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ABSTRACT

Domain adaptation is one of the hottest directions in solving annotation insufficiency

problem of deep learning. General domain adaptation is not consistent with the practical

scenarios in the industry. In this thesis, we focus on two concerns as below.

First is that labeled data are generally collected from multiple domains. In other words,

multi-source adaptation is a more common situation. Simply extending these single-source

approaches to the multi-source cases could cause sub-optimal inference, so specialized multi-

source adaptation methods are essential. The main challenge in the multi-source scenario

is a more complex divergence situation. Not only the divergence between target and each

source plays a role, but the divergences among distinct sources matter as well. However,

the significance of maintaining consistency among multiple sources didn’t gain enough at-

tention in previous work. In this thesis, we propose an Enhanced Consistency Multi-Source

Adaptation (EC-MSA) framework to address it from three perspectives. First, we mitigate

feature-level discrepancy by cross-domain conditional alignment, narrowing the divergence

between each source and target domain class-wisely. Second, we enhance multi-source con-

sistency via dual mix-up, diminishing the disagreements among different sources. Third, we

deploy a target distilling mechanism to handle the uncertainty of target prediction, aiming to

provide high-quality pseudo-labeled target samples to benefit the previous two aspects. Ex-

tensive experiments are conducted on several common benchmark datasets and demonstrate

that our model outperforms the state-of-the-art methods.

Second is that data privacy and security is necessary in practice. That is, we hope to

keep the raw data stored locally while can still obtain a satisfied model. In such a case,

the risk of data leakage greatly decreases. Therefore, it is natural for us to combine the

federated learning paradigm with domain adaptation. Under the source-private setting, the

main challenge for us is to expose information from the source domain to the target domain

while make sure that the communication process is safe enough. In this thesis, we propose

a method named Fourier Transform-Assisted Federated Domain Adaptation (FTA-FDA) to

alleviate the difficulties in two ways. We apply Fast Fourier Transform to the raw data

and transfer only the amplitude spectra during the communication. Then frequency space
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interpolations between these two domains are conducted, minimizing the discrepancies while

ensuring the contact of them and keeping raw data safe. What’s more, we make prototype

alignments by using the model weights together with target features, trying to reduce the

discrepancy in the class level. Experiments on Office-31 demonstrate the effectiveness and

competitiveness of our approach, and further analyses prove that our algorithm can help

protect privacy and security.

15



1. INTRODUCTION

1.1 Overview of General Domain Adaptation

Recent decades witness that deep learning has gained incredible success in multiple areas

such as computer vision from [ 1 ] and natural language processing from [ 2 ]. [ 1 ] proposes a

model called ResNet which greatly improve the performance of image classification task,

while [ 2 ] provides a pretty much strong representation model named BERT that benefits

almost all the downstream tasks in the natural language processing area. The common key

element of their success is the availability of large-scale labeled data. The pretrain of ResNet

is based on Imagenet ([ 3 ]), while that of BERT depends on the WordPiece embeddings with

a 30,000 token vocabulary ([ 4 ]).

In practical situations, however, it is not easy to acquire abundant labeled data. After

all, it is hard to invest so much on data processing like Google since manual annotation is

time-consuming and expensive. Having limited labels or even no label is a very common

phenomenon for most of us. Another common assumption we get accustomed is that the

data we need to inference share the same distribution with the labeled data. However, this

assumption is easy to be distorted. Consider a situation that we have labeled data and

unlabeled data which are generated under different circumstances such as styles, angles,

cameras or light but share the same label space. If we simply ignore the distribution shifts

between them, the inference will not be effective enough.

In such cases, domain adaptation is one of the solutions to dealing with two issues we

mentioned above. In our setting, source domain is a collection of data which own labels

while target domain includes data that have no label information. Domain adaptation aims

to adapt models by transferring knowledge from the source domain to the target domain so

that even without label information from the target domain, models can still work well on

the target classification tasks ([ 5 ]). Actually, it is a specific type of transfer learning methods.

Based on the theoretical work from [ 6 ], [ 7 ], a large amount of single-source domain

adaptation approaches have been proposed, which only explore labeled data from one single

domain to infer the data from target domain. There exist two major groups of solutions

with different strategies to mitigate the cross-domain shift. The first branch is metric-based
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method, which hopes to find a metric to measure and minimize the discrepancy between the

source domain and the target domain. MMD by [ 8 ], DDC by [ 9 ], D-CORAL by [ 10 ], DAN

by [  11 ] and DCC by [ 12 ] are representative jobs for this branch. While the second branch

is adversarial approach, which regards the source and target domain as two competitors in

a min-max game, and the discrepancy becomes smaller during the competition. Prior work

comes from RevGrad by [ 13 ], MCD by [  5 ], CyCADA by [ 14 ] and DRANet by [ 15 ]. Although

these two paradigms consider domain adaptation from different views, their common goal is

to minimize the domain discrepancy explicitly or implicitly.

Till now, we have talked about the necessity of research on domain adaptation and the

progress of general domain adaptation. In the next three sections, we will first introduce some

related work of general domain adaptation, then turn to multi-source domain adaptation and

federated domain adaptation. To be concrete, we will discuss why we need these two types

of varied adaptations, and how we can improve them in this thesis.

1.2 Related Work of General Domain Adaptation

Motivated by the seminal deductions from [  6 ] and [ 7 ], a large number of methods have

been proposed. Under certain assumptions, model’s target error can be bounded by its

source error and the divergence between the source and target domains. Metric-based and

GAN-based approaches are the two major routes in the single-source domain adaptation.

Metric-based method tends to measure the discrepancy between the source and target domain

explicitly. [ 11 ] uses maximum mean discrepancy, while [ 9 ] applies deep domain confusion

and [ 10 ] utilizes correlation relation. [  16 ] uses this paradigm to solve heterogeneous domain

adaptation. [ 17 ] makes jointly clustering and discrimination for alignment together with

contrastive learning. The GAN-based method origins from [ 18 ]. It builds a min-max game

for two players related to the source and target domains so as to minimize the discrepancy

implicitly during the competition. [  13 ] adopts domain to confuse the two players, while [ 5 ]

uses classifier discrepancy as the objective. [ 19 ] also applies this paradigm but pay attention

to a new kind of domain called neuromorphic vision sensing domain. With the invention

of [ 20 ], [  21 ] proposed CyCADA, considering this problem from the pixel level and creating
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a reconstruction process between these two domains. Besides, there are other ideas that

prove to work. [ 22 ], [ 23 ] and [  24 ] attempt to alignment these two domains class-wisely on

feature-level. Mix-up is also a popular augmentation technique, as [ 25 ] adds dual mix-up

and [  26 ] applies domain mix-up.

1.3 Motivation and Objective of Multi-Source Domain Adaptation

Multi-source domain adaptation dedicates to transfer the knowledge from multiple source

domains to one target domain with unlabeled data. It fits the actual application scenarios

better. For example, when we gather a lot of medical images for the use of segmentation, the

different environments from different hospitals ensure that these images come from different

domains ([ 27 ]). Another instance origins from analysis on distinct mobile devices in this

era, which different customer habits lead to label distribution shifts ([  28 ]). Therefore, multi-

source domain adaptation gains more and more attention in the community recently.

The main challenge in the multi-source problem is a more complex divergence situation

among multiple domains. Not only the divergence between the target and each source

domain, but also the divergences among distinct source domains should be considered. There

are also two major technical routes for the multi-source problem. First is the statistic

matching method, aiming to aligning different domains statistically. M3SDA by [ 29 ], MCC

by [ 30 ] and MSCLDA by [ 31 ] belong to this type. Second is the GAN-based approach, trying

to build min-max games for each source-target pair so that the discrepancies can be reduced

implicitly. DCTN by [ 32 ], MDAN by [ 33 ] and MSDTR by [  34 ] apply this strategy. The

common strategy of these two routes is aligning from two perspectives. We need to align

each pair of source and target while ensure the consistency among all the sources in order to

get an ideal prediction on target. Besides, ensemble strategy is also an significant part for

multi-source adaptation. Popular methods like simple average from [ 35 ], distance weighting

from [  24 ] and knowledge distilling from [  36 ] are representative work.

Although prior work is excellent and instructive, the potential weaknesses could not be

ignored, and that’s the reason why we propose our new method and write this thesis. First

is a lack of suitable conditional alignment methods. Current class-wise methods tend to
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cause big shifts in one single mini-batch and make the model not robust enough in a single

batch training. Second, the consistency among multiple sources should be reinforced. Since

we have so many source domains to be considered along with their pairwise discrepancies,

a balanced situation will largely improve the model’s performance, especially when we are

applying a simple averaging ensemble strategy. Third is the noise inside the target’s pseudo-

labels. These noisy samples will directly impact the formation of our model. To address

these issues above, we propose our approach named Enhanced Consistency Multi-Source

Adaptation (short for EC-MSA) to enhance consistency from different aspects. We conclude

our contributions from following perspectives:

• First, we use an adaptive conditional alignment strategy by making iterative update

on centroids of each domain. This method could resist noise from single sample and

avoid big shifts in one mini-batch.

• Second, we enhance the consistency among distinct source classifiers via target data

augmentation, which ensure more agreement among different classifiers.

• Finally, we filter the low-confident target samples by adopting a target distilling mech-

anism. It will purify the target domain and thus help the previous two parts.

1.4 Motivation and Objective of Federated Domain Adaptation

Federated domain adaptation aims to transfer knowledge from the source domain to the

target domain while keep the privacy and security of raw data. To be concrete, we need to

keep the source and target data stored locally so that they cannot be fed into the neural

network at the same time. It follows the trend in the industry that more and more users

concern about the security of their private data and worry about the potential leakage.

Besides, there are more and more countries and regions signing the regulations that protect

the data privacy and security of citizens. Therefore, it is really necessary to focus on this

topic.

The main challenge in the federated domain adaptation is the conflict between infor-

mation exposure and protection. We hope to expose more source information to the target
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client without transferring raw data, but also want to decrease the risk of data leakage during

the training process. Generally there exist two technique routes. First is the non source-free

adaptation, like [ 37 ], [  38 ] and [ 27 ]. In this paradigm, sample-based information like gradient

will be sent to the target domain while the raw data are excluded from the communication.

Besides, we need to ensure that the recovery of the raw data from the sample-based informa-

tion is impossible. Second is the source-free adaptation, like [ 39 ], [ 40 ] and [ 41 ]. Under this

setting, only model parameters are allowed in the communications and sample-based source

information is completely forbidden.

Prior work is really enlightening to us while the weaknesses are still need to be addressed.

For the non source-free algorithms, people still worry about the potential recovery based on

sample-wise information. In fact, [ 42 ] has proved that it is possible to reconstruct the

raw source data with gradient leakage attacks if source’s gradients are transferred to the

target client as FADA ([ 37 ]) does. For the source-free algorithms, it always owns a more

loose empirical risk bound than the non source-free versions according to the theoretical

deductions from [ 43 ]. It’s intuitive to us because sample-wise information is not allowed and

the alignment will become harder. In practice, the source-free setting treats the adaptation

problem as one supervised learning process on source and one self-supervised process on

target, which lacks an explicit connection between these two domains. To alleviate these

difficulties, we propose our method called Fourier Transform-Assisted Federated Domain

Adaptation (FTA-FDA) and show our contributions in the following three folds:

• First, we separate the raw images in the frequency space and transit only a small

proportions of the amplitude spectra. Frequency space interpolation is applied to the

alignments between the source and target domains.

• Second, we conduct prototype alignments with the help of model’s weights, ensuring the

source-private setting and reducing class-wise discrepancies between the two domains.

• Finally, we evaluate our method on the popular dataset, and design a series of experi-

ments to exhibit the security of it.
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1.5 Organization

In this section, we make an introduction to the themes of this thesis. The rest chapters

of the paper are organized in the following. Chapter 2 includes the background knowledge of

the thesis that may help people understand the thesis better. In Chapter 3, we present our

novel multi-source approach named Enhanced Consistency Multi-Source Adaptation (short

for EC-MSA) in an end-to-end fashion, along with all the components of the model and

some theoretical analyses. Besides, we also provide the experiments related to EC-MSA

on several benchmark datasets in Chapter 3, together with the implementation details and

result comparisons, followed by some empirical analyses. In Chapter 4, we present our novel

source-private approach named Fourier Transform-Assisted Federated Domain Adaptation

(short for FTA-FDA), along with all the elements of the model. Besides, we also provide the

experiments related to FTA-FDA on the benchmark dataset in Chapter 4. What’s more, we

also talk about the effectiveness of security protection in this chapter. In the end, Chapter

5 concludes the previous parts of the thesis and then gives some hints on the future work

for our topics.
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2. BACKGROUND

2.1 Backbone

Although the foundations of domain adaptation come from traditional methods like fea-

ture selection ([ 44 ]), distribution adaptation ([ 45 ]) and subspace learning ([ 46 ]), no one can

ignore the great evolution that deep learning brings. It is probably due to the reason that

deep learning could extract more expressive transferable representations from the deep neural

network ([ 47 ]).

However, the use of deep neural network could cause another problem. That is, the

progress of a model is just achieved by a more complex model, instead of a more suitable

adaptation or a better-defined loss function. In such a case, the core objective of domain

adaptation problem will be blurred.

Therefore, scholars in this community form a consensus that certain types of backbones

should be applied to avoid the unfair situation mentioned above. The most popular back-

bones are AlexNet ([ 48 ]) and ResNet ([ 1 ]).

2.1.1 AlexNet

AlexNet origins from the paper [ 48 ]. It is a specific type of Convolutional Neural Network

and just combine several tricks like Rectified Linear Unit (ReLU) from [ 49 ] and Dropout from

[ 50 ], but received an excellent test error improvement on the ImageNet LSVRC-2012 task.

Gradually, it becomes a popular backbone to use in the domain adaptation community and

lots of work has applied it to demonstrate the effectiveness.

Figure  2.1 (image from  

1
 ) shows the architecture of AlexNet. Generally we tend to keep

all the layers except the final fully-connected layer. The last layer will be replaced according

to the number of classes.

Two diagrams are followed in the community. First is to use the extracted features after

certain layers. For example, [ 47 ] uses the output of the last but one layer as features. This

kind of method will feed these extracted features to some fully-connected layers and fine-tune

on them directly. Since very simple network is adopted after feature extraction, the training
1

 ↑ https://en.wikipedia.org/wiki/AlexNet
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Figure 2.1. AlexNet. (Image from https://en.wikipedia.org/wiki/AlexNet)
(Best viewed in color.)

process can save a lot of time. However, it might limit the potential of a new method as the

training model is too shallow and cannot meet the end-to-end requirement, which is pretty

much common in the industry.

Another is to use the whole network, as most work does. For all the things prior to

the linear layers, we can fix them or assign a very small learning rate to them. For the

fully connected layers, we can continue to use the original version or replace them with a

more complex version, with four layers or even more. In such a case, the raw data can be

used directly so that the training can be shaped in an end-to-end fashion. However, it will

certainly take more time and use more resource.

2.1.2 ResNet

ResNet is proposed by [ 1 ]. Apart from the tricks from [  48 ], ResNet adds residual blocks

to the network so that the degradation problem in the deep network can be alleviated.
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Table 2.1. Architecture of ResNet. (Image from [ 1 ])

For the supervised tasks like ImageNet LSVRC and COCO, ResNet has surpassed AlexNet

completely. As for domain adaptation tasks, generally ResNet performs better than AlexNet

when equipped with the same methods. Therefore, ResNet has a wider use than AlexNet in

the community.

Table  2.1 (image from [ 1 ]) shows 5 branches of ResNet named as ResNet-18, ResNet-

34, ResNet-50, ResNet-101 and ResNet-152. In some papers you can see the utilization of

ResNet-18 and ResNet-34, but since they are relatively simple and do not have the bottle-

neck architectures, they are not very common. As for ResNet-152, it does have the most

complicated structure among all these architectures while doesn’t show any advantages, thus

is hardly seen in all the scholars’ work. The mainstream branches are ResNet-50 and ResNet-

101. ResNet-50 tends to be used in simpler tasks and ResNet-101 is more suitable to difficult

tasks, especially some tasks related to semantic segmentation.

For ResNet-50 and ResNet-101, we also have two diagrams. First is the feature extraction.

The outputs after the adaptive average pooling layer are regarded as the features. Same as

AlexNet, we feed these features to some fully-connected layers and fine-tune on them directly.

The pros and cons are the same as mentioned in the previous subsection.

For using the whole network, things are quite different because we have two kind of

protocols. One is to replace the fully-connected layers as AlexNet. The other is to replace
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the part starting from the adaptive average pooling layer, as [ 35 ] does. The advantages and

disadvantages are the same as mentioned in the previous subsection so we don’t spend more

time on that.

2.2 Distance Function

Although deep neural network can improve the model’s performance greatly, it doesn’t

exert on the perspective of adaptation, which is what distance functions can help. In this

section, we will talk about the popular distance functions in the community. All of them

offer an empirical estimation of the discrepancy between different domains.

2.2.1 KL Divergence

KL divergence ([ 51 ]) is short for Kullback-Leibler divergence. It has been widely used in

some work such as [ 52 ] and [ 53 ]. We assume that the distributions for two domains are P (x)

and Q(x), and the probability space is X , then KL divergence is denoted as:

DKL(PQ) =
∑
x∈X

P (x) log P (x)
Q(x) . (2.1)

2.2.2 JS Divergence

JS divergence ([ 54 ]) is short for Jensen-Shannon divergence. It is on the basis of KL

divergence. We still use P and Q to represent two domains, while M = 1
2(P + Q), then the

JS divergence is:

DJS(P ||Q) = 1
2 [DKL(P ||M) + DKL(Q||M)] (2.2)

Compared with KL divergence, JS divergence is a more symmetric distance function.

Work like [ 55 ] has applied it as a part of the loss function. Some self-supervised papers like

[ 56 ] also adopt this metric.
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Figure 2.2. Sliced Wasserstein Distance. (Image from [ 59 ]) (Best viewed in color.)

2.2.3 Sliced Wasserstein Distance

Wasserstein distance ([ 57 ]) first appeared in the community when [  58 ] came out. Then

[ 59 ] extended it to the field of domain adaptation as sliced wasserstein distance. Generally,

we use wasserstein-1 version, with another name called Earth-Mover. Assume γ is the joint

distribution of P and Q as we used previously, and Π(P, Q) is the set of all joint distributions,

then we denote the wasserstein distance as:

WD(P, Q) = inf
γ∈Π(P,Q)

E (x1,x2)∈γ
x1∈P,x2∈Q

∥x1 − x2∥ (2.3)

Sliced wassertein distance as shown in Figure  2.2 (image from [ 59 ]) is extended by it.

Here we use a linear projection Rθ to P and Q and sum the results over the sphere:

SWD(P, Q) =
∫

Sd−1
WD(RθP, RθQ)dθ (2.4)

Compared with KL divergence and JS divergence, sliced wasserstein distance is much

more sensible, especially when the distributions are supported by low dimensional mani-

folds. This is because probability space’s underlying geometry properties are taken into

consideration.
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2.2.4 Mutual Information

Mutual information ([  60 ]) is a popular estimation tool in the area of self-supervised learn-

ing. As more and more work in the domain adaptation begins to view the task in a similar

perspective, it is necessary to get exposed to this distance function. Mutual information

aims to measure the similarity between different distributions. Assume distributions for two

domains are P (x) and Q(x), and γ is the joint distribution of P and Q. We can conclude:

MI(P, Q) =
∑

x1∈P

∑
x2∈Q

γ(x1, x2) log γ(x1, x2)
P (x1)Q(x2)

(2.5)

Generally, we hope to maximize mutual information between different domains so that

the domain-specific information can be disentangled like [  61 ] does. It also plays a significant

role in the federated and source-free domain adaptation like [  62 ] and [ 39 ].

2.2.5 Maximum Mean Discrepancy

Maximum Mean Discrepancy ([ 63 ]) is one of the most popular distance functions in the

domain adaptation community. We use ϕ(·) to map multiple samples to the Reproducing

Kernel Hilbert Space (RKHS), which is represented as H. The whole expression is denoted

as:

MMD(P, Q) = ∥Ex1∈P [ϕ(x1)] − Ex2∈Q[ϕ(x2)]∥2
H . (2.6)

This distance function is based on the adaptation of marginal distribution. Following

this, conditional adaptation ([ 64 ]) and joint adaptation ([ 47 ]) are proposed. If we represent

the label space as C, then the conditional Maximum Mean Discrepancy can be denoted as:

CMMD(P, Q) = Ec∈C ∥Ex1∈P c [ϕ(x1)] − Ex2∈Qc [ϕ(x2)]∥2
H . (2.7)

As for joint adaptation, it combines the marginal version and the conditional version:
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Figure 2.3. Details of Domain Mix-up. (Image from [ 26 ]) (Best viewed in color)

J MMD(P, Q) = ∥Ex1∈P [ϕ(x1)] − Ex2∈Q[ϕ(x2)]∥2
H +Ec∈C ∥Ex1∈P c [ϕ(x1)] − Ex2∈Qc [ϕ(x2)]∥2

H .

(2.8)

2.3 Data Augmentation

Data augmentation is very effective for both supervised and unsupervised learning due

to the fact that it can improve the generalization ability of models. When it comes to the

domain adaptation problem, things become a little different. Two types of augmentations

are adopted. One is to just assist the self-supervised process, such as pseudo-labeling. The

other is designed for the domain adaptation task specifically. In this section, we will place

extra emphasis on the second type and several methods will be introduced.

2.3.1 Domain Mix-up

Domain mix-up was first proposed by [ 26 ] and then also utilized by [ 65 ]. The core idea

is to mix up two domains so that the adversarial process can learn the implicit transferable

information better.
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Figure 2.4. Details of Dual Mix-up. (Image from [ 25 ]) (Best viewed in color)

It is shown as Figure  2.3 (image from [ 26 ]). During the mix-up procedure, mixed samples

and soft labels with mix-up ratios are created, together with a flexible margin. There exists

two levels of domain mix-up: pixel-level domain mix-up and feature-level mix-up. They are

all built to lead the model to behave linearly among distinct domains.

2.3.2 Dual Mix-up

Dual mix-up ([ 25 ]) makes data augmentation on pixel level but conducts categorical

mix-up and domain mix-up. The details are shown in Figure ( 2.4 ) (image from [ 25 ]).

For domain mix-up, it serves the same function as mentioned above, which encourage

a more linear behavior among multiple domains. What’s more, the dual mix-up could also

improve the consistency among different predictions. There exists other mix-up work like

[ 66 ], but we won’t spend more time on it.

2.3.3 Adversarial Feature Augmentation

Adversarial feature augmentation is proposed by [ 67 ]. According to the authors, it is the

first time that GAN ([  18 ]) has been used to do data augmentation on the feature level. The

details are displayed in Figure  2.5 (image from [ 67 ]).

It can be observed that Step 1 and Step 2 both apply the augmentation by GAN. Random

noise is added and then augment features from different domains. The GAN architecture
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Figure 2.5. Details of Feature Augmentation. (Image from [ 67 ]) (Best viewed in color)

can help the model learn target features which are indistinguishable from the source, thus

improve the whole adaptation process.

2.4 Federated Learning

Federated learning is really a hot topic nowadays, especially when we are in the times of

Mobile Internet. Everyone cares more about leakage and illegal use of personal information,

and the government pays more attention to the regulations about these issues. In such a

case, a specific machine learning paradigm that can help protect security and privacy is

very necessary, and that is federated learning. [ 68 ] is the first paper which proposed this

concept completely. From the famous survey [ 28 ] in this field , we can get the definition

of federate learning. It is a machine learning setting where multiple clients (for example,

multiple cellphones or laptops) collaborate in solving a machine learning problem. During the

process, we always need to ensure that raw data of each client are in a state of locally storage

and these raw data are forbidden to be exchanged or transferred all the time. What’s more, a

large number of empirical experiments ([ 42 ]) show that federated learning can largely reduce

computational complexity, thus save time and money for the academia and the industry.

Generally, there exist two kinds of federated learning, centralized and decentralized.

Figure  2.6 (image from [ 69 ]) exhibits the situation of centralized version, where a central

server will orchestrate all the training and communicate with all the clients without getting
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Figure 2.6. Federated Learning. (Image from [  69 ]) (Best viewed in color)

in touch with any raw data. The decentralized version is a little different. It follows a

peer-to-peer topology, which means no central server will be implemented, along with a

connectivity graph that could be dynamic. Work like [ 42 ] applies this structure. Here we

mainly focus on the centralized one.

Following what Figure  2.6 shows, we demonstrate the workflow of centralized federated

learning, which includes six steps:

• Problem setting: First, the Machine Learning system should decide a machine learn-

ing problem to be solved.

• Client preparation: Next, we need to choose several clients to join the life-cycle.

These clients will be instrumented with local data and initial models if exist. Com-

monly not all the clients will be available in one epoch.

• Proxy data simulation: This step is optional. In fact, for some federated learning

approaches it can be skipped. Since raw data from any clients are not allowed to be

exchanged or transferred, using proxy data could be a good choice. Here we can gener-

ate proxy data for each client using methods like dataset distillation ([ 70 ]), frequency

space interpolation ([  27 ]) and GAN ([ 41 ]).
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• Training: Then we can start the training process. Sometimes we need to transfer

the proxy data to each client. Then two options can be selected. First is that we can

use just one model and different clients leveraging different variations or parameters of

one single model, like [ 42 ] does. Second is that we try distinctive models for multiple

clients, then try to combine them with different strategies like averaging ([ 68 ]) or voting

([ 71 ]).

• Evaluation: After the task have gained sufficient leverages, we need to analyze the

effectiveness of all the candidates and select the best model. The selection standard

could be either the candidates’ performances on the data center’s dataset or the com-

bined performances on all the clients’ local data.

• Deployment: In the end, one model has been selected. Then this model will be

launched to all the clients that will be activated in the next epoch.

2.5 Fourier Transform

Fourier Transform is a useful tool for the synthesis and decomposition of signals. ([ 72 ])

With this tool, we can project signals from the time space to the frequency space, thus more

properties of the signals can be found. The basic transforms between these two spaces are:

X(jω) =
∫ +∞

−∞
x(t)e−jωtdt, (2.9)

and

x(t) = 1
2π

∫ +∞

−∞
X(jω)ejωtdω. (2.10)

This version is generally called Continuous-Time Fourier Transform (short for CTFT).

Equation  2.9 is the Fourier transform, which converts time space signal to the frequency

space. Equation  2.10 is the inverse Fourier transform, which converts frequency space signal

to the time space.

CTFT is the foundation for different kinds of transforms but that’s not enough. Let’s

consider a situation that we need to deal with signals or data in the time space on computers.

Generally, it’s very hard for machine to compute on continuous data. ([ 73 ]) Therefore, it’s
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important to develop a transform that focus on discrete data in the time space. We sample

from x(t) to get the discrete time series as x[n] and then the transforms become:

X(ejω) =
+∞∑
−∞

x[n]e−jωn, (2.11)

and

x[n] = 1
2π

∫
2π

X(ejω)ejωndω. (2.12)

These two equations are called Discrete-Time Fourier Transform pair (short for DTFT).

Equation  2.11 is the discrete Fourier transform, which converts the time space series x[n] to

the frequency space. Equation  2.12 is the inverse discrete Fourier transform, which converts

the spectrum X(ejω) to the time space.

After sampling from the time space, it’s very natural for us to extend it to the frequency

space. Of course, we also need machine’s help when facing problems from the frequency

space. If N samples will be selected evenly from the frequency space, the interval would be
2π

N
. First, we will introduce a useful notation as:

WN = e−j(2π/N). (2.13)

Then the Discrete Fourier Transform pair (short for DFT) can be represented as:

X[k] =


∑N−1

n=0 x[n]W kn
N , 0 ≤ k ≤ N − 1,

0, otherwise,

(2.14)

and

x[n] =


1
N

∑N−1
k=0 X[k]W −kn

N , 0 ≤ n ≤ N − 1,

0, otherwise.

(2.15)

Similar as previous, Equation  2.14 is the analysis equation that transfers time space

signals to the frequency space, while Equation  2.15 is the synthesis equation that transfers

frequency space information to the time space.
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Nowadays, the actual operations that most machines conduct are DFTs, but a more

advanced algorithm named Fast Fourier Transform (short for FFT) has been implemented

while keep the same results. ([ 74 ]) It can greatly reduce the time complexity of DFT from

O(N2) to O(log N), thus much more friendly when computers are required, and many frame-

works like PyTorch ([ 75 ]) and software like MATLAB ([  76 ]) apply it as the default algorithm

for all kinds of Fourier transforms. We are not going to talk about the details of how it

makes improvements, but the core idea is that it’s just a fast version of DFT.
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3. ENHANCED CONSISTENCY MULTI-SOURCE DOMAIN

ADAPTATION

3.1 Preliminaries and Motivations

For a typical multi-source domain adaptation problem, there are N well-labeled source

domains, where Sj = {(xsj
i , y

sj
i )}nsj

i=1 represents the dataset of source domain j with nsj labeled

samples. What’s more, we assume a source domain space S = {1, 2, ..., N}. Besides, there

exists a target domain dataset T = {xt
i}nt

i=1 that includes nt unlabeled samples. These N + 1

domains share the same label space but lie in different distributions. The label space is

denoted as D = {1, 2, ..., K}, while K is the number of classes. In such a case, the goal is to

seek a good classification model that could achieve a high accuracy on the target domain.

For multi-source domain adaptation problem, plenty data will generalize the model better

intuitively. However, they also bring a more complicated divergence situation. That is,

not only the divergence between source and target domains brings challenges, but also the

divergence across multiple source domains matters as well. Prior work like [ 13 ] and [ 10 ]

shows that a lack of concentrating on the shifts among distinct source domains like the

single-best and source-combine standards tends to lead a sub-optimal solution. Therefore, a

specialized multi-source domain adaptation method is necessary and valuable in performance

improvement.

3.2 Related Work

Theoretical analyses from [ 77 ] and [ 21 ] provide solid foundations for research under this

topic. Similar to the single-source problem, there also exist two mainstream routes: GAN-

based route and statistic matching route. The GAN-based method builds min-max games

for each source and target domain. [ 32 ] uses domain discriminators to construct their model.

[ 33 ] adds a known-unknown discrimination to enhance the min-max game. Recent work from

[ 78 ] gets instructions from CycleGAN [ 20 ] and tries to establish cycle-consistency between

each source and target domain. Statistic matching strategy aims at finding an explicit

metric to represent discrepancies among multiple domains. [ 29 ] used moment matching to
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Figure 3.1. Overview of our proposed Enhanced Consistency Multi-Source
Adaptation Network (EC-MSA), which contains one shared feature extrac-
tor F , N domain-specific generators {G1}, · · · , {GN} and source classifiers
{C1}, · · · , {CN}. Sample images are chosen from distinct domains of the Office-
Home dataset. (Best viewed in color.)

align different domains. [ 30 ] proposes minimum class confusion to measure the discrepancy.

[ 31 ] does alignment on domain-level and class-level simultaneously. [ 79 ] and [ 80 ] both follow

this paradigm along with attention module. Besides, using federated learning like [ 39 ], [ 42 ] is

a popular research now, and other strategies like implicit alignment [  81 ] and source distilling

[ 24 ] also gain much attention. Ensemble methods for the final inference is also an important

part to delve into for multi-source adaptation. [  35 ] applies an average strategy, while [ 24 ]

tackles it with a distance-based weighting approach. [ 36 ] uses knowledge distilling to deal

with the ensemble part.

Our model EC-MSA adopts the statistic strategy. Differently, we adopt a multiple source-

target conditional alignment to capture the source-specific knowledge for target learning.

Besides, we first introduce dual mix-up regularization to multi-source problem and also add

a target distilling mechanism.
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3.3 Method

3.3.1 Framework Overview

We propose our method EC-MSA. The architecture of our model is shown in Fig  3.1 ,

which consists of two modules, i.e., the feature extractor group and the classifier group.

Specifically, the feature extractor group is composed of one shared extractor and K

domain-specific extractors. We denote the shared one as F (·). The shared one is used for

the first stage’s primitive alignment, intending to map all the data into a relatively domain-

invariant space and accelerate the training process at the same time. It drops most of the

extra information that is not helpful for the following steps and reduces the scale of the data

largely.

The domain-specific extractors are represented as {Cj(·)}N
j=1. They are aim to produce

domain-specific features with pairs of source and target data. The information coming from

domain-specific extractors is very helpful for feature-level centroid alignment work and we

will discuss it later. One thing that is unique for our method is that we create separate

corridors for source and target in each extractor. To speak concretely, we make the batch

normalization processes unshared for data from distinct domain. In such a case, we can

ensure the function of being domain specific for extractors of this group.

The classifier group contains N classifiers corresponding to distinct source domains de-

noted as {Cj(·)}N
j=1. Usually, the outputs of this group are utilized to calculate classification

loss with cross-entropy as:

Lcls =
N∑

j=1
E(x

sj
i ,y

sj
i )∈Sj

Lce(Cj(Gj(F (xsj
i ))), y

sj
i ), (3.1)

where Lce(·) represents the cross-entropy loss function. Commonly categorical regularization

is utilized on the output probabilities as prior work does. The reason is that target samples

near decision boundaries are more likely to be mis-classified. In other words, the disagree-

ment on different probabilities may lead to worse predictions on these hard target samples,

especially when we use the average strategy within the classifier group for the final verifica-
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tion of the target dataset. Thus, we propose to use the regularized penalty item shown as:

Lcr = Ext
i ∈T [E j̸=p

j,p∈S
Dis(Cj(Gj(F (xt

i))), Cp(Gp(F (xt
i))))], (3.2)

where Dis(·, ·) represents a canonical L1-Norm function. j and p correspond to different

source domains.

3.3.2 Adaptive Cross-Domain Alignment

Although class-wise views are quite popular in the domain adaptation community, it is

still not easy to align on class-aware sub-domains, especially when facing the multi-source

setting owing to two main difficulties.

The first one is that data in one single batch is uncertain. To be concrete, data of distinct

classes may not appear at the similar frequencies as the entire dataset, and a lack of data

belonging to some classes in one batch is possible. These two phenomena will always cause ill-

conditioned class-wise sub-domains and an unstable distribution in the batch thus be harmful

to the following alignment work. Although there exists excellent prior work on single-source

like [ 82 ] and [ 83 ], it is still hard to transfer these methods to multi-source problems in

our experiments. It is due to the properties of the multi source problem considering so

many domains to be considered and a more complex divergence situation. Therefore, doing

alignment on the global centroids of all the categories with a moving average strategy like

[ 23 ] might be a better option, and our results validate its efficiency.

The next to be mentioned is that the target data is unlabeled so we have to use pseudo-

labels for class-aware alignment, but several poor-predicted samples in a single batch will

influence the class-aware sub-domains a lot. In such a case, it is important to suppress the

noisy labels conveyed in the target samples. Our moving average strategy for generating

global centroids can play a big role in improving it, as most target samples can be classified

correctly and the centroids will not shift a lot even if the wrong-labeled samples exist.

However, adaptive cross-domain alignment is just a partial job of what we do. Target

distilling mechanism will be applied and this part will be discussed later.
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Our class-wise alignment is adaptively operated. Initially, we obtain the global centroids

for source j domain (∀j ∈ S) as {Ō
sj
k }K

k=1 and for target domain as {Ōt
k}K

k=1. For the to-be-

updated global centroids, we denote them as {O
sj
k }K

k=1 and {Ot
k}K

k=1 correspondingly.

For each mini-batch, the temporary centroids are computed for the source j and target

domain using the labels and pseudo-labels and denoted as {Ô
sj
k }K

k=1 and {Ôt
k}K

k=1. Then we

use the moving average strategy to update the global centroids for both the source j (∀j ∈ S)

and target domain. This strategy could ensure that the old global centroids memorize the

information from the past, while the temporary ones provide new knowledge to update

without adding too much noise and imbalance:

O
sj
k = αÔ

sj
k + (1 − α)Ōsj

k , (3.3)

Ot
k = αÔt

k + (1 − α)Ōt
k, (3.4)

where α is a hyper-parameter, set to be 0.3 by default. After several iterations, the global

centroids will become relatively stable and no class will be disregarded. They can reflect the

actual distribution of the dataset, and this makes sense for the following step.

With the updated centroids, we can do the alignment work to handle the domain shifts

across multiple source domains with target one. Maximum Mean Discrepancy (MMD) ([ 63 ])

is the metric to estimate the discrepancy between two domains, which is expressed as:

Lfd =
N∑

i=1
Ek∈D

∥∥∥ϕ(Osj
k ) − ϕ(Ot

k)
∥∥∥

2
, (3.5)

where ϕ(·) denotes a mapping that could project the samples to Reproducing Kernel Hillbert

Space(RKHS).

3.3.3 Enhanced Consistency via Dual Mix-up

Original data alone from the target domain are not sufficient for categorical information

extraction, so data augmentation is very necessary. Dual mix-up is a very popular method

in the community. Work from [ 25 ] has proven it to be efficient empirically and [ 66 ] shows its
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effectiveness theoretically. It can not only smooth the model’s outputs so as to encourage

the model to have a relatively more strict linear behavior, but also guarantee consistent

predictions in the data distributions.

We rearrange the original mini-batch to get a new batch, then assign interpolations

between them to form the augmented batch for further training. Provided that xt
r is the

original sample in the initial batch and xt
q is the corresponding sample at the same location

of the new batch after permutation, we get the mix-up one:

x̃t
i = Mλ(xt

r, xt
q) = λxt

r + (1 − λ)xt
q, (3.6)

where λ is following a beta distribution Beta(µ, µ) and we set µ as 0.2 by default.

In this sense, we explore the augmented samples to enhance the target prediction consis-

tency over our proposed method EC-MSA as:

Ldr = Ext
i ∈T [E j̸=p

j,p∈S

Dis(Cj(Gj(F (x̃t
i))), Cp(Gp(F (x̃t

i))))]. (3.7)

Different from [  25 ], we enforce the outputs after passing distinct classifiers to be similar

instead of comparing the results between the cases of mixup on the inputs or the outputs.

That is because we are dealing with multi-source problems, and the divergence between

multiple source domains is the major obstacle.

3.3.4 Pseudo-Label Based Target Distilling

Till now, our current model still suffers from target prediction uncertainty. For the class-

wise centroid alignment process, pseudo-labeled sample is used to cluster target data, so the

precision of target prediction matters a lot. Although using centroids could partially help

it, it is limited since negative samples still play a role in the generation of centroids. For

the two regularization processes, poor-predicted samples may transfer harmful categorical

information to the model and enlarge the divergence between multiple source domains even

more. In such a case, we begin to consider instance-aware distilling to extract qualified

target data and exclude poor-predicted target data for training on the basis of the target
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samples’ output probabilities [  84 ]. And the distilling mechanism will function prior to all

the previous processes we have discussed so as to ensure the purity of the target samples fed

into the network.

The distillation will be put into effort not at the beginning but after a certain amount of

iterations. The reason is that the model is not stable and performing well at the very start,

and it may contribute to a high error rate in distilling suitable samples. In our model, the

distillation starts at the half of the total number iterations of the whole training process.

Specifically, we define the output probability of the sub-network related to the source j

domain (∀j ∈ S) as pt
i = Cj(Gj(F (xt

i))).Then, this probability can be transformed into a

K-digit vector as pt
i =

[
pt

i,1, pt
i,2, ..., pt

i,K

]⊤
.

After these preparations, we filter the target samples with lower confidence by building

a target sample selector as:

Distill(xt
i) = 1[ max

k∈D
pt

i,k > β] · xt
i , (3.8)

where k is the class, and β ∈ (0, 1) is a threshold to distill a target sample xt
i . Because 1(·)

is an indicator function, if the content inside the indicator function is true, then xt
i will be

distilled for the training processes. Otherwise, this sample will be dropped out. For simplic-

ity, we choose β = 0.5 to ensure that this target sample has a higher probability belonging

to class k than not belonging to this class. Although the selector is very straightforward, it

is empirically useful by observation during the training process.

3.3.5 Overall Objective

We have already listed all the loss functions for the training process and could formulate

it as a total loss function as:

Ltotal = Lcls + γ(Lfd + Lcr + Ldr), (3.9)

where γ is a trade-off hyper-parameter to balance different components in the overall loss

function.
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3.3.6 Theoretical Insight

Let H be a hypothesis with a VC dimension of d and m is the size of a mini-batch. Since

it is a theoretical analysis for a multi-source domain adaptation method, we need to define

domain weights for different source domains and sample ratios for these sources in one single

batch. In such a case, we construct a vector α =
[
α1, α2, .., αN

]⊤
to be the domain weight

vector and another vector β =
[
β1, β2, .., βN

]⊤
to be the source sample ratio vector. These

two vectors should always satisfy
N∑

j=1
αj = 1 and

N∑
j=1

βj = 1. For j ∈ {1, .., N}, we assume Qj

to be a set of samples that will be put into a mini-batch with size βjm from source domain Sj.

The corresponding labeling function is denoted as fj. We also denote ĥ = arg minh∈H ϵ̂α(h)

and h∗
T = arg minh∈H ϵT (h). Till now, we could introduce the general bound for a typical

multi-source domain adaptation problem as [ 7 ] does. For ∀δ ∈ (0, 1), with a confidence of at

least 1 − δ:

ϵT (ĥ) ≤ ϵT (h∗
T ) + 2

N

√√√√(
N∑

j=1

α2
j

βj
)(d log(2m) − log(δ)

2m
)

+
N∑

j=1
αj(2λj + dH∆H(Sj, T )),

(3.10)

where λj = minh∈H{ϵT (h) + ϵj(h)}.

For our method EC-MSA, we choose an average ensemble strategy. In other words, all

data instances are equally weighted and the weights for all training errors of different domains

are the same. Therefore, we deduce a specific bound, still for ∀δ ∈ (0, 1), with a confidence

of at least 1 − δ:

ϵT (ĥ) ≤ ϵT (h∗
T ) + 2

N

√
(d log(2m) − log(δ)

2m
)

+ 1
N

N∑
j=1

dH∆H(Sj, T )) + 2
N

N∑
j=1

λj.

(3.11)

Now we need to switch the attention to the right side of this inequality. The first term and

the third one depends mainly on the hypothesis space, while the second term is determined

42



by the batch size m and the confidence gate δ. Under these conditions, we seek to minimize

the fourth term as following:

λj = min
h∈H

ϵT (h) + ϵj(h)

= min
h∈H

ϵT (h, fT ) + ϵj(h, fj)

≤ min
h∈H

ϵT (h, fj) + ϵT (fj, fT ) + ϵj(h, fj)

≤ min
h∈H

ϵT (h, fj) + ϵT (fj, fT̂ ) + ϵT (fT̂ , fT ) + ϵj(h, fj).

(3.12)

The first term and the last term on the inequality’s right side represent the differences

between h and fj. Generally, it’s not difficult to find such an h ∈ H to approximate fj, so

here we mainly focus on the rest two terms.

For ϵT (fj, fT̂ ), we can use such a way to approximate it under the background of deep

learning:
ϵT (fj, fT̂ ) = Ex∈T fj(x) − fT̂ (x)

= Ex∈T Gj ◦ F (x) − GT̂ ◦ F (x).
(3.13)

By doing class-wise centroid alignment, for any given class k ∈ D, we wish to have target

features in the same class to be similar with source j centroid of class k, hence this will help

to reduce this item effectively.

As for ϵT (fT̂ , fT ), it measures the differences between the real hypothesis h and the

empirical one ĥ. In other words, the precision of the pseudo-labels is reflected on this term.

By using a target sample distilling mechanism, we can restrict it more than previous methods,

which tend to ignore this item.

3.4 Experiments and Analyses

We evaluate our method by performing experiments on three standard benchmarks in-

cluding Office-31, Office-Home and ImageCLEF-DA, and compare it with state-of-

the-art multi-source domain adaption methods to our knowledge. Then certain empirical

analyses have been applied to demonstrate the effectiveness of our model EC-MSA.
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3.4.1 Datasets

3.4.1.1 Office-31

Office-31 ([ 85 ]) is a standard benchmark for domain adaptation in computer vision, con-

taining 4,652 images and 31 categories from three different domains: 2,817 images in the

Amazon (A) domain from amazon.com, 498 images in the Webcam (W) domain taken by

web camera and 795 images in the DSLR (D) domain from digital SLR camera. These three

domains are under different settings and images in each domain are unbalanced. Here we

try to evaluate three multi-source domain adaptation tasks: {A, D}→W; {A, W}→D; {D,

W}→A.

3.4.1.2 ImageCLEF-DA

ImageCLEF-DA 

1
 comes from the ImageCLEF 2014 domain adaptation challenge. It

includes three domains, with each one made up of 600 images and 12 categories: Caltech-256

(C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). It is a very balanced dataset.

Three tasks are needed for this dataset: {C, I} → P; {C, P} → I; {I, P} → C.

3.4.1.3 Office-Home

Office-Home ([ 86 ]) is a more challenging dataset for the multi-source domain adaptation

problem, consisting of 15588 images with 65 classes from four different domains: 2,427 images

in the Artistic (Ar) domain, 4,365 images in the Clip-Art (Cl) domain, 4,439 images in the

Product (Pr) and 4,357 images in the Real-World (Rw). All the images are from the office

and home setting. We build four tasks to test our method by leaving-one-out as the target

domain: {Ar, Cl, Pr}→Rw; {Ar, Cl, Rw}→Pr; {Ar, Pr, Rw}→Cl; {Cl, Pr, Rw}→Ar.
1

 ↑ https://www.imageclef.org/2014/adaptation
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Table 3.1. Multi-Source Domain Adaptation Accuracy(%) on Office-31 Dataset
Standards Method D W A Avg

Single
Best

Resnet 99.3 96.7 62.5 86.2
DDC 98.2 95.0 67.4 86.9
DAN 99.5 96.8 66.7 87.7

D-CORAL 99.7 98.0 65.3 87.7
RevGrad 99.1 96.9 68.2 88.1

RTN 99.4 96.8 66.2 87.5
Source
Com-
bine

DAN 99.6 97.8 67.6 88.3
D-CORAL 99.3 98.0 67.1 88.1
RevGrad 99.7 98.1 67.6 88.5

Multi-
Source

DCTN 99.3 98.2 64.2 87.2
MFSAN 99.5 98.5 72.7 90.2
SImpAl50 99.2 97.4 70.6 89.0

KD3A 99.8 98.7 71.0 89.8
MSCLDA 99.8 98.8 73.7 90.8
MSDTR 99.7 98.3 75.2 91.1

DECISION 99.6 98.4 75.4 91.1
Ours 100 98.3 76.8 91.7

3.4.2 Implementation Details

3.4.2.1 Network Settings

We use PyTorch ([ 75 ]) to implement the network with ResNet50 ([ 1 ]) as the backbone.

Our network architecture is almost the same as [ 35 ]. The shared part of the feature extractor

group inherits completely from ResNet50, and the domain-specific part is composed of the

structure (conv(1 × 1), conv(3 × 3), conv(1 × 1)), the same for all source domains. After

that, the number of channels are reduced to 256 connected to the classifier group, and each

member in this group is just a single fully-connected layer. The difference is that in the

domain-specific part, we apply separate batch normalization layers for source and target

data, ensuring these layers to be specific for each domain.
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Table 3.2. Multi-Source Domain Adaptation Accuracy(%) on Image-CLEF Dataset
Standards Method P C I Avg

Single
Best

Resnet 74.8 91.5 83.9 83.4
DDC 74.6 91.1 85.7 83.8
DAN 75.0 93.3 86.2 84.8

D-CORAL 76.9 93.6 88.5 86.3
RevGrad 75.0 96.2 87.0 86.1

RTN 75.6 95.3 86.9 85.9
Source
Com-
bine

DAN 77.6 93.3 92.2 87.7
D-CORAL 77.1 93.6 91.7 87.5
RevGrad 77.9 93.7 91.8 87.8

Multi-
Source

DCTN 75.0 95.7 90.3 87.0
MFSAN 79.1 95.4 93.6 89.4
SImpAl50 77.5 93.3 91.0 87.3

KD3A 79.0 95.3 93.2 89.2
MSCLDA 79.5 95.9 94.3 89.9

Ours 79.8 96.5 94.3 90.3

3.4.2.2 Parameter Settings

There are several parameters related to the optimizer to be considered. We use mini-

batch Stochastic Gradient Descent (SGD) ([ 87 ]) together with a momentum of 0.9 and a

weight decay of 0.0005. However, the learning rate annealing strategy is not applied as [ 13 ]

does but a fixed value η = 0.01. The reason why we keep the learning rate unchanged is that

we use centroids to compute the main discrepancy, and these centroids remain stable during

the training, while the non-class-wise alignment uses the varied mini-batch data directly, and

a dynamic learning rate is more helpful to adapt the optimization process. Same as [  35 ], we

set the learning rate of the shared generator part η0 = 0.1η. The only dynamic parameter

in our method γ in Equation ( 3.9 ) is formulated as γ = 2
1+exp(−θp) − 1 ∈ [0, 1), where θ is

fixed to be 10 and p is the training completion percentage rising from 0 to 1 linearly. With

this expression, we can control γ to increase from 0 to near 1 gradually during the training.

Further analysis about parameter sensitivity and selection will be presented later.
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Table 3.3. Multi-Source Domain Adaptation Accuracy(%) on Office-Home Dataset
Standards Method Ar Cl Pr Rw Avg

Single
Best

ResNet 65.3 49.6 79.7 75.4 67.5
DDC 64.1 50.8 78.2 75.0 67.0
DAN 68.2 56.5 80.3 75.9 70.2

D-CORAL 67.0 53.6 80.3 76.3 69.3
RevGrad 67.9 55.9 80.4 75.8 70.0

Source
Com-
bine

DAN 68.5 59.4 79.0 82.5 72.4
D-CORAL 68.1 58.6 79.5 82.7 72.2
RevGrad 68.4 59.1 79.5 82.7 72.4

Multi-
Source

MFSAN 72.1 62.0 80.3 81.8 74.1
SImpAl50 70.8 56.3 80.2 81.5 72.2
MADAN 66.8 54.9 78.2 81.5 70.4
K3DA 70.7 62.1 81.1 82.8 74.2

MSCLDA 71.6 61.4 79.9 80.4 73.4
DECISION 74.5 59.4 84.4 83.6 75.5

MSDTR 73.8 64.6 81.6 83.5 75.9
Ours 75.7 65.3 84.1 84.0 77.3

In the inference stage, the average weights are assigned to distinct classifiers. It is due to

the fact that we have strong L1 regularizations in the model so that the agreement among

multiple classifiers is ensured.

3.4.3 Baselines

We compare with other methods from three mainstream standards. First is the single best

reporting the best single-source domain adaptation results. Here ResNet ([ 1 ]), DAN ([ 11 ]),

DDC ([ 9 ]), D-CORAL ([ 10 ]), RevGrad ([ 13 ]) and RTN ([ 88 ]) are utilized. Second is the

source combine, which combines data from all the source domains into one domain and then

do transfer work. This standard includes DAN ([ 11 ]), D-CORAL ([ 10 ]) and RevGrad

([ 13 ]). Final part is the multi-source domain adaptation methods including DCTN ([ 32 ]),

MFSAN ([ 35 ]), SImpAl50 ([ 81 ]), MADAN ([ 78 ]), MSCLDA ([ 31 ]), MSDTR ([ 34 ]),

KD3A ([ 42 ]) and DECISION ([ 39 ]).
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Figure 3.2. Ablation study of our algorithm on task {D,W}→A from Office
dataset. There are three components in our model: 1. centroid alignment,
2. mix-up regularization and 3. pseudo-label based distillation. We remove
certain component(s) for every situation. (Best viewed in color.)

Note that we do keep close watch on the development of the new methods from the

multi-source standard, but some classic methods ([ 29 ]) or latest methods ([ 89 ]) are excluded

because of using different backbones and datasets and it is not suitable to make comparisons

under distinct settings. All the compared baselines use ResNet50 ([  1 ]) as the backbone and

follow the general protocol similar as [ 35 ].

3.4.4 Results and Analysis

The comparison results with the referred baselines on these three datasets are reported

in Tables  3.1 ,  3.2 and  3.3 . From the results, we have the following observations.

First of all, our proposed method EC-MSA yields state of the art results on almost all

the tasks and proves to be effective. In terms of average accuracy, our method outperforms

all the other baselines. For Office-31 experiments, the average improvement is about 0.6%.

Significantly, we improve the most difficult task {D, W} → A by 1.4%. As for the other two
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Figure 3.3. Ablation study of our algorithm on task {Ar,Pr,Rw}→Cl from
Office-Home dataset. (Best viewed in color.)

tasks, due to the fact that D is very close to W, it is hard to make enough progress, so EC-

MSA looks similar to other multi-source methods. For Image-CLEF, the average accuracy

has been increased by 0.4%. What needs to be mentioned is that our method becomes the

first one from the multi-source standard to surpass RevGrad from the single best standard

on the task {I, P} → C, which demonstrate that multi-source standard is more practical

for multi-source adaptation even if the single-source method is strong enough. On average

our method EC-MSA doesn’t improve too much as the other two datasets. This is because

Image-CLEF is a relatively simple dataset with just 12 classes. Thus, it is not challenging for

the classifier to discriminate even if the model is not well-designed. When comparing with

other methods on Office-Home, we maintain a lead of 1.4% on average, and achieve a lead

of 1.2% on the task {Cl, Pr, Rw} → Ar. Since Office-Home is the largest-scale dataset with

more categories among the three, it leaves enough space for EC-MSA to show its advantages.

Generally speaking, our model achieves the best average results among all domain adaptation

situations we proposed. For all the single tasks, the best results are achieved in almost all
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Figure 3.4. Ablation study of our algorithm on task {I,P}→C from Image-
CLEF dataset. (Best viewed in color.)

the experiments except the task {A, D} → W and {Ar, Cl, Rw} → Pr. But EC-MSA still

gets relatively good results on these two tasks and the disparities are small enough to be

accepted. These results show the effectiveness of our proposed model in solving multi-source

domain adaption.

Moreover, methods belonging to the single-best standard tend to have the worst perfor-

mance among three standards on average. It reflects that data from multiple sources can

always benefit the training process and the inference stage. Therefore, it is necessary in

the practical scenarios to collect data with distinct sources and do research on specialized

multi-source domain adaptation. Besides, methods subordinating to the multi-source stan-

dard perform better than models from the source combine standard. That is because domain

shift also exists across distinct source domains, and simply regarding all the sources as the

same will confuse the classifier. In such a case, it is essential to develop networks supporting

multiple sources with multiple substructures, which is what EC-MSA attempts to do.
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(a) I,P→C before adaptation (b) I,P→C after adaptation

Figure 3.5. Visualization with t-SNE on task I,P→C from ImageCLEF-DA
dataset (best viewed in color). a: t-SNE before adaptation. b: t-SNE after
adaptation.

(a) D,W→A before adaptation (b) D,W→A after adaptation

Figure 3.6. Visualization with t-SNE on task D,W→A from Office-31 dataset
(best viewed in color). a: t-SNE before adaptation. b: t-SNE after adaptation.
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Figure 3.7. Parameter analysis of our algorithm on γ. (Best viewed in color.)

3.4.5 Empirical Analysis

3.4.5.1 Ablation Study

We choose one typical task from each dataset to do ablation test. There are three

components in our model: 1) centroid alignment, 2) mix-up regularization and 3) pseudo-

label based distillation. Hence there exist eight combinations for our ablation study: original,

without 1, without 2, without 3, without 1&2, without 1&3, without 2&3 and without

1&2&3. Three tasks are selected for this analysis as {D, W} → A in Figure  3.2 , {Ar, Pr,

Rw} → Cl in Figure  3.3 , and {I, P} → C in Figure  3.4 .

From these bar charts, we can see that the removal of any of these three variants will cause

a reduction to the accuracies directly. What’s more, it is clear that centroid alignment and

dual mix-up play a more prominent role than distillation, and centroid alignment outweighs

dual mix-up in improving the model’s performance. As for the task {I, P} → C (Figure

 3.4 ), the distilling process seems not functional. It may be due to the fact that the tasks
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Figure 3.8. Parameter analysis of our algorithm on β. (Best viewed in color.)

in the ImageCLEF-DA dataset only consider 12 categories, which is relatively small. Hence

it is much easier for a target sample to get a concentrated distribution and go through the

selector. In such a case, most of the target examples are distilled and the pseudo-label based

selector doesn’t serve as a filter successfully. But from the other two tasks we can see, when

the dataset has a larger label space, it will definitely help the model to improve the accuracy.

3.4.5.2 Embedding Visualization

To further understand the alignment of distribution, we visualize features produced by the

feature extractor group. Here t-SNE ([ 90 ]) is used, which is a very popular data visualization

tool. For the source domain data, we use the results from the corresponding feature extractor.

But for the target data, we take the average embedding derived from distinct outputs. Two

tasks {I, P}→C and {D, W}→A are chosen to verify our model and the results are shown in

Figure  3.5 and Figure  3.6 separately. We use the ResNet ([ 1 ]) from the single best standard

to compare. It can be seen that our model make the features more discriminative and
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Figure 3.9. Parameter analysis of our algorithm on α. (Best viewed in color.)

separate better than the non-adapted situation. Besides, we can see that for each cluster,

data from three domains connect tightly with each other after adaptation, especially for the

task {D, W}→A (Figure  3.6 ). It can also illustrate the efficiency of our work on enhancing

consistency among distinct domains and agreement on corresponding classifiers.

3.4.5.3 Parameter Analysis

We conduct experiments to investigate the sensitivity of our method to three hyper-

parameters γ, β and α. γ is the balance parameter for the total loss function, while β is the

threshold for the target distilling mechanism and α is the ratio of iterative moving average

process for the centriods’ computation. The results are displayed in Figure  3.7 for γ, Figure

 3.8 for β and Figure  3.9 for α. For the trade-off parameter γ in our objective function, we

test {0.1, 0.3, 0.5, 0.7, 0.9}. Here β is fixed as 0.5 and α is fixed as 0.3. For the threshold

parameter in the distilling mechanism, we sample the values in {0.1, 0.3, 0.5, 0.7, 0.9}, while

set γ to be 0.5 and α to be 0.3. For the moving average ratio parameter α, we use the same
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Figure 3.10. Confusion matrix of the predicted results of our algorithm on
task D,W→A from ImageCLEF dataset. (Best viewed in color.)

range as above while choose the default value of the other two as 0.5. We can see that our

method is not very sensitive to parameters. By observation, 0.5 for γ, 0.5 for β and 0.3

for α should be the best choice. Besides, we can see that the curves are relatively stable,

indicating that EC-MSA is robust enough so that slight modifications on hyper-parameters

won’t have an obvious impact on its final performances.

3.4.5.4 Confusion Matrices Visualization

We choose two typical tasks: {D,W}→A and {I,P}→C. In our experiments they could

achieve accuracies of 76.8% and 96.5% separately. Then two confusion matrices have been

built to show the effectiveness, Figure  3.10 for the task {D,W}→A and Figure  3.11 for the

task {I,P}→C. In each confusion matrix of Figure  3.10 and Figure  3.11 , the row represents

the predicted results while the column denotes the ground truth. The color band on the

right side of each matrix illustrates the percentage of class i regarded as class j in the target
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Figure 3.11. Confusion matrix of the predicted results of our algorithm on
task I,P→C from ImageCLEF dataset dataset. (Best viewed in color.)

domain. If the ratio is higher, than the color should be brighter. As for the task {I,P}→C,

since it’s a relatively simple task, we can see that the bright blocks are concentrated on the

diagonal. For the other one, the task itself is more difficult and the diagonal blocks are not so

bright. But we still can find that the predictions are even, with just two out of 31 categories

are under 0.4. It shows the efficiency of our class-wise alignment strategy with centroids.

3.4.6 Conclusion

In this chapter, we introduce our multi-source domain adaptation approach EC-MSA,

trying to improve it in three ways. By using centroid alignment, dual mix-up and target dis-

tilling, we obtain a better model, which can be proved by the following analyses theoretically

and empirically.
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4. FOURIER TRANSFORM-ASSISTED FEDERATED

DOMAIN ADAPTATION

4.1 Preliminaries and Motivations

For a typical federated domain adaptation problem, there is one source domain, where

S = {(xs
i , ys

i )}ns
i=1 represents the dataset of source domain with ns labeled samples. Besides,

there exists a target domain dataset T = {xt
i}nt

i=1 that includes nt unlabeled samples. The

source and target domains share the same label space but lie in different distributions. The

label space is denoted as D = {1, 2, ..., K}, while K is the number of classes. In such a case,

the goal is to seek a good classification model that could achieve a high accuracy on the

target domain. Since it’s federated domain adaptation, any communications between the

raw data of these two domains are completely forbidden.

The motivation of our work is that we hope to bridge these two domains so as to make

alignments and reduce discrepancies even under the federated setting. Work from [  62 ] did

receive a great success, but this kind of hypothesis transfer learning setting seems to treat

federated domain adaptation as one supervised learning problem on source domain and

one self-supervised learning problem on target domain. In such a case, an explicit process of

knowledge transfer or domain adaptation doesn’t exhibit. Although the exchange or transfer

of raw data is forbidden, there still exist other approaches that might help the source and

target domain to get in touch, and frequency domain’s assistance could be one of the choices.

That’s the motivation of our work.

4.2 Related Work

Due to the emphasis on privacy and security, the community pays more and more at-

tention to the federated learning, which is a machine learning setting that ensures the local

storage of raw data. From [ 37 ], federated learning started to connect with domain adaptation.

This paper replaces the original data exposure with gradient, together with dynamic atten-

tion mechanisms and feature disentanglement to enhance the knowledge transfer between
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different domains. There also exists work like [ 27 ] that exposes frequency space information

instead of raw data among different domains.

Source-free adaptation is another paradigm for federated domain adaptation. It regards

the domain adaptation problem as a hypothesis transfer problem. [ 62 ] proposes source-free

domain adaptation, in case which sample-based exposures are completely forbidden and only

model parameters can be exchanged among multiple clients. Besides, this paper introduced

mutual information maximization ([ 91 ]) to deal with hypothesis transfer. Follow [ 62 ], a lot

of work has been proposed, like [ 39 ] which extends [ 62 ] to the multi-source problem. [ 92 ]

combines source-free domain adaptation together with attention mechanism. It also adopts

local structure clustering to assist knowledge transfer. [ 40 ] applies contrastive learning to

the federated adaptation problem, and also uses generated prototypes to make alignments.

[ 41 ] utilizes GAN to generate pseudo source data so that it can help align between source

and target. [ 93 ] uses model’s weights as source prototypes to solve the source-free situation.

Here we adopt the first paradigm, which sample-based information is allowed to commu-

nicate among different domains while raw data’s communications are totally forbidden. Our

model FTA-FDA uses Fast Fourier Transformation to transfer the image information to the

frequency space and only part of the amplitude images are utilized.

4.3 Method

4.3.1 Framework Overview

Here we still apply ResNet50 ([ 1 ]) as the backbone, while the last fully connected layer

is replaced by two fully connected blocks together with tricks like ReLU ([ 49 ]) and Dropout

([ 50 ]). The overall two stages have been arranged as most federated work does. First, we

train a model on the labeled source data. Then the model will be moved forward to the

client of target domain, together with information from the frequency spectra of the source

domain. Based on these, the training on the target domain starts and after certain iterations

we get the final model. One thing needs to be mentioned is that in the source training stage,

all parts of the network will be optimized and updated, but in the target training stage, the

last fully-connected block will be fixed while the rest can still be optimized and updated.
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Figure 4.1. Overview of our proposed Fourier Transform-Assisted Federated
Domain Adaptation (FTA-FDA), which contains the source model fs = Gs◦Cs

and the target model ft = Gt ◦Ct. The left side is operated on the source client
while the right side is operated on the target client. (Best viewed in color.)

Figure  4.1 shows the overall process of our method FTA-FDA. The left side is about

training on source and the right side is about training on target. All the things passing the

central line is related to the communication between these two clients.

4.3.2 Source Model Training

In this section, we will talk about the training stage on source domain. The most common

technique to deal with labeled data is the cross-entropy loss:

Lcls = −E(xs
i ,ys

i )∈S
∑
k∈D

ys
i log softmax(fs(xs

i )) (4.1)

Here fs is the model we want to learn, and ys
i is the one-hot encoded version of the label.

Since the training stages of source and target are relatively separate, it is very important

to keep the model’s ability of generalization and avoid overfitting greatly on the supervised
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learning, especially when we fix certain parts of the model for the target training stage.

Therefore, label smoothing ([ 94 ]) is really helpful here. Assume a smoothed label like:

ls
i = α

K
+ (1 − α)ys

i , (4.2)

where α is the smoothing parameter and usually set to be 0.1. Then we can deduce the new

version of the loss used on source data as:

Lcls = −E(xs
i ,ys

i )∈S
∑
k∈D

ls
i log softmax(fs(xs

i )). (4.3)

4.3.3 Self-Supervised Target Model Training

Before connecting the two domains, some prior work is necessary with the assistance of

self-supervised learning methods. Here we introduce two kinds of loss functions, information

maximization and pseudo supervised learning.

For a better explanation of the following content, we import the notation of one target

sample’s output probability as:

pt
i = softmax(ft(xt

i)), (4.4)

where ft is the model used on the target domain. After that, the information maximization

item can be represented as:

LIM = −Ext
i ∈T

∑
k∈D

pt
i log pt

i +
∑
k∈D

p̄t log p̄t. (4.5)

Here the first item of Equation  4.5 aims at minimizing the entropy for each sample, while

the second item tends to promote the diversity of the whole batch. p̄t is the average of all

the output probabilities in one single batch.

For the pseudo supervised learning part, it is quite simple. What differs our work from

[ 62 ] is that we do not utilize the deep clustering strategy for acquiring the pseudo labels on

the target domain, because from our empirical experiments, we observe that this strategy
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is harmful to the model’s performance. Here the predictions of previous models are used

directly as:

Lps = −E(xt
i ,ŷt

i )∈T̂
∑
k∈D

ŷt
i log pt

i , (4.6)

where ŷt
i is the pseudo label and T̂ is the pseudo target domain that includes pseudo labels.

We combine Equation  4.5 and Equation  4.6 and get the self-supervised loss as:

Lss = LIM + Lps. (4.7)

4.3.4 Frequency Domain Interpolation

Fourier Transform has been introduced to the field of domain adaptation since [ 95 ], then

[ 27 ] applied it under the federated learning setting. These two papers focus on the perspec-

tives of semantic segmentation, while our work aims at improving visual object recognition.

First, we introduce the standard format of Fourier transform. Assume an input sample

as xt
i ∈ RC×H×W , where C, H and W correspond to channel numbers, height and width.

Different from what we refer to in the background chapter, here it transfers data from space

domain to frequency domain:

F t
i =

H−1∑
h=0

W −1∑
w=0

xt
i exp [−j2π( h

H
u + w

W
v)]. (4.8)

Here we ensure the one-to-one correspondence between channels of different domains, while

xt
i is a function of (h, w), the unit of an RGB image, and F t

i is a function of (u, v), the unit

of an frequency space image.

Of course, we cannot transfer the frequency domain image to a different client because it

can be completely recovered as the original space domain image. Fortunately, the frequency

space image can be further decomposed as:

F t
i = At

i exp (P t
i ) (4.9)

where At
i ∈ RC×H×W is the amplitude spectrum and P t

i ∈ RC×H×W is the phase spectrum.
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According to the work from [ 95 ] and [  27 ], the amplitude spectrum reflects the low-level

distributions like style and the high-level semantics like object shape are stored in the phase

spectrum. Since our task is domain adaptation, we hope that the model could transfer the

style information from the source domain to the target domain, while keep the object shape

relatively stable. Therefore, it’s natural for us to choose amplitude part as the information

that will be transferred.

Even if only the amplitude spectrum will be transferred, people may still worry about

the leak of client’s information during the process. We try to alleviate this issue in two ways.

One is that we will show that the amplitude and phase spectra are neither discriminative

nor transferable when we train on a deep neural network, which is represented later. The

other is that we just crop a very little ratio of the amplitude spectrum, which includes very

little information from one source sample. Assume the ratio is α, then we build a mask as:

M = 1(h, w) ∈ [1 − α

2 H : 1 + α

2 H,
1 − α

2 W : 1 + α

2 W ]. (4.10)

After that, the interpolation can be represented as:

At→s
i = M ∗ As

j + (1 − M) ∗ At
i , (4.11)

where As
j is a random spectrum from the source domain. Here we set α = 0.1 and only the

selected area will be transferred, which occupies only 1% of the whole amplitude spectrum.

You can also regard the whole interpolation as CutMix ([ 96 ]), like what Figure  4.1 shows.

People may consider a big loss of information in the target sample during the interpo-

lation. This can also alleviate by FFTshift ([ 97 ]), which is a very common operation in

the frequency domain. FFTshift moves all the zeros to the center of the spectrum, and

the replacement is also focused on the center of the spectrum. After interpolation, inverse

FFTshift is able to move the spectrum back to the original status. Therefore, most semantic

information remains the same after interpolation.

Till now, we can get the synthesized sample by inverse Fourier Transform:

xt→s
i = F−1(At→s

i , P t
i ). (4.12)
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After obtaining the synthesized sample, we can compute the discrepancy between these

two domains. Denote the hypothesis as ft = Gt ◦ Ct, where Gt is the generator and Ct is the

classifier, then the discrepancy loss is:

Ldl =
∥∥∥Ext

i ∈T [ϕ(Gt(xt
i))] − Ext→s

i ∈(T →S)[ϕ(Gt(xt→s
i ))]

∥∥∥2

H
+Ext

i ∈T

∥∥∥Ct(Gt(xt
i)) − Ct(Gt(xt→s

i ))
∥∥∥ .

(4.13)

The first item is Maximum Mean Discrepancy and the second item is a L1-norm regularizer

that assists the first item.

4.3.5 Prototype Alignment

In the previous section, we make alignments between two domains on a sample-level.

Generally, class-wise alignment can help improve the performance as well. Since it’s a source-

private adaptation, we cannot access the raw source data. Inspired by [ 93 ], we use the weights

of the last layer as a substitute of the source prototypes because this layer is fixed during

the second stage’s training and contains information completely from the source domain. By

making comparisons between the weights and the features, we can reduce the discrepancies

in a class manner. Here we still use Maximum Mean Discrepancy as the distance metric:

Lpa =
∥∥∥E(xt

i ,ŷt
i )∈T̂ [ϕ(Gt(xT

i ; ŷt
i ))] − E[ϕ(Ws(ŷt

i ))]
∥∥∥2

H
. (4.14)

Pseudo labels have been applied in the loss function, which differs our approach from [ 93 ].

Ws are all the weights of the last fully-connected layer, and we build pairs with xT
i according

to the pseudo labels. Empirical results show that our model FTA-FDA outperforms [ 93 ] by

an obvious margin, which will be discussed in the next chapter.

4.3.6 Overall Objective

We conclude all the loss functions mentioned before to indicate how the models are

trained. For the models from the source client:
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fs = Gs ◦ Cs = arg min
fs

Lcls. (4.15)

Here Gs represents the part that is still learnable in the next stage, and Cs corresponds to

the part that will be fixed. For the models from the target client:

Gt = arg min
Gt

Lss + Ldl + Lpa. (4.16)

Finally we get the model as ft = Gt ◦ Cs.

4.4 Experiments and Analyses

4.4.1 Dataset and Implementation

We have stated a lot about the datasets and implementation in the previous chapter, so

here a simple version will be exhibited here. Here Office-31 is applied for the evaluation, and

ResNet50 is still our backbone. We try to evaluate six domain adaptation tasks: {A→D};

{A→W}; {D→A}; {D→W}; {W→A}; {W→D}.

As mentioned before, the last fully-connected layer is replaced by two fully-connected

blocks. The last fully-connected block will be fixed when training on the target data. Besides,

we don’t have too many hyper-parameters except one that relates to the frequency domain

interpolation, which will be discussed later.

4.4.2 Baselines and Comparisons

Here the comparisons include two categories of domain adaptation approaches, the source-

access methods and the source-private methods. For the first category, we choose ResNet

([ 1 ]), DANN ([ 13 ]), SAFN ([ 98 ]), CDAN ([ 99 ]), SRDC ([ 100 ]), BNM ([ 101 ]) and MCC

([ 30 ]). For the second category, we choose FADA ([ 37 ]), SFDA ([ 102 ]), SHOT ([ 62 ]),

SDDA ([ 103 ]), SoFA ([ 104 ]), CPGA ([ 40 ]), VAKDT ([ 41 ]), Proto-DA ([ 93 ]), MA ([ 105 ])

and A2Net ([ 106 ]).

The comparisons of results are shown in Table  4.1 . In the source-access part, the best

accuracies are highlight with underlines, and in the source-private part, the best accuracies
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Table 4.1. Federated Domain Adaptation Accuracy(%) on Office-31 Dataset
Standards Method A → D A → W D → A D → W W → A W → D Avg

Source-
Access

Resnet 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN 79.7 82.0 68.2 96.9 67.4 99.1 82.2
SAFN 90.7 90.1 73.0 98.6 70.2 99.8 87.1
CDAN 92.9 94.1 71.0 98.6 69.3 100 87.7
BNM 90.3 91.5 70.9 98.5 71.6 100 87.1
MCC 95.6 95.4 72.6 98.6 73.9 100 89.4
SRDC 95.8 95.7 76.7 99.2 77.1 100 90.8

Source-
Private

FADA 90.3 88.2 72.0 98.7 70.8 99.9 86.7
SFDA 92.2 91.1 71.0 98.2 71.2 99.5 87.2
SDDA 85.3 82.5 66.4 99.0 67.7 99.8 83.5
SoFA 73.9 71.7 53.7 96.7 54.6 98.2 74.8
SHOT 94.0 90.1 74.7 98.4 74.3 99.9 88.6
CPGA 94.4 94.1 76.0 98.4 76.6 99.8 89.9
VAKDT 89.9 91.8 73.9 98.7 72.0 99.9 87.7
MA 92.7 93.7 75.3 98.5 77.8 99.8 89.6
A2Net 94.5 94.0 76.7 99.2 76.1 100 90.1
Ours 95.6 95.6 76.7 99.0 76.4 100 90.6

are highlight with bold format. From the table, we can see that our method reaches state

of the art in most tasks and average under the source-private setting. When compared with

the best method SRDC under the source-access setting, our method is still very competitive.

4.4.3 Ablation Study

In this work, there are two variants that could have an impact on the performance,

whether to use the frequency domain interpolation and whether to do prototype alignment.

We denote them as variant 1 (v1) and variant 2 (v2) separately and add ResNet as a baseline

to show the effectiveness of each component. The results are shown in Table  4.2 .

From Table  4.2 , we can see that the two components all play important roles in improv-

ing the performance. It looks that frequency domain interpolation outperforms prototype

alignment in our method.
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Table 4.2. Ablation Study Accuracy(%) of FTA-FDA on Office-31 Dataset
Method A→ D A→ W D→ A D→ W W→ A W→ D Avg
Resnet 68.9 68.4 62.5 96.7 60.7 99.3 76.1
w\ov1&v2 94.0 90.1 74.7 98.4 74.3 99.9 88.6
w\ov1 94.1 94.5 73.0 98.8 74.2 99.8 89.1
w\ov2 95.0 95.0 74.9 99.0 74.1 100 89.7
Ours 95.6 95.6 76.7 99.0 76.4 100 90.6
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4.4.4 Parameter Sensitivity Study

As mentioned before, the most important parameter we concerned is the ratio of the

amplitude spectrum that will be applied in the interpolation. The larger the ratio is, the

higher the risk will be brought to the communication processes. Here we choose a set ranging

from 0 to 1 as {0, 0.1, 0.4, 0.7, 1}. The results are represented in Table  4.3 .

Table 4.3. Parameter Study Accuracy(%) of FTA-FDA on Office-31 Dataset
Crop Ratio A→ D A→ W D→ A D→ W W→ A W→ D Avg
0 94.1 94.5 73.0 98.8 74.2 99.8 89.1
0.1 95.6 95.6 76.7 99.0 76.4 100 90.6
0.4 96.0 95.0 76.4 98.8 76.2 99.8 90.4
0.7 95.0 95.3 75.9 99.0 76.6 100 90.3
1 95.1 95.5 76.0 99.1 76.2 99.8 90.3

From the table above, we can see that our method isn’t sensitive to the ratio values since

the performance is relatively stable. Besides, when ratio = 0.1, the results are competitive

enough as it achieves state of the art in most tasks and the average scene. It also proves

that a little ratio of amplitude spectrum is enough to introduce domain-specific information.

After taking privacy and security into account, 0.1 should be the best choice.

4.5 Conclusion

In this chapter, we introduce our source-private domain adaptation approach FTA-FDA.

Our major contributions are Fourier transform-assisted space domain interpolation and pro-

totype alignment. Further analyses show that our method is effective and competitive.

Special study about privacy and security indicates that we achieve our goal.
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we focus on two varied settings of unsupervised domain adaptation for

object recognition. The two alternatives are multi-source domain adaptation and source-

private domain adaptation. One assumes that we have labeled source data from multiple

domains while the other assumes that the raw data in the source client cannot be exposed

to the target client.

For the multi-source adaptation, we propose a novel method named Enhanced Consis-

tency Multi-Source Adaptation (EC-MSA) which attempts to enhance multi-source consis-

tency for cross-domain learning. The conditional sub-domain alignment technique via cen-

troids is applied for the multi-source problem, which largely narrows the divergence between

each pair of the source domain and the target domain. We construct centroids iteratively

with a moving average strategy for all the classes of each domain and align on these centroids

instead of data in one batch. By using this method, we alleviate two common issues that

limit the performance of conditional alignment: the uncertainty of data in one single batch

and the negative impact of poor-predicted target samples. Then, we adopt a special data

augmentation strategy called dual mix-up to enforce the consistency among different source

domains along with distinct classifiers. The original batch has been rearranged to form a new

one. Then we assign interpolation between these two batches so as to achieve an augmented

batch. By making comparisons between the probability outputs of the original batch and

that of the augmented batch, we can encourage the model to have a more strict linear behav-

ior while ensure consistent predictions in the data distribution for the multi-source scenario.

What’s more, we introduce a pseudo-label based target distilling mechanism to purify the

target samples, ensuring that the low-confident data will not have too much impact during

the training process. A confidence gate has been built on the basis of the highest digit of the

output probability. Though it looks simple, it is very useful by observation. We offer detailed

illustrations on the datasets and the implementations with PyTorch. Experiments on three

different domain adaptation scenarios prove that our proposed approach could achieve state-

of-the-art performance under this topic. Further analyses testify the efficiency and stability

68



of our proposed model EC-MSA. Ablation study, embedding visualization, parameter anal-

ysis and confusion matrices visualization have been applied to demonstrate the properties of

our model.

For the source-private adaptation, we propose a novel method named Fourier Transform-

Assisted Federated Domain Adaptation (FTA-FDA). It aims at solving the conflict between

source information exposure and source data security. Here we use frequency domain in-

terpolation to balance these two concerns. Raw image data from the source client are first

transferred to the frequency domain by Fast Fourier Transform (FFT), then we crop only a

small proportions of their amplitude spectra to communicate with the target client. After

certain interpolations, we build synthesized source images and make alignments with the

target images. What’s more, prototype alignment is also applied in order to improve the

model’s performance. We extract the weights of the last fully-connected layer and make

conditional alignments with target features. Although this technique looks simple, it is very

helpful. Experiments on Office-31 prove the effectiveness and competitiveness of FTA-FDA.

Further analyses testify the stability of our proposed approach, especially the research on

the security and privacy shows that our method FTA-FDA completely meets the criteria of

source-private domain adaptation.

5.2 Future Work

Although we have made significant improvements on the multi-source domain adaptation

task and the source-private domain adaptation task, there always exists future work that

needs to be done from distinct perspectives to further explore this area.

In the multi-source setting, we can improve the algorithm in three ways. For the con-

ditional alignment, centroids alignment is really computationally expensive and drives the

whole training process very slowly. Maybe a new method can be put to achieve good results

while save the resource used. For the augmentation strategy, dual mix-up is a very simple

way and makes a very shallow interpolation between two batches. It is possible to find a more

effective augmentation strategy for the domain adaptation task. Besides, further theoretical

work is needed. Though prior work from [  66 ] has shown that dual mix-up is beneficial to
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model’s generalization, the mechanism of how it helps the domain adaptation remains blank.

For the distilling mechanism, a more complex and effective method can be expected. Apart

from output probability, approaches based on other confidence gate should be designed to

achieve a better distilling function.

In the source-private setting, our algorithm FTA-FDA is able to be improved in two ways.

For the frequency domain interpolation, now we can only exhibit that it is beneficial to the

adaptation tasks empirically. Further theoretical work to illustrate why this strategy works

is necessary. Besides, in FTA-FDA only transfer source amplitude spectra are transferred to

the target client. Maybe transferring target amplitude spectra to the source client or even

bi-directional transferring can lead better results. For the prototype alignment, though we

achieve more advanced performances than the work from [ 93 ], the loss value for prototype

alignment is relatively large due to the dissimilarity of weights and features. Maybe a

assistant neural network can help improve it. Also, theoretical insight for this technique can

be a good topic for future work.
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