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ABSTRACT 

With the recent advancement of computation and imaging technology, Image-based 

computational fluid dynamics (ICFD) has emerged as a great non-invasive capability to study 

biomedical flows. These modern technologies increase the potential of computation-aided 

diagnostics and therapeutics in a patient-specific environment. I studied three components of this 

image-based computational fluid dynamics process in this work. 

To ensure accurate medical assessment, realistic computational analysis is needed, for 

which patient-specific image segmentation of the diseased vessel is of paramount importance. In 

this work, image segmentation of several human arteries, veins, capillaries, and organs was 

conducted to use them for further hemodynamic simulations. To accomplish these, several open-

source and commercial software packages were implemented.  

This study incorporates a new computational platform, called InVascular, to quantify the 

4D velocity field in image-based pulsatile flows using the Volumetric Lattice Boltzmann Method 

(VLBM). We also conducted several parametric studies on an idealized case of a 3-D pipe with 

the dimensions of a human renal artery. We investigated the relationship between stenosis severity 

and Resistive index (RI). We also explored how pulsatile parameters like heart rate or pulsatile 

pressure gradient affect RI. 

As the process of ICFD analysis is based on imaging and other hemodynamic data, it is 

often time-consuming due to the extensive data processing time. For clinicians to make fast 

medical decisions regarding their patients, we need rapid and accurate ICFD results. To achieve 

that, we also developed surrogate models to show the potential of supervised machine learning 

methods in constructing efficient and precise surrogate models for Hagen-Poiseuille and 

Womersley flows. 
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1. INTRODUCTION 

Computational fluid dynamics (CFD) has become a pillar for scientific and engineering 

discoveries complementing experimental analysis. CFD is diversely used in the vast arena of 

research and engineering problems in many sectors of study and industries. Lately, CFD is also 

being used to study biological flow1,2 and is making an essential contribution to medical research 

in designing implantable products, like, stents3 and ventricular assist devices4 and in predicting 

function, as in the cardiovascular5 and respiratory systems.6,7 

With the recent development in radiological imaging such as Computed tomography 

angiogram (CTA)/Magnetic resonance imaging (MRI) and Doppler ultrasound sonography (DUS), 

image processing, and computational techniques, patient-specific computational modeling of 

vascular hemodynamics from image data has emerged as a handy tool with the prospects of 

improved clinical care. Thus, Image-based computational fluid dynamics (ICFD) has become a 

new capability in the biomedical and clinical research field in understanding the underlying 

mechanisms of vascular diseases like stenosis, aneurysms, etc., and thus might be a vital tool in 

clinical decision-making.7  

1.1 Image-based Computational Fluid Dynamics for Medical Applications 

Although CFD began its development with the dawn of the digital computer in the early 

1950s 8,9, ICFD has emerged10-16 relatively recently as a new computer-aided tool for diagnostics 

and therapeutics of cardiovascular diseases with the advances in medical imaging, scientific 

modeling, and computational power. Based on medical imaging data, such as CTA or MRI, 

together with DUS, ICFD has enabled the non-invasive evaluation of 4-D in vivo vectorial velocity 

in the entire arterial system with satisfactory spatial and temporal resolution.  

Pulsatile flow is common in the cardiovascular system, and its flow domain geometry is 

exceptionally complicated. A typical pulsatile flow is four-dimensional (4-D: 3-D in space plus 1-

D in time). These flows consist of a positive mean and a periodically varying time-dependent 

component around the mean. The wall stresses, wall-normal stress (WNS), and wall-shear stress 

(WSS) play central roles in aneurysm initiation, growth, and rupture17 and the development of 

atherosclerosis18.  
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Wall stresses for cardiovascular hemodynamics can be fully characterized based on their 

topological, spatiotemporal, and vectorial nature18,19, which remains problematic in ICFD due to 

the fact that the natural human vasculature is typical of irregular geometry and orientation with 

curvatures and bifurcations. In contrast to traditional vascular assessments, complex 

hemodynamics can be assessed by ICFD blood flow simulations. Determining which metrics can 

help us predict disease development and progression has become the predominant discussion.20 

ICFD has become a mainstay in studying cardiovascular diseases like stenosis and aneurysms for 

many other reasons. The narrowing of the arteries causes stenosis in the process of atherosclerosis 

over time. It is a significant cause of illness and death globally. On the other hand, an aneurysm is 

a bulge or rapid expansion in the wall of an artery. ICFD for a cerebral aneurysm using the patient-

specific geometry model was first reported by DA Steinman et al. in 200321. This information 

shows that fluid dynamics of blood flow, or hemodynamics, contribute significantly to 

understanding the pathology caused by aneurysms, including their initiation, growth, and 

rupture.22-26  

Atherosclerotic plaques are commonly seen at arterial bifurcations and bends. This 

observation has helped us universally conclude that local hemodynamic factors, particularly wall 

shear stresses (WSS), play a significant role in the initiation of the disease or, perhaps, more 

importantly, in the progression.27,28 But measuring wall shear stress, the force exerted by flowing 

blood on the vessel wall, in vivo-is very challenging.29 With the union of high-performance 

desktop workstations and high-resolution medical imaging, it is possible to create realistic ICFD 

models of intact vessels. The hemodynamic factors of interest can be easily extracted.27,30  

Moreover, streamlines and pathlines provide a visual demonstration of flow through 3-

dimensional (3D) structures and are the mainstay option in ICFD; they are of utmost importance 

for surgeons to see changes in flow patterns caused by procedures that alter local anatomy. 

Furthermore, ICFD gives flow velocities and pressures that are helpful in objective decision-

making. For example, based on Bernoulli's equation, velocity carries vast importance in clinical 

applications. Instead, it is often used to quantify flow, pressure, or the cross-sectional area of a 

structure through which blood flows.31 Thus, a higher velocity means the passage of blood through 

a narrower scope or stenosed vessel. Thus, ICFD allows for a non-invasive way of investigating 

several critical clinical questions and not previously possible at a level of detail. ICFD analysis 
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also simulates and predicts the hemodynamics and outcome of intervention during virtual 

surgery.32,33 

Apart from blood flow simulation, ICFD can also be implemented to simulate airflow in the 

vocal tract and respiratory organs. Although respiratory diseases account for millions of deaths 

worldwide,34 typical diagnostic techniques are inconsistent with early pathophysiological changes 

in lung function. They do not always match with the patient's symptoms and outcomes.35 On the 

other hand, ICFD that could predictively estimate a known clinical measure and still provide 

regional information would prove to be a promising tool for clinical decision-making. Moreover, 

in contrast to experimental flow studies, it is trivial to alter model parameters such as flow rates, 

wall properties, etc. This has made ICFD a particularly attractive tool for hemodynamics 

research.27 

1.2 Image Data to 4-D Fluid Dynamics 

In practice, A typical case of ICFD consists of three essential components: 

1. 3-D anatomical extraction for the morphology of the diseased vessel from medical image 

data or construction of 3-D geometry in CAD software for idealized assumptions. 

2. Quantification of 4-D fluid dynamics employing physical parameters together with initial 

and boundary conditions based on DUS. Conducting validation to ensure physical accuracy of 

results. Post-processing with parametric study, statistical analysis, and the cognizance of the 

primary reasons for the disease progression and subsequent physiological response. 

3. Ensuring computational efficiency to get the results as they will help medical 

professionals and patients make decisions regarding treatment and therapeutics.  

The details of each step are largely problem-specific but share many standard features.32 The 

discussion below will focus mainly on aspects common to VLBM in modeling basic fluid flow 

while also bringing out some unique considerations relevant to ICFD research.  

1.2.1 rocesses from Medical Images to 3-D flow domains  

There are three types of medical image data involved in this study that we used for 

anatomical extraction or 3D reconstruction of the vessel of interest and for conducting fluid 

dynamic analysis: CTA/ MRI, SEM, DUS. Image data from CTA/MRI, and SEM were used for 
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image segmentation and 3-D reconstruction of the vessel of interest for ICFD analysis. DUS 

images were not used for image segmentation in this study. We used it for setting up the inflow 

boundary conditions for the parametric study.  

Computed tomography (CT) scan is a form of x-ray that uses a computer to take cross-

sectional images of the human body. Computed tomography angiography (CTA) combines a CT 

scan with a special dye or contrast material in order to create images of blood vessels and tissues 

in a section of the body. An MRI scan uses a large magnet, radio waves, and a computer to create 

a detailed, cross-sectional image of internal organs and structures. Although the imaging 

technology behind CTA and MRI images are quite different, in both cases, the images come in the 

same DICOM (Digital Imaging and Communications in Medicine) format. So, the image 

segmentation procedure to extract the vessel of interest from these image data is remarkably similar.  

Scanning electron microscope (SEM) is an electron microscope that scans the surface of a 

sample with a focused beam of electrons and produces images. SEM does optical sectioning of the 

vessel of interest and provides images in 8-bit/16-bit RGB format usually.  

CTA, MRI, and DUS are on the macro-scale, and all of them are used for medical diagnosis 

and research. SEM images are in the micro-scale and used only for research currently, not for 

medical diagnosis. The resolution for these SEM images is extremely high, whereas the resolution 

of CTA, and MRI images, is not so much. CTA and MRI images come in 3D volumetric forms so 

that we may have 50, 100, 200, or even more 2-D image slices from three different axes going 

through the vessel or organ of interest. When combined, these image slices form a 3-D volume of 

the scanned body. For SEM, we just get one or two image slices that can show the high-resolution 

cross-section of the choriocapillaris and the opening of the arteries and venules to that vascular 

layer. 

In this research, an open-source software package, 3D Slicer, was used for image 

segmentation from CT/MRI images and for creating a 3D reconstruction of the vessel of interest. 

We used MATLAB for the image processing and 3-D construction of the choroid layer from SEM 

image data. Also, for idealized assumptions, commercial Computer-Aided Design (CAD) software 

packages, Siemens NX, and SolidWorks were incorporated.  
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1.2.2 Validation and Parametric Study 

Due to the restriction of computational power and time, only a part of vessel anatomy is 

included in ICFD, and thus boundary conditions must be applied at inlets and outlets of the 

segmented vessel to accurately depict the vascular network outside of the local domain. The 

introduction of inlet BC is quite simple, imposing either a parabolic flow profile based on the 

Poiseuille solution to the flow in a circular pipe or using the analytical solution for Womersley 

flow in a pipe based on a velocity wave from DUS measurement. The choice of outflow BC in 

ICFD is diverse, including zero pressure or zero traction conditions, resistance or impedance 

conditions, and reduced-order models, which can be an open or closed-loop or reduced-order one-

dimensional wave propagation equations.36-38 39,40 One other class of ICFD methods for simulating 

complex flows is the Lattice Boltzmann method (LBM). Instead of directly solving a set of 

nonlinear partial differential equations, i.e., Navier-Stokes (NS) equations, LBM uses a discretized 

kinetic model on a regular lattice six to recreate the dynamic of inexpressible fluid flow, in which 

the non-linearity is separated from the non-locality. Thus due to its particulate nature and local 

dynamics, the LBM has several advantages over the NS-based ICFD method, especially in dealing 

with complex boundaries,41,42 incorporating microscopic interactions1,43 in multiphase flows, and 

implementing Graphics processing unit (GPU) parallelization of the algorithm.1,41,43,44 In this work, 

we used a unique computational platform developed in our lab over the years that we call 

InVascular, for quantifying the 4-D velocity field in image-based pulsatile flows by using a 

volumetric lattice Boltzmann method (VLBM).42 

Ensuring physical accuracy and, at the same time achieving computational efficiency 

remains challenging in ICFD since the real human vascular system is usually irregular in geometry 

and orientation. When the artery is diseased with either stenosis (lumen reduction) or aneurysm 

(lumen enlargement), its geometry can be extremely difficult. For these reasons, a more idealized 

geometry can be used for conducting parametric studies and exploring the underlying flow physics.  

To determine appropriate spatial resolution convergence check was done, and numerical 

results were compared against analytical results obtained from the Womersley solution for 

Pulsatile flow. To conduct the parametric study, we created an idealized geometry, a 3-D pipe with 

the exact dimensions of a renal artery, and we varied the heart rate and pulsatile pressure gradient, 

respectively, to see their effects on Resistive index (RI). RI is defined as (peak systolic velocity – 

end-diastolic velocity) / peak systolic velocity in the cortex or medulla of the kidney. Also, stenosis 
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was created inside the pipe geometry, and the severity was varied to investigate how that affects 

the RI. 

1.2.3 Machine Learning for Efficient ICFD 

Machine learning (ML) is the use of data and algorithms to imitate the way that humans 

learn, gradually improving its accuracy. It is a data analysis method that teaches computers to do 

what humans and animals do naturally: learn from the experience. Machine learning algorithms 

use computational approaches to "learn" information straight from data without resorting to a 

predefined equation as the model. The algorithms adaptively enhance their performance as the 

number of samples data available for learning increases. It has broad applications in prediction, 

image recognition, speech recognition, medical diagnoses, the financial industry, and trading. 

Nowadays, machine learning is being implemented in many sectors of scientific research.  

In numerous scientific fields, the main objective is to find out the correlation between a set 

of detectable quantities (inputs) and another set of variables that are related to these (outputs). 

Once such a mathematical model is set, predicting the value of the desired variables by measuring 

the observables becomes possible. Regrettably, many real-world phenomena are too complicated 

to model as a direct closed-form input-output relationship. Machine learning provides methods 

that can automatically create a computational model of these complex relations by processing the 

available data and exploiting a problem-dependent performance standard. This process of the 

model building automatically is called "training," and the available data used for these training 

purposes is called "training data." This trained model now can provide new insights into how input 

variables are mapped to the output, and it can also be used to make predictions for novel input 

values that were not a part of the initial training data.  

Machine learning techniques can be broadly classified into two main categories depending 

on whether the output values are required to be present in the training data. The first is 

"Unsupervised learning techniques" that require only the input feature values in the training data, 

and the provided learning algorithm discovers hidden structures in the training data based on just 

the input values. While the second form, the "Supervised learning techniques," requires the value 

of both the input and the output variable for each training sample to be known.45 
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Supervised Learning for Efficient ICFD 

In supervised learning, each training sample comes in the form of a pair. The provided 

algorithm then trains a model that predicts the value of the output variables from the input variables 

using the defined features in the process. For supervised learning problems, we can quantify the 

performance of the trained model by measuring the difference between the known output values 

and the predicted ones. However, the error for this performance evaluation must not be measured 

on the training data but a separate test set. This ensures that the algorithm performance on novel 

data can be estimated correctly and gives an idea about the generalization of the learned model.45  

Supervised machine learning creates a model that makes predictions based upon evidence in 

the case of uncertainty. A supervised learning algorithm uses a given set of input data and known 

outputs to those data and then trains a model to produce reasonable predictions for the output to 

new data.  

Although ICFD plays a significant role in solving real-world flow systems, the burden of a 

heavy computation often compromises physical accuracy. Also, the process of ICFD analysis is 

based on imaging and other hemodynamic data and is often time-consuming due to the ample data 

process time, so its application has been majorly in preoperative assessment, planning, and 

predication rather than intra- or postoperative management. The surrogate flow model has the 

potential to attain both computational efficacy and physical precision. In principle, after training 

an accurate model, it can be employed to predict the outcomes for the interested fluid properties 

instantaneously. Therefore, time-consuming, complex ICFD simulations can be replaced by a 

surrogate model of ICFD, and physicians can have an informed decision regarding the patient's 

hemodynamics instantly. In this study, we used supervised learning to predict the velocity field for 

Hagen-Poiseuille and Womersley flows.  
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1.3 Research Objectives 

In this work, we attempted to further develop our in-house ICFD solver InVascular in the 

following three aspects:  

 To be able to work with diverse types of medical imaging data to perform 3-D anatomical 

extractions for ICFD.  

 To perform several parametric studies with an idealized 3-D geometry for reliability and 

applicability of ICFD. 

 Develop surrogate models to enable swift ICFD outcomes for both Hagen-Poiseuille and 

Womersley flows. 
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 METHODOLOGY 

For Image-based computational fluid dynamics (ICFD), the first step is image 

segmentation from patient-specific CT/MRI or SEM data. Several image processing, segmenting, 

and computational tools are used for that. Also, when we consider idealized geometries, they can 

be designed in CAD software packages. Once the 3-D flow domain is ready, then our in-house 

ICFD solver InVascular is incorporated to quantify the 4D velocity field. Finally, GPR machine 

learning techniques were explored to create surrogate models for predicting velocity with more 

computational efficiency within a 3D image-based pipe with renal arterial dimensions and flow 

conditions. 

2.1 Image Segmentation 

In our computational platform, InVascular, we start with segmenting medical image data in 

Standard Triangle Language (STL) data format and aim toward applying it not only to biomedical 

flows but also for parametric-designed flows in nature and engineering. Medical images from CTA 

or MRI are usually in DICOM format. Moreover, the images from SEM are usually in 8-bit/16-bit 

RGB format. Image segmentation is needed to extract the anatomical vessel before the vessel 

geometry is fed to the VLBM for hemodynamics. The raw DICOM and RGB images frequently 

include noises from various sources, and getting rid of these noises is always a crucial step in the 

image segmentation process to extract the anatomical vessels. Such a task usually varies from case 

to case with many uncertainties related to the imaging modality, disease conditions, machine 

resolution, scanning skills, etc. However, we have developed techniques for both DICOM image 

segmentation46,47 and RGB image processing; we strongly recommend having rigorous image 

segmentation and processing with experience rather than simply running software with extensive 

manual inputs, as it affects the quantification of the hemodynamics.  

All the modern CAD software packages, such as Siemens NX, and SolidWorks, can export 

their native files into STL format as well. The conversion from DICOM volumetric image to a 3-

D vessel geometry in STL format48 and construction of the 3-D vascular network from SEM image 

data is crucial as they directly affect the final flow domains for ICFD. Next sections, we will 
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describe the procedure to perform image segmentations from DICOM data, image processing, and 

3-D construction from SEM data and create 3-D CAD models for idealized geometry assumptions. 

2.1.1 DICOM Data 

 To quantify the ICFD in the human arterial system, we need the actual geometries of 

human arteries. For that, we will need patient-specific CT/MRI images. In this work, an open-

source software package, 3D Slicer, was used for segmenting 3D geometries from these CT/MRI 

images.  

3D Slicer49 is an open-source software application for the visualization and analysis of 

medical image computing data sets. 3D Slicer can work with all generally used image data sets, 

such as images, segmentations, surfaces, annotations, transformations, etc., in 2D, 3D, and 4D. It 

supports multi-modality imaging, including CTA, MRI, and DUS. In this study, we used 3D slicer 

to segment the iliac artery, kidney, and connected artery and veins, vocal tracts to create the 

geometry for ICFD analysis. To perform segmentations in 3D Slicer, we used patient-specific 

DICOM data. Figure 1 shows a step-by-step process to create a segmentation of a kidney from 

patient-specific MRI data in 3D Slicer. This segmentation process can be divided into four 

significant steps:  

Step 1: Image Acquisition and Data Loading  

After collecting patient-specific DICOM data, the Load DICOM Data panel is used to import 

data to 3D Slicer. If collected patient data is in MATLAB data format, stacks of image slices are 

exported to 3D Slicer instead of using MATLAB for extraction. Once image data is imported into 

3D Slicer, it arranges the image slices in three default slice views in which Axial, Sagittal, and 

Coronal slices of volume images can be displayed. 

Step 2: Process Data and Segmentation  

The segment editor module is used for segmentation. This module is for identifying the vessel 

of interest, or segments, in 2D/3D/4D images. This module contains several essential tools 

required to segment the geometry of interest. Some of the tools mimic a painting interface like 

photoshop or gimp but work on 3D arrays of voxels rather than on 2D pixels. The module can be 
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used for display in both 2D and 3D views, fine-grained visualization options, editing on slices in 

any orientation, editing in 3D views, editing of overlapping segments, creating segmentation by 

interpolating or extrapolating segmentation on a few slices. First, the Paint tool is used to highlight 

and specify an approximate region of interest. Next, the Threshold tool is used to define a threshold 

range and save outputs to a selected segment, or we can use it as an editable intensity range for 

creating vessel segmentations.  

 

Figure 1. Steps of kidney segmentation in 3D Slicer 

Step 3: Refining Segmentation  

After thresholding, the geometries are usually very uneven and contain many broken parts due 

to pixelated image data. Therefore, the Scissor tool is used to cut off all the extra parts, and then 

the Smoothing tool is used for filling in holes and removing extrusions.  

Step 4: Hollowing and Exporting  

Once satisfied with the geometry, it is then made hollow using the Hollow tool by replacing 

the segment with a uniform-thickness shell defined by the segment boundary. Finally, using the 

Export section of the Segmentations module, the created segment is exported as an STL file for 

processing in our in-house computational modality InVascular. 
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2.1.2 SEM Data 

In this work, SEM data was collected for the choroid, also known as the choroid coat or 

choriocapillaris. It is a part of the vascular layer that is located between the retina and the sclera of 

the eye. Its primary function is to provide nutrients for the retina and glass body and to provide a 

darkroom environment for the entire eye so that the reflected image is clear. 

To construct the 3D model of the choroid layer, we used raw patient-specific SEM image 

data in both 8-bit/16-bit RGB formats. Figure 2 and 3 shows step-by-step process to create a 3D 

model of the choroid layer from patient-specific SEM image data. This modeling process can be 

divided into two major steps:  

Step 1: Image Processing 

After collecting patient-specific SEM image data in RGB format, MATLAB is used for 

image processing. First, MATLAB is used to convert the raw image (8-bit/16-bit RGB format) 

into an 8-bit Grayscale image. Then a threshold value is assigned to convert the 8-bit intensities of 

each pixel of the Grayscale image into binary to convert it into a binary image. Next, the Binary 

image is refined by performing a few morphological operations using MATLAB image processing 

tools.  

 

Figure 2. Steps of image processing for Choroid 

Step 2: Erosion And 3D Model Construction 

Next, the arterioles and venules are identified for the same patient-specific image data. 

Then a smaller portion of the exact location of both the refined binary image and the arteriole-

venule image is cropped. Next, the cropped binary image is eroded to create a series of images, 
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and MATLAB is used to create a 3D geometry connecting these eroded image layers to the 

arteriole venule image layers. Thus, the 3D geometry of the choriocapillaris is constructed. 

 

Figure 3. Steps of 3-D construction of choriocapillaris 

Once the 3-D geometry is derived, VLBM can be used to derive the hemodynamics inside 

the vascular layer, but that is beyond the scope of this study. 

2.1.3 CAD Data 

To reduce the computational cost for ICFD simulations of complex and arbitrarily shaped 

arteries, idealized geometries can be considered to perform validation and parametric study. In this 

work, we assumed a 3-D pipe as the straight portion of the human renal artery and used it for 

conducting a parametric study using our in-house ICFD solver, InVascular. We also created 

stenosis inside the pipe to explore the effects of stenosis severity on RI. We also created several 

other idealized geometries to simulate curved and bifurcated arteries. The idealized geometries 

were generated in commercial software packages Siemens NX and SolidWorks. 

Siemens NX:  

We used Siemens NX to design and create a 3-D pipe with renal arterial dimensions with 

no stenosis as well as with various severities of stenosis. For our computational analysis in VLBM 

method, we designed the pipe as such it is enclosed inside a 3D elongated cube or cuboid to 

differentiate between the flow domain inside and outside the pipe.  
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3D Pipe with No Stenosis 

Figure 4 shows the step-by-step process of creating an image-based 3D pipe with no 

stenosis inside it in Siemens NX. 

Step 1: Sketch Profile 

First, a sketch plane is selected. In this case, the top plane is selected as the sketch plane. 

Next, a circle and a square profile are sketched. Finally, appropriate dimensions are given to the 

circle and the square based on renal arterial dimensions.  

Step 2: Extrude and Subtract 

After completing the sketch, the extrude tool is used to extrude the square to create a cuboid. 

Next, the Extrude tool is used again to extrude the circle to create a cylinder and subtract it from 

the cuboid. The dimensions for the cylinder and the cuboid are given as such; the cylinder is 

entirely enclosed by the cuboid. This enclosed cylinder has the diameter of the average inner 

diameter of a renal artery in humans. 

 

Figure 4. Design steps for a 3D pipe with no stenosis in Siemens NX 
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Step 3: STL File Export 

Finally, the created geometry is exported in STL format for the CFD analysis. In Figure 4 

the wireframe picture shows the enclosed cylinder within the cuboid.  

3D Pipe with Stenosis 

Creating stenosis inside CAD software can be extremely complicated, as the shape of the 

stenosis can be very arbitrary. In this work, the Spline tool in Siemens NX was used to ensure the 

natural curves and bends of stenosis. Figure 5 shows the step-by-step process of creating stenosis 

in Siemens NX. 

Step 1: Sketch Stenosis 

Smoothing and Hollow. First, a sketch plane is selected. In this case, the front plane is 

selected as the sketch plane. Next, the side profile of the stenosis is sketched using the spline tool. 

Different severity of stenosis can be created by giving different heights and surface areas to this 

sketch of stenosis. 

Step 2: Fill Surface and Revolve 

After completing the sketch, the Fill surface tool is used to fill the stenosis surface. Next, 

the Revolve tool is used to revolve the surface at 200° to create the 3D stenosis geometry.  

Step 3: Sketch Profile 

Like the previous no stenosis case, the top plane is selected as the sketch plane. Next, a 

circle and a square profile are sketched. Finally, appropriate dimensions are given to the circle and 

the square based on renal arterial dimensions. 

Step 4: Extrude 

Like the previous no stenosis case, the Extrude tool is used, but instead of extruding the 

square, the region between the square and the circle is extruded to create the subtraction of the 

cylinder from the cuboid. The dimensions for the cylinder and the cuboid are given as such; the 
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cylinder is enclosed within the cuboid. Nevertheless, this time, it is open on the top and the bottom. 

The cylinder still has the diameter of the average inner diameter of a renal artery in a human. 

Step 5: Trim and Delete Body 

Next, the intersected volumes of the 3D stenosis and the pipe wall are subtracted from this 

3D pipe, and the remaining 3D stenosis and pipe are united to create a single 3D geometry.  

Step 6: Unite and Edge Blend 

Smoothing and Hollow. Next, the edge of the 3D stenosis is blended to create a uniform 

surface inside the 3D pipe, just like naturally occurring stenosis in renal arteries. 

 

 

Figure 5. Design steps for a 3D pipe with stenosis in Siemens NX 

Step 7: Extrude and Enclose Cuboid 

Finally, the square sketch created in step 3 is extruded to enclose the top and bottom 

surfaces of the 3D pipe to create the enclosed 3D pipe geometry with stenosis.  
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SolidWorks 

We used SolidWorks to design the idealized curved aorta and bifurcated artery. We created 

the inner volume of the geometries. Figure 6 shows the step-by-step process of creating an 

idealized curved aorta and bifurcated coronary artery in SolidWorks. The entire process could be 

divided into four significant steps. Although for creating an idealized curved aorta, Revolve step 

is not needed. 

Step 1: Sketch 

First, the profile of the 3D geometry was sketched on a plane. For the Curved aorta, it was 

the path to Sweeping. Furthermore, for a bifurcated artery, we create a rectangle to create the 

single-arm with Revolve tool. 

Step 2: Revolve 

Curved aorta design does not require this step. However, for the bifurcated artery, the 

rectangle created don the previous step was revolved 360° to complete the single cylindrical arm. 

Next, one of the bifurcated arms is sketched from the bifurcation. 

 

Figure 6. Design steps for curved and bifurcated pipes in SolidWorks 
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Step 3: Sweep 

For the Curved aorta, a circular profile is swept throughout the sketch drawn in step 1. For 

the bifurcated artery, a circular profile is also swept along the bifurcated arm. Next, it is mirrored 

to create the second bifurcating arm. 

Step 4: Fillet 

Finally, the fillet tool is used to smooth out any sharp edges and corners. Once completed, 

the 3D geometry can be exported in STL format for further CFD analysis. 

2.2 Computational Fluid Dynamics of Pulsatile flows in Pipes 

In this work, we used a unique computational platform for quantifying the 4-D velocity field 

in image-based pulsatile flows using the volumetric lattice Boltzmann method (VLBM).42 The 

novelty of this computational approach consists of (1) a unique extraction of flow domain from 

image data, (2) a seamless connection between the output of image processing and the input of 

CFD, and (3) GPU parallel computing processing41,44,50,51 to significantly mitigate the computation 

burden. To simulate a broad class of complex flows, including pore-scale porous media flow, 52-56 

multiphase/multicomponent flows1,43,57-59 the kinetic-based lattice Boltzmann modeling has 

emerged. The main advantages related to this work are its amenability for modeling the 

intermolecular interactions at the two-phase interface to recover the appropriate multiphase 

dynamics without demanding computing cost and its suitability for scalable GPU (Graphics 

Processing Unit) parallelization41,44,51,57,60-65 to achieve fast computation. 

The VLBM was developed explicitly for complex flows in arbitrary and willfully moving 

boundaries,42 in which the fluid particles are uniformly distributed in lattice cells, as opposed to 

sitting at lattice nodes in conventional LBM. As schematized in Figure 7, an arbitrary boundary 

(black line) separated a fluid domain (without dots) from a solid boundary structure (with dots).  
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Figure 7. Schematic of cell-based space in VLBM distinguishing types of lattice cells: fluid cell 
(P = 0), solid cells (P = 1), and boundary cell (O < P < 1). The solid line represents an arbitrary 

boundary of the ow domain 

Three distinct cells are characterized through the occupation of solid volume ∆𝑉𝑉𝑠𝑠(𝑥𝑥)in the 

cell with a total volume ∆𝑉𝑉(𝑥𝑥), defined as 𝑃𝑃(𝑥𝑥) ≡  ∆𝑉𝑉𝑠𝑠(𝑥𝑥) ∆𝑉𝑉(𝑥𝑥)⁄ .Thus, three different cells, fluid 

cell (𝑃𝑃 = 0), solid cell (𝑃𝑃 = 1), and boundary cell (0 < 𝑃𝑃 < 1), can be distinguished through the 

value of 𝑃𝑃. The detailed formulation of LBM for CFD is referred to in our group's previous 

publication41. The VLBM equation deals with the time evolution of the particle population, 

𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡), corresponding to the 𝑖𝑖-th velocity for 𝑖𝑖 = 0, … , 𝑏𝑏: 

 𝑉𝑉𝑖𝑖(𝑥𝑥 + 𝑒𝑒𝑖𝑖𝛿𝛿𝑡𝑡, 𝑡𝑡 + 𝛿𝛿𝑡𝑡) =  𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡) −  �𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡) − 𝑉𝑉𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡)� 𝜏𝜏⁄       (2.1) 

 𝑉𝑉𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) = 𝑁𝑁𝜔𝜔𝑖𝑖 �1 + 𝑒𝑒𝑖𝑖∙𝑢𝑢

𝑐𝑐𝑠𝑠2
+ (𝑒𝑒𝑖𝑖∙𝑢𝑢)2

2𝑐𝑐𝑠𝑠4
− 𝑢𝑢∙𝑢𝑢

2𝑐𝑐𝑠𝑠2
�      (2.2) 

with 𝜔𝜔𝑖𝑖  is an appropriate weight of the 𝑖𝑖 -th velocity direction, 𝑐𝑐𝑠𝑠  is the speed of sound, 

𝑁𝑁(𝑥𝑥, 𝑡𝑡)�= ∑𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡)� and 𝑁𝑁(𝑥𝑥, 𝑡𝑡)𝑉𝑉(𝑥𝑥, 𝑡𝑡)�= ∑𝑒𝑒𝑖𝑖𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡)� are the total particle population and 

particle momentum in the cell, respectively. 

To depict the streaming part, we rewrite the right-hand side of equation (2.1) as 

 𝑉𝑉𝑖𝑖′(𝑥𝑥, 𝑡𝑡) =  𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡) −  �𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡) − 𝑉𝑉𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡)� 𝜏𝜏⁄       (2.3) 

Where 𝑉𝑉𝑖𝑖′(𝑥𝑥, 𝑡𝑡) represents the "post-collision" particle population. Due to the existence of 

boundary cells, there would be only an appropriate volume fraction of fluid particles streaming to 

its neighboring cell. After a streaming operation, particles in cell 𝑥𝑥 at time 𝑡𝑡 + 𝛥𝛥𝑡𝑡 are from two 

sources: (i) streaming from its upwind neighboring cells, [1 − 𝑃𝑃(𝑥𝑥, 𝑡𝑡)]𝑉𝑉𝑖𝑖′(𝑥𝑥 − 𝑒𝑒𝑖𝑖∆𝑡𝑡, 𝑡𝑡), and (ii) 

bounce-back from the downwind cells 𝑃𝑃(𝑥𝑥 + 𝑒𝑒𝑖𝑖∗∆𝑡𝑡, 𝑡𝑡)𝑉𝑉𝑖𝑖∗
′ (𝑥𝑥, 𝑡𝑡), as shown below. 

 𝑉𝑉𝑖𝑖′′(𝑥𝑥, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) =  [1 − 𝑃𝑃(𝑥𝑥, 𝑡𝑡)]𝑉𝑉𝑖𝑖′(𝑥𝑥 − 𝑒𝑒𝑖𝑖∆𝑡𝑡, 𝑡𝑡) +  𝑃𝑃(𝑥𝑥 + 𝑒𝑒𝑖𝑖∗∆𝑡𝑡, 𝑡𝑡)𝑉𝑉𝑖𝑖∗
′ (𝑥𝑥, 𝑡𝑡)      (2.4) 
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Where 𝑖𝑖∗  corresponds to the direction opposite to the 𝑖𝑖 -th direction 𝑒𝑒𝑖𝑖∗ = −𝑒𝑒𝑖𝑖 . This 

modified streaming process makes sure that particles are reflected in their appropriate locations in 

the fluid domain but does not introduce any extra mass. For the current research, we focus on the 

integration of inlet/outlet BCs with VLBM. The entire computational platform is called 

InVascular.66-68 InVascular starts with feeding the 𝑃𝑃(𝑥𝑥) of each cell to VLBM42 (with D3Q19 

lattice model), together with the inlet/outlet boundary conditions, for ICFD. 

The resulting density, velocity, and pressure are obtained as 𝜌𝜌(𝑥𝑥, 𝑡𝑡) = ∑𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡)/[1 −

𝑃𝑃(𝑥𝑥, 𝑡𝑡)]  and 𝑉𝑉(𝑥𝑥, 𝑡𝑡) = ∑𝑒𝑒𝑖𝑖𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡)/∑𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑡𝑡) . In LBM, including node-based and cell-based 

representation, the relationship between density and pressure is 

 𝑝𝑝(𝑥𝑥, 𝑡𝑡) − 𝑝𝑝0 =  𝑐𝑐𝑠𝑠2[𝜌𝜌(𝑥𝑥, 𝑡𝑡) − 𝜌𝜌0]      (2.5) 

For inlet and outlet BCs, we employ the non-equilibrium extrapolation boundary condition 

as follows 

 𝑉𝑉𝑖𝑖(𝑥𝑥𝑏𝑏, 𝑡𝑡) − 𝑉𝑉𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥𝑏𝑏, 𝑡𝑡) =  𝑉𝑉𝑖𝑖�𝑥𝑥𝑓𝑓, 𝑡𝑡� − 𝑉𝑉𝑖𝑖

𝑒𝑒𝑒𝑒�𝑥𝑥𝑓𝑓 , 𝑡𝑡�          (2.6) 

for 𝑖𝑖-th direction where 𝑥𝑥𝑏𝑏 and 𝑥𝑥𝑓𝑓 are the boundary cell and the fluid cell next to the boundary cell 

in the 𝑖𝑖-th direction. If velocity is known at the boundary 𝑉𝑉(𝑥𝑥𝑏𝑏, 𝑡𝑡) cell, the velocity BC is 

 𝑉𝑉𝑖𝑖(𝑥𝑥𝑏𝑏, 𝑡𝑡) =  𝑉𝑉𝑖𝑖
𝑒𝑒𝑒𝑒 �𝜌𝜌�𝑥𝑥𝑓𝑓, 𝑡𝑡�𝑉𝑉(𝑥𝑥𝑏𝑏 , 𝑡𝑡)� + 𝑉𝑉𝑖𝑖�𝑥𝑥𝑓𝑓, 𝑡𝑡� − 𝑉𝑉𝑖𝑖

𝑒𝑒𝑒𝑒�𝑥𝑥𝑓𝑓 , 𝑡𝑡�       (2.7) 

whereas if pressure 𝑝𝑝(𝑥𝑥𝑏𝑏, 𝑡𝑡) is given, the pressure BC reads 

 𝑉𝑉𝑖𝑖(𝑥𝑥𝑏𝑏, 𝑡𝑡) =  𝑉𝑉𝑖𝑖
𝑒𝑒𝑒𝑒 �𝜌𝜌(𝑥𝑥𝑏𝑏, 𝑡𝑡)𝑉𝑉�𝑥𝑥𝑓𝑓 , 𝑡𝑡�� + 𝑉𝑉𝑖𝑖�𝑥𝑥𝑓𝑓, 𝑡𝑡� − 𝑉𝑉𝑖𝑖

𝑒𝑒𝑒𝑒�𝑥𝑥𝑓𝑓 , 𝑡𝑡�          (2.8) 

where 𝜌𝜌(𝑥𝑥𝑏𝑏, 𝑡𝑡) is calculated from equation 2.5. The outstanding advantage of InVascular is its 

revolutionary fast computational speed realized by the innovative GPU parallel computing 

technology; thus, InVascular is ideal for clinically oriented applications. 

2.2.1 Design Geometry 

The 3D geometries for ICFD analysis are constructed in CAD software packages like 

Siemens NX, SolidWorks, etc. For the parametric study, the geometries with varying stenosis 

severity were also created. A parameter was used to determine the severity of stenosis. 

Stenosis Severity, 

Diameter reduction, 𝑆𝑆𝐷𝐷 = 𝐷𝐷𝑖𝑖𝐷𝐷 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆𝑤𝑤𝑒𝑒𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠
𝐷𝐷𝑖𝑖𝐷𝐷 𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑆𝑆𝑢𝑢𝑤𝑤 𝑆𝑆𝑤𝑤𝑒𝑒𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠

= 𝐷𝐷𝑠𝑠 
𝐷𝐷0 

 

Volume reduction, 𝑆𝑆𝑉𝑉 = 𝑉𝑉𝑆𝑆𝑉𝑉𝑢𝑢𝑉𝑉𝑒𝑒 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆𝑤𝑤𝑒𝑒𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠
𝑉𝑉𝑆𝑆𝑉𝑉𝑢𝑢𝑉𝑉𝑒𝑒 𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑆𝑆𝑢𝑢𝑤𝑤 𝑆𝑆𝑤𝑤𝑒𝑒𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠

= 𝑉𝑉𝑠𝑠 
𝑉𝑉0 
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Figure 8. Schematic for Stenosis severity parameter 

For this study, five different 3-D pipe geometries were created in Siemens NX to simulate 

the stenosis severity based on diameter, 𝑆𝑆𝐷𝐷 at 0%, 20%, 40%, 60%, and 80%. The sectional images 

for all these geometries are shown below in Figure 9. 

 

Figure 9. Sectional views of pipes with varying stenosis severity 

2.2.2 Boundary Conditions 

In patient-specific ICFD, the vessel wall is considered static and rigid. The boundary 

conditions include a no-slip condition on the vessel walls and a pulsatile velocity condition based 

on DUS evaluation at the inlet and outlet. The pulsatile flow along the pipe in the z-direction was 

driven by a pressure gradient. A no-slip boundary condition is considered on the pipe wall, realized 

by the bounce-back boundary condition. The initial conditions are constant pressure and parabolic 

𝐷𝐷0  𝐷𝐷𝑠𝑠  
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velocity in the entire flow domain. In this study, the fluid was considered human blood, and it was 

assumed as a Newtonian fluid having a density of 1025 𝑘𝑘𝑘𝑘/𝑉𝑉3  and kinematic viscosity of 

3.415 × 10−6𝑉𝑉2/𝑠𝑠 was assumed. 

2.2.3 Post-processing 

After the simulation was run on a computer capable of GPU parallel computing, the output 

was derived as a 4-D velocity field of all the cells inside the 3-D pipe. MATLAB and Tecplot were 

used for post-processing the 4D velocity field data. For post-processing, velocities were calculated 

at specific locations inside the 3-D pipe geometry at specific time points. Also, to conduct the 

parametric study, pulsatile parameters heart rate and pulsatile pressure gradient were varied, and 

for each case, velocities at specified locations and time points were calculated to derive RI. Finally, 

the change of RI based on the change of pulsatile parameters and severity of stenosis were 

documented. 

2.2.4 Validation 

A relative error convergence check was done to find the optimum spatial resolution for the 

ICFD analysis. Next, the ICFD results for the optimum resolution case were verified against the 

analytical solution of the Womersley equation. Normalized velocity vs. normalized radius results 

was derived for a specific location and specific time-stamps for both ICFD and analytical solution, 

and a comparison between the two was conducted for the validation of the ICFD process. Also, 

the results for the effects of pulsatile parameters on RI were compared with experimental results.  

2.3 Surrogate Modeling 

Gaussian processes (GPs) are natural generalizations of multivariate Gaussian random 

variables to infinite index sets. GPs have been employed in many disciplines to a diverse range of 

ends. Gaussian process regression (GPR) models are probabilistic models based on a 

nonparametric kernel. In this work, we developed a numerical procedure using Gaussian Process 

Regression (GPR) to show the potential of machine learning methods in constructing efficient and 

precise surrogate models for Hagen-Poiseuille and Womersley flows that include spatial and 

spatial-tempo responses, respectively. 
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A MATLAB toolbox for working with kriging approximations to computer models, Design 

and Analysis of Computer Experiments (DACE),69 was used for creating the GPR models in this 

work. Typical usage of this software is to build a kriging approximation model based on data from 

a computer experiment and use this approximation model as a surrogate for the computer model 

or analytical equation results. A computer experiment here is a collection of pairs of input and 

outputs from runs of a computer model or original flow model in this case. Both the input and the 

outputs from the computer model can be high dimensional. In this study, we implement machine 

learning methods to make predictions for speedy ICFD results. 

 

Figure 10. Flow chart of model development in Gaussian Process Regression 

We used limited runs of the original flow models and applied them to generate the training 

data by calling the analytical solutions multiple times with evenly discretized spatial or spatial-

temporal variables. We compared the GPR method with several other ML methods and explored 

the unique feature of the DACE model. Moreover, to check the accuracy of the surrogate model 

predictions, the predicted results were compared with both ICFD and analytical results. 
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2.3.1 Hagen-Poiseuille Flow 

In fluid dynamics, the Hagen–Poiseuille equation, is a physical law that gives the pressure 

drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical 

pipe of a constant cross-section. The analytical solution for the Hagen–Poiseuille flow is given 

below: 

 or, 𝑉𝑉𝑟𝑟 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅2

(𝑅𝑅2  −  𝐸𝐸2) (2.9) 

This equation was used to create the training dataset with r, R, 𝑉𝑉𝑉𝑉𝐷𝐷𝑚𝑚 as inputs and 𝑉𝑉 as 

outputs. Next, a surrogate model was created based on the DACE model of the GPR method, and 

the predictions from the trained model were evaluated using a new test dataset generated using the 

same equation 2.9. Once the surrogate model predictions reached an acceptable margin of error, 

the results were compared against both ICFD and analytical results. 

2.3.2 Womersley Flow 

Pulsatile flow or Womersley flow is a flow with periodic variations. Pulsatile flows can be 

easily found in a wide range of engineering and scientific systems. Examples include pulmonary 

ventilating70,71 and blood circulating72 in biological flows, sediment transport in coastal flows73, 

and reciprocating flow in internal combustion engines74. The flow profiles were first derived by 

John R. Womersley (1907–1958) in his work with blood flow in arteries.75 The analytical solution 

for the Womersley flow is as follows: 

 
𝑢𝑢

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
=  �1 − 𝑟𝑟2

𝑅𝑅2
� + 4𝐴𝐴

𝛼𝛼2
𝑅𝑅𝑒𝑒𝑉𝑉𝑅𝑅 �1

𝑖𝑖
�1 −

𝐽𝐽0(𝛼𝛼𝛼𝛼𝑅𝑅 𝑖𝑖
3
2�

𝐽𝐽0(𝛼𝛼𝑖𝑖
3
2�
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑤𝑤�      (2.10) 

This equation was used to create the training dataset with r, R, 𝑉𝑉𝑉𝑉𝐷𝐷𝑚𝑚, A, and 𝛼𝛼 as inputs 

and velocity 𝑉𝑉 as outputs. Next, a surrogate model was created based on the DACE model of the 

GPR method, and the predictions from the trained model were assessed using a new test dataset 

generated using the same equation 2.10. Once the surrogate model predictions reached a negligible 

range of error, the results were compared against both ICFD and analytical results. 
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 APPLICATIONS 

We first demonstrate the image segmentation and generation of 3D STL files from patient-

specific DICOM data for different human arteries and organs. Next, we do a 3-D construction of 

choriocapillaris from SEM data. Then, we create idealized arteries in CAD software packages. 

Next, we use one of the idealized arterial geometries, a 3-D pipe, to quantify the 4D velocity field 

using InVascular and validate it against the analytical solution of Womersley flow. Finally, we 

implement supervised machine learning methods to create surrogate models to predict ICFD 

results for the idealized image-based pipe geometry for both Hagen–Poiseuille and Womersley 

flow and compare the predictions against both ICFD results and analytical solutions. 

3.1 Image Segmentation 

We first demonstrate the image segmentation and generation of 3-D STL files from patient-

specific DICOM data using the open-source software package 3D Slicer. We created image 

segmentations of human kidneys and connected aortorenal arteries and veins from patient-specific 

MRI image data. We also segmented the iliac artery from CTA images.  

Kidneys and Aorto-renal Arteries and Veins 

We used 3D slicer and segmented both kidneys along with their connecting renal arteries 

and veins and aorta using patient-specific DICOM data. Figure 11(a) shows the 3D segmented 

geometry, including both left and right kidneys and connected renal artery, vein, and aortas from 

the 3D slicer final STL file. Figure 11(b) shows the 3D segmented geometry, including the left 

kidney and connected renal artery and vein from 3D slicer final STL file. 

The image segmentation process was incredibly challenging. As the CTA data included 

noise and the resolution was not remarkably high as well, segmenting the smaller arteries and veins 

manually was a very demanding task. Moreover, when hollowing these tiny arteries and veins, we 

had to go through slice by slice through the images to ensure the flow path was not blocked or 

partially blocked. Finally, ensuring that the arteries and veins are connected to the kidneys was 

also challenging. To confirm that, we checked the cross-sectional views of the connection regions. 
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Figure 11. (a) 3D view of the segmentation of both kidneys with connected aortorenal arteries, 
veins, and aortas (b) 3d view of a single kidney with its connected artery and veins 

The geometry was initially segmented as solid and afterward was made hollow using the 

Hollow tool from 3D Slicer.  

Iliac Artery 

We also used 3D slicer to segment the bifurcated iliac artery using patient-specific CTA 

data. Figure 12 shows the 3D segmented geometry. 

 

Figure 12. 3D view of iliac artery segmentation 

(a) (b) 
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 For this particular case, the segmentation in the bifurcation region was really intricate. Due 

to the low pixelated resolution, determining the lumen edge was difficult. So, several adjustments 

to the brightness and contrast of the CTA images were made to make the image slices clearer and 

the edges more visible. 

Vocal Tract 

We also segmented vocal tract geometry from MRI images and MATLAB data. We used 

MATLAB, commercial programming, and a numeric computing platform for extracting MRI data 

for 3D Slicer. Patient data were collected from USC Speech and Vocal Tract Morphology MRI 

Database.76 MATLAB was used to extract image sequences from the data files, and then 3D Slicer 

was implemented for segmentation. Here the 3D volumetric MRI scan of a female patient 

vocalizing the vowel "bought" was used as image data. 

 

Figure 13. 3-D vocal tract segmentation from 3D Slicer 

After the segmentation, the Hollow tool was used to make the vocal tract hollow, and the 

Scissor tool was used to create inlet and outlet openings. For this case, having anatomical 

knowledge of the vocal tract was crucial. Understanding where the vocal tract is located in the 

three 2-D views of MRI images and distinguishing between the nasal passage and the vocal tract 

was also important. Moreover, the MRI data was of exceptionally low resolution, and in many 

image slices, the vocal tract lumen is shown as broken with isolated pixels. Connecting those 

isolated portions manually on the right path was very intricate and laborious. 
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3.1.1 SEM Data 

To construct the 3D model of the choroid layer, we used raw patient-specific SEM image 

data in RGB format, and the MATLAB image processing toolbox was implemented for further 

image processing. First, the RGB image is processed into a Binary image. Then a cropped portion 

of the image is eroded into an image series based on the arteriole and venule connection image in 

MATLAB. Finally, the image slices are connected to construct the 3-D geometry of the 

choriocapillaris layer. Figure 14 shows the cropped binary image and the top view of the 3-D 

geometry, and the 3-D view of the vascular layer. 

 

 

Figure 14. (a) Cropped binary image, (b) 3-D choriocapillaris geometry top-view, (c) 3-D 
choriocapillaris geometry isometric-view 

We also segmented the choriocapillaris layer for two other cases from patient-specific SEM 

data and constructed a 3-D flow domain. 

(a) 

(c) 

(b) 
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3.1.2 CAD Data 

In this work, for ICFD analysis and parametric study, we used idealized geometries. We 

created a 3-D pipe geometry simulating the straight portion of an idealized renal artery using the 

commercial CAD software package Siemens NX. We also created pipes with varying stenosis 

severity for the parametric study in Siemens NX. Finally, we created an idealized curved aorta and 

a bifurcated coronary artery in SolidWorks. 

Idealized Renal Artery 

The straight section of a renal artery can be assumed as a straight pipe with similar diameter 

and length. Therefore, we used Siemens NX to design the pipe geometry with renal arterial 

dimensions. 

 

Figure 15. (a) A renal artery with no stenosis, (b) Inside volume of the 3-D pipe geometry with 
no stenosis 

We also created stenosed pipe geometries in Siemens NX. Pipes with varying stenosis 

severity were created for parametric study. Figure 16 shows a diseased renal artery with stenosis 

and the cross-section of a pipe geometry with similar stenosis inside it. 

 

Figure 16. (a) A renal artery with a stenosis, (b) Cross-sectional view of the pipe geometry with 
stenosis 

(a) 

(b) 

(a) (b) 
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Four different stenosis severity pipe geometries were created for the parametric study. In 

all the cases, Sd and Sv were calculated afterward. 

Idealized Curved Aorta 

SolidWorks, a commercial software package, was used to design an idealized curved aorta 

with similar diameters and curvatures. The radius of curvature and the length of the larger arm of 

the aorta were varied to create several design variations to conduct a parametric study to find the 

effect of these parameters on the flow field inside the aorta. 

 

 

Figure 17. (a) A typical curved aorta, (b) Fluid volume inside the designed curved pipe 

For the parametric study, one parameter was changed at a time, keeping all other 

parameters unchanged.  

Idealized Bifurcated Coronary Artery 

SolidWorks, a commercial software package, was used to design an idealized version of a 

bifurcated coronary artery with a similar diameter and angle of bifurcation. The diameters of the 

arteries and the angle of bifurcation were varied to create several design variations to conduct a 

parametric study to find the effect of these parameters on the flow field inside the artery. 

 

(a) (b) 
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Figure 18. (a) A typical bifurcated artery, (b) Fluid volume inside the designed bifurcated pipe 

For the parametric study, one parameter was changed at a time, keeping all other 

parameters unchanged. 

3.2 Parametric Study 

We conducted two studies to demonstrate the reliability and applicability of our 

computational method. The first one is a parametric study of pulsatile flows in an image-based 3D 

pipe with no stenosis. We simulated Womersley (laminar) flows and compared the 4-D computed 

fields of the velocity with analytical solutions. The second one quantifies 4-D fluid dynamics in 

the image-based 3D pipe with varying severities of stenosis and their corresponding RI. 

3.2.1 Computational Setup 

A 3-D rigid, right-circular straight pipe generated in Siemens NX in STL format with a 

length L = 50 mm and a radius R = 2.5 mm. The pulsatile flow along the pipe in the z-direction 

was driven by a pressure gradient. A no-slip boundary condition is considered on the pipe wall, 

realized by the bounce-back boundary condition. The initial conditions are constant pressure and 

parabolic velocity in the entire flow domain. A uniform mesh in the VLBM is used with the cell 

number, 𝑁𝑁𝐷𝐷 across the pipe diameter to represent the spatial resolution. The volumetric parameter 

𝑃𝑃(𝑥𝑥) of each lattice cell is calculated based on the STL file by our in-house MATLAB code.  

Flow is driven by a pressure gradient, 
𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕

 =  𝑃𝑃𝑠𝑠  +  𝑃𝑃0 ∗ 𝑒𝑒𝑖𝑖𝑖𝑖𝑤𝑤 

(a) 

(b) 
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Figure 19. Flow domain and computational setup 

Here, 𝑃𝑃𝑠𝑠 = Mean pressure gradient 

𝑃𝑃0 = Fluctuation of pulsatile pressure gradient 

 

Figure 20. DUS image for inflow boundary conditions 

Form DUS image data and parametric assumptions, the pressure gradients were assumed 

as follows, 

Ps = 280.00 Pa/m. 

𝑃𝑃0 = 488.3525 Pa/m. 

The initial condition was considered a parabolic velocity profile. The boundary condition 

was assumed to be a periodical boundary condition at the inlet and outlet.  
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The analytical solution of the Womersley flow that was used for validating the results from 

ICFD outputs is as follows, 

𝑉𝑉(𝐸𝐸, 𝑡𝑡) =
𝑃𝑃𝑠𝑠𝑅𝑅2

4𝜇𝜇
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𝐸𝐸2

𝑅𝑅2
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3
2�

𝐽𝐽0(𝛼𝛼𝑖𝑖
3
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Other input parameters used for the ICFD analysis are as follows: 

For an average of 75 heartbeats per min, time-period of a human cardiac cycle, 

 T = 0.8 sec  

angular frequency, ω = 2𝜋𝜋
𝑇𝑇

 = 7.85 𝑠𝑠−1  

kinematic viscosity of blood, 𝜇𝜇 = 3.415*10−6 𝑉𝑉2/s 

density of blood, 𝜌𝜌 = 1025 kg/𝑉𝑉3  

Heart rate = HR beats/minute 

So,  𝜔𝜔 = 𝜋𝜋 ∙ 𝐻𝐻𝑅𝑅/30 sec-1 

Peak Systolic Velocity (PSV): 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠  

End Diastolic Velocity (EDV): 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒   

Resistive Index, RI = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 
 

 Here, PSV and ESV are calculated after the ICFD simulation to measure the RI to quantify 

the relationship between the change of pulsatile parameters such as the pulsatile pressure gradient 

(𝑃𝑃0) or heart rate (HR) and resistive index (RI). 

Discretization 

In this case, the grid size in the x and y-direction of the pipe will be 𝑁𝑁𝐷𝐷 along the diameter, 

and in the z-direction will be 10𝑁𝑁𝐷𝐷  along the length of the pipe. We created four different 

resolution cases by choosing a different number of cells in diameter or different grid numbers 

along the diameter. As we kept increasing the resolution, the physical length of the cells kept going 

down. As we have limited computational power, we could not take more than 115 cells in diameter 

for this case. 
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Table 3.1. This table shows the number of cells in each direction and their physical length 

SL No. 

Number of cells 

in x-direction 

(𝑁𝑁𝐷𝐷) 

Number of cells 

in y-direction 

(𝑁𝑁𝐷𝐷) 

Number of 

cells in z-

direction 

(10𝑁𝑁𝐷𝐷) 

Physical length of 

a grid 

�Δx =  0.005
𝑁𝑁𝐷𝐷

�𝑉𝑉 

1. 25 25 250 0.0002 

2. 45 45 450 0.000111 

3. 69 69 690 0.000072463 

4. 115 115 1150 0.044173912380053 

3.2.2 Parametrization for Stenosis Severity 

Siemens NX was used to create stenosis inside the pipe. The degree of stenosis or stenosis 

severity was varied to conduct a parametric study to find the effect of stenosis severity on RI. In 

this study, five different cases of stenosis severity were considered. The geometries were generated 

from stenosis severity based on diameter. Afterward, the volume reduction was calculated from 

the volume analysis in Siemens NX. 

Table 3.2. This table shows the stenosis percentage increase based on Diameter reduction and in 
terms of volume reduction 

Case No. Diameter reduction (𝑺𝑺𝑫𝑫) Volume reduction (𝑺𝑺𝑽𝑽) 

01 0% 0% 
02 20% 4.04% 
03 40% 12.91% 
04 60% 20.66% 
05 80% 34.27% 

 

3.2.3 Post-processing 

MATLAB and Tecplot were implemented for the post-processing of 4D velocity field data 

from the output of VLBM. For post-processing, one period of the pulsatile flow is divided into 4-

time points. For each of these time points, velocity is measured at the longitudinal middle plane of 
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the 3D pipe geometry along its diameter. In this case, the time period is 0.8 sec, and so each time 

point is 0.2 sec apart.  

3.2.4 Results and Validation 

For validation, a convergence check was conducted to find the optimum resolution for the 

ICFD analysis. Next, velocity profiles from the ICFD results were compared against the analytical 

solution. Finally, the results from the parametric study were compared against the experimental 

results. 

Convergence Check 

A convergence check was performed by calculating the velocity at the center of the 3-D 

pipe of a specific time-point for all four resolutions. Next, the velocities were compared to each 

other, and the relative error was calculated. 

Table 3.3. 𝑅𝑅𝑒𝑒𝑅𝑅𝑉𝑉𝑡𝑡𝑖𝑖𝑣𝑣𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  |𝑉𝑉2−𝑉𝑉1|
𝑉𝑉1

 where V1 is the interested quantity at last resolution, and 
V2 is the interested quantity at the current resolution. 

Grid numbers in Diameter Velocity at center Relative Error 

25 0.1827 - 

45 0.1889 0.0339 

69 0.1925 0.0191 

115 0.1937 0.00623 

 

As the 115-resolution case had the lowest relative error, it was selected as the resolution to 

conduct the subsequent several parametric studies. 
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Computed vs. Analytical Velocity Profiles 

Velocity vs. Normalized radius comparison with the analytical solution for 115 cells in 

diameter spatial resolution case is shown in Figure 21. It shows the cross-section of the pipe and a 

line denoting in which location of the pipe this comparison was made. It also shows the four-time 

points on the pulsating time period for which the velocities were compared.  

 

 

Figure 21. Validation: ICFD vs. Analytical velocity profiles 

From Figure 21, we can see a good comparison between the ICFD data and analytical 

solutions for normalized velocity vs. normalized radius. Also, we can observe a minute deviation 

from the analytical solution at the very beginning and at the very end of the pulsatile time points. 

Table 3.4 shows this by calculating the Relative L2 Error Norm for all the cells at those four-time 

points and compare with the analytical solutions. 
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Table 3.4. This table shows the Relative L2 Error Norm for all the cells, and the formula used 

here,  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �∑(𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚−𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚)2

∑𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚2
  

Time-point T1 T2 T3 T4 

Error 0.005493 0.0066781 0.0051619 0.010641 

Varying Pulsatility Magnitude and RI 

For conducting the next part of the parametric study, we wanted to explore how the change 

of pulsatile parameters impacts resistive index RI. To do that, while keeping the heart rate (HR) 

the same (75 beats/minute), pulsatility magnitude (Po) varied from 288 -688 Pa/m. Moreover, we 

considered five different cases with different Po, found the PSV and EDV from the 4-D velocity 

field, and finally calculated RI for each of the five cases.   

Table 3.5. This table shows the effect of pulsatility magnitude on RI with constant Heart Rate   

Case 
No. Heartbeats/min 

Pulsatile 
pressure 

gradient (Po) 
PSV EDV Resistive 

Index (RI) 

01 

75 

288 0.1638 0.0752 0.54 
02 388 0.1791 0.0599 0.67 
03 488 0.1945 0.0446 0.77 
04 588 0.2099 0.0293 0.86 
05 688 0.2253 0.0140 0.94 

 

We also compared our findings with the experimental work done in our group, which also 

explored similar effects of pulsatility index on RI.  
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Figure 22. Resistive index (RI) vs. Pulsatility index for (a) ICFD analysis, (b) experimental 
analysis 

In both ICFD analysis and experimental work, the trend shows that Resistive Index (RI) 

has a positive correlation with the increase of Pulsatile pressure gradient (Po). 

Varying Heart Rate and RI 

For this parametric study, we kept the pulsatility pressure magnitude the same (488.3525 

Pa/m) and varied the heart rate (HR) from 56 -94 beats/minute.  

Ps: Mean magnitude (280.00 Pa/m) 

            Po: Pulsatility magnitude (488.3525 Pa/m) 

Angular frequency, ω = 2𝜋𝜋
𝑇𝑇

  

Heartbeat/min or Heart rate (HR): = 60
𝑇𝑇

beats/min =  60∗ω
2𝜋𝜋

 beats/min  

= 30∗ω
𝜋𝜋

 beats/min 

Resistive index, RI = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 
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Table 3.6. This table shows the Effect of HR on RI when keeping the same pulsatility magnitude 

Case 
No. 

Pulsatility 
Magnitude (Po) 

Hear Rate 
(heartbeats/minute) PSV(m/s) EDV(m/s) Resistive 

Index (RI) 

01 

488.3525 

56 0.2176 0.0216 0.90 
02 66 0.2049 0.0342 0.83 
03 75 0.1945 0.0446 0.77 
04 85 0.1859 0.0530 0.72 
05 94 0.1787 0.0601 0.66 

 

Similar to the previous parametric study, we also considered five different cases with 

different HR, found the PSV and EDV from the 4-D velocity field, and finally calculated RI for 

each of the five cases. We also compared our findings with the experimental work done in our 

group, which also explored similar effects of changing heart rate on RI.  

  

Figure 23. Resistive index (RI) vs. Heart rate for (a) ICFD analysis, (b) experimental analysis 

In both ICFD analysis and experimental work, the trend indicates that Resistive Index (RI) 

shows a negative correlation with the increase in Heart Rate (HR). 
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Stenosis Severity and RI 

In this parametric study, we explore the effects of change in stenosis severity on RI. The 

input parameters are, 

Calculations were done for 75 heartbeats per minute.  

So, the Time period for a cardiac cycle, T = 60
75

 sec = 0.8 sec  

Angular frequency, ω = 2𝜋𝜋
𝑇𝑇

 = 7.85 𝑠𝑠−1 

Heartbeat/min or Heart rate (HR): =  60∗ω
2𝜋𝜋

 beats per min =  30∗ω
𝜋𝜋

 beats per min 

Po = 488.3525 Pa/m 

Ps = 280.00 Pa/m 

RI = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 
 

Using these parameters, we conducted ICFD analysis for five different stenosis severity 

cases 0%, 20%, 40%, 60%, and 80% stenosis severity based on diameter. Then we calculated PSV, 

EDV, and finally RI at three different distances from the inlet and outlet, at 5mm, 10mm, and 

20mm distances. The following sections describe the results for each of these cases. 

Case One 

For this case, the calculations were done at a 5 mm distance from the inlet and the outlet 

of the 3-D pipe. Figure 24 shows the longitudinal section view of a pipe with stenosis and the 

locations where the PSV and EDV velocities were measured to calculate the RI. 

 

Figure 24. Longitudinal-section of pipe with stenosis for calculating RI at 5 mm distance from 
inlet and outlet 

5 mm 5 mm 
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Table 3.7 shows the measurements of PSV and EDV made at the aforementioned locations 

before and after stenosis. It also shows the stenosis severity in both 𝑆𝑆𝐷𝐷 and 𝑆𝑆𝑉𝑉 and also calculates 

the RI for each case.  

Table 3.7. This table shows the relationship between RI and Stenosis severity at a 5 mm distance 
from the inlet and outlet of the 3-D pipe 

Case 
No. 𝑺𝑺𝑫𝑫 𝑺𝑺𝑽𝑽 

Before Stenosis After Stenosis 

PSV EDV RI PSV EDV RI 

01 0% 0%  0.1945 0.0446 0.7707 
02 20% 4.04% 0.1915 0.0428 0.7764 0.1925 0.0429 0.7772 
03 40% 12.91% 0.1689 0.0298 0.8239 0.1761 0.0301 0.8292 
04 60% 20.66% 0.1099 0.0037 0.9662 0.1225 0.0040 0.9671 
05 80% 34.27% 0.0260 0.00 1.0 0.0261 0.00 1.0 

 

Figure 25 shows the five different stenosis severity 𝑆𝑆𝐷𝐷 and their respective RI. In the figure, 

the solid black line denotes the RI before the stenosis. Furthermore, the red dotted line shows the 

RI after the stenosis. 

 

Figure 25. Resistive index (RI) vs. Stenosis severity 
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Table 3.7 and figure 25 show that RI increases when Stenosis severity increases, and after 

and 𝑆𝑆𝐷𝐷 of 40%, RI rises sharply. Also, we can observe that the differences in RI before and after 

the stenosis is not much, while we can observe the most difference at 40% of 𝑆𝑆𝐷𝐷. 

Case Two 

For this case, the calculations were done at a 10 mm distance from the inlet and the outlet 

of the 3-D pipe. Figure 26 shows the longitudinal section view of a pipe with stenosis and the 

locations where the PSV and EDV velocities were measured to calculate the RI. 

 

Figure 26. Longitudinal-section of pipe with stenosis for calculating RI at 10 mm distance from 
inlet and outlet 

Table 3.8 shows the measurements of PSV and EDV made at the locations specified 

previously before and after stenosis. It also shows the stenosis severity in both 𝑆𝑆𝐷𝐷  and 𝑆𝑆𝑉𝑉  and 

calculates the RI for each case.  
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Table 3.8. This table shows the relationship between RI and Stenosis severity at a 10 mm 
distance from the inlet and outlet of the 3-D pipe 

Case 
No. 𝑺𝑺𝑫𝑫 𝑺𝑺𝑽𝑽 

Before Stenosis After Stenosis 

PSV EDV RI PSV EDV RI 

01 0% 0%  0.1945 0.0446 0.7707 
02 20% 4.04% 0.1913 0.0428 0.7763 0.1933 0.0429 0.7779 
03 40% 12.91% 0.1675 0.0297 0.8230 0.1830 0.0305 0.8331 
04 60% 20.66% 0.1098 0.0036 0.9671 0.1445 0.0048 0.9667 
05 80% 34.27% 0.0271 0.00 1.0 0.0298 0.00 1.0 

 

Figure 27 shows the five different stenosis severity 𝑆𝑆𝐷𝐷 and their respective RI. In the figure, 

the solid black line denotes the RI before the stenosis. Moreover, the red dotted line shows the RI 

after the stenosis. 

 

Figure 27. Resistive index (RI) vs. Stenosis severity 

Table 3.8 and figure 27 also show that RI increases when Stenosis severity increases, and 

after and 𝑆𝑆𝐷𝐷 of 40%, RI rises sharply. We can also observe that the deviations in RI before and 

after the stenosis have increased a little compared to the previous 5 mm distance case, while we 

can still observe the most difference at 40% of 𝑆𝑆𝐷𝐷. 

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 20 40 60 80

Re
sis

tiv
e 

In
de

x 
(R

I)

% Stenosis (SD)

RI Before

RI After

10 mm



 
 

58 

Case Three 

Finally, for this case, the calculations were done at a 20 mm distance from the inlet and the 

outlet of the 3-D pipe. Figure 26 shows the longitudinal section view of a pipe with stenosis and 

the locations where the PSV and EDV velocities were measured to calculate the RI. 

 

Figure 28. Longitudinal-section of pipe with stenosis for calculating RI at 20 mm distance from 
inlet and outlet 

Table 3.9 shows the measurements of PSV and EDV made at the locations specified 

previously before and after stenosis. It also shows the stenosis severity in both 𝑆𝑆𝐷𝐷  and 𝑆𝑆𝑉𝑉  and 

calculates the RI for each case. 

Table 3.9. This table shows the relationship between RI and Stenosis severity at a 20 mm 
distance from the inlet and outlet of the 3-D pipe 

Case 
No. 𝑺𝑺𝑫𝑫 𝑺𝑺𝑽𝑽 

Before Stenosis After Stenosis 

PSV EDV RI PSV EDV RI 

01 0% 0%  0.1945 0.0446 0.7707 
02 20% 4.04% 0.1910 0.0428 0.7762 0.1960 0.0432 0.7797 
03 40% 12.91% 0.1684 0.0297 0.8238 0.1994 0.0310 0.8444 
04 60% 20.66% 0.1271 .00066 0.9948 0.1997 0.0029 0.9854 
05 80% 34.27% 0.0691 0.00 1.0 0.1035 0.00 1.0 

 

20 mm 20 
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Figure 29 shows the five different stenosis severity 𝑆𝑆𝐷𝐷 and their respective RI. In the figure, 

the solid black line denotes the RI before the stenosis. Furthermore, the red dotted line shows the 

RI after the stenosis. 

 

Figure 29. Resistive index (RI) vs. Stenosis severity 

Table 3.9 and figure 29 also show that RI increases when Stenosis severity increases, and 

after and 𝑆𝑆𝐷𝐷 of 40%, RI rises very sharply. We also observed that the differences in RI before and 

after the stenosis had increased a lot more compared to the previous 5 mm, 10 mm distance cases. 

We can observe a significant difference at 20% and 60% 𝑆𝑆𝐷𝐷 while we still find the most deviation 

at 40% of 𝑆𝑆𝐷𝐷. 

This parametric study shows that resistive index RI has a positive correlation with the 

increase in stenosis severity 𝑆𝑆𝐷𝐷  as well as 𝑆𝑆𝑉𝑉.  
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3.3 Surrogate Model 

In this work, we created surrogate models for predicting the velocity field inside an image-

based 3D pipe geometry for both Hagen-Poiseuille flow and Womersley flow using Gaussian 

Process Regression in MATLAB Machine Learning Toolbox. We used the software package 

DACE (Design and Analysis of Computer Experiments), which is a MATLAB toolbox for 

working with kriging approximations to computer models, for creating the GPR surrogate models 

for both Hagen-Poiseuille flow and Womersley flows in this work.  

Training Dataset Generation  

For creating the surrogate model, the first step is to create training datasets that will be used 

to train the surrogate models. In this work, we used analytical solutions to generate a training 

dataset for both the surrogate models. For Hagen-Poiseuille flow in a pipe, the analytical solution 

is as follows, 

𝑉𝑉𝑟𝑟 =
𝑉𝑉𝑉𝑉𝐷𝐷𝑚𝑚

𝑅𝑅2
(𝑅𝑅2  −  𝐸𝐸2) 

This equation was used to create the training dataset and testing dataset for training and 

evaluating the accuracy of the surrogate model, respectively.  

Range for 𝑉𝑉𝑉𝑉𝐷𝐷𝑚𝑚 was 0.1 ~ 5 𝑉𝑉/𝑠𝑠, 𝑉𝑉𝑉𝑉𝑎𝑎 𝑅𝑅 = 0.0025 𝑉𝑉. The number of training data points for the 

surrogate model was 450. 

Moreover, for pulsatile flow, the Womersley equation was used to create a training dataset 

and a test dataset to train the surrogate model and calculate the accuracy of predictions of the 

model. The analytical solution for Womersley flow is as follows,  

𝑉𝑉
𝑉𝑉𝑉𝑉𝐷𝐷𝑚𝑚

 = �1 −
𝐸𝐸2

𝑅𝑅2
� +

4𝐴𝐴
𝛼𝛼2

𝑅𝑅𝑒𝑒𝑉𝑉𝑅𝑅 �
1
𝑖𝑖 �

1 −
𝐽𝐽0(𝛼𝛼𝐸𝐸𝑅𝑅 𝑖𝑖

3
2�

𝐽𝐽0(𝛼𝛼𝑖𝑖
3
2�

� 𝑒𝑒𝑖𝑖𝑖𝑖𝑤𝑤� 

The normalized analytical solution is, 

𝑉𝑉′(𝐸𝐸′, 𝑡𝑡′) = (1 − 𝐸𝐸′2) +
4𝐴𝐴
𝛼𝛼2

𝑅𝑅𝑒𝑒𝑉𝑉𝑅𝑅 �
1
𝑖𝑖 �

1 −
𝐽𝐽0 �𝛼𝛼𝐸𝐸′𝑖𝑖

3
2�

𝐽𝐽0 �𝛼𝛼𝑖𝑖
3
2�

� 𝑒𝑒𝑖𝑖𝑤𝑤′� 

where, 𝑡𝑡′ = 𝜔𝜔𝑡𝑡 

Here we considered, 𝜔𝜔 = 7.85 sec-1 
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And range for pulsatile time-period, t = (0.604 ~ 1.304) sec 

So, 𝑡𝑡′ = 𝜔𝜔𝑡𝑡  = 7.85 *(0.604 ~ 1.304) = 4.7414 ~ 10.2364 

Therefore, for the surrogate model input ranges were, 

A: 1~2 

α: 2~5  

𝐸𝐸′: 0~1,  

𝑡𝑡′: 4.7414 ~ 10.2364 

The number of training data points for the surrogate model was 9000. 

Training Surrogate Model 

For training the models, first, the input and output parameters were specified for each flow. 

In both cases, we specified the velocity field 𝑉𝑉 as output. All the other parameters were assumed 

as inputs or constants for simplification. Next, a range was specified for each input variable, and a 

normal distribution of randomly generated inputs within that specified range was taken. Finally, 

the analytical solutions of both flows were used to find the output 𝑉𝑉 for a random combination of 

those input parameters. Thus, the training datasets were generated for each model. 

After the training dataset was generated, both the surrogate models were trained using a 

specific training dataset. The surrogate model for the Hagen-Poiseuille flow required less training 

data compared to the model for pulsatile flow to reach the required goal of prediction accuracy as 

the number of input parameters is far less compared to Womersley flow. 

Validation 

For testing the accuracy of the predictions from the surrogate models, new datasets were 

generated using the analytical solutions of both flows. The testing dataset also had inputs within 

the same range of training dataset inputs. The testing dataset was also generated using a normal 

distribution of the specified range and a random number generation algorithm from MATLAB. 

Finally, when the surrogate models achieved good comparison, they were used to make 

predictions for the same input parameters as ICFD results. 

In this work, we compared the surrogate model predictions with both ICFD results and 

analytical solutions for both Hagen-Poiseuille and Womersley flows. 
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3.3.1 Hagen-Poiseuille Flow Model 

For validation, normalized velocity vs. normalized radius results was compared from the 

trained surrogate model predictions with both ICFD and Analytical data. 

 

Figure 30. Validation for the surrogate model of Hagen-Poiseuille flow 

Prediction Error =  �∑(𝑉𝑉𝑝𝑝𝛼𝛼𝑒𝑒𝑒𝑒−𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚)2

∑𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚2
 = 0.11% 

ICFD Error =  �∑(𝑉𝑉𝐶𝐶𝐶𝐶𝐷𝐷−𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚)2

∑𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚2
 = 0.59%  

 

The surrogate model prediction is equally well to the ICFD results when compared with 

the analytical solution for Hagen-Poiseuille flow. When compared against the analytical solution, 

a prediction error of 0.11% was observed, whereas the CFD error was 0.59%. 
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3.3.2 Womersley Flow Model 

For validation of the trained surrogate model, the normalized velocity for four different time 

stamps of a pulse period of Womersley flow vs. normalized radius results was compared with both 

ICFD results at the same time points and locations and analytical solutions. 

 

Figure 31. Validation for the surrogate model of Womersley flow 

Prediction Error =  �∑(𝑉𝑉𝑝𝑝𝛼𝛼𝑒𝑒𝑒𝑒−𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚)2

∑𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚2
 = 0.53% 

ICFD Error =  �∑(𝑉𝑉𝐶𝐶𝐶𝐶𝐷𝐷−𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚)2

∑𝑉𝑉𝑚𝑚𝑛𝑛𝑚𝑚2
 = 0.63%  

 

Surrogate model predictions for Womersley flow at representative time points in a pulse are 

in good agreement with analytical solutions and  CFD simulation results. Compared to the 

analytical solution, a mean error of 0.53% was found, whereas the CFD error was determined as 

0.63%. 
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 SUMMARY 

In this study, 3-D reconstruction of several human vessel systems was established. We also 

developed a MATLAB code to perform image processing of SEM data and 3-D construction of 

choriocapillaris. We also created several idealized vessel geometries for parametric study using 

commercial CAD packages. 

We also conducted several parametric studies to ensure the reliability and applicability of our 

ICFD solver InVascular and our computational method. We conducted convergence checks and 

validations and found that the velocity profiles from the results agree with the analytical solution 

of the Womersley flow. We also explored the effects of the Pulsatility index and heart rate on RI 

and observed that RI has a positive correlation with the increase of pulsatile pressure gradient and 

a negative correlation with the increase of heart rate, which is consistent with experimental results. 

We also found from our parametric studies that; severer stenosis corresponds to larger RI. These 

results show that, besides pressure gradient-based indices, this velocity-based index, RI, can be a 

good indication of stenosis severity. 

In this work, we also implemented supervised machine learning to create surrogate models to 

achieve extremely fast ICFD results compared to traditional ICFD solvers. We used a Gaussian 

Process Regression model, DACE, to create surrogate models for both Hagen-Poiseuille and 

Womersley flows. After completion of model training, we compared the prediction results from 

the surrogate models against both ICFD results and analytical solutions. For the surrogate model 

of Hagen-Poiseuille flow, a prediction error of 0.11% was observed, whereas the ICFD error was 

0.59% when compared to the analytical solution. Furthermore, for the surrogate model of 

Womersley flow, a mean error of 0.53% was found, whereas the CFD error was determined as 

0.63% when compared to the analytical solution. Therefore, we can conclude that the surrogate 

models can precisely represent both Hagen-Poiseuille and Womersley flow models. 
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APPENDIX 

I.MATLAB code: Image Processing from RAW 8-bit RGB to Binary Image Data 
clc; clear; clear all; 
 
Raw_image = imread('Raw.tif'); %Import Raw image 
 
image = rgb2gray(Raw_image);    %Convert raw image to grayscale 
 
binary_image = imbinarize(image); %Binarize Image Using Global Threshold 
imshow(binary_image) 
 
BW = imbinarize(image, 'adaptive'); %Binarize Image Using Locally Adaptive 
Thresholding 
 
mean_Intensity = mean(image,'all');   %Determine the mean value of pixels in the 
grayscale image. 
binary_mean = image > mean_Intensity; 
 
mean_user = input('Enter a threshold value within 0 to 255. \n');  %Taking input for 
Threshold 
binary_user = image > mean_user; 
 
imshowpair(binary_user,BW,'montage') 
 
subplot(1,4,1); 
imshow(Raw_image); 
title('Original Image'); 
 
subplot(1,4,2); 
imshow(BW); 
title('Adaptive'); 
 
subplot(1,4,3); 
imshow(binary_mean); 
title('Mean Intensity'); 
 
subplot(1,4,4); 
imshow(binary_user); 
title('User Input'); 
 
imwrite(BW,'Adapdive_thresholding.tif'); %Saving converted binary image to a file 
imwrite(binary_mean,'Mean_intensity.tif'); 
imwrite(binary_user,'User_input.tif'); 
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II. MATLAB code:  Binary Image in Thresholding Method and Cleaning up  
Raw_image = imread('Raw.tif'); %Import Raw image 
[J,rect] = imcrop(Raw_image); 
image = rgb2gray(Raw_image);    %Convert raw image to grayscale 
 
mean_user = input('Enter a threshold value within 0 to 255. \n');  %Taking input for 
Threshold 
binary_user = image > mean_user; 
 
% imshowpair(binary_user,BW,'montage') 
 
imwrite(binary_user,'User_input.tif'); 
 
%Cleaning binary iamge 
%Method 1 
% b0 = bwmorph(binary_user,'majority'); 
% b1 = bwmorph(b0,'clean');    %Removes isolated pixels 
% b2 = bwareaopen(b1, 2);    %Remove objects containing fewer than 5 pixels 
% b3 = bwmorph(b2,'fill');    %Fills isolated interior pixels 
 
%Method 2 
% b0 = bwmorph(binary_user,'majority'); 
b1 = bwmorph(binary_user,'clean');    %Removes isolated pixels 
b2 = bwareaopen(b1, 5);    %Remove objects containing fewer than 5 pixels 
b3 = bwmorph(b2,'fill');    %Fills isolated interior pixels 
 
imwrite(b3,'Binary.tif'); 
 

III. MATLAB code: Thresholding Method from RAW 16-bit RGB to Cropped Binary Image 

and Cleaning up  
clc; clear; clearvars; 
 
I = imread('18-0814 OS  LIPA for WY.tif'); %Import Raw image 
 
[J,rect] = imcrop(I);   %Crop raw image 
% imshow(J) 
imwrite(J,'Raw_cropped.tif');   %save cropped raw image 
 
% K = rgb2gray(J);    %covert rgb to grayscale 
% imwrite(K,'Gray_cropped.tif');   %save cropped raw image 
img8 = uint8(J / 256); 
user_input = input('Enter a threshold value within 0 to 255. \n');  %Taking input for 
Threshold 
binary_user = img8 > user_input; 
% imshow(binary_user) 
imwrite(binary_user,'Binary_user.tif');  %save binary image 
 
%Cleaning binary iamge 
%Method 1 
% b0 = bwmorph(binary_user,'majority'); 
% b1 = bwmorph(b0,'clean');    %Removes isolated pixels 
% b2 = bwareaopen(b1, 2);    %Remove objects containing fewer than 5 pixels 
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% b3 = bwmorph(b2,'fill');    %Fills isolated interior pixels 
 
%Method 2 
% b0 = bwmorph(binary_user,'majority'); 
b1 = bwmorph(binary_user,'clean');    %Removes isolated pixels 
b2 = bwareaopen(b1, 5);    %Remove objects containing fewer than 5 pixels 
b3 = bwmorph(b2,'fill');    %Fills isolated interior pixels 
 
imwrite(b3,'Binary.tif'); 
% M = imread('Manual.tif'); 
% imshowpair(M,b3,'montage') 
% imshowpair(J,K,'montage') 
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