qb(k)√

Qk(b)−nk

[
Φk(b)

]2

nk(nk−1)

has a Student distribution

with nk − 1 degrees of freedom. Note that nk here is Tk(b). We then use Conjecture 1 by

letting s = nk − 1 and a = 4
√

ln(d), and we bound the probability:

P (
{

Ψk

(
b
)
≥ qb(k) + Uk(b)

}
) = P (

{ Ψk

(
b
)
− qb(k)√√√√Qk(b)−nk

[
Φk(b)

]2

nk(nk−1)

≥ 4
√

ln(d)
}

) ≤ d−4,
(4.15)

for nk ≥ 8ln(d). We can bound
{

Ψk∗

(
s
)

+ Uk∗(s) ≤ qs(k∗)
}

through a similar fashion. The

last one is
{
qs(k∗) < qb(k) + 2Uk(b)

}
. In [ 108 ], they also show that the random variable

Qk(b)−nk

[
Φk(b)

]2

[σb
k
]2 follows a chi-square distribution with nk − 1 degree of freedom. Through

Conjecture 2 with s = nk − 1 and a = 4s, we have

P (
{
qs(k∗) < qb(k) + 2Uk(b)

}
) =P (

{Qk(b)− nk
[
Φk(b)

]2
[σbk]2

> (nk − 1)[qs(k∗)− qb(k)]2
[σbk]2

nk
64 ln(d)

}
)

≤ P (
{Qk(b)− nk

[
Φk(b)

]2
[σbk]2

> 4(nk − 1)
}

)

≤ e−
nk
2 ≤ d−4,

(4.16)

as long as nk ≥ max
{

256 [σb
k]2

[qs(k∗)−qb(k)]2 , 8
}

ln(d). This means that as long as we play arm k

for more than dmax
{

256 [σb
k]2

[qs(k∗)−qb(k)]2 , 8
}

ln(d)e, we can guarantee that E[Tk(D)] in Equation

 4.14 can be bounded:

E[Tk(D)] ≤l +
∞∑
d=1

d∑
s=1

d∑
b=l

3d−4 = l +
∞∑
d=1

3d−2

≤1 + 256 [σbk]2
[qs(k∗)− qb(k)]2 ln(d) + 8ln(d) + π2

2

≤256 ln(d) σ̂
2
k

∆̂2
k

+
(

1 + π2

2 + 8ln(d)
)
,

(4.17)

where σ̂k = maxb [σbk]2, 1 < b < D and ∆̂k = mins,b [qs(k∗)− qb(k)] , 1 < s, b < D.
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The regret bound of HpUCB takes the form:

E
[
R(D)

]
≤

K∑
k=1

E
[
Tk(D)

]
∆̃k ≤

K∑
k=1

[
256 ln(d) σ̂

2
k

∆̂2
k

∆̃k +
(

1 + π2

2 + 8ln(d)
)

∆̃k

]
. (4.18)

In UCB-Normal, the mean and standard deviation of the reward distribution remain the same

across the time periods. In the setting of Hawkes Processes MAB problem, the properties are

dynamic, and therefore, each round has its own expectation and standard deviation values.

We show that under the assumption that the estimation of the expected number of events

at round d follows a normal distribution, the regret can still be bounded by O(Kln(d)).

However, it also depends on the variance of the estimation σ̂k and the difference between the

∆̂k. The larger the variance, the larger the regret bound is. The smaller ∆̂k is, which means

it is harder to differentiate the optimal arm from the other, the larger the regret bound is as

well.

4.2 Experiments

4.2.1 Baseline Methods

We compare our model HpUCB with several multi-armed bandit baselines and these base-

line models are tailored to tackle the multi-armed bandit problems with a non-stochastic

reward distribution. Starting with algorithms that update the reward observation with expo-

nential weights, exp3 and its variation exp3S [ 109 ]. The name exp3 stands for “Exponential-

weight algorithm for Exploration and Exploitation.” Essentially, this type of algorithm keeps

the estimations by a list of weights. The arms are then randomly selected based on their

weight. After the rewards are received, it updates the weights with respect to this returned

value of the payoff. Beside of the simplest UCB algorithm UCB1 [ 108 ], other non-stochastic

variation are established. In the work of [ 110 ], discounted UCB dUCB and sliding-window

UCB slideUCB are presented. In dUCB algorithm, the contribution of each observation to

the mean estimation and upper bound construction decays exponentially. On top of dUCB,

slideUCB relies on a local empirical average of the observed rewards. More recent work in

[ 111 ], monitored-UCB mUCB is proposed. It introduces a change-point detection component
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into a classic Upper Confidence Bound (UCB) algorithm. Once the property change-point

of reward distribution is detected, mUCB will reset and learn the new optimal arm.

4.2.2 Datasets

Temporal Synthetic Data (DSIM):

We first test our methodology on a synthetic dataset. We generate the dataset by a

thinning algorithm and apply our model directly to the dataset. In total, we simulate 20

nodes of independent Hawkes Processes.

Records of Worldwide Earthquakes (DEARW):

We collect the spatial and temporal records of earthquakes from the United States Ge-

ological Survey [ 112 ], and we curate the dataset starting from the year 1990. Earthquakes

are known to occur in some earthquake-prone regions. We first separate these events into

subregions and then we can test our model by considering each subregion as an arm. One

way to categorize each earthquake record into different subregions is clustering based on

its geolocation. We apply k-nearest neighbors algorithms to the earthquake dataset and

categorize them into 20 subregions. We denote the dataset as DEARW.

Records of Earthquakes in Alaska and California (DEACA):

To validate our model on a more fine-grained dataset, we further curate the dataset from

DEARW and retain the records in Alaska and California in the USA. Alaska and California

states are in between Pacific Plate and North American Plate, which makes these two states

the most earthquake-prone areas in the USA. We map each earthquake record to the closest

county or county equivalent area. Since most of the earthquakes happen in the coastal area,

we further retain the top-18 subregions with the most earthquakes. The pruned dataset is

then denoted as DEACA.
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Records of Crime Activities in Vancouver (DVAN):

Besides the earthquakes, crime activities are also known for their self-exciting properties.

We collect the crime records from Vancouver Open Data Catalogue  

1
 . In this dataset, the

events are separated into 24 subregions/beats by the local police office. We then remove the

top-2 subregions with the most frequent crime activities, which have more criminal activities

compared to other subregions by a large margin. We remove these 2 subregions since it can

be easily learned by multi-armed bandits algorithms. Therefore, the algorithms may result

in similar performances. The dataset is then denoted as DVAN.

Records of Crime Activities in Los Angeles (DLA):

One other crime-related dataset is crime activities in Los Angeles  

2
 . This dataset reflects

incidents of crime in the City of Los Angeles dating back to 2010. The events are categorized

into 21 divisions. We also removed the top-2 subregions with the most frequent crime

activities. We then denote this dataset as DLA.

4.2.3 Reward Performances

In the simulation dataset, we separate the time horizon into 2000 rounds and 350 of

them are used to tune the hyper-parameters for all the models. In the real-world dataset,

we separate the time horizon into 500 rounds, and 150 of them are used in searching the

hyper-parameters.

In table  4.1 ,  4.2 ,  4.3 ,  4.4 , and  4.5 , we present the performances of all models in various

of datasets. We evaluate the performance through accumulated rewards. Each round, we

visit 1, 3, and 5 regions and record the rewards. We then denote the metrics as reward @1,

reward @3, and reward @5, respectively. Overall, the proposed method HpUCB consistently

outperforms all the other baseline methods in all reward @1, reward @3, and reward @5.

The only exceptions are reward @1 in the datasets DEACA, DLA and DVAN. However, our

model HpUCB maintains competitive performances compared to the best model UCB1 in these
1

 ↑ http://data.vancouver.ca/datacatalogue/crime-data.htm
2

 ↑ https://www.kaggle.com/cityofLA/crime-in-los-angeles
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cases. It could be because in these datasets, the best region has more events of interest

than the others, and it remains at a constant rate throughout time. Therefore, the simple

stationary model UCB1 can easily find the best choice, and our model HpUCB can also learn

from the background rate component. As we intend to visit more sub-optimal regions which

have more dynamic patterns, the edge of HpUCB starts to show. That is, the improvements

in performance against the baseline methods start to increase as we visit more regions. This

trend can be observed across all the datasets. In general, the experiments show that HpUCB

performs well on both the simulated and the real-world datasets. Given the nature of self-

exciting properties in criminal activities and earthquakes, the proposed model HpUCB can

leverage temporal information between the events and make good choices for the future.

Table 4.1. Simulation Dataset DTem

Model reward @1 reward @3 reward @5

exp3 22082.04 66204.84 110369.52
exp3S 22077.62 66216.92 110815.02
mUCB 26265.64 69635.68 113784.50
dUCB 22080.98 66682.14 116890.50
UCB1 26127.42 70433.06 114255.68
slideUCB 23723.02 74205.02 119480.26
HpUCB 26852.66 79581.46 129435.24

Table 4.2. Best Performance on Earthquake in Worldwide DEARW

Model reward @1 reward @3 reward @5

exp3 35036.98 107201.78 182437.32
exp3S 38214.14 105540.68 176299.54
mUCB 76027.06 154577.96 218291.04
dUCB 35199.30 184907.30 285493.22
UCB1 74553.12 135262.34 222301.98
slideUCB 60541.08 224853.94 279058.86
HpUCB 82733.12 226576.80 332122.48

In Figure  4.2 and Figure  4.3 , we show the cumulative rewards for all models from DEARW

and DEACA. In Figure  4.2 , our model HpUCB learns the optimal arm in the first 200 rounds

and consistently choose the optimal ones. In Figure  4.3 where the number of arm is 1, HpUCB

has a similar performance as UCB1 until the very end of the time horizon. Selection strategies,

51



Table 4.3. Earthquake in AK and CA DEACA

Model reward @1 reward @3 reward @5

exp3 27348.74 84980.46 142215.24
exp3S 28185.16 87948.66 137464.80
mUCB 44527.22 109739.32 161888.84
dUCB 27373.84 114044.32 186503.26
UCB1 47902.72 107992.10 166784.96
slideUCB 34088.48 125104.70 190080.82
HpUCB 47304.70 140628.14 221007.26

Table 4.4. Crime Activities in Vancouver DVAN

Model reward @1 reward @3 reward @5

exp3 8467.18 25517.68 42729.38
exp3S 8434.34 25269.72 42111.20
mUCB 16619.18 40339.22 57674.34
dUCB 11468.04 39930.84 61504.18
UCB1 17552.16 44436.14 61726.74
slideUCB 16945.46 44027.14 61444.04
HpUCB 17311.86 50971.72 80531.40

Table 4.5. Crime Activities in Los Angeles DLA

Model reward @1 reward @3 reward @5

exp3 41110.18 123348.12 205715.82
exp3S 41102.44 123235.70 205530.36
mUCB 46108.64 131706.22 214805.94
dUCB 43018.02 131227.52 215557.94
UCB1 46579.32 133710.34 215999.10
slideUCB 46399.08 133618.60 215751.74
HpUCB 46277.78 139447.44 226297.88

such as exp3 and exp3S don’t perform well in general. One possible explanation is that the

probability to sample the arms grows exponentially based on the rewards. As the rewards

grow larger, the probability for multiple competitive arms to be sampled may be saturated.

Thus, the algorithms may fail to distinguish those arms.

Overall, mUCB and UCB1 are competitive algorithms when the number of the pulled arm

is small. On the other hand, HpUCB has the better performance when multiple competing

arms with different event spikes are present.
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Figure 4.2. Cumulative rewards of records of worldwide earthquakes DEARW
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Figure 4.3. Cumulative earthquake rewards of records in AK CA DEACA
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5. HAWKES PROCESS MULTI-ARMED BANDITS FOR

SEARCH AND RESCUE

Following the previous work, in this chapter, we introduce a novel spatio-temporal Hawkes

process multi-armed bandit algorithm. In this project, we incorporate the spatial information

into the context and fill up the gaps of observations through simulations. The detailed

methodology is presented in the following section.

5.1 Methodology

Here we provide the details of our MAB Hawkes process methodology. We view each

sub-region of space as a MAB “lever” and the count of disaster events observed in a pulled

lever as the reward. In each round we select several sub-regions to search and our goal is to

maximize the cumulative number of events observed over time in pulled levers.

5.1.1 Spatio-temporal MAB Problem Formulation

We first partition the entire spatial domain into a set of grid cells, and we denote this

set of cells as A = {a1, a2, · · · }. We divide the range of longitude and latitude evenly into

X and Y grids, i.e., X × Y cells in total. Each grid cell is characterized by a feature vector

xa. In this manuscript, we use the grid indicators as features to describe the geolocation of

a cell, i.e., xa = [x, y]ᵀ. Given a time span T , each multi-armed bandit (MAB) algorithm

recommends a short ranked list consisting of N cells to visit, denoted as a, for every W

time units. For each visit v at cell a ∈ a, we observe the events that occurred in the cell,

denoted as T av , and we consider the number of discovered events |T av | as rewards rav . Our

goal is to maximize total rewards, i.e., the total number of observed events in the visited cells

after a total of V visits. This type of sequential decision-making task is a spatio-temporal

multi-armed bandit problem in which each cell is viewed as a lever, and each visit to the

set of chosen grid cells (constrained by resources) can be viewed as pulling the levers of the

MAB machine.
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5.1.2 Hawkes Process Multi-armed Bandits

We model the occurrence of events in space and time using a Hawkes process where the

intensity if given by,

λ(t|θ, T ) = µ+
∑

ti<t,ti∈T
αβexp−β(t−ti). (5.1)

Here, θ represents the parameters (µ, α, β) where µ is the background intensity; α is the

infectivity factor (when viewed as a branching process this is the expected number of direct

offspring an event triggers); and β is the exponential decay rate capturing the time scale

between generations of events. Here T is the set of timestamps for inference.

At each round of the multi-armed bandit (MAB) process, we select N cells with the

highest estimated risk to visit, and we observe the events. However, time have elapsed

between consecutive visits to a cell and there is a gap that needs to be filled. Therefore,

to fill up these gaps, we simulate Hawkes processes (HPs) by thinning [ 113 ] based on the

inferred parameters. A combination of actual observations and simulated events is then

defined as a set of timestamps that represents our best guess on the missing gap for each

grid cell. We denote these sets of timestamps as Ŝ = {Ŝa|a ∈ A}. After each visit, we

update each Ŝa by choosing the most likely HP realization and defining that as the event

history.

To estimate the Hawkes process parameters, we use Bayesian inference  

1
 to estimate Ŝa

for each visited cell a ∈ a and to estimate the parameters of HPs [ 114 ]. The likelihood

function is given by Equation  5.2 , where Ŝa = {t1, t2, · · · , tn}.

L(Ŝa|µ, α, β) =
|Ŝa|∏
i=1

λ(ti)exp−
∫ tn

0 λ(u)du. (5.2)

If we denote the prior by p(µ, α, β), we get the posterior

p(µ, α, β|Ŝa) ∝ p(µ, α, β)L(Ŝa|µ, α, β), where 0 < µ, β < ∞ and 0 < α < 1. Here, we

choose a gamma distribution (G) as a prior for µ and β, and we choose a beta distribution
1

 ↑ https://github.com/canerturkmen/hawkeslib
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(B) as a prior for α. That is, p(µ), p(β) ∼ G(kp, kc), where kp and kc are the shape and

scale parameter for G, respectively ; and p(α) ∼ B(m,n), where m and n are both shape

parameters for B.

We use Metropolis-Hastings [ 115 ] to draw samples from the posterior distribution. We

then denote such a set of parameters as Θ = {θ1, θ2, · · · , θL}, where θl = (µl, αl, βl). For each

θl, we simulate a HP realization and denote them as S̃a = {S̃al |l = 1, 2, · · · , L}. Together

with all S̃a where a ∈ A, we denote them as S̃. Note that the base intensity is a function of

time, i.e., µ(t), contributed by the best guess Ŝa. Given the newly observed timestamps T av ,

together denoted as T v = {T av |a ∈ a}, we then fill up the gap between the best guess Ŝa

and the observed timestamps by selecting the set of simulated timestamps, denoted as S̃a
l̂
,

where T av has the largest likelihood as in Equation  5.3 . Finally, we update our best guess

for observed cells by Equation  5.4 .

l̂ = argmax
l
L(T av |θl, {S̃al , Ŝa}). (5.3)

Ŝa = {T av , S̃al̂ , Ŝ
a}. (5.4)

5.1.3 Spatial Upper Confidence Bound on Event Intensities

While the epsilon-greedy algorithm considers the cells with the largest mean value of

rewards during exploitation, and the upper confidence bound (UCB) algorithm selects the

most optimistic cells, neither considers the spatial relationship between the cells and the

corresponding events. To introduce such geolocation information into MABs, Wu, Schulz,

Speekenbrink, et al. propose a space-aware UCB algorithm utilizing a Gaussian Process

regression model (GP) [ 116 ] and building up a spatial UCB from the predicted expectation

and uncertainty for each lever. After each visit, we collect the features of visited cells and

their corresponding rewards, denoted as X and Y , respectively. Together with previous

collections, i.e., X = X ∪ {xa|a ∈ a} and Y = Y ∪ {ra|a ∈ a}, we train the GP regression

model.
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In the GP , we hold a prior assumption that the correlations between two cells a and a′

slowly decay following an exponential function of their distance. Thus, we select a radial

basis kernel, kRBF, as the covariance of a prior distribution over the target functions. The

kernel function kRBF is calculated as follows: kRBF(xa,xa′) = exp
(
−‖xa,xa′‖2

2σ2
gp

)
, where σgp is

a parameter that determines how far the correlation extends.

After each visit, we build the spatial UCB based on the prediction for each cell a by

looking at its ζgp predicted uncertainty above the expected mean, and we denote such a

UCB as sagp (Equation  5.5 ).

Here, µ and σ are the predicted expectations and uncertainties given cell a and ζgp

governs how far we expend our upper confidence bound. Unlike ε-Gdy and UCB1 in which

only cells with the largest score are selected, the recommended cells are sampled for the next

visit without replacement based on a probability distribution. Such probability distribution

is calculated by a softmax function on sagp as in Equation  5.6 , where τgp can be viewed as

a temperature parameter that adjusts the exploitation and exploration ratio. We further

denote such a baseline method SpUCB.

sagp = µ(xa) + ζgpσ(xa) (5.5)

pagp =
exp(sagp/τgp)∑

a∈A exp(sagp/τgp) (5.6)

5.1.4 Combining Hawkes Process Bandits with Existing Methods

Even though the upper confidence bound (UCB) built upon the Hawkes process (HP)

can track the event intensities, here we show how to improve its accuracy during the early

stages of the multi-armed bandit (MAB) process. We combine the score from the UCB on

intensities, sahp in shp, with the score from the previously introduced method, that is, saucb from

UCB1 or sagp from SpUCB, respectively. We denote the combined score as ŝa. Finally, we use

a softmax function to calculate the probability p̂a, and sample N cells without replacement

based on the probability for our next visit. We then denote our model as SOS− EW.
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Algorithm 5 Algorithm of SOS− EW
1: procedure HpSpUCB( A, γ, ζhp, ζgp, σgp, τ )
2: X ← ∅, y ← ∅, Ŝ ← ∅ , S̃ ← ∅, tc ←W , a ← select N cells at random
3: for v = 1 to V do . MAB process
4: T ← {T av |a ∈ a},
5: X ← X ∪ {xa|a ∈ a}, Y ← Y ∪ {ra|a ∈ a}
6: µ,σ ← GP(X ,Y|σgp) . model and infer for GP
7: sgp ← {sagp = µ(xa) + ζgpσ(xa)|a ∈ A}
8: shp, Ŝ, S̃ ← HpUCB(Ŝ, S̃, a, σgp, ζhp tc, A, T )
9: ŝ← {ŝa = sagp + γsahp|a ∈ A}

10: p̂← apply softmax function on ŝ
11: a← sample N cells based on probability p̂
12: tc ← (v + 1)×W . update the current time tc
13: end for
14: end procedure

More specifically, ŝa and p̂a are calculated as in Equation  5.7 and  5.8 where γ governs

how much we rely on intensities estimated through HPs, and we can adjust our model based

on how much the dataset itself contains a self-excitation pattern. Note that we define ŝa and

p̂a from all cells as ŝ and p̂, respectively.

ŝa = sa + γsahp. (5.7)

p̂a = exp(ŝa/τ)∑
a∈A exp(ŝa/τ) . (5.8)

Based on the different choices of sa to combine with the HP component, we have two

variations as our proposed models for comparison:
1. UCB1HpSp where sa = saucb, that is, we combine sahp with scores from UCB1;

2. SOS− EW where sa = sagp, that is, we combine sahp with scores from SpUCB.

Note that with SOS− EW and UCB1HpSp, we can compare when we choose different models to

incorporate the proposed HP component. The overall MAB process of SOS− EW is presented

in the algorithm  5 , and algorithm  6 shows how ourHP component plays its part in SOS− EW.
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Algorithm 6 Calculation of sahp

1: function HpUCB(Ŝ, S̃, a, σgp, ζhp tc, A, T )
2: for all a ∈ a, Ŝa ∈ Ŝ, S̃a ∈ S̃ do
3: l̂← argmaxl L(T av |θl, {Ŝa, S̃al }), where S̃al ∈ S̃a
4: Ŝa ← {Ŝa,Sa

l̂
, T av }

5: Θ← p(µ, α, β|Ŝa)
6: S̃a ← {S̃al = HP(Ŝa|θl)|θl ∈ Θ}
7: update Ŝa in Ŝ and S̃a in S̃
8: end for
9: shp ← {sahp = λ

a(tc) + ζhp × σλa(tc)| a ∈ A}, where
λa(tc) = {λal (tc|θl, T al )| l = 1, 2, · · · , L} and T al = {S̃al ∪ Ŝa |S̃al ∈ S̃a, Ŝa ∈ Ŝ}

10: shp ← GF(shp|σhp)
11: return shp, Ŝ, S̃
12: end function

5.2 Experiments

5.2.1 Datasets

Spatial-temporal Synthetic Data (DSyn):

We first validate our methodology using a simulated Hawkes process (HP) [ 117 ]. We

generate a synthetic dataset by first simulating a Poisson process for initial immigrant events,

of which the average number follows a Poisson distribution P(ηT ), and distribute them

uniformly in space. Note that η is the rate per second and T is the total time span. Next,

we generate a Poisson process recursively for each event in each generation by the following

steps:

1. Draw a sample following a Poisson distribution P(φ) as the number of offspring, where

φ governs the average number of offspring that an event spawns;

2. Sample the waiting time between parent and offspring following an exponential distri-

bution E(ω);

3. Sample the spatial distance between parent and offspring event according to a normal

distribution N (σ); and
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4. Accept and record the event only when it is within the domain of time and space. We

then go back step 1. and move on to the next recent event.

The simulation stops when all of a generation are outside T . We then denote these synthetic

datasets as DSyn. In Figure  5.1 , we present a realization of the synthetic data in DSyn and

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
6.0
1.2
1.8
2.4
3.0
3.6
×106

x̂ ŷ

t̂

Figure 5.1. Top-20 clusters in Dsyn. Different clusters are color-coded and
the parameters under this simulation are T = 3.6× 106 seconds, η = 8× 10−5,
φ = 0.99, ω = 10−4 and σ = 10−2.

show the top-20 largest clusters generated by the immigrants.

City of Houston 311 Service Requests (DHry):

We apply the methodology to geolocated Houston 311 calls for service with time and geo-

location labels during the time period of hurricane Harvey in 2017 in Houston (08/23/2017

to 10/02/2017).  

2
 . Among all kinds of services, we focus on “flooding” events that contain

complete timestamp, longitude and latitude information. In total, there are 4, 315 311

flooding events within Houston, Texas, and we denote this dataset as DHry. In Figure  5.2 ,

we present the flooding events and color-code the timestamps. The color bar range starts
2

 ↑ http://hfdapp.houstontx.gov/311/311-Public-Data-Extract-Harvey-clean.txt
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at 00:00:00 on 08/23/2017, and we can also observe the pattern of disaster-related events,

where the events are reported mostly in urban regions and mostly clustered in space and

time.
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Figure 5.2. Flooding Events in Houston DHry. Each event is scaled and
color-coded by its timestamps, and x-axis and y-axis represents the grid cell
ID.

Reports of IED attack in Iraq (DIED):

In addition to rescue mission during natural disaster, we also test our framework on

a spatio-temporal bomb detection and removal task that also requires exploration in the

under-sampled areas. In specific, we compare our model with baselines on the reports of

improvised explosive device attack (IED) in Iraq. In total, we focus on the 28,593 incidents

mainly in Iraq region between 02/04 and 02/24 in 2009, and denote them as DIED.

5.2.2 Experimental Protocol

Given a spatial domain, we first partition the range of longitude and latitude of DSyn

and DHry evenly into 10 disjoint intervals (i.e., X = 10 and Y = 10). Thus, there are 100
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grid cells and every event of interest can be mapped to a unique grid cell. (We let X = 20

and Y = 20 as for DIED due to its larger domain.) Next, we validate the five competing

models on both the synthetic datasets (Dsyn) and the real-world dataset (DHry and DIED)

by using the “walk-forward” validation approach. For example, for the 311 service request

dataset DHry, we discretize time starting from 08/23/2017 00:00:00 into intervals of 20 hours

(W = 72, 000 seconds). In each window of time we select N = 10 cells to visit.  

3
 We then

calculate the reward of the events that happen during our visits in the selected cells until

the next visit. We also add these events to the historical training data set for updating the

model in the next round, whereas events occurring in cells not visited are unseen by the

model in the next round. We then slide the window and train the models on the historical

observations up to the end of the previous observation window to make recommendations

for the next visit. We then record the events that happen between 08/23/2017 20:00:00 and

08/24/2017 16:00:00. We repeat this process until the final date of 10/02/2020 24:00:00.For

each grid cell, we sample 50 sets of parameters from the posterior distribution, i.e., L = 50.

Since the selected cells at the beginning may result in different decisions and performances in

the whole MAB process, for every parameter in all the models, we run MAB processes for 30

times with different initial visited cells, and we report the average of each evaluation score.

Also, all parameters of the models are studied through an extensive grid search, and the

best performances are reported for the model comparison. For the sake of reproducibility,

all datasets and the source code are made publicly available in an anonymized repository  

4
 .

5.2.3 Evaluation Metrics

We first measure the performance of competing models by the cumulative reward, that

is, the number of the observed events captured in visited cells. To compare the performances

between different datasets in Dsyn, we then normalize the total reward by the most optimal

reward, i.e., the maximum rewards if the choice of levers are optimal, and we denote it as

reward. At each visit, models generate a short ranked list for the next visit. Based on the
3

 ↑ We select 5 cells (N = 5) to visit for a duration of 5 hours (W = 18, 000) for synthetic datasets Dsyn and
we select 10 cells (N = 10) to visit for a duration of 40 days for DIED due to its longer time frame.
4

 ↑ https://anonymous.4open.science/r/475a5b4d-9521-4c47-8bcb-94a5b2c1cae0/
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ranked lists, we can also evaluate the models through different ranking and recommendation

metrics. One popular metric to evaluate the ranking quality is the normalized discounted

cumulative gain (NDCG) [  118 ]. We then calculate the NDCG at N for each visit, where N

is the number of visited cells. The relevance value (i.e., gain) at cell a and visit v is then

defined as the number of events, i.e., |T av |. Finally, we take the average across all the visits

and denote it as NDCG.

From the recommendation point of view, we are interested in how many cells recom-

mended by the models would actually contain events during our visit. We first consider that

a cell is relevant if there are one or more events during the visit. We then evaluate such

recommendation quality through the modified reciprocal hit rank [ 100 ], denoted as mRHR for

evaluation. Modified reciprocal hit rank is a modified version of average reciprocal hit rank

(ARHR), which is feasible for ranked recommendation evaluations where there are multiples

relevant items (i.e., relevant cells). It can be calculated as follows:

mRHR = 1∣∣∣ g ∣∣∣
N∑

i=1

hi

ri
,where hi =


1 if ai ∈ g

0 if ai, /∈ g
, ri =


ri−1 if hi−1 = 1

ri−1+1 if hi−1 = 0,
(5.9)

where g is a list of relevant cells; ai ∈ a; h and r represent hit and rank, respectively; and

each hit is rewarded based on its position in the ranked list. Last, we evaluate the models

on F1 score [  119 ], which is simply the harmonic mean between recall and precision of the

relevant cells.

5.2.4 Experimental Results

Performances on the Synthetic Datasets Dsyn:

We compare the performance of our model SOS− EW against competitive baseline meth-

ods, UCB1 and SpUCB, in terms of reward when applied to synthetic datasets Dsyn with

different spatio-temporal patterns. The results of reward are presented in Figure  5.3 . Fig-

ure  5.3 demonstrates the reward under different ω, while φ and σ while fixing the other

parameters. Our SOS− EW outperforms the other baselines by a large margin, with the ex-

63



0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0.5 1.0 3.0 5.0
×10−4

re
wa

rd

ω

UCB1SpUCBSOS− EW

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0.985 0.990 0.995 1.000

re
wa

rd

φ

UCB1SpUCBSOS− EW

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.005 0.01 0.015 0.020

re
wa

rd

σ

UCB1SpUCBSOS− EW

Figure 5.3. Performance on reward on Dsyn under different simulation sce-
narios with various of ω, φ and σ. We run simulations by changing only one of
the parameters at a time and the other parameters, i.g., ω, φ and σ, are fixed
at 10−4, 0.99 and 10−2, respectively.

Table 5.1. Best Performance on DHry

Model reward NDCG mRHR f1

ε-Gdy 0.302 ± .059 0.309 ± .116 0.169 ± .050 0.277 ± .050
UCB1 0.393 ± .063 0.399 ± .058 0.213 ± .028 0.357 ± .036
UCB1HpSp 0.426 ± .047 0.438 ± .028 0.243 ± .017 0.385 ± .015
SpUCB 0.435 ± .076 0.411 ± .070 0.210 ± .041 0.365 ± .025
SOS− EW 0.511 ± .072 0.510 ± .055 0.272 ± .011 0.413 ± .013

ception of when the process is approximately stationary over moderate time scales. This

occurs when φ or ω are too small or too large relative to the time scale of a visit, and in this

scenario the Hawkes process loses its advantage over stationary models.

Performances on Houston 311 Service Requests DHry:

Table  5.1 presents the best performance and its standard deviation of Houston 311 call

dataset DHry according to each evaluation metric. In general, our model SOS− EW outper-

forms all of the other baselines in every metric that we evaluate. In particular, by adding an

event intensity tracking mechanism in the decision-making, the performance of SOS− EW is

better than SpUCB both on reward optimization and high-risk cell recommendation. In terms

of reward, the proposed SOS− EW outperforms the second-best model, SpUCB, by 17.47% while

it also surpasses SpUCB in NDCG by 24.09% from the ranking perspective. From the high-

risk cell retrieval point of view, SOS− EW consistently outperforms SpUCB in mRHR and f1

by 29.52% and 13.15%, respectively. These improvements in accuracy illustrate SOS− EW’s

64



ability to recall events through event intensity tracking and provide better recommendations

on the high-risk cells. By combining the method with the existing algorithm, stationary

patterns of events are also taken into consideration and the combined model strikes a good

balance between the HP component and the other UCB component.

Compared to UCB1, UCB1HpSp contains the proposed HP component. We can see from

Table  5.1 that UCB1HpSp consistently outperforms UCB1 in all of the evaluation metrics. These

results suggest that our proposed HP component is out-performing traditional stationary

MAB algorithms like UCB1 by tracking the space-time dynamic reward distribution.
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Figure 5.4. Number of events
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Figure 5.5. Number of visits

In Figure  5.4 and Figure  5.5 , we compare the number of flooding events and the average

number of total visits for each grid cell in DHry among the first 10 MAB simulations from

the best reward in our model SOS− EW. We can see that the number of flooding events in

the cells is highly correlated to the average number of visits at the end of the MAB process.

This suggests that after the trial of exploration, eventually, our SOS− EW will learn those

cells that are most susceptible to flooding and focus on these in terms of exploitation. Figure

 5.6 is the snapshot of the flooding map in cell (4,1), that SOS− EW gives the highest ranking

on average. It is located by the watershed of The Brays Bayou, a slow-moving river which is

notorious for its flooding history in Houston, Texas. This also indicates that SOS− EW can

identify hotspot areas for further investigation.
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Figure 5.6. Map on (4,1)
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Performances on IED Attack Reports DIED:

In table  5.2 , we present the best performance and standard deviations of IED attack

dataset DIED. Overall, the proposed SOS− EW consistently outperform all the other baseline

methods in all four metrics while the competitive baseline SpUCB comes in second. In terms of

reward and NDCG, SOS− EW improves 9.89% and 10.08% compared to SpUCB, respectively by a

large margin. On the other hand, compared to reward and NDCG, our SOS− EW only has slight

improvements on mRHR and f1 (i.e., 4.23% and 2.04%, respectively) over SpUCB. This may

be due to the fact that in DIED, there is a larger amount of grid cells and the bomb incidents

are more evenly spread, which could cause the lack of quality on the recommendation of

high-risk cells.

Table 5.2. Best Performance on DIED

Model reward NDCG mRHR f1

ε-Gdy 0.174 ± .055 0.186 ± .079 0.047 ± .008 0.107 ± .015
UCB1 0.122 ± .016 0.169 ± .028 0.028 ± .004 0.082 ± .004
UCB1HpSp 0.070 ± .006 0.099 ± .011 0.026 ± .002 0.075 ± .004
SpUCB 0.455 ± .152 0.446 ± .142 0.071 ± .010 0.147 ± .013
SOS− EW 0.500 ± .154 0.491 ± .139 0.074 ± .009 0.150 ± .013

5.3 Conclusion

We introduced a novel framework SOS− EW that integrates Bayesian Hawkes processes

(HP) with a spatial multi-armed bandit (MAB) algorithm to forecast spatio-temporal events

and detect hotspots where disaster search and rescue efforts may be directed. In particular,

the model forecasts synthetic events between each visit to a geographical area to infer the

intensity in the gap between between visits. An upper confidence bound on the estimated

intensity is then built for dynamic event tracking. We then apply a Gaussian filter to in-

corporate the spatial relationships between grid cells. We compared our SOS− EW against

competitive baselines through extensive experiments. In simulated synthetic datasets with

space-time clustering, our SOS− EW improves upon existing stationary spatial MAB algo-

rithms. In the case of Houston 311 service requests during hurricane Harvey and IED attack
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reports in Iraq, SOS− EW outperforms the baseline models considered in terms of a variety of

metrics including total reward and ranking quality. Overall, with theHP component, we can

enhance the performance of MAB algorithms. In the future, more contextual information

may be used to further improve point process MAB algorithms. Furthermore, other types of

point processes (log-Gaussian Cox processes, self-avoiding processes, etc.) may be combined

with multi-armed bandits to solve other types of applications.
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6. HAWKES PROCESS MODELING OF COVID-19 WITH

MOBILITY LEADING INDICATORS AND SPATIAL

COVARIATES

6.1 Hawkes Process Model of COVID-19 Transmission

In this section, we introduce a Hawkes process with spatio-temporal covariates for mod-

eling COVID-19 case and death data. We then discuss the connection of the model to com-

partment models used in epidemiology and develop an expectation-maximization algorithm

for inference. 

1
 

6.1.1 Incorporating Covariates into the Hawkes Process

We propose a novel Hawkes process model that simultaneously estimates the intensity of

events and tracks the dynamic reproduction number of the virus. Given the timestamps (or

dates), T = {t1, t2, · · · tn}, of daily reported positive test cases or deaths, we model the rate

of new cases (or deaths) in each country c as follows:

λc(t) = µc +
∑
t>tj
tj∈T

R(xtj−∆
c , θ)w(t− tj),where xtj−∆

c =

 dc

m
tj−∆
c

 , (6.1)

where µc is the background rate modeling imported infections, w(t) is the inter-infection

time distribution, mt
c = [mt

1,m
t
2, · · · ]ᵀ are mobility indices on day t, and dc = [d1, d2, · · · ]ᵀ

are static demographic features. The time-varying reproduction number R(xtj−∆
c , θ) is a

function of mobility indices and demographic features. It can be interpreted as the average

number of secondary infections caused by a primary infection. Because we are modeling

reported infections rather than time of exposure, we introduce the parameter ∆ to capture a

potential lag between a mobility change and the time tj of a reported primary infection. Here,

we combine the spatial and temporal covariates, and we model the dynamic reproduction
1

 ↑ This work is accepted by International journal of forecasting. Chiang, Wen-Hao, Xueying Liu, and George
Mohler. ”Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates.”
International journal of forecasting 38.2 (2022): 505-520.
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number through a Poisson regression (Equation  6.2 ) where the coefficients θ are shared across

the counties:

R(xtj−∆
c , θ) = exp(θᵀ xtj−∆

c ). (6.2)

Our approach is related to those in recent preprints that incorporate mobility into compart-

ment models [  40 ], [ 120 ], however those approaches typically involve large-scale Monte Carlo

simulations when performing inference. As we will show, the Hawkes process likelihood can

be maximized without simulation via an efficient expectation-maximization algorithm.

6.1.2 Mathematical Connection between Hawkes Processes and Compartmen-
tal Models

Here we briefly review several variations of the Hawkes process in Equation  6.1 that

can be connected to SEIR-type compartment models. The first variant is the SIR-Hawkes

process. This model captures the long-term evolution of a pandemic by incorporating a

pre-factor that accounts for the dynamic decrease in the number of susceptible individuals

[ 42 ]:

λSIR(t) = (1− Ic(t)
N

)
(
µ+

∑
ti<t

R0w(t− ti)
)
. (6.3)

Here Ic(t) is the cumulative number of infections that have occurred up to time t and N

is the total population size. The point process governed by Equation  6.3 is a continuous

time analog of a discrete stochastic SIR model when w(t) is specified to be exponential [  42 ].

When w(t) is chosen to be gamma distributed, the Hawkes process also can approximate

staged compartment models, like SEIR, if the average waiting time in each compartment is

equal [ 121 ]. More complex parametric (or non-parametric) inter-infection time distributions

w(t) may be employed within the Hawkes process framework in situations where disease

dynamics cannot be captured by a SIR or SEIR model. In the early exponential growth

stage of an epidemic, before finite population effects play a role, the Hawkes process in

Equation  6.1 without the prefactor can be used to model new infections arising from SIR

and SEIR models, as Ic(t)
N

will be small.
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While a pre-factor in the Hawkes process involving the cumulative number of infections

is necessary to model long-term disease dynamics, in the early stages of transmission a linear

Hawkes process can be used (as the prefactor will be close to 1),

λ(t) ≈ µ+
∑
ti<t

R0w(t− ti). (6.4)

To illustrate this, we simulate a SEIR differential equation,

dS

dt
= −βSI

N
,

dR

dt
= γI

dE

dt
= β

SI

N
− µE, β = γR0

dI

dt
= µE − γI,

(6.5)

where the parameters are chosen similar to those of COVID-19 estimates reported in [ 122 ],

[ 123 ]. In particular we let γ = .1, R0 = 2, µ = 1, and N = 5 · 108 and note that these

parameters are not from any specific locations. We then fit the linear Hawkes process model

in Equation  6.4 to new infections, µE, generated by the SEIR model. We use a non-

parametric histogram estimator for w(t) and find a close fit between the Hawkes process and

the SEIR model in Figure  6.1 .

71



0 50 100

t

0

1000

2000

3000

4000

5000

n
e

w
 in

fe
ct

io
n

s 
( 

E
 )

SEIR

Hawkes

10
1t

i
-t

j

10
-5

10
0

(t
i-t

j)

Figure 6.1. (Main figure) The red plot shows new infections (µE) from the
SEIR differential equation dS

dt
= −β SI

N
, dE
dt

= β SI
N
−µE, dI

dt
= µE−γI, dR

dt
= γI,

where β = γR0, γ = .1, R0 = 2, µ = 1, and N = 5 ·108. The blue squares show
the linear Hawkes process λt = µ + ∑

t>ti R0w(t − ti) fit to the SEIR curve of
new infections. Inset: Non-parametric histogram estimate for w(t).

In [ 42 ], the rate of events λ(t)SIR in a SIR-Hawkes process is established to be equal in

expectation to new infections µE in the SEIR model after marginalizing out recovery events

that are unobserved in a Hawkes process. In Figure 2, we show that in the early stage of

spreading, the rate λ(t) in a linear Hawkes process can also be used to approximate new

infections µE.

6.1.3 EM Algorithm for Parameter Inference

We use an expectation–maximization (EM) algorithm to estimate the model in Equation
 6.1 , which has been widely used for Hawkes Process estimation [ 124 ]–[ 126 ]. First, we intro-
duce latent random variables, pc(i, j), that represent the event that secondary infection i is
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caused by primary infection j in county c. We let pc(i, i) represent the event that case i is
imported. The complete data log-likelihood is then given by,

L =
|C|∑

c=1

{
n∑

i=1
pc(i, i)log(µc)−

∫ T

0
µc dt+

n∑
j=1

{ n∑
i=j+1

pc(i, j) log
[
R(xtj−∆

c , θ)w(ti − tj|α, β)
]
−
∫ T

tj

R(xtj−∆
c , θ)w(t− tj|α, β) dt

}}
.

(6.6)

Here we use a Weibull distribution [ 127 ]–[ 129 ] with shape α and scale β to model inter-

infection times, which we find accurately models the present data.

As the branching structure of the process is unobservable, we optimize the complete

data log-likelihood in Equation  6.6 by iteratively alternating between an expectation step

where the branching probabilities pc are estimated and a maximization step where model

parameters are updated by maximizing Equation  6.6 . The EM-algorithm is equivalent to a

projected gradient ascent on the likelihood of the Hawkes process [ 130 ].

Expectation Step

During the expectation step, we estimate the latent variables pc(i, j) for each county.

Given the parameters θ, α, β, and µc estimated from the last iteration, the probabilities that

case i was caused by case j (Equation  6.7a ) or was imported (Equation  6.7b ) are given by:

pc(i, j) = R(xtj−∆
c , θ)w(ti − tj|α, β)

λc(ti)
, (6.7a)

pc(i, i) = µc
λc(ti)

. (6.7b)

Note that the rate λc(ti) in Equation  6.1 is considered to be an aggregation of triggering

kernels from all previous historical events (i.e., all t < ti) and the background rate µc. There-

fore, we can consider the probability of case i caused by case j, pc(i, j), as the contribution

of primary infection j in the event rate at time ti, i.e., λc(ti), and pc(i, i) can be seen as the

contribution of the background rate.

73



Maximization Step

We then maximize the complete data log-likelihood with respect to the model param-

eters, conditioned on the estimated branching structure pc(i, j). During estimation we do

not include event pairs (i, j) when j is within Ψ = 14 days of the last day of the dataset,

as the offspring events i have not yet been realized and the inclusion of these incom-

plete data biases parameter estimates. We choose Ψ = 14 as the incubation period for

COVID-19 is thought to extend to 14 days given by the Clinical Care Guidance from

the CDC: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html. For simplicity, the summation over n in the likelihood function, Equation 5, is

replaced with n̂ in the description for the maximization step. Here, n̂ represents the number

of events that are within T −Ψ (n̂ = | ti|ti < T −Ψ |).

Given the latent variable pc(i, j), the maximization of Equation  6.6 can be decoupled

into three independent optimization problems. Starting with the coefficient θ from Poisson

regression, the maximization of likelihood function can be rewritten as the following:

θ̂ := argmax
θ
Lθ =

|C|∑
c=1


n̂∑

j=1

{
Pc(j) log

[
R(xtj−∆

c , θ)w(ti − tj|α, β)
]
−

∫ T

tj
R(xtj−∆

c , θ)w(t− tj|α, β) dt
},where Pc(j) =

n̂∑
i=j+1

pc(i, j).
(6.8)

Because the last Ψ days are removed from the dataset and we assume that all possible

offspring pairs (i, j) have been observed, we can therefore approximate the integrals for

the inter-infection time w(t) in Equation  6.6 as is done in [ 131 ] by noting that
∫ T
tj
w(t −

tj|α, β) ≈ 1. The optimization problem is therefore a Poisson regression, where we regress

the observations Pc(j) =
n̂∑

i=j+1
pc(i, j) against the covariates xtjc :

θ̂ := argmax
θ
Lθ= argmax

θ

|C|∑
c=1


n̂∑

j=1
Pc(j)θᵀxtj−∆

c − exp(θᵀxtj−∆
c )

}
. (6.9)
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The same optimization strategy can be applied on the shape and scale parameters, α

and β. The optimization problem can then be solved as a weighted maximum likelihood

estimation for the Weibull shape and scale parameters:

α̂, β̂ := argmax
α,β

Lα,β = argmax
α,β

|C|∑
c=1

{
n̂∑

j=1

{ n̂∑
i=j+1

pc(i, j) log
[
w(ti − tj|α, β)

]}}
. (6.10)

where pc(i, j) is the weight of each inter-infection time observation ti − tj.

Third, the background rate µc is determined analytically:

µ̂c := argmax
µc

Lµc = argmax
µc

n̂∑
i=1

pc(i, i)log(µc)−
∫ T

0
µc dt, µ̂c =

n̂∑
i=1

pc(i, i)
T

. (6.11)

Pseudo code for the EM algorithm is presented in the Algorithm  7 .

Algorithm 7 EM algorithm optimization
1: procedure HkPR+

m(T , x, ∆)
2: T ← max T , α← 2, β ← 2. . Initialization
3: µc ← 0.5, Rt

c(t)← 1, ∀c ∈ C and 0 < t < T .
4: while ‖∆θ‖,|∆α|,|∆β|,‖∆µ‖ >tol do
5: Expectation step:
6: for ∀i ≥ j and 0 < i, j < T and ∀c ∈ C do
7: if i > j then
8: pc(i, j)← R

tj
c (x

tj−∆
c ,θ)w(ti−tj|α,β)

λc(ti) .
9: else if i = j then

10: pc(i, i)← µc

λc(ti) .
11: end if
12: end for
13:
14: Maximization step:

15: θ ← argmax
θ

|C|∑
c=1

 n∑
j=1

Pc(j)θᵀxtj−∆
c − exp(θᵀxtj−∆

c )
}

.

16: α, β ← argmax
α,β

∑|C|
c=1

 n∑
j=1

{
n∑

i=j+1
pc(i, j) log

[
w(ti − tj|α, β)

]}.

17: for ∀c ∈ C do
18: µc ←

n∑
i=1

pc(i,i)
T
.

19: end for
20: end while
21: end procedure
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We note that the EM algorithm of the Hawkes process is also connected to the dynamic

reproduction number estimator of Wallinga and Teunis [ 132 ], as the latter can be viewed

as a 1-iteration EM algorithm where a histogram estimator is used for Rt
c with initial guess

Rt
c ≡ 1. More details are discussed in the following section.

6.1.4 Connection of EM algorithm for Hawkes Process and Dynamic R estima-
tor of Wallinga and Teunis

Here we make the connection between the EM algorithm for the Hawkes process and the

popular dynamic reproduction number estimator of Wallinga and Teunis [ 127 ], [ 132 ], [ 133 ].

The dynamic R estimator of Wallinga and Teunis is constructed as follows. The probability

that individual i at time ti was infected by individual j at time tj is defined to be,

pij = w(ti − tj)∑
ti>tk w(ti − tk)

, (6.12)

where the distribution of inter-infection times w(ti − tj) is typically modeled as Weibull,

Gamma, or log-normal [ 127 ]. The expected total number of individuals that j infects is then

given by:

Rj =
∑
i>j
pij. (6.13)

Wallinga and Teunis then obtain an estimate of the dynamic reproduction number R(t) by

averaging Rj over all observed cases j where the time of infection tj occurred on day t:

R(t) = 1
Nt

∑
t≤tj<t+1

Rj, (6.14)

(here Nt is the number of observed infections on day t).

On the other hand, for the Hawkes process the intensity (rate) of infections is modeled

as

λ(t) = µ+
∑
t>ti

R(ti)w(t− ti), (6.15)
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where w(t) and R(t) are the inter-infection time distribution and dynamic reproduction

number respectively. Rather than modeling R(t) as dependent on mobility, we can instead

model R(t) as a piece-wise constant function:

R(t) =
B∑
k=1

rk1{t ∈ Ik}. (6.16)

Here the Ik are intervals discretizing time, B is the number of such intervals, and rk is the

estimated reproduction rate in interval k.

Given initial guesses for the model parameters and rk, the EM algorithm for the Hawkes

process iteratively updates the parameters and branching probabilities by alternating be-

tween the

E-step update:

pij = R(tj)w(ti − tj)/λ(ti) (6.17)

pii = µ/λ(ti) (6.18)

and M-step update:

w(t) ∼MLE({ti − tj; pij}) (6.19)

µ =
∑

i
pii/T (6.20)

rk =
∑
ti>tj

pij1{tj ∈ Ik}/Nk (6.21)

where T is the total length of the observation period, Nk is the total number of events in

interval k, and the w(t) is estimated via weighted MLE (for either a Gamma, Weibull or log-

normal) using the inter-event times as observations and branching probabilities as weights.

We also drop event pairs (i, j) when j is within Φ = 14 days of the last day of the datasets

in consideration of the incubation period.
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Finally, we can compare Equation  6.17 to Equation  6.12 . The dynamic R(t) estimator

in Equation  6.12 is what you obtain with 1 step of the EM algorithm in Equation  6.17 with

initial guess R(t) ≡ 1, µ = 0 and 1 day chosen as the bin width for the histogram estimator.

6.1.5 Hawkes Process Forecasting

We forecast future events using the branching process representation of the Hawkes pro-

cess. We first simulate immigrant events through the Poisson process based on the back-

ground rate. For each event in the history of the process, we then simulate a Poisson random

variable with mean R(xtj−∆
c , θ) representing the number of secondary infections caused by

event j. For each of these infections we simulate the time of infection by drawing inter-event

times from the estimated Weibull distribution. For example, for an event on day 4, it may

cause a secondary infection on day 22 if we draw a sample as 18 from the Weibull distri-

bution. Events falling in the future (past the forecasting date) are then used to update the

forecasted intensity through Equation  6.1 . We simulate multiple realizations of this process

(100 times in our application) to estimate a mean intensity forecast along with confidence

intervals.

6.2 Experiments and Results

In this section we first provide details on the datasets and baseline models used in our

experiments. We then discuss the experimental results of several COVID-19 retrospective

forecasting tasks at the U.S. county level. The source code and dataset are included in the

supplemental material and are available online in a anonymous repository 

2
 .

6.2.1 Datasets

Covid-19 Daily Cases and Deaths Reported by The New York Times

The New York Times (NYT) [ 134 ]  

3
 releases a daily report of the cumulative numbers of

COVID-19 cases in the United States at the county level and over time. While NYT data
2

 ↑ https://anonymous.4open.science/r/d425dcf9-3cfb-4f82-a08c-ee583ab36291/
3

 ↑ https://github.com/nytimes/covid-19-data
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closely tracks data aggregated by a project at Johns Hopkins University [ 135 ], NYT county

level reporting started earlier and is therefore used in this study. In total, there are 3, 217

counties with cases and/or deaths in the dataset. The time series data are compiled from

state and local government health departments. In order to have sufficient data for statistical

inference, we select the counties with confirmed cases greater than and equal to 10 (denoted

by Dconf) and the counties with at least 1 death (denoted by Ddeath) by 11/10/2020 when

the dataset is curated. In total, there are 2, 824 and 2, 545 counties in these two datasets.

Parameter sharing may improve models in counties with less data through variance reduction,

but can potentially bias estimates in more populated counties with more cases.

We therefore assess model performance over different subsets of counties grouped by case

volume. We first rank counties by the number of confirmed cases and deaths by the cut-off

date, 11/30/2020, and we then evaluate forecasting accuracy on the top-10% of counties

(denoted by Qtop
10%), the top-25% counties (denoted by Qtop

25%), and counties between the top-

25% and top-50% quantiles (denoted by Q25%
50%).
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Figure 6.2. Distribution of cumulative cases reported at 11/30/2020 at dif-
ferent quantiles.

In Figure  6.2a and  6.2b , we present the distribution of the cumulative confirmed cases

and deaths at three different quantiles up to the cute-off date 11/30/2020. As the counties

at the top-50% have more than 1,000 confirmed cases and 10 deaths, some urban counties,

mostly at the top-10%, had already surpassed 10,000 confirmed cases and accumulated more

than 300 deaths. In Figure  6.3a and  6.3b , we show the daily reported confirmed cases and

deaths of top-3 counties in Qtop
10% and Q25%

50% from Dconf and Ddeath, respectively. Given different

demographics and different COVID-19 regulations, each state went through different phases.

79



02-1
5

03-1
4

04-1
1

05-0
9

06-0
6

07-0
4

08-0
1

08-2
9

09-2
6

10-2
4

11-2
1

100

101

102

103

104

D
a
il
y

#
co

n
fi
rm

ed
ca

se
s

Los Angeles, CA
Cook, IL
Miami-Dade, FL

Otter Tail, MN
Marshall, IN
Portsmouth city, VA

(a) Daily # of confirmed cases (Dconf)

02-1
5

03-1
4

04-1
1

05-0
9

06-0
6

07-0
4

08-0
1

08-2
9

09-2
6

10-2
4

11-2
1

100

101

102

D
a
il
y

#
d
ea

th
s

Los Angeles, CA
Cook, IL
Maricopa, AZ

Gordon, GA
Brunswick, NC
Delta, MI

(b) Daily # of deaths (Ddeath)

Figure 6.3. Example of the daily # of confirmed cases/deaths.

For example, while Cook, IL seemed to contain the first spike after May, the confirmed

cases in Los Angeles, CA seem steadily increase and only slow down after July. The daily

death toll of Maricopa, AZ only hit its record high only after August unlike Los Angeles,

CA, which had already had their first wave in terms of deaths in April. Overall, the deaths

are increasing as the U.S. heads into the winter months. Such differences in infection rates

suggest that different public health and social measures may need to be tailored county by

county. Therefore, the proposed county-level forecasting model may aid local government

policymakers in understanding the demographic and mobility factors that play a role in local

reproduction of the virus.

Google Mobility Index Reports

We use Google daily mobility index reports at the county level [  136 ] to estimate a dy-

namic reproduction number that tracks changes in movement patterns due to stay at home

orders (and their staged removal). In total, there are 6 mobility types, including grocery &

pharmacy, parks, transit stations, retail & recreation, residential and workplaces. Mobility

indices for each category and county are calculated with respect to a baseline value for that

day of the week The baseline day of the week is the median value from the 5-week period

from 01/03/2020 to 02/06/2020. That is, the values are the relative number of visitors for

counties in each category. Note that during the model training, we introduce the parameter

∆ to capture a potential lag between a mobility change and the time tj of a reported primary

infection. As we make forecasts, we use the mobility in training data from the previous ∆
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Figure 6.4. Heat map of mobility indices across counties in Dconf and over time.

days to infer the reproduction number. If the forecast target is more than ∆, we would use

the most recent value from the day of the week in the training data.

We drop “workplace” mobility from our analysis due to high collinearity with “residential”

mobility. Some mobility data are missing when data is sparse for a given date. To deal with

missing values, we adopt multivariate feature imputation  

4
 , which estimates each missing

mobility entry as a function of other mobility types on the same day in the same county. We

show some heatmaps of mobility patterns across counties and time in the Figure  6.4 , where

a major change can be observed coinciding with stay at home orders (the first state-wide

stay-at-home order was issued at 03/21/2020). Also, the reopening phase in most of the

counties can be seen after May. For counties hit by COVID-19 the most ( i.e., those in the

top-10 %), we can also observe some strict regulations in the “Retail and recreation” areas

and better compliance with stay-at-home orders based on high mobility in “Residential”

area.

County-level Demographic Covariates

We incorporate spatial demographic features that may be predictive of symptomatic

cases of COVID-19 (which are more likely to result in testing and mortality). The dataset is

available in a curated form [ 137 ] and is derived from CDC and census datasets. The data is

at the county level and includes population, median age, number of hospitals and ICU beds,

percentage of smokers and diabetes, and heart disease mortality.
4

 ↑ https://scikit-learn.org/stable/modules/impute.html#multivariate-feature-imputation
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(a) Population density estimated at 2019 (b) Diabetes percentage (%)

Figure 6.5. Examples of spatial demographic and health features at the county-level.

In Figure  6.5 , we present two examples of spatial demographic features at the county-

level used to model variations in the reproduction number. In Figure  6.5a we observe that

both the east and west coasts of the United States are more densely populated compared to

midwestern and western regions. Diabetes percentage (shown in Figure  6.5b ), on the other

hand, is mostly higher in southern regions of the U.S.

6.2.2 Baseline Models and Experimental Setup for Retrospective Forecasting
Comparison

We compare the Hawkes process model in Equation  6.1 with several models including

an SEIR model used in a pandemic tracking dashboard  

5
 out of Columbia University [  38 ]

(denoted by PROJ), an geospatial SEIR Model from the Johns Hopkins University Applied

Physics Lab [ 40 ] (denoted by BUCKY), and an ensemble model with linear and exponential

predictors from University of California, Berkeley [ 137 ] (denoted by CLEP). Note that all

three competing models are tested directly from the released source code and we follow

the same experimental protocol as for our proposed model. A simplified Hawkes process,

denoted by Hawkes, where the reproduction number is held constant is used for comparison

to demonstrate the effectiveness of tracking the reproduction number dynamically. We also

compare our full Hawkes process model, denoted by HkPR+
m, to a Hawkes process, HkPRm,

with only mobility features to determine the marginal improvement of adding demographics.

We backtest the six competing models on the Dconf and Ddeath datasets using the “walk-

forward” validation approach. In particular, for 7-day forecasts we first train the models
5

 ↑ https://covid19forecasthub.org/community/
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based on cases and deaths before the first cut-off date, 04/15/2020, and then forecast through

04/21/2020. We then slide the forecasting window, training on data before 4/22/2020 and

forecasting from 04/22/2020 to 04/28/2020. We repeat this process until the final date

of 05/19/2020 (a similar approach is used for 14 and 28 day forecasts). The multivariate

imputation models are also trained in the same walk forward fashion to avoid possible data

leakage. The hyper-parameter of the lag parameter ∆ ranges from 7, 14, 21, and 28 days

in our experiments. For each of the forecasts, we simulate them 100 times and the point

estimate is made through the average.

We evaluate the models according to mean absolute error, MAE, averaged across counties

and forecasting windows of the same length, along with percentage error, PE. Mean absolute

error (MAE) and the percentage error (PE) are calculated as follows:

MAE =
∑|C|
c=1|nc − n̂c|
|C|

, PE = |
∑|C|
c=1 nc −

∑|C|
c=1 n̂c|∑|C|

c=1 n̂c
, (6.22)

where n̂c, and nc are the number of reported events and predicted events, respectively. We

also compare the ranking quality of the competing models using Normalized Discounted

Cumulative Gain (NDCG) [ 118 ], which can be used to evaluate the power of recommendations

for counties with potential COVID-19 spikes in the near future.

6.2.3 Experimental Results

Table 6.1. MAE on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10% Qtop

25% Q25%
50% Qtop

10% Qtop
25% Q25%

50% Qtop
10% Qtop

25% Q25%
50%

PROJ 809.40 415.88 55.30 1664.90 857.93 117.86 3432.57 1779.56 252.43
CLEP 238.30 134.83 33.86 585.81 324.32 88.87 1963.52 1090.36 207.81
BUCKY 404.49 212.80 37.45 883.69 459.77 89.85 2085.88 1116.91 229.33
Hawkes 224.35 120.61 24.02 569.49 300.06 55.45 1803.63 935.83 165.92
HkPRm 211.59 114.34 22.44 519.00 271.86 49.83 1573.58 835.59 136.60
HkPR+

m 210.72 114.69 22.38 522.92 276.28 49.86 1611.48 893.65 132.79

The best performance is marked in bold.
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Table 6.2. MAE on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10% Qtop

25% Q25%
50% Qtop

10% Qtop
25% Q25%

50% Qtop
10% Qtop

25% Q25%
50%

PROJ 15.56 7.89 1.12 30.66 15.55 2.20 56.85 29.37 4.41
CLEP 10.96 5.83 1.16 19.10 10.58 2.31 78.17 42.99 8.56
BUCKY 8.23 4.55 1.00 16.07 8.70 1.83 29.55 16.56 3.98
Hawkes 8.49 4.59 1.04 17.38 9.18 1.98 47.13 24.29 4.32
HkPRm 7.19 4.07 1.01 13.40 7.55 1.78 33.30 18.23 3.74
HkPR+

m 7.24 4.07 1.01 13.68 7.53 1.77 35.99 19.18 3.60

The best performance is marked in bold.

Table 6.3. PE on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10% Qtop

25% Q25%
50% Qtop

10% Qtop
25% Q25%

50% Qtop
10% Qtop

25% Q25%
50%

PROJ 91.00 90.40 84.07 94.41 94.63 92.83 95.76 96.17 96.94
CLEP 10.23 12.08 41.09 24.60 29.42 90.24 41.19 47.74 515.17
BUCKY 19.61 20.12 35.58 28.05 27.90 69.61 47.91 49.24 97.86
Hawkes 11.52 11.31 14.36 17.33 17.02 19.60 41.25 40.06 39.11
HkPRm 11.72 10.75 15.44 13.92 15.10 15.08 38.77 38.20 46.38
HkPR+

m 10.16 10.35 12.95 15.30 13.45 16.91 41.96 33.33 41.31

The best performance is marked in bold.

In Table  6.1 and Table  6.2 , we present the experimental results for 7, 14, and 28 days

window forecasts of MAE for all models applied to both confirmed cases (Dconf) and deaths

(Ddeath), and in Table  6.3 and Table  6.4 , we report the results for PE. In terms of MAE and

PE, both of our proposed models, HkPRm and HkPR+
m, outperform the models, PROJ

and CLEP, by a large margin in all three forecasting periods and across quantile subsets of

the data.The improvements of MAE and PE can also be seen in the simplistic baseline Hawkes

process, Hawkes. This suggests that the Hawkes process approach has a good potential

on modeling infectious disease due to the self-exciting properties that lie in the COVID-19

cases.

We found that adding mobility indices improves Hawkes, where forecasting accuracy

of HkPRm also increases across the subsets and all forecasting window. For example, the

improvements on MAE over Hawkes can go up to 13%, 11%, and 18% for 28 days forecast

when HkPRm is applied to Qtop
10%, Qtop

25%, and Q25%
50% in Dconf, respectively. Similar decrease
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Table 6.4. PE on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10% Qtop

25% Q25%
50% Qtop

10% Qtop
25% Q25%

50% Qtop
10% Qtop

25% Q25%
50%

PROJ 72.56 72.25 45.10 81.93 81.96 73.62 90.21 90.53 87.16
CLEP 23.39 26.35 18.05 19.23 19.27 24.74 73.77 78.90 173.88
BUCKY 17.64 16.08 14.71 15.63 13.93 20.22 15.36 13.20 36.19
Hawkes 17.97 16.99 15.81 20.03 20.71 16.17 48.79 44.15 28.17
HkPRm 16.77 15.59 13.80 20.40 17.38 13.72 33.03 52.51 22.04
HkPR+

m 17.53 16.92 14.05 18.18 15.23 16.93 38.31 44.78 17.66

The best performance is marked in bold.

on MAE can be observed when HkPRm is applied to three quantile subsets in Ddeath, where

HkPRm outperforms Hawkes by 29%, 25%, and 13% in MAE, respectively. In terms of

PE, HkPRm stays ahead of Hawkes with only one exception at Q25%
50% of Ddeath in 28 days

forecasting. This shows that by modeling the reproduction number through daily mobility

indices we can enhance the forecasting accuracy and obtain more precise estimation on the

spikes in the future.

By adding demographic features, we can marginally boost the MAE and PE of HkPR+
m over

HkPRm in some cases. In general, the variation, HkPR+
m, also shows similar improvements

over the competing models. In particular, HkPR+
m has the best PE enhancement over

HkPRm at Q25%
50% in Ddeath for 28 days forecast, which is 20%. This demonstrates that the

major forecasting power comes from the joint modeling of mobility indices in the reproduction

number while the choices of the background rate and inter-infection distribution may only

play a minor part.

Moreover, we notice that model BUCKY is a competitive baseline in Ddeath where it

has better accuracy in a few cases, such as MAE and PE Qtop
10% and Qtop

25% for 28 days forecast.

Possible explanation for its advantage could be the CDC-recommended parameters that has

been introduced to aid the model training especially for recovery and deaths compartments

in its SEIR model. Those parameters include case fatality ratio, case hospitalization ratio,

time between death and reporting, etc. However, introducing such pre-trained parameters

from CDC may not be practical in real-time forecasting and may potentially bring in the

data leakage issue.
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Table 6.5. NDCG on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10% Qtop

25% Q25%
50% Qtop

10% Qtop
25% Q25%

50% Qtop
10% Qtop

25% Q25%
50%

PROJ 0.7225 0.7039 0.8232 0.6946 0.6793 0.8412 0.6696 0.6614 0.8589
CLEP 0.9626 0.9526 0.8620 0.9418 0.9402 0.8704 0.9015 0.8843 0.8739
BUCKY 0.9283 0.9279 0.8600 0.9269 0.9216 0.8768 0.9013 0.8957 0.8813
Hawkes 0.9738 0.9757 0.8680 0.9697 0.9704 0.8926 0.9414 0.9419 0.8879
HkPRm 0.9706 0.9728 0.8673 0.9715 0.9755 0.8956 0.9502 0.9521 0.8958
HkPR+

m 0.9734 0.9759 0.8672 0.9752 0.9758 0.8932 0.9493 0.9503 0.8918

The best performance is marked in bold.

Table 6.6. NDCG on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10% Qtop

25% Q25%
50% Qtop

10% Qtop
25% Q25%

50% Qtop
10% Qtop

25% Q25%
50%

PROJ 0.6746 0.6607 0.7057 0.6823 0.6529 0.7666 0.7003 0.6837 0.8050
CLEP 0.9126 0.9010 0.7451 0.9095 0.8945 0.7849 0.8696 0.8240 0.8043
BUCKY 0.9161 0.9160 0.7301 0.9217 0.9222 0.7797 0.9074 0.9095 0.8278
Hawkes 0.9506 0.9493 0.7548 0.9475 0.9469 0.8011 0.9293 0.9297 0.8212
HkPRm 0.9491 0.9476 0.7598 0.9446 0.9457 0.8007 0.9299 0.9315 0.8195
HkPR+

m 0.9504 0.9474 0.7597 0.9502 0.9514 0.7963 0.9368 0.9372 0.8176

The best performance is marked in bold.

In Table  6.5 and Table  6.6 , we present the NDCG results for the ranking evaluation.

Generally, the proposed models SOS− EW have a better NDCG performance when applied to

confirmed cases for most of the quantile subsets. In terms of NDCG on the Ddeath dataset,

the baseline Hawkes process, Hawkes, performs better in some cases but proposed method

consistently comes in second for most of the forecasting window. By generating rankings with

good qualities, SOS− EW can serve as a recommender system for the hotspot counties and

the public health policymakers can tailor strategies specifically for each region to contain

the virus. We also note that in our model, we are estimating inter-event distributions of

observed cases (ignoring asymptomatic cases) and therefore these are observed or “effective”

inter-event distributions, rather than true inter-infection distributions based on longitudinal

data. We believe this approach is justified by the performance of the model in forecasting

observed cases (and this approach is taken in other applications, like seismology where some

earthquakes are not observed).
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Table 6.7. Model coefficients
(Dconf)

Covariate coef pValue

Retail/recreation 0.1303 0
Grocery/pharmacy 0.0029 8.46× 100−09

Transit stations −0.0102 1.56× 100−98

Parks −0.0355 0
Residential −0.1063 0

Population density 0.0220 0
# ICU beds 0.0110 1.20× 10−247

# hospitals 0.0106 8.69× 10−128

Median age −0.0049 3.85× 100−38

Population est. −0.0214 0
Smokers % −0.0361 0
Heart disease mort. −0.0453 0
Diabetes % −0.0589 0

The first 5 covariates are mobility indices, fol-
lowed by static demographic covariates and two
types of coefficients are sorted, respectively.

Table 6.8. Model coefficients
(Ddeath)

Covariate coef pValue

Retail/recreation 0.1047 4.15× 10−118

Grocery/pharmacy 0.0746 8.88× 10−111

Transit stations 0.0276 2.48× 100−11

Residential −0.0929 5.04× 10−212

Parks −0.1294 0

# ICU beds 0.0423 2.17× 100−64

Population density 0.0409 0
Population est. 0.0062 5.18× 100−2

Median age −0.0157 1.65× 1000−7

Heart disease mort. −0.0250 1.29× 10−008

# hospitals −0.0423 6.54× 100−28

Diabetes % −0.1041 1.33× 100−86

Smokers % −0.1448 1.65× 10−279

The first 5 covariates are mobility indices, fol-
lowed by static demographic covariates and two
types of coefficients are sorted, respectively.

Importance of Covariates

In Table  6.7 and Table  6.8 , we show the dynamic reproduction number coefficients of

HkPR+
m estimated from the Poisson regression component (Equation  6.2 ) when applied to

Dconf and Ddeath, respectively. The p-value is calculated from the Poisson regression analysis

in the M-step after the EM algorithm reaches convergence. The absolute value of the co-

efficients indicates the magnitude of the correlation between the reproduction number and

the features. With the exception of population estimation in Ddeath, the coefficients of all

variables are statistically significant at the 10−7 level or below. The dynamic reproduction

number is positively correlated with “Retail and recreation” while negatively correlated with

“Residential”, meaning that as mobility shifted away from commercial areas towards resi-

dences, the reproduction number decreased. In terms of spatial covariates, the reproduction

number is positively correlated with “Population density” and “# of ICU beds.” This sug-

gests that the regions hit the hardest by COVID-19 are mostly urban areas, where most

of intensive treatment units are situated. The reproduction number is also negatively cor-

related with percent of the population with“ Diabetes” and “Heart disease mortality rate.”

Several possible explanations for this observation include high-risk individuals are being more

cautious or that they tend to live in areas with less cases, potentially with less population.
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Figure 6.6. Forecasting for 28 days from 10/28/2020 - 11/25/2020

COVID-19 Forecasting and Reproduction Number Analysis

In Figure  6.6 , we present an example of 28 days projection made through HkPR+
m from

10/28/2020 - 11/25/2020 for both Dconf and Ddeath. We can observe that HkPR+
m has

very promising results in making projections, especially for the short term future, When the

number of forecasting windows increases, the forecasting error increase as the task also be-

ing more difficult. Moreover, the narrow confidence interval calculated through 100 Hawkes

processes simulations suggests that the the proposed model can make relatively stable fore-

casting. Lastly, based on the projections, as the number of confirmed cases soon would

hit over 500,000 in the top counties including Los Angeles, CA, Cook, IL, and etc. It is

imperative to have a robust framework to help governments to design strategies to combat

COVID-19 or even more, prioritize vaccine distribution.
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Figure 6.7. Estimated R of confirmed cases Dconf and lagged mobility changes
(∆ = 14 days)
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Figure 6.8. Estimated R of deaths Ddeath and lagged mobility changes (∆ = 21 days)

In Figure  6.7 and Figure  6.8 , we find that the estimated dynamic reproduction number

closely tracks lagged mobility, where the optimal lag parameter is determined as ∆ = 14

days for Dconf and ∆ = 21 days for Ddeath. The top-2 counties in Qtop
10% have estimated

reproduction number initially above 2.5. After stay-at-home orders (around 04/11/2020),

mobility in residential areas increased. On the other hand, mobility in retail and recreation

decreased and the reproduction number fell to around 1, which explains why curves were

relatively “flat” in many areas in the U.S. after the lockdown. However, as most of states

re-opened and lifted up the restrictions, the reproduction number increased after a large

population resumed their daily routine, which can be also be observed by the increased

mobility in retail and recreation after July. Lastly, to validate the reproduction numbers, we
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also compare our results to the ones estimated by Stanford University  

6
 and our estimation

match to their findings, which are around 1.5-2.5 initially and 0.5-1.5 up to the beginning of

December in 2020.

Example of Estimated Event Intensities and Weekly Forecasts

In Fig.  6.9 , we present examples of the estimated intensities for the following four mod-

els: Hawkes, HkPRd, HkPRm and HkPR+
m, and we compare them with the number

of cases/death in Cook, IL/Los Angles, CA, respectively. Note that we add HkPRd, a

Hawkes model in which only demographics is used. In these models, HkPRm and HkPR+
m

include mobility indices to estimate the reproduction number dynamically, and Hawkes and

HkPRd have a constant reproduction number for each county. Comparing Hawkes and

HkPRd, the marginal variance between the intensities suggests that demographic features

may not significantly affect modeling the reproduction number in the present data. On

the other hand, HkPRm and HkPR+
m show yield different fitted intensities compared to

Hawkes and HkPRd, indicating that mobility is playing an important role.

In Fig.  6.10 , we present an example of weekly forecasts for all models except PROJ, which

has relatively poor performance. In addition, we compare the forecasts against the true

number of cases/deaths of Los Los Angeles, CA/Cook, IL respectively to provide a graphi-

cal presentation of the model fits. In general, all models can successfully capture the trend of

the number of events, especially the valley around June and July and the spike in November,

though the Hawkes process forecasts are more accurate than CLEP and BUCKY.

Dynamic Background Rate µc Modeling

In this section, we investigate a potential improvement to the model with the incorpora-

tion of a dynamic background rate µc(t). For this purpose we again use mobility as a covariate

and estimate the background rate through Poisson regression, where µc(t) = exp(θᵀµ xt−∆
c ).

The reasoning behind this choice is that imported case volume is correlated with mobility,

especially in transit stations. Estimation for the corresponding parameter, θµ, is achieved
6

 ↑ https://web.stanford.edu/∼chadj/Covid/Dashboard.html
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Figure 6.9. Example of the fitted effect from mobility and demographics
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Figure 6.10. Example of the weekly forecasts

through maximum likelihood estimation (MLE) corresponding to Poisson regression in the

M-step of the EM algorithm. This new approach can be seen as a variation of our model

that we denote as HkPRµ. We apply this variation of our SOS− EW on the dataset from

The New York Times (NYT ) and we explore the improvements in the forecasting task for

7 and 14 days.

In Table  6.9 , we summarize the performance of the Hawkes model with dynamic back-

ground rate, where indicate improvements over the best model from the previous experiments

in bold.

In Table  6.9 , we can see some marginal improvements over the previous best models, espe-

cially for confirmed cases. Further improvements may be possible by monitoring cross-county

and cross-state travel patterns, which would be a good direction for future investigation.
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Table 6.9. Performance and improvements of HkPRµ on Dconf and Ddeath

data evl 7-days 14-days
Qtop

10% Qtop
25% Qtop

10% Qtop
25%

Dconf

MAE 206.66 (1.93%) 113.95 (0.34%) 509.88 (1.76%) 271.20 (0.24%)
PE 11.57 - 10.44 - 14.44 - 15.44 -
NDCG 0.9761 (0.24%) 0.9768 (0.09%) 0.9735 - 0.9739 -

Ddeath

MAE 7.12 (0.98%) 4.03 (0.98%) 13.67 - 7.69 -
PE 18.07 - 16.87 - 16.39 - 16.61 -
NDCG 0.9492 - 0.9475 - 0.9515 (0.14%) 0.9520 (0.06%)

The performances which have an improvement over the best model from the previous experiments are marked in

bold and the improvement (%) over the best models from previous performance is included.In this table, “evl” is the

evaluation metrics and “dataset” is the set of COVID reports on which we apply the model.

6.2.4 State-level Comparison to COVID-19 Forecast Hub

The COVID-19 Forecast Hub  

7
 is a repository that aggregates COVID-19 forecasts from

a number of university and research groups following standardized data and forecasting

formats. In specific, such ensemble was created by taking the arithmetic average of each

prediction quantile for all eligible models for a given location. Recently, the COVID-19

Forecast Hub [  138 ] has also introduced an ensemble model that combines the various models

submitted to the hub into a single ensemble forecast. Comparing to other standalone models,

it has demonstrated superior performance in forecasting deaths due to COVID-19 after May

2020 in the 50 states. To better validate the our Hawkes process framework, in this section

we compare our model with several individual submissions and the ensemble model from the

COVID-19 Forecast Hub.

Several differences between our county level experiments in the previous sections and the

format of COVID-19 Forecast Hub submissions are worth noting. In particular, COVID-19

Forecast Hub forecasts are at the state level and some team contributions vary significantly in

terms of the number of submissions, which locations are included, and whether cases and/or

deaths are forecasted. In addition to the differences between the source of COVID-19 reports

 

8
 , we also note that only a few teams have complete submissions at each county. Therefore,

7
 ↑ https://covid19forecasthub.org/

8
 ↑ COVID-19 Forecast Hub has used reports from Johns Hopkins University and we use reports from the

New York Times in our previous application
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to fairly compare and contribute to the ensemble model, we adapt our framework by training

our models at the state-level using reports from the Johns Hopkins University dataset, from

02/15/2020 to 03/21/2021. Also, we incorporate Google mobility index for each state  

9
 and

with state-wise demographics  

10
 to model the event intensities, reproduction number, and

the background rate in Equation 1.

Weighted Interval Score WIS

The COVID-19 Forecast Hub uses a quantile based metric to evaluate forecasts, the

weighted interval score (WIS), which considers the uncertainty in the predictive distribution

[ 139 ]. Given a predictive distribution F in the format of quantiles, WIS can be seen as a

measure of closeness between the entire distribution and the ground truth. To evaluate with

WIS, we first calculate a single interval score ISα.

ISα(F, n̂c) = (u− l) + 2
α

(l − n̂c) · 1(n̂c < l) + 2
α

(n̂c − u) · 1(n̂c > u), (6.23)

where 1(·) is the indicator function, l and u are the values at 2
α

and 1 − 2
α

quantiles. We

then calculate the weighted sum of interval scores by summarizing accuracy across the entire

predictive distribution. The overall WIS is defined as a linear combination of K interval

scores:
WISα,K(F, n̂c) = 1

K + 0.5

{
w0 · |nc − n̂c|+

K∑
k=1

wk · ISαk
(F, n̂c)

}
, (6.24)

where wk = αk

2 , k = 1, · · · , K and w0 = 1
2 . In this manuscript, we use K = 11 and

α = 0.02, 0.05, 0.1, 0.2, · · · , 0.9 as in [ 139 ].

Selection Criteria and Comparison Results

We first select the models which have passed the screening process in the COVID-19 Fore-

cast Hub [  140 ] based on the following criteria: (1) inclusion of forecasts for at least 25 states
9

 ↑ https://www.google.com/covid19/mobility/
10

 ↑ https://www.census.gov/
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for deaths; (2) a complete set of quantiles; and (3) at least 19 eligible weeks. We further

retain 9 models that have a better WIS score than the baseline proposed by the COVID-

19 Forecast Hub [  140 ]. The forecasting evaluation starts with the week of 05/04/2020 -

05/10/2020 and then moves forward weekly until 03/15/2021 - 03/21/2021. In each weekly

submission, each team makes forecasts for 1 to 4 weeks ahead. One challenge is that each

model has a different number of states and forecasting weeks in the submission. Therefore,

following a similar fashion in [ 140 ], we calculate the relative evaluation metric for a fair

comparison.

For each state-week combination, we first divide HkPR+
m’s WIS and MAE by each models’

evaluation results, respectively. We then report the geometric mean of relative scores from

all state-week combinations in Table  6.10 . Note that all hyper-parameters are selected based

on the best performance from the previous week for each state-week combination. Therefore,

if the value is less than 1, we can suggest that there is an improvement in terms of the error

measurement on average.

In terms of confirmed cases (denoted as DJHU
conf ), HkPR+

m has consistently outperformed the

selected models in MAE and WIS except for the COVIDhub-ensemble in the 4th weeks window

ahead. Overall, besides HkPR+
m, COVIDhub-ensemble has the most competitive results.

COVIDhub-baseline and COVIDhub-ensemble model are designed by the COVID-19 Fore-

casts Hub [ 140 ]. Here, COVIDhub-baseline serves as a reference point and is generated by

the median number of cases from the most recent week, and COVIDhub-ensemble aggregates

all the submissions to generate an ensemble forecast.

For the COVID-19 Forecast Hub to generate an accurate ensemble, diverse modeling

perspectives can be beneficial. The promising results in DJHU
conf indicate that forecasts for

confirmed cases can benefit from modeling with a Hawkes process that incorporates dynamic

covariates. Given that many forecasting groups are using compartmental models, we believe

that HkPR+
m can potentially enhance the forecasting accuracy of ensemble forecasts through

both its accuracy and diversity. Note that all the weekly forecasts were updated in the

anonymous repository 

11
 .

11
 ↑ https://anonymous.4open.science/r/d425dcf9-3cfb-4f82-a08c-ee583ab36291/
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Table 6.10. Relative WIS and MAE on the JHU dataset

Model
DJHU

conf
Relative WIS Relative MAE

1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

HkPR+
m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Covid19Sim-Simulator 0.51 0.53 0.60 0.69 0.72 0.70 0.79 0.88
COVIDhub-baseline 0.80 0.74 0.78 0.87 0.91 0.80 0.84 0.91
Karlen-pypm 0.68 0.70 0.73 0.77 0.77 0.73 0.74 0.78
COVIDhub-ensemble 0.94 0.90 0.94 1.01 0.99 0.89 0.94 1.01

Model
DJHU

death
Relative WIS Relative MAE

1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

HkPR+
m 1 1 1 1 1 1 1 1

Covid19Sim-Simulator 0.77 0.89 1.05 1.39 0.88 1.07 1.22 1.61
MOBS-GLEAM COVID 0.81 0.87 0.97 1.25 0.88 0.99 1.08 1.32
UA-EpiCovDA 0.85 0.83 0.92 1.15 1.19 1.17 1.15 1.49
COVIDhub-baseline 0.86 0.8 0.87 1.11 1.36 1.36 1.35 1.67
GT-DeepCOVID 0.9 0.95 1.01 1.21 0.92 1 1.05 1.18
IHME-CurveFit 0.94 0.92 1.12 1.64 0.95 0.99 1.12 1.64
CMU-TimeSeries 0.96 0.97 1.01 1.08 1.21 1.23 1.39 1.44
YYG-ParamSearch 0.96 1.03 1.19 1.72 1.07 1.24 1.29 1.89
COVIDhub-ensemble 1.05 1.08 1.2 1.52 1.5 1.42 1.56 1.94

The best performance is marked in bold and the performances that HkPR+
m has outperformed are marked in red. In

this table, “N wk” represents the forecasting for N weeks ahead, and “DJHU
conf ” and “DJHU

death” are the confirmed cases and

deaths collected by Johns Hopkins University, respectively. All the metadata information for the competing models

can be found in the following url:  https://github.com/reichlab/covid19-forecast-hub/tree/master/data-processed .

We note that, in the retrospective evaluation, our model may be slightlyfavored. Data

available when prospective forecasting models were created mayhave been subject to report-

ing lags or have been updated at a later date. Tocompletely reconstruct such data is a

non-trivial task, therefore we acknowledgethis as a limitation of the present work.

6.3 Conclusion

We showed how Hawkes processes can be combined with spatio-temporal covariates to

accurately model COVID-19 transmission and forecast future cases and deaths. The model is

competitive with several models used to forecast the pandemic, achieving improved MAE and

NDCG scores on a majority of the experiments we conducted. Our hope is that this work will

encourage more research into Hawkes process models of disease spreading that incorporate
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more advanced features and statistical learning principles. As vaccinations are rolled out

across the U.S. (given recent FDA approval), local impacts on dynamic reproduction can be

flexibly accommodated by our model and used to obtain more accurate and timely forecasts.

One potential direction for future research is investigating the combination of Hawkes

process forecasts with compartmental models for improved ensembles. Our results using

data from the COVID-19 Forecast Hub indicate this could be a promising direction. An-

other potential direction for future research is extending the work here to neural network

based point process models [ 44 ], [ 45 ]. These models may be able to capture more complicated

relationships between mobility patterns, demographics, and transmission. The challenges of

such an approach include the potential for over-fitting with added parameters and determin-

ing how best to realistically model transmission in a neural point process (analagous to the

SIR-Hawkes process), which will be important if neural point processes are to be used in

long-term forecasting.
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7. SUMMARY

The self-exciting modeling is a powerful tool to infer the dynamic properties of events occur-

ring in real life. In specific, Hawkes processes can help us to capture the infectivity among

the events even more, making forecasting for the future.

In Chapter  3 , we introduce a system for early detection of opioids which can be used

to tackle the increasing crisis of opioid addictions and overdoses across the U.S. and inter-

nationally over the past decade. We first use drug SMILES, one hot encoded molecular

substructures, to generate a bag of drug vectors corresponding to each overdose (overdoses

are often characterized by multiple drugs taken at the same time). We then use spectral

clustering to generate overdose categories and estimate multivariate Hawkes processes for the

space-time intensity of overdoses following an initial event. As the productivity parameter

of the process depends on the overdose category, this allows us to estimate the magnitude of

an overdose spike based on the substances present (e.g., fentanyl leads to more subsequent

overdoses compared to Oxycontin). We validate the model using opioid overdose deaths in

Indianapolis and show that the model outperforms several recently introduced Hawkes-Topic

models based on Dirichlet processes. We also point out that our system could be used in

combination with drug test strips to alert drug-using populations of risky batches on the

market or to more efficiently allocate naloxone to users and health/social workers.

In Chapter  4 , we combine the derivation of the expected number of events for Hawkes

processes and the UCB-normal algorithm to build a framework for the non-stochastic multi-

armed bandit problem. Given the nature of self-exciting properties, the reward distribution is

dynamic and time-varying. By introducing the Hawkes Processes modeling into the decision-

making, we build upper confidence bound based on the expected number of events in the

future. Several datasets, including crime activities and earthquakes, are used to validate

the robustness of the proposed framework. Our model consistently outperforms the baseline

methods that are designed to tackle the non-stochastic multi-armed bandit problem. This

indicates that modeling temporal information based on their clustering patterns in time is

very helpful for retrieving the events of interest within limited resources.
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In Chapter  5 , we propose a novel framework for integrating Hawkes processes with multi-

armed bandit algorithms to solve spatio-temporal event forecasting and detection problems

when data may be undersampled or spatially biased. In particular, we introduce an upper

confidence bound algorithm using Bayesian spatial Hawkes process estimation for balanc-

ing the trade-off between exploiting geographic regions where data has been collected and

exploring geographic regions where data is unobserved. We first validate our model using

simulated data. We then apply it to the problem of disaster search and rescue using calls

for service data from hurricane Harvey in 2017 and the problem of detection and clearance

of improvised explosive devices (IEDs) using IED attack records in Iraq. Our model outper-

forms state-of-the-art baseline spatial MAB algorithms in terms of cumulative reward and

several other ranking evaluation metrics.

In Chapter  6 , We show that Hawkes processes that are used in statistical modeling for

event clustering and causal inference can be viewed as stochastic versions of popular com-

partmental models used in epidemiology. In our work, we show how to develop accurate

models of COVID-19 transmission using Hawkes processes with spatial-temporal covariates.

We model the conditional intensity of new COVID-19 cases and deaths in the U.S. at the

county level, estimating the dynamic reproduction number of the virus within an EM algo-

rithm through a regression on Google mobility indices and demographic covariates in the

maximization step. We validate the approach on both short-term and long-term forecasting

tasks, showing that the Hawkes process outperforms several benchmark models currently

used to track the pandemic, including an ensemble approach and an SEIR-variant. We also

investigate which covariates and mobility indices are most important for building forecasts

of COVID-19 in the U.S.

There are many directions to extend our methods. For example, multivariate Hawkes

processes can be a good extension of our current framework for COVID-19 and earthquake

datasets. A more general regularization method can be used to smooth out the triggering

kernel to avoid over-fitting. This allows us to apply our methods to the datasets with

aggregated timestamps where a lot of temporal information is lost. Potential side information

related to the events should also be included in our application. In specific, we have only drug

structures for overdose events. However, demographic information may play an important
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part. Regarding the COVID-19 modeling, besides the mobility, the vaccination rate can

also be incorporated to model its counter effects on the reproduction number. It will be

interesting to see how our approaches can be extended to other applications.

To summarize the work presented in this thesis, we list the main contribution of each

project and how its implications for future research benefit from our study.

• SOS− EW (Chapter  3 ): We proposed a framework that leverages the drug chemical

structures to make predictions on overdose spikes. This is done by categorizing the

overdose events based on the substances found in the victim’s body. We then use

Hawkes processes to model the overdose events and make predictions.

Implications for future research

In predictive policing [  10 ] or social service delivery and intervention programming, it

can benefit from our model to provide more efficient and immediate help. The public

service can also leverage the model to analyze the overdose patterns and offer better

deployment of syringe services [ 141 ].

• HpUCB (Chapter  4 ): We integrate a multi-armed bandit algorithm with the Hawkes

processes model to develop an online learning framework for research rescue. The

property of the Hawkes process for each region is learned during the exploration and

exploitation. A novel optimistic upper confidence bound for the future number of

events is constructed for decision making. The reward performance shows that the

model can collect the most events during the search.

Implications for future research

Our model provides a great algorithm to model human planning in a life-like search-

and-rescue mission [ 142 ]. Online learning poses an important role in routing and

scheduling of search-and-rescue teams [  143 ]. By formulating such an online learning

process in the form of a multi-armed bandit problem, our model can generate the

optimal decisions that consider the self-exciting properties of natural disaster events.

Moreover, many research works have been proposed to investigate how social media

can be used to predict criminal activities [ 144 ]. Especially, the Hawkes process has
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been adopted to investigate the influence of pathogenic social media posts [ 145 ]. We

believe our model can enrich this line of work and provide a more robust framework.

• HpSpUCB (Chapter  5 ): On top of HpUCB, we introduce a new strategy to include spatial

information. Another innovation is how we use Hawkes process simulation to fill up

the gap between observations. Basically, we build upper temporal confidence bound

and incorporate it with spatial UCB. Experiments show its advantage over the other

baseline when we apply it to the temporally and spatially clustered events.

Implications for future research While most multi-armed bandit algorithms consider

that each reward observation is independent of the other, our model provides an in-

sight to bridge the gap between the observations. A few research paper has tried to

tackle the problem in this domain. They either use the side information to create a

standard learning problem without missing observations [ 146 ] or leverage the context

with observation to make inference [ 147 ]. I believe this work can be a pilot study for

filling the observation gaps in the MAB setting.

• HawkPR (Chapter  6 ):

In this project, an effective and robust Hawkes process model has been proposed to

make forecasting for future COVID cases. A mobility index is seamlessly integrated

into the modeling for infectivity as long as the spatial information in the form of

demographic dataset.

Implications for future research

We contributed our work to the COVID-19 Forecast Hub  

1
 as we believe our work can

be included in the ensemble model and increase the precision of the overall forecast.

Our project also aspired some research work that models the COVID cases on a very

a fine-scale by leveraging a high-resolution spatio-temporal model [ 148 ]. As one of

the pilot studies that use the Hawkes process to model COVID-19 progression, our

project can certainly serve as a strong baseline model for many similar approaches

[ 149 ], and [  150 ]. We also shed some light on the research community on how mobility
1

 ↑ https://covid19forecasthub.org/
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affects infectivity as one of the pioneers that model the cases with human activity [ 151 ].

Many follow-up research has showed the promising results by using similar mobility

datasets [ 152 ].

In conclusion, our models are designed to facilitate the policymakers to make a decision.

Model SOS− EW (Chapter  4 ) proposed an algorithm to predict the overdose spike. Poli-

cymakers can use the model to dynamically arrange the resources, such as drug disposal

facilities, naloxone and naloxone training, or public health and harm reduction programs

more efficiently. The distribution of syringe services can also be done more ideally to pre-

vent waste. The enforcers can also use our model to deploy the beat based on the spike

patterns. Models HpSpUCB (Chapter  5 ) and HpUCB (Chapter  4 ) have provide an online learn-

ing strategy for natural disaster rescue. For example, during the strikes of Hurricanes, the

coast guard can leverage our system to send out their teams and explore the blind spots

in the city with better chances to rescue people. In the most earth-quake-prone area, the

United States Geological Survey (USGS) and USAID Earthquake Disaster Assistance Team

(EDAT) can monitor and support places identified with seismic hazards as they take the

preventative procedures to mitigate these hazards. Model HawkPR (Chapter  6 ) is a pow-

erful tool to indicate the COVID outbreaks in the near future at a county level. With the

aid of our model, the policymakers can identify the hot spot to limit the public gatherings

or pose mask mandates. Mover over, the policymakers can also evaluate the necessity of

traveling restrictions for high-risk regions that our model identifies.
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