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INVESTIGATING THE ROLE OF AMYLOID BETA PEPTIDES IN INFLAMMATION  

AND ALZHEIMER’S DISEASE PATHOGENESIS 

 

 

ELISE NGUYEN LE 

 

48 Pages  

 

Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by severe memory 

decline and cognitive impairments. In AD patients’ brains, aggregates of amyloid beta (Aβ) 

peptides, called amyloid plaques, are hypothesized to trigger innate immune responses that 

contribute to AD pathogenesis. Interestingly, recent studies demonstrated that an increased level of 

Aβ protected the host against pathogen infections. Using Drosophila as a model organism, our 

preliminary data showed that the loss of the Drosophila APP homolog, APPL, led to immune 

deficits against parasite infection, and that overexpression of Drosophila Aβ produced an 

inflammatory phenotype. These findings suggested that Aβ might be required for a successful 

immune response. Additionally, we produced flies that develop different levels of Aβ aggregation 

and examine the inflammation responses of these flies during a pathogen infection. We also 

optimized fly cognition assay to examine the cognitive functions of the Aβ-expressing flies. Our 

data suggested that there was a correlation between Aβ aggregation and inflammatory responses, 

and that Aβ-mediated inflammation was associated with cognitive defects. This study helped us to 

gain a deeper insight on how innate immunity and infection contribute to the development of AD. 

KEYWORDS: Amyloid Beta Protein, Alzheimer’s Disease, Drosophila, Inflammation, Innate 

Immunity 
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CHAPTER I: ALZHEIMER’S DISEASE AND AMYLOID BETA 

 

Alzheimer’s Disease is a Neurodegenerative Disease 

 

Alzheimer’s disease (AD), affecting approximately 50 million people worldwide, is the 

most common form of dementia (1). It is a disease that severely damages cognitive function, 

inhibiting people from living an independent life. AD is characterized by difficulties with memory, 

progressive cognitive impairment, dysfunctions in daily activities and abnormal mental and 

behavioral changes (2). AD-mediated molecular changes to the brain begin many years earlier, up 

to two decades before symptoms appear (3). 

One of prominent features of AD is the loss of neurons, called cerebral atrophy, which 

proceeds at a rate of 1% to 4% per year, compared to 0.3% to 0.7% per year in cognitively normal 

elderly people (4). This neuronal loss begins in the entorhinal cortex, a brain region connected to 

the hippocampus, which is in charge of learning and memory (5). The degeneration of these brain 

areas explains the symptoms of forgetfulness and other cognitive impairments in early-staged AD 

patients, such as incapability to concentrate and solve problems (5). After two to four years, the 

severe phase of AD was characterized by enlargement of ventricles and omnipresent brain atrophy 

in the cerebral cortex that controls language, reasoning, sensory processing and conscious thoughts 

(5). Patients become to show more pronounced problems, such as delusions, anger outbursts, and 

incapability to recognize family members and accomplish independent routine tasks (5). 

Aβ is Associated with Alzheimer’s Disease 

 

At the molecular level, the extracellular buildup of aggregated amyloid beta (Aβ) peptides, 

called amyloid plaques, is a characteristic of Alzheimer’s disease. It is highly conserved across 

vertebrates; it is at least 400 million years old and found in 60%–70% of vertebrate species (6). In 

normal physiology, Aβ is a small protein (about 4kD), composed of 37–49 amino acid residues 

and present in brain interstitial fluid, cerebrospinal fluid, plasma, saliva and most tissues in the 
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body (7, 8). The protein is produced from the cleavage of full-length amyloid precursor protein 

(APP) by the β-secretase and γ-secretase enzymes. Cleavage of APP by γ-secretase might result in 

different lengths of peptides, leading to size variants, such as Aβ40 and Aβ42. Following this 

cleavage, Aβ40 and Aβ42 variants either exist as a monomer or accumulate into oligomers, 

protofibrils, amyloid fibrils and amyloid plaques (9), which are illustrated in Figure 1. 

 

 
Figure 1: Aβ monomers form oligomers, fibrils, and plaques 

 

Although it remains inconclusive about what structures and variants of Aβ are detrimental 

or helpful during the development of AD as described in the next chapter, the amyloid plaque 

structure formed by the Aβ42 variant has been observed in all AD patients and suggested to be the 

most cytotoxic version. Aβ42 has a higher tendency to aggregate and form amyloid plaques as 

compared to Aβ40, a more common peptide yet not pathologically associated with AD (7). Several 

point mutations in the amino acid sequence of Aβ42 have been suggested to result in different 

levels of aggregation and pathological effects in AD patients (10, 11). For example, the Arctic 

mutation, Aβ42[E22G] (Aβ42 with the glutamic acid (E) at position 22 mutated to a glycine (G)) 

can form aggregates to a far greater extent than wild-type Aβ and displays stronger resistance to 

protein clearance (12). In our study, we aimed to examine five different Aβ variants (Table 1) to 

get a better insight into the different pathological effects of these molecules and how they can be 

used in therapeutic treatments of Alzheimer’s disease. 
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CHAPTER II: INNATE IMMUNITY CONTRIBUTES TO ALZHEIMER’S DISEASE 

 

Aβ Plays a Protective Role in the Immune System 

 

While Aβ has been characterized in normally aged people (13), intriguingly, a growing 

number of studies revealed a protective role of Aβ in the immune system, a network of cells and 

organs that defends against foreign molecules and fights infections. Aβ has been recognized as an 

antimicrobial peptide (AMP) for its ability to bind to bacterial surfaces and agglutinate bacteria 

and fungus (11, 15). One study also supported this by showing that Aβ mediates pathogen 

entrapment and agglutination, which increased host survival time against bacterial and fungal 

infections (15). Furthermore, Aβ was suggested to bind to the microbial surface and hinder the 

growth of at least eight clinically important pathogens, including those commonly causing brain 

infections (16). These findings strongly supported that Aβ deposition could be a protective innate 

immune response against infection. 

Pathogen Infection is Associated with AD 

 

Consistent with research about the role of Aβ in the immune response, it has been suggested 

that pathogen infection is a risk factor for Alzheimer’s disease. Viruses and other microbes can be 

identified in the brain of most elderly people. Normally, these pathogens remain in a harmless 

dormant state (17). However, AD pathology is correlated with the unusual activation of those 

pathogens, identified as brain infections caused by bacteria, such as P. gingivalis and C. 

pneumoniae, and viruses, including herpes simplex virus 1 (18–20). In particular, P. gingivalis 

infection in mice was observed to exacerbate the production of Aβ42 (20). Another study showed 

that 90% of the amyloid plaques in AD patients with herpes infection contained herpes viral DNA 

(21), suggesting the involvement of Aβ during an infection. 
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Inflammation and Aβ Abundance are Risk Factors for AD 
 

As a first line of defense against pathogens, inflammation occurs when immune cells 

accumulate at sites of injury or infection (22). At the area of inflammation, activated microglia, 

the main immune cells and phagocytes of the central nervous system, express increased levels of 

antigens, release inflammatory cytokines and recruit other immune cells (23). In AD brains, these 

brain immune cells can recognize Aβ via specialized pattern recognition receptors (PRRs), such 

as toll-like receptors (TLRs), complement factors, and scavenger receptors (SRs) (13). Once 

activated by a stimulus, such as an Aβ burden or pathogenic infection, microglia secrete various 

pro-inflammatory cytokines and chemokines that recruit more microglia and astrocytes to 

inflammatory sites (24). As a pathogen infection progress, prolonged inflammation could be the 

leading risk factor for the development of AD as upregulated release of proinflammatory cytokines 

and chemokines has been widely observed in AD brains (25, 26). 

In addition to the persistent immune responses, clearance of Aβ plaques by microglia or 

other mechanisms might be impaired or not sufficient to overcome an accumulation of Aβ (27, 

28). For example, after prolonged periods of activation, microglia become enlarged and no longer 

able to degrade Aβ they have taken up (29). Mutation or loss of TREM2, a cell-surface receptor 

exclusively of microglia, is strongly linked with impaired functions of microglia, such as breaking 

down apoptotic cells and digesting Aβ (30, 31). The transmembrane receptor CD33, with a 2-fold 

increased expression in AD patients, not only hinders microglial Aβ uptake and clearance (32) but 

also activates nuclear factor-kappa B (NF-κB) in myeloid cells, upregulating APP productions and 

contributing to Aβ burden (33). Besides, neprilysin, a major enzyme degrading soluble Aβ 

(monomers and oligomers) in the brain, showed decreased expression and activity in the cortex of 

elderly AD patients (34). Without being effectively removed by brain cells, the mounted Aβ load 
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could perturb brain microenvironments by impeding ATP formation, leading to mitochondrial 

dysfunction, ER stress, calcium dysregulation and other neuronal damages (35). As innate 

immunity is highly involved in AD pathogenesis, further studies are needed to examine the specific 

role of Aβ during an immune activation, such as whether its expression directly leads to 

inflammation and cognitive impairment. 

The Immune Hypothesis of Alzheimer’s Disease 

 

In summary, the molecular mechanism of AD is hypothesized to involve the interplay 

among inflammation, infection and Aβ. Alzheimer’s disease is hypothesized to initiate with a 

pathogen infection, which elicits the activation of microglia and increased production of Aβ as an 

AMP. The defensive mechanism of the immune system is activated in which microglia release 

proinflammatory mediators including cytokines and chemokines (36) while Aβ oligomers function 

as AMPs (37) or further accumulate in plaques to trap infectious molecules (15). If the infection 

is suppressed, microglia are then in charge of clearing Aβ and cell death, ensuring a healthy brain 

microenvironment. In contrast, a chaotic situation will progress quickly when infection becomes 

chronic and reactivates from time to time, resulting in extended releases of pro-inflammatory 

cytokines or when the mechanism of Aβ clearance is impaired (29, 38). Based on this immune 

activation hypothesis of AD, our research aims to clarify this relationship among Aβ, 

inflammation, and AD pathogenesis. Our goals will be to examine whether Aβ aggregation is 

correlated with inflammation level and if inflammation directly leads to cognitive impairment, one 

of the most prominent characteristics of AD. 
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CHAPTER III: DROSOPHILA FLIES AS A MODEL ORGANISM 

 

Genetics and Brain Morphology of Fruit Flies Allow for Alzheimer’s Research 
 

For decades, the fruit fly Drosophila melanogaster have been a useful tool to investigate 

the molecular mechanisms and pathogenesis of Alzheimer’s Disease. The Drosophila genome 

encodes homologs of the human APP, BACE and γ-secretase genes, which similarly produce Aβ- 

like fragments (39). Transgenic expression of human Aβ peptides in flies also resulted in the 

production of amyloid plaques, neurodegeneration, and behavioral deficits (40). This has enabled 

us to express different human Aβ variants within the nervous system and the fat body, an immune 

tissue, of Drosophila and examine study their effects on molecular and behavioral levels. 

Having important brain architectural features in common to humans, fruit flies have been 

widely used to study learning, memory, and other cognitive functions (41). With around 200,000 

neurons, Drosophila melanogaster is capable of processing visual and olfactory inputs and store 

them as short-term or long-term memory (41, 42). Specifically, learning or short-term memory in 

flies, which lasts for second to minutes, is activated in the mushroom body (41). From there, 

information can be stored in the central complex as long-term memory, which resembles 

mammalian transfer of memory from the hippocampus to the cortex (41). Vacuoles in aging fly 

brains are also indicators of neurodegeneration, which allows for research in brain atrophy, 

previously mentioned as a prominent feature in AD (43). Fruit fly’s ability to memorize and 

display signs of neuron loss similarly to humans allowed us to examine their pathogenesis and 

cognitive deficiencies. In our study, we imaged the mushroom body and vacuoles in Aβ-expressing 

flies and developed a cognitive test for fruit flies, which are to be discussed in the next chapters. 
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Innate Immunity was Examined from Fly-wasp interactions 

 

Drosophila melanogaster has also proven to be an excellent system for identifying highly 

conserved immune response pathways with both mammals and other insects (44, 45). Fly humoral 

immune responses to microbial and pathogen infections are characterized by the production of 

antimicrobial peptides, which are secreted from cells of the fat body into the hemolymph via the 

Toll, IMD (immune deficiency), and JAK-STAT (Janus kinase/signal transducers and activators 

of transcription) pathways (46). While Toll and IMD mainly respond to bacteria and fungi, JAK- 

STAT acts as a line of defense against viral pathogens replicating within the host cells (47). As 

Alzheimer’s disease has been associated with both bacterial and viral infections mentioned in 

Chapter II, we were interested in verifying if any inflammation gene in these three pathways 

showed abnormal gene expression in our Aβ-encoding fly models. 

Besides humoral immunity, flies also have the cell-mediated innate immune system, which 

is activated when hemocytes, or blood cells, react to epithelial damage and foreign molecules. 

These hemocytes play an important role in sealing epithelial wounds and phagocytizing pathogens 

and apoptotic cells. In natural Drosophila populations, up to 90% of fly larvae have been found to 

be infected by wasps. To protect themselves, fruit fly larvae trigger the cellular immune response 

against wasp eggs, called encapsulation. Our preliminary data showed that loss of the APP 

homolog APPL significantly decreases the rate of encapsulation against wasp eggs, suggesting that 

APPL is required to elicit a successful immune response. Further, if this encapsulation response is 

misdirected against self-tissue, it leads to inflammation phenotypes such as observable 

melanization of tissues, darker body color, and a more rigid posture with loss of mobility. We also 

observed that expressing human Aβ42 elicits an inflammation phenotype in fly models following 

parasitic infection (Figure 2). These findings suggested that Aβ might be an immune molecule 

triggering inflammation upon infection, which can further lead to tissue damage and AD 
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progression. 

 

 

Figure 2: APPL mutant larvae had a lower rate of encapsulation compared to control. 

Unsuccessful encapsulation (lack of melanization) was also observed in APPL mutant flies. 

Egg-laying Preference Implies Cognitive Functions 

 

Fruit flies are also known to display behavioral immunity to avoid sources of infection 

 

(48). For example, offspring’s fitness and infection risk largely relies on how adult females choose 

oviposition sites (49). In the nature, D. melanogaster females prefer decaying fruit to lay their eggs 

while other species, such as D. suzukii, choose to lay their eggs in ripening fruits (50). Ethanol 

proportion in fruits have been measured to be from 0.6% in ripe hanging fruit, to 4.5% in fallen 

rotten ones (51). While flies benefit from consuming fermenting fruits for energy stores and 

increased longevity, consumption of food with higher than 4% ethanol concentration significantly 

increases fly mortality (52). Interestingly, in the presence of wasps, flies voluntarily choose to lay 

eggs on 6% ethanol food, which is detrimental to fly fitness, as a form of self-medication against 

these parasites (52, 53). There is evidence suggesting the involvement of long-term memory in this 

fly oviposition preference. Neurotransmitters necessary for complex behaviors like learning and 

memory, such as Neuropeptide F and Dopamine, have a role in Drosophila’s preference for  

egg-laying in alcohol-containing food (54, 55). In addition, long-term memory genes, such as 
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dunce (dnc) and amnesiac (amn) and the transcription factor Adf1, required for long-term memory 

formation, are necessary for flies to show oviposition preference for alcohol food (53, 55). These 

findings supported that the egg-laying behavior can be used as a tool to examine the cognitive 

functions of flies. Hence, we developed a Fly Cognitive test to examine fly’s ability to sense 

alcohol, recognize wasps and form memory, which are to be further described in Chapter IV. 
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CHAPTER IV: RATIONALE AND METHODS 
 

Rationale 

 

The goal of this research is to gain a better understanding about Aβ, inflammation, 

cognitive defects in the development of Alzheimer’s disease. Despite previous studies linking 

these processes, the mechanisms through which Aβ deposits lead to inflammation and memory 

impairment are not fully comprehended. The gap in the understanding of this disease led to the 

focus of this research on aiming to strengthen the relationship among Aβ, inflammation and AD 

pathogenesis. We hypothesized that inflammation and excessive Aβ load following brain 

infections contribute to the progression of AD. 

The first aim investigated whether Aβ-induced inflammation is associated with cognitive 

defects, a main characteristic of Alzheimer’s disease. With the known associations between Aβ 

with AD and the immune system, we wanted to test whether Aβ variants have different degrees of 

inflammation and if that explains differences in pathogenicity in flies. In this aim, we produced fly 

lines expressing Aβ variants in neurons and examined their cognitive functions, such as their 

ability to recognize wasps, sense alcohol, and demonstrate a memory-associated strategy to 

overpower their enemies, as observed in wild-types flies. We also analyzed their brain morphology 

to look for signs of vacuoles, indicating neuron loss as in Alzheimer’s patients. In addition, we 

also quantified the inflammation levels in these flies using a novel gene expression technology 

with the help of our collaborators, Dr. Bess Frost and Elizabeth Ochoa at the University of Texas 

Health Science Center at San Antonio. Our results for this aim suggest that Aβ expression in 

Drosophila resulted in premature neurodegeneration and abnormal inflammation levels. 

In the second aim, we wanted to characterize the aggregation characteristics of Aβ variants 

expressed in flies. We produced fly lines expressing Aβ variants in the fat body, fly’s largest 

immune organ, and quantified protein accumulation using Tris-Glycine gel electrophoresis and 
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Western blot. We also collaborated with Dr. Michael Webb in the Chemistry department at ISU to 

test several novel Ruthenium complexes to see if they can eliminate Aβ aggregates in vitro. Our 

results for this aim suggest that different Aβ variants have different aggregation levels and 

Ruthenium-based drug could be a potential therapeutic agent for Alzheimer’s disease. 

Methods 

 

Aim 1: Examining the correlation between Aβ, inflammation and memory defects 

 

1.1. Building fly stocks and crosses 

 

The Q-system is an extensively used method that allows for the expression of transgenes in 

specific tissues in D. melanogaster. This expression system utilizes the binding of a transcription 

activator (QF) to an enhancer (QUAS) resulting in transcription of downstream responders (56). 

To express a specific gene, flies expressing the transcriptional activator QF in specific tissues were 

crossed with the strains containing the QUAS enhancer sequence next to the gene of interest. 

Offspring having both the QF and QUAS transgenes will activate expression of the desired gene. 

For our experiments, we used the elav-QF driver to express interested genes pan-neuronal 

in Aim 1 and the r4-QF driver to express different Aβ variants in the fat body in Aim 2. To produce 

flies for our experiments, elav-QF or r4-QF flies were crossed with flies of appropriate genotypes 

(Table 1) and kept in 25ºC. The fly stocks yw, elav-QF, amn, dnc and ninaB were obtained from 

the Bloomington Drosophila Stock Center (NIH P40OD018537), listed in Appendix A. 
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Table 1: Fly lines used for our experiments 
 

Fly crosses 

(Driver x Responder) 

Descriptions Control or 

Experimental 

Driver Responder 

elav-QF yw Control fly, does no express any Aβ variant gene Control 

(Aim 1) QUAS- Aβ40 Expressing human Aβ40, the most common and less 

pathogenic form of Aβ, in the fat body 

Control 

 QUAS- Aβ42 Expressing human Aβ42, the pathogenic form of Aβ Experimental 

Or QUAS- Aβ42[F20E] Expressing human Aβ42 with a “protective” mutation 

showing decreased aggregation of Aβ peptides 

Experimental 

r4-QF 

(Aim 2) 

   

QUAS- Aβ42[E22G] Expressing human Aβ42 with the “Arctic” mutation 

showing increased aggregation of Aβ peptides 

Experimental 

 QUAS- Aβ42[E22G, 

I31E] 

Expressing human Aβ42 with an “arctic” mutation and a 

“suppressor” mutation. This phenotype still has 

increased aggregation, but decreased pathogenesis 

Experimental 

Other fly lines   

amn Lacking the expression of amnesiac gene that encodes a 

neuropeptide that functions to prolong medium-term 

memory. amn mutant flies show defects in memory 

retention both immediately and 3 hour after training 

(FlyBase). 

Memory mutant 

control 

dnc Lacking the expression of dunce, which plays a pivotal 

role in neurological and behavioral plasticity including 

synaptic development and function, learning and 

courtship. dnc mutant adult flies show defects in 

immediate recall memory and short term memory 

(FlyBase). 

Memory mutant 

control 

ninaB Lacking the expression of neither inactivation nor 

afterpotential B (ninaB) gene, which promotes visual 

pigment biogenesis in the dark. Unlike control, ninaB 

mutant flies have visual impairment and do not decrease 

mating latency in the presence of parasitic wasps. 

Vision mutant 

control 

1.2. Examining perceptive functions using fly cognition assay 

To examine fly brain functions, including memory, smell, and vision, we optimized the Fly 

Cognition Assay based on the protocol of Kacsoh et. al, 2013 (53). Thirty female offsprings from 
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each genotype were collected about two weeks after eclosion. Next, they were divided into Exposure 

and Pre-Exposure groups, where flies were exposed to L. heterotoma wasps overnight, and Non-

Exposure group, where flies were on their own. (Figure 3). After the 1-day period was finished, 

each fly group were transferred into egg-laying corrals to oviposit. Flies of the Exposure group were 

placed in the corrals along with wasps (Figure 3-A) while Pre-Exposure group and Non-Exposure 

groups did not have wasps in the corrals (Figure 3-B and 3-C). These corrals contained two food 

substrates, including fly instant food mixed with or without 6% ethanol. After one day in the corrals, 

eggs laid in each food receptacle were counted and recorded. The experiment was repeated ten times 

for each line of flies. Details of the protocol are listed in Appendix B-1. 

 

 
Figure 3: Experimental design for the fly oviposition assay included 4 steps. Following 

the first step which was building fly stocks and crosses, flies were placed in vials either with 

wasp or not. After 1 day, they were divided into three groups: Exposure, Pre-Exposure and Non- 

Exposure and allowed to lay eggs in fly corrals containing 2 food options (6%Ethanol and Non- 

Ethanol food) overnight. Finally, eggs from each receptacle were counted. 
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The expected result for the control of this experiment was explained in Figure 4. Placed in 

a fly chamber, flies were allowed to lay eggs on two available substrates, one of which contains 

fly instant food and water and the other with the addition of 6% ethanol. This 6% amount of alcohol 

is higher than the preferred amount but not high enough to be lethal to flies. With no external 

pressure, control flies from Non-Exposure group were expected to oviposit more on the non- 

ethanol substrate as the other one contains an amount of alcohol unfavorable to flies (Figure 4-A). 

In contrast, in the presence of wasps, control flies were expected to show an innate behavior to 

change their oviposition preference toward alcohol food, protecting their larvae from the parasites 

(Figure 4-B). Flies exposed to wasps a day before also choose to lay eggs on ethanol food in a no- 

wasp chamber (Figure 4-C). This suggested that they were able to recall previous interactions with 

wasps. 

 

 
Figure 4: Control flies were expected to oviposit on non-ethanol food in a no-wasp chamber, but 

incline to ethanol food after exposure with wasps 

For this experiment, we examined flies expressing different variants of Aβ in neurons and 

control flies (yw), which do not express any Aβ variant (Table 1). As mentioned in Chapter III, 

several long-term memory genes, such as dnc and amn, are involved in fly oviposition preference, 
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making this an ideal test for memory and cognitive functions of flies. Therefore, besides testing 

Aβ flies, we also included dnc, amn, ninaB mutant flies (Table 1) as memory mutant and vision 

mutant controls in this assay. 

1.3. Examining brain morphology via whole mount immunostaining and imaging 

 

The purpose of whole mount imaging was to visualize and quantify neuronal degeneration in 

fly brains. This method allowed the detection of actin and neuropils by using the phalloidin stain. 

Most of the brain tissue stains with phalloidin, and except for the stereotypic physiological holes, 

which usually exist in symmetry (Figure 5), the regions devoid of stain were determined as neuron-

specific loss of tissues (57). 

 

 
Figure 5: Normally observed vacuoles in fly brains, which are in stereotypical location 

and almost always symmetrical in nature (57) 

For the procedure, flies were fixed with 2% paraformaldehyde (PFA) in phosphate- 

buffered saline containing 0.5% triton X-100 (0.5% PBS-T) overnight at 4°C with nutation. After 

washing 3 times with 0.5% PBS-T, 5 min each with nutation, fly brains were then dissected in 

0.008% PBS-T. The samples were then incubated in phalloidin 633 in 1:1000 dilution for two 

overnights at 4°C with nutation. After that, the fly brains were washed two times with 0.5% PBS-

T, 15 min each and with 1X PBS for 30 min. Next, the brains were pipetted on a microscope slide 
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which has been attached with a V-cut SecureSeal™ imaging spacer. After all liquid in the sample 

was aspirated by pipetting, 5μL of Vectashield Antifade Mounting medium was applied on each 

brain. A cover slip was placed over the spacer and slide containing the brains and sealed with nail 

polish. The sample was visualized with confocal microscopy and analyzed with Image J software. 

Using a built-in tracing tool in ImageJ, we went through each sequential frame of the z stack and 

marked all vacuoles that have a defined enclosure and were oval and spheroid in appearance, which 

indicated pathogenic holes. A detailed Fly Whole Mount Brain imaging protocol is included in 

Appendix B-2. 

1.4. Preparing RNA extracted samples for Nanostring sequencing 

 

RNA was harvested from 2-week-old adult fly heads using Trizol reagent (Sigma). After 

being homogenized, the samples were spin at 12000xG for 10 minutes to remove cuticle and 

debris. Next, as the supernatant was transferred to a new tube, chloroform was added to promote 

phase separation, allowing RNA to be isolated in the aqueous phase. Isopropanol is then used to 

precipitate RNA from the samples. The RNA pellet was then washed twice with 70% EtOH and 

resuspended in 10mM Tris buffer. Additional details of the protocol are included in Appendix B- 

3. 
 

1.5. Data Analysis and Statistics 

 

Analyses were performed in R. The proportion of ethanol food preference was analyzed 

using generalized linear models followed by Dunnett's test to compare experimental groups to the 

control and Tukey’s test for pairwise comparisons of all genotypes. 

Aim 2: Characterizing aggregation level in different Aβ variants 
 

2.1. Examining aggregation level using gel electrophoresis and western blot 

 

To characterize Aβ aggregation in flies, proteins were first extracted from frozen larvae using 

RIPA (Radio-Immunoprecipitation Assay) buffer. The protein extraction protocol is further 
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described in Appendix B-4. Immunoprecipitation was then performed to isolate Aβ peptide from 

the whole protein extracted samples. Protein G Dynabeads (ThermoFisher) were incubated with 

6E10 anti β-amyloid primary antibody (1:2000 dilution) for one hour before added to the protein 

samples. After a 20-minute incubation, the samples were placed on the magnet, washed 3 times 

with 1X PBS and eluted with Tris-Glycine loading buffer. Details of the protocol are included in 

Appendix B-5. 

Electrophoresis was completed using 2–20% Mini-PROTEAN® TGX Precast Gels from 

Bio-Rad, at 100 V for 60 min. The gels were then transferred to a nitrocellulose membrane for 1 

hour at 100 V at 4°C, followed by blocking of the membrane in a 3% BSA solution in Tris-buffered 

saline (TBS) (0.02 M Tris, 0.15 M NaCl, 0.003 M KCl) for 1h. The membrane was incubated in a 

solution (1:2,000 dilution) of 6E10 anti-Aβ primary antibody (Biolegends) overnight. After 

washing 5 × 5 min with TBS, the membrane was incubated in a solution containing the secondary 

antibody (horseradish peroxidase) in 1:10,000 dilution for 3 hours. Last but not least, Thermo 

Scientific Pierce ECL Western Blotting Substrate kit was used to visualize the Aβ species using a 

GelDoc imaging system. 

2.2. Reducing Aβ aggregation using Ruthenium drug 

 

Metal-based therapeutics for AD have been studied to target aggregates and inhibit fibril 

formation, since it has been suggested that Aβ peptide showed affinity for metal ions (58, 59). 

Ruthenium-based (Ru) complexes, containing organic ligands bound to the center metal, have 

achieved great success as anticancer, antiviral and antiparasitic agents (60, 61). A number of 

studies from our collaborator, Dr. Michael Webb, have suggested several Ruthenium(III) 

derivatives as promising candidates to limit Aβ aggregation and reduce its cytotoxicity (59, 62– 

64). Collaborating with Dr. Webb’s lab, we were interested to the effects of four variants of Ru(III) 

on synthetic Aβ aggregates. Briefly, after a 24-hour incubation with Ru(III) derivatives, Aβ were 
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evaluated for aggregation using gel electrophoresis and western blot with a similar protocol 

mentioned above. 

Electrophoresis was completed using 2–20% Mini-PROTEAN® TGX Precast Gels from 

Bio-Rad, at 100 V for 60 min. The gels were then transferred to a nitrocellulose membrane for 1 

hour at 100 V at 4°C, followed by blocking of the membrane in a 3% BSA solution in Tris-buffered 

saline (TBS) (0.02 M Tris, 0.15 M NaCl, 0.003 M KCl) for 1h. The membrane was incubated in a 

solution (1:2,000 dilution) of 6E10 anti-Aβ primary antibody (Biolegends) overnight. After 

washing 5 × 5 min with TBS, the membrane was incubated in a solution containing the secondary 

antibody (horseradish peroxidase) in 1:10,000 dilution for 3 hours. Last but not least, Thermo 

Scientific Pierce ECL Western Blotting Substrate kit was used to visualize the Aβ species using a 

GelDoc imaging system. 
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CHAPTER V: RESULTS 

 

Aim 1: Examining Cognitive Functions, Brain Morphology, and Inflammation 
 

Cognitive Functions of Control and Negative Control Flies 

 

To test the cognitive functions of flies, we used the Fly Cognitive Assay and divided each 

fly genotype into three groups. In the Non-Exposure group, flies were not exposed to wasps and 

allowed to lay eggs in chambers containing two food options: 6% ethanol food and plain food. 

This group allowed us to test whether flies could sense alcohol and choose to lay the majority of 

eggs in plain food. Flies in the Exposure group were exposed to wasps for 1 day and allowed to 

lay eggs in chambers containing wasps. With the wasp included, we wanted to examine whether 

flies could respond to wasps by changing their oviposition preference and switch to an alcohol 

food source. Pre-Exposure group are those exposed to wasps for 1 day and laid eggs in corrals 

without wasps. This is an important group to investigate the memory function of flies, and 

demonstrated whether flies, which were previously exposed to wasps and not having the wasps 

around to remind them, could still recall interaction with wasps after one day. 

Egg-laying behaviors of control (yw), memory mutant (amn and dnc) and vision mutant 

(ninaB) flies were demonstrated in Figure 6. Control flies (yw) successfully displayed an egg- 

laying preference as we had expected in Figure 4. There was a majority of eggs laid in plain food 

when wasps were not present in the Non-Exposure group. However, after fly’s exposure to wasps, 

most eggs were found in ethanol-laden food, both when wasps were around and excluded from the 

corrals. Flies losing important memory formation genes, such as dnc and amn, were able to sense 

alcohol by ovipositing on non-ethanol food when unexposed to wasps (Non-Exposure group), 

successfully switched to alcohol in the presence of wasps (Exposure group), but not able to 

maintain ethanol preference in the Pre-Exposure condition. This suggested that our Fly Cognitive
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Test was successful in detecting the cognitive impairment of these two memory mutant controls. 

Interestingly, vision mutant flies (ninaB) were able to choose ethanol after exposing to wasps (Pre- 

exposure group), yet showed no interest in ethanol food when wasps are around (Exposure group). 

 

Figure 6: Oviposition preference of control (yw), memory mutant flies (amn and dnc) 

and vision mutant flies (ninaB). All flies in Non-Exposure group (left panel) was able to avoid 

ethanol-containing food and lay the majority of eggs on the plain food receptacle. Control (yw) 

and two memory mutant flies in the Exposure group (middle panel) switched to ethanol-laden 

food while ninaB failed to do so. In the Pre-Exposure group (right panel), control and ninaB 

showed preference in ethanol food, while two memory mutant flies did not. 

Aβ42 and Their Variants Have Different Detrimental Effects on Fly Cognitive Functions 

 

Next, flies expressing different Aβ variants were examined in this assay, demonstrated in 

Figure 7. We were interested in investigating flies expressing non-pathogenic (Aβ40) and 

pathogenic (Aβ42) Aβ variants. We also tested three other Aβ42 variants with the “Arctic” 

mutation leading to an increased Aβ aggregation (Aβ42[E22G]), the “protective” mutation having 

less aggregation (Aβ42[F20E]), and the “Arctic” and “suppressor” double mutations (Aβ42[E22G, 

I31E]). In the Non-exposure group, the control and all Aβ flies were able to show preference for 
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non-ethanol food over ethanol food, suggesting that they were able to sense and dislike ethanol 

food (Figure 7, left panel). On the other hand, in the presence of wasps, all flies prefer laying eggs 

in ethanol food except for Aβ42[E22G] flies, suggesting this Aβ variant causes an effect on the 

flies’ ability to perceive wasps (Figure 7, middle panel). In the Pre-exposure group, while the 

control (yw) and Aβ40 flies successfully recalled wasp exposure, all four Aβ42 variants did not 

show preference toward alcohol, indicating their impaired memory functions (Figure 7, right 

panel). 

 

 
Figure 7: Flies expressing different Aβ variants demonstrated different pathological effects. In 

the Non-Exposure group (left panel), all flies showed oviposition preference toward the non- 

ethanol food. On the other hand, all genotypes in the Exposure group (middle panel), where flies 

had been exposed to wasps a night before and allowed to lay eggs in wasps-containing corrals, 

switched into ethanol-laden food, except for flies with the Arctic mutation, Aβ42[E22G]. From 

the Pre-Exposure group (right panel), which was exposed to wasps but did not have wasps in the 

egg-laying corrals, only control (yw) and Aβ40 were able to maintain a strong preference to 

ethanol food and all four Aβ42 variants in this group were not. ***P < 0.001, **P < 0.01 and 

*P < 0.05 illustrate the remarkable difference of each genotype in comparison with the control. 
 



 

22 

 

Aβ42-Expressing Brain Showed Signs of Neurodegeneration 

 

As cognitive defects were observed in the Aβ42- expressing flies, we wanted to verify if 

there was any difference in these brains’ morphology. Brain atrophy, or the loss of neurons and 

connections between neurons, has been associated with aging, dementia and infectious diseases 

(65). Whole mount brain imaging was performed with the aim to detect cavities or spaces in the 

brain associated in neuron loss. Our results showed that Aβ42 and Aβ42[E22G] brains had a 

greater number of vacuoles and larger average vacuole size compared to the control (yw) and Aβ40 

brain samples (Figure 8, 9, 10, 11). 

  
 

 

Figure 8: z-stack images of control (yw) (A), Aβ40 (B), Aβ42 (C) and Aβ42[E22G] (D) brains, 

4 weeks old. (A) and (B) yw and Aβ40 brains showed no significant dark spots and vacuoles 

(dark areas devoid of stains in the brain. (C) and (D) The degree of vacuolization (enlargement 
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and number of vacuoles) in Aβ42 and Aβ42[E22G] brains increased, in which many vacuoles 

were observed. 

 
 

 

Figure 9: Cross sections of control (yw) (A), Aβ40 (B) and Aβ42 (C) brains, 4 weeks old. 

Vacuoles were marked with yellow outlines using the tracing tool in ImageJ. (A)While a few 

vacuoles were observed in the control (yw) brain, they were present in symmetry, indicating 

stereotypical physiological holes. (B) Aβ40-expressing brain demonstrated several small 

vacuoles. (C) Many vacuoles at different locations were observed in Aβ42 brain with 

significantly increased area sizes. 
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Figure 10: Two cross sections of two different Aβ42[E22G] fly brains, 4 weeks old. Yellow 

outlines represented vacuoles. Brains from this genotype showed a significantly increased 

number of dark areas and enlargement of vacuoles. 

 

 
Figure 11: Mean vacuole size (in µm²) in the brain of 4-week-old flies including control (yw), 

Aβ40, Aβ42 and Aβ42[E22G]. The data was based on the imaging of three yw, four Aβ40, five 

Aβ42 and five Aβ42[E22G] brains. *P < 0.05 illustrates the remarkable difference in comparison 

with the control. 
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Abnormal Inflammation Levels of Aβ Flies Using Nanostring Sequencing 

 

As signs of neurodegeneration and cognitive impairment were observed, we wanted to verify 

if inflammation plays any role in these defects. Specifically, we examined a number of 

inflammation genes involved in toll, IMD and JAK/STAT pathways (Figure 12). Interestingly, 

there were genes showing an increased expression when comparing non-pathogenic Ab flies 

(Aβ40) to the pathogenic Aβs (Aβ42 and Aβ42[E22G]). For example, in Toll pathway, IM genes 

(molecules induced by infection) showed stronger expression in pathogenic Aβ flies. In IMD 

pathway while imd and fadd (fas-associated death domain) have increased transcript abundance in 

pathogenic flies. Of the Jak/STAT pathway, many genes that have a stronger expression in 

pathogenic flies are involved in cytokine receptor activity and protein binding (such as upd1, upd2, 

upd3 and dome). The full list of inflammation genes examined is included in Appendix C. 

 

 

Figure 12: Nanostring sequencing showed different expression of inflammation genes. Blue = 

Toll, green = IMD and purple = Jak/STAT. RNA samples were extracted from 2-week old 

female fly heads. Each graph showed the gene expression fold change compared between control 

and each genotype of interest (Aβ40-left panel, Aβ42-middle panel and Aβ42[E22G]-right 

panel). There was an increased trend in the transcript abundance of several inflammation genes 

in the pathogenic phenotypes (Aβ42 and Aβ42[E22G]) compared to non-pathogenic one (Aβ40). 
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Aim 2: Characterizing Aβ Aggregation and Testing a Therapeutic Agent 

Aβ Variants Accumulate as Oligomers in Flies 

Aβ42 and the Arctic mutation Aβ42[E22G] accumulated as oligomers and accumulated 

differently across tissues. The less pathogenic variant Ab40 appeared to be cleared more 

efficiently. Aβ42 was expressed with highest level in the fat body, an immune tissue of flies, while 

the E22G oligomers show decreased accumulation. 

 

 
Figure 13: The result of Western Blot analysis showed Aβ accumulation in different fly 

tissues. αTubulin- marked as 1, actin- marked as 2, and fat body- marked as 3. While synthetic 

Aβ (lane *) accumulated around 3-4kDa, all Aβ-expressing larval samples showed protein bands 

around 17-20kDa, suggesting Aβ aggregating into oligomers. 
 

Reducing Aβ Aggregation using Ruthenium Drug 

 

Gel electrophoresis and Western Blot results suggested that among the four Ruthenium- 

based complexes we tested, Ruth4 had a positive effect on reducing aggregates. Aβ aggregates 

were showed to accumulate in vitro around 150kDa. 
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Figure 14: Ruthenium complexes show different effects on reducing synthetic Aβ aggregation. 

 

Four different Ruthenium-based complexes were examined for their ability to break down 

synthetic Aβ aggregates. Western Blot analysis suggested that Ruth4 drug was the most effective 

in reducing Aβ aggregates, which accumulated around 150kDa in vitro. 
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CHAPTER VI: DISCUSSION 

 

Aβ42 Expression is Associated with Cognitive Impairment 

 

Our findings suggested the association among inflammation, Aβ expression and cognitive 

defects. First, by using Fly Cognitive Assay, we demonstrated that the expression of pathogenic 

Aβ variants in Drosophila brains was linked with cognitive impairment. Among the five Aβ 

variants, Aβ40, the non-pathogenic peptide, was the only variant that passed the three cognitive 

criteria in this assay: ability to sense wasp, recognize alcohol and recall previous memory formed 

after 1-day exposure with wasps. Flies expressing Aβ42 and Aβ42[E22G] showed impaired 

cognitive functions such as memory impairment and unable to recognize wasps respectively 

(Figure 7). The Aβ42[E22G, I31E] flies, which had the I31E suppressor mutation to decrease 

pathogenesis, showed a slightly better performance than the other Aβ42 variants (Figure 7, Pre- 

Exposure group). Statistical analysis also suggested the remarkable difference when pairwise 

comparing between each pathogenic variant and the control (Figure 7). 

The pathogenic of flies expressing Aβ variants was also supported when we measured the 

degree of vacuolization in fly brains by counting number of holes and measuring their average 

sizes. Using a tracing tool in ImageJ software, within each sequential frame of the z stack, we 

marked any region devoid of stains, oval or spherical in appearance and had a defined enclosure 

with yellow outlines. Control (yw) and Aβ40 flies were observed to have several holes with 

negligible sizes, some of which are present in symmetry in the brain, indicating stereotypic 

physiological vacuoles due to air sac in the brain (Figure 8). On the other hand, Aβ42 flies, 

especially the ones expressing the Arctic mutation variant, Aβ42[E22G], demonstrated 

pronounced enlargement of vacuoles, indicating neuron loss in the brain. (Figure 9, 10 and 11). 

These results further supported our findings in Aim 1.1 that flies expressing pathogenic variant 

Aβ42 and Aβ42[E22G] had impaired cognitive functions and altered brain morphology. 
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In Figure 11, ANOVA analysis additionally suggested that the mean sizes of vacuoles 

varied by genotype (p = 0.0311). Analysis via Dunnett’s Test also suggested a remarkable 

difference between Aβ42[E22G] and control (yw) (p = 0.0324). Tukey’s Test was also performed 

to make pairwise comparisons among genotypes, however, only the pair Aβ42[E22G] and Aβ40 

had a significant difference (p=0.0467). This could be due to the insufficiency of our data as only 

three yw, four Aβ40, five Aβ42 and five Aβ42[E22G] brains were analyzed in this graph. More 

replicates are needed to substantiate the result of this experiment. 

A few inflammation genes are upregulated in cognitive impaired flies 
 

As we quantified the transcripts abundance of selected inflammation genes involved in the 

three main immune pathways in flies, we observed that a few important genes were present in an 

increased amount in pathogenic flies (Figure 12). Several immune- induced peptides playing a 

role in resisting bacterial and fungal infections (IM3 and IM3B) showed a significantly higher level 

in Aβ42[E22G] flies. In addition, inflammation genes involved in defense response to bacterium 

and death receptor binding activity (imd and Fadd), also showed increased transcript abundance 

in pathogenic flies. We also observed increased expression in genes associated with cytokine 

receptor activity and protein binding (upd1, upd2, upd3 and dome). These results suggested that 

the expression of pathogenic Aβ variants (Aβ42 and Aβ42[E22G]) was linked to increased 

expression in several inflammation genes while Aβ40 expression did not induce any significant 

effects on the immune pathways. This experiment allowed us to identify possible key genes 

associated with AD pathology and neuroinflammation, which improved our understanding about 

mechanisms leading to AD. 

Aβ Variants Accumulate Differently in Flies 
 

Besides, we observed that there were some differences in the aggregation levels among Aβ 

variants (Figure 13). Aβ40 was observed to oligomerize the least across tissues when compared 
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to the other pathogenic variants, Aβ42 and Aβ42[E22G]. In the fat body, an immune tissue of flies, 

Aβ42 was expressed with even higher level than E22G. This suggested that the aggregation 

characteristics of the Aβ variants might have a role in determining whether it is involved in the 

immune system. Follow-up studies are needed to further characterize Aβ aggregates formed by 

different Aβ variants, and investigate if any factor, such as their structures, shapes, and binding 

ability, affects their function in the immune system. 

Ruthenium-based Drug Could Be a Potential Treatment for AD 
 

Aβ aggregates, known as amyloid plaques, have been observed in all AD patients and are 

linked with pathogenesis of this disease. The understanding of different Aβ variants in this study 

has allowed us to further investigate the effect of novel Ruthenium-based complexes on reducing 

Aβ aggregation as a potential therapeutic treatment. Result from western blot analysis showed that 

Ruth4 was the most efficient in breaking down Aβ aggregates and might be a potential agent for 

future studies, such as testing the effects of this drug in flies. 
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CHAPTER VII: FUTURE DIRECTIONS 

  

Testing other Sensory Functions of Flies 
 

When we tested vision mutant flies, ninaB, we observed that they were inclined to lay eggs 

on ethanol surface after 1 day interacting with wasps similarly to controls, suggesting vision 

defects was not associated with memory process in the Fly Cognitive Assay. As vision and 

olfactory inputs are two primary sensory sources in flies (42), we hypothesized that olfactory 

defects in Aβ- expressing flies might be the reason why they could not form memory and show 

expected oviposition preference. We are interested in using Y-maze assay to test long-term 

associative olfactory memory of flies expressing Aβ variants. 

Examining How Variants Form Aggregates 

 

The western blot result suggested that Aβ42 was expressed in an immune tissue with a 

higher level than Aβ42[E22G] (Figure 13). Furthermore, in our Fly Cognition Test, flies carrying 

a protective mutant, Aβ42[F20E], were not able to show intact memory function in the Pre- 

Exposure group, despite performing similarly to controls in Non-exposure and Exposure groups 

(Figure 7). To further understand why the protective Aβ42[F20E] variant still caused damage to 

the brain, we plan to monitor how all variants form aggregates by using Thioflavin T fluorescence 

spectroscopy and transmission electron micrography, as suggested in this study by Brorsson et. al, 

2010 (66). By comparing the nature of aggregate formation between Aβ variants, it will help to 

understand if the shape and structure of the aggregate determined its neurotoxicity. 

Testing the Efficiency of Ruthenium on Reducing Aβ Accumulation in Flies 
 

As Ruthenium was shown to reduce synthetic Aβ aggregation, we wanted to examine its 

effects on the Aβ-expressing flies. Briefly, we plan to perform a protein extraction on fly samples, 

from which Aβ will be immunoprecipitated following the protocol in Appendix B-5. Then, these 

Aβ samples will be incubated overnight to stimulate the formation of aggregates before being 
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treated with a Ruthenium-based complex. After a 24-hour incubation, samples will be separated 

on gel electrophoresis followed by a western blot. If this Ruthenium agent can modulate Aβ 

aggregation, we expect to see bands with lower molecular weight and reduced intensity when 

comparing the treated with the untreated samples. In addition, we are also interested in testing an 

appropriate dilution of this drug on live flies and use our Fly Cognition Test to examine whether 

flies expressing Aβ variants have improved cognitive functions compared to no-treatment controls. 

This will contribute to the advancement of novel therapeutic treatments for Alzheimer’s disease. 
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APPENDIX A: TABLE OF GENOTYPES 

 

Short name Stock Number (Bloomington 
Drosophila Stock Center) 

Gene components 

yw 1495 y[1]w[1] 

ninaB 24776 w[*]/Dp(1;Y)y[+]; ninaB[1], P{w[+mC]=UAS- 
ninaB.G}3 

amn 5954 amn[1] 

dnc 6020 dnc[1] 

elav 66466 P{w[+mW.hs] RFP[mCh.3xP3.cPa]=ET- 

QF2.GB}elav[C155-QF2]; betaTub60D[Pin- 

1]/CyO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

40 

 

 

 

APPENDIX B: DETAILED PROTOCOLS 

1. Fly Cognition Assay 
 

Day 0: Grow fly/wasp stocks 

 

• Keep Wild-type, and experimental flies on standard Drosophila medium and Leptopilina 

heterotoma wasp on standard wasp medium 

• Collect virgin female flies and male flies and make crosses if needed 

 

• Flies were aged together and were 14 days old (post-eclosion) by Day 1 of the experiment 

 

Day 1: Exposure to wasps 

 

• Once flies are ready, collect 30 females from each genotype and divide them into 3 groups, 

exposure, pre-exposure and non-exposure: 

o For exposure and pre-exposure groups: add 10 flies and 3 female wasps in each 1X 

food vial 

o For non-exposure group: put 10 flies in each 1X food vial. 
 

• These vials will be placed at room temp, overnight 

 

Day 2: 
 

Prepare food substrates 

 

• Prepare the blue Drosophila media in two batches, 0% and 6% ethanol food 

 

• Measure about 0.375 g* of Instant Blue Drosophila medium and place into the receptacles 

(caps of 15 mL Falcon Tubes) (* the amount can be approximate) 

• For 0% ethanol food: add 2250 μL of distilled water onto instant blue Drosophila media and 

allow it to be absorbed. 

• For 6% ethanol food: add 1650 μL of distilled water to instant food, add 140 μL of 95% 

ethanol, then add 460uL water on top 



 

41 

 

 

Place flies into fly corrals: 

 

• For exposure: Divide 20 flies into 2 group: Exposure (with wasps) and Pre-exposure (without 

wasps) and placed them in corrals containing the 2 food substrates 

o For the exposure group: 10 females + 3 females wasps. 
 

o For the pre-exposure group: 10 females 
 

• For non- exposure: Place flies (10 females) in corrals containing the 2 food substrates 

 

• Affix receptacles to the fly corrals using standard laboratory tape 

 

• Place the corrals in a 25˚ C environmental chamber (12:12 light/dark cycle and ~30% relative 

humidity) and allow flies to oviposit 

• After 24 hours, remove the food receptacles from the fly corrals 

 

• Count the number of eggs that had been laid in each food type under the microscope and 

record 

2. Fly Whole Mount Brain Imaging 
 

Day0: Prepare fly stocks+ Reagents 
 

Prepare: 

 

• 2% PFA in 0.05%Triton-X: dilute 4%PFA in 1:1 ratio with 0.5% PBS-T 

 

• 0.5% PBS-T 

 

• 995mL 1X PBS +5mL Triton X-100 

 

• 0.008% PBS-T 

 

• Stains: Dilute in recommended concentration 

 

o 633 phalloidin: 1:1000 

 

 

Day 1: Fix flies 
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Prepare: 
 

o 2 mL Eppendorf tubes 
 

o 2% PFA in 0.05%Triton-X 
 

o P-1000 and tips 
 

1. Put flies on CO2 

 

2. Transfer flies to pre-labelled 1.5 mL Eppendorf tube (fewer than 15–20 flies/ tube) 

 

3. Add 1 mL of 2% PFA in 0.05%Triton-X and invert closed tubes 

 

4. Incubate tubes on a nutator, rocker or shaker at 4C overnight 

 

Day 2: Dissect brains and stain 
 

Prepare: 
 

o 0.008% PBS-T, 0.5% PBS-T, 1X PBS 

 

o Stains: Phalloidin /DAPI 
 

o Eppendorf tubes 
 

o P-1000 and tips 
 

o Dissecting tools 
 

5. Wash flies: Slightly angle tube, aspirate the top layer of liquid, then replace with 1 mL 0.5% 

PBS-T, wait 15 min each with nutation -> repeat 4 times 

Note: Prior to brain dissections, fixed whole flies can be stored in 1× PBS at 4°C for up to 
 

several days. Dissected brains can also be stored in 1× PBS at 4°C for several days. 

 

6. Prep new tubes containing 600uL 0.008% PBS-T and dissect fly brains in 0.008% PBS-T 

 

7. Stain in phalloidin 633 in appropriate dilution for 2 overnights at 4°C in nutation 
 

Day 4: Mount flies on microscope slides and imaging 
 

Prepare: 
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o Microscope slides, coverslip, nail polish 
 

o Antifade mountant 
 

o Brush, P-1000 and tips (prepare some cut tips to transfer brains) 
 

10. Wash 2x15min in 0.5% PBS-T and then wash in 1X PBS 30min 

 

11. Mount fly brains anterior side up on microscope slides 

 

• Using a brush, position fly brains at a 45 angle with anterior side facing up 

 

• Add 30uL of mountant on the top portion of the imaging spacer 

 

• Slightly angle the cover slip, and gently place over wells containing the fly brains. 

 

• Seal perimeter of coverslip with nail polish and allow nail polish to dry before storing or 

imaging 

12. Use confocal microscopy to image 

 

• Set resolution of 2048 x 2048 with a Z-step of 1mm 

 

13. Image J analysis: 

 

• Using the wand (tracing) tool within Fiji, isolate vacuoles at their largest area and assign 

them as regions of interest (ROIs). 

• Adjust tolerance as needed within the tool to best select each vacuole. 

 

• Within the ROI manager, save each set of ROIs per brain as its own ‘‘.zip’’ file. 

 

• Upon completion of the stack, select all ROIs per given brain and perform Measure (with 

Area selected within Set Measurements) and save Results as ‘‘.csv’’. Import measurement 

data within preferred stats package 

3. RNA Extraction with TRIzol 
 

Sample Prep: 
 

Freeze ~10 flies/ microtube in -80°C in advance 

 

Day 1 
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Prepare: 
 

• Prepare two new microtubes/ sample 
 

• TRIzol (TRI reagents), Chloroform and Isopropanol 
 

• Toxic Waste Container 
 

• Pipettes and tips 
 

1. Add TRIzol to sample microtubes to lyse cells (approx 2X sample volume: eg: 200uL) 

 

2. Homogenize the sample with the hand homogenizer 

 

3. Spin at 12000 xG for 10 minutes at 4°C (Remember to orient the microtube properly and add 

balancer tube if needed) 

4. Transfer cleared homogenate (top layer) to a fresh tube (pellet of debris, lipid layer (white 

layer on top) left behind) 

5. Incubate for 5 minutes at RT 

 

6. Add 0.2 ml chloroform/1 ml of trizol (eg: 40 uL) 

 

7. Shake the microtubes by hands for 15 seconds and incubate 3 minutes at RT 

 

8. Spin at 12000 xG for 15 minutes at 4°C 

 

9. Transfer RNA (aqueous phase, top layer) to a fresh tube 

 

10. Precipitate the RNA by mixing 0.5 ml isopropanol/1 ml trizol (eg: 100uL) 

 

11. Store overnight/ several days in -20C 

 

Day 2 
 

Prepare 
 

o Prepare 70% EtOH, 10mM Tris pH7.5 
 

o Toxic Waste Container 
 

o Pipettes and tips 
 

12. Spin at 12000 xG for 15 minutes at 4°C 
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13. Remove the supernatant (top layer) 

 

14. Wash the pellet once with 70% EtOH (1 ml/1 ml of trizol) (eg: 200uL) 

 

15. Spin at 12000 xG for 15 minutes at 4°C 

 

16. Remove the supernatant 

 

17. Briefly air-dry (5-10 minutes) 

 

18. Resuspend in ~25uL 10mM Tris pH7.5 

 

19. Incubate several hours/ overnight in 4C and store in -20C 

 

4. Protein Extraction 
 

Prepare: 

 

• Ice bucket 

 

• RIPA buffer 

 

• Homogenizer and pestle 

 

• Prepare 1 new tube per sample 

Protocol 

1. Freeze all samples @ -80C. 

 

2. Add 150 µL ice-cold RIPA lysis to larvae 

 

3. Homogenize with an electric homogenizer on ice. 

 

4. Wash the pestle with an additional 150ul µL ice-cold RIPA lysis buffer. 

 

5. Agitate the contents for 2 h at 4°C. (on the nutator) 

 

6. Centrifuge at 13,000 x g for 20 minutes at 4°C. 
 

7. Carefully collect the supernatant containing the soluble protein and place in a new tube, 

kept on the ice. Discard the pellet. 

8. Freeze at -20C 
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5. Immunoprecipitation of Aβ 
 

Prepare: 

 

• Dynabeads 

 

• Magnet 

 

• Antibody (6E10) 

 

• 1X PBS (50mL 10X PBS + 450ml H20) 

 

• 1X PBS with 0.02%Tween 20 (10mL 1X PBS + 200uL) 

 

• Elution buffer 

 

• 2 new tubes/ each sample 

Separate Dynabeads from buffer: 

• Completely resuspend Dynabeads® by pipetting (2 minutes). 

 

• Transfer 50 µl (1.5 mg) Dynabeads® to a tube. 

 

• Place the tube on the magnet to separate the beads from the solution and remove the 

supernatant. 

• Remove the tube from the magnet. 

 

Binding of Antibody (allow antibodies to bind to beads) 

 

• Make antibody dilution by adding 1 ul 6E10 anti β-amyloid primary antibody (1mg/ml) 

to 10ml PBS with 0.02% Tween20 

• Add 10000uL antibody to the tube containing beads and shake well 

 

• Incubate with rotation for 1 hour at room temperature. 
 

• Place the tube on the magnet and remove the supernatant. 

 

• Remove the tube from the magnet and resuspend the beads-Ab complex in 200 µl PBS 

with 0.02%Tween 20. Wash by gentle pipetting. 

Immunoprecipitation of Target Antigen (beads capture protein of interest) 
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• Place the tube on the magnet, aspirate supernatant, remove from magnet. 

 

• Add 500uL of the sample containing the antigen (Ag) and gently pipette to resuspend the 

Dynabeads®-Ab complex. (we used 100uL) 

• Incubate with rotation for 1 hour at room temperature to allow Ag to bind to the 

Dynabeads®-Ab complex. 

• Place the tube on the magnet. Aspirate supernatant, remove from magnet 

 

• Add 200 µl 1X PBS to wash the Dynabeads®-Ab-Ag complex. Gentle pipetting to 

resuspend. Aspirate supernatant, remove from magnet 

• Repeat step 5 twice more (3 wash total) 

 

• Resuspend the Dynabeads®-Ab-Ag complex in 100 µl PBS and transfer the bead 

suspension to a clean tube. This is recommended to avoid co-elution of proteins bound to 

the tube wall. 

Elution of Target Antigen (remove proteins of interest from beads) 

 

• Place tubes on the magnet. Aspirate off supernatant. 

 

• To elute the protein off the beads, add 20ul elution buffer 

 

• Incubate with rotation for 20-40 minutes at 4C 

 

• Place tubes on the magnet (ensure all beads are on the magnet) 

 

• Transfer supernatant to new tube 

 

• Nanodrop 
 

• Store @ -20C (we stored @ -80C) 
 



 

48 

 

APPENDIX C: TRANSCRIPT ABUNDANCE OF INFLAMMATION GENES 

 

Below is the graph demonstrating the full list of inflammation genes via Nanostring gene 

expression. 
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