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In 2010, W. Zhao introduced the notion of a Mathieu subspace as a common frame-
work for study of the Jacobian conjecture and related topics. As a generalization of ideals,
Mathieu subspaces provide a new viewpoint to investigate the structure of associative alge-
bras and rings. In this paper, we classify Mathieu subspaces of the Burnside algebras % (G)
and By, (D,p) where k is a field of characteristic p > 0, G = H x K for a p-group H and a

p/-group K, and Ds, is the dihedral group of order 2p (for p odd).

KEYWORDS: Mathieu subspaces (Mathieu-Zhao subspaces), Burnside rings (Burnside al-

gebras), finite groups, p-groups, p’-groups, dihedral groups
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CHAPTER I. INTRODUCTION
Let fi,---,f, be a set of polynomials over C in variables xq,---,z,. Define the

polynomial map F': C* — C" by

Fry, - an) = (@ am), o @ an)) -

Denote by Jr the Jacobian of F', which is the determinant of the n x n matrix

9h ... Of

o0x1 OTn
M =

Ofn ... Ofn

ox1 Ozn

First formulated by O.-H. Keller in 1939, the Jacobian conjecture can be stated as

follows.

Conjecture 1.1. (Keller, [6]) Let F' : C* — C™ be a polynomial map. If Jr is a nonzero

constant, then F' has an inverse polynomial map G.

Although the statement of the conjecture is quite simple, the conjecture remains today
wide open in general with very few special cases proven. For a survey of related results, we
refer the reader to [1], [10], and [11].

Although direct proof attempts have been mostly unsuccessful, it has been shown that
numerous conjectures imply the Jacobian conjecture. Motivated by Mathieu’s conjecture [§]
and the Image conjecture [13], W. Zhao introduced in [12] the following notion with the
goal of creating a common framework for the study of the Jacobian conjecture and related

conjectures.

Definition 1.2. Let R be a commutative ring and A be a commutative R-algebra. We say

that a subspace M of A is a Mathieu subspace of A if the following condition holds: for



a,b € A with a™ € M for all m > 1, we have a™b € M when m > 0, i.e. there exists

N > 1 (depending on a,b) such that a™b € M for allm > N.

Note that Mathieu subspaces are now commonly called Mathieu-Zhao subspaces in
the literature.

Several conjectures related to the Jacobian conjecture can be restated in terms of
Mathieu-Zhao subspaces (for example, the Mathieu and Image conjecture as in [12]). Mathieu-
Zhao subspaces are also a natural generalization of the concept of ideals, and as such, the
study of Mathieu-Zhao subspaces of associative algebras and rings has grown into a field of
its own. In this paper, we investigate the Mathieu-Zhao subspaces of Burnside algebras of
certain classes of finite groups over fields of prime characteristic. We begin by fixing some
definitions.

Let G denote a finite group and R a commutative, unital ring. Let S be a finite set
and denote by A(S) the symmetric group of all permutations of S. We say that S is a G-set
if there exists a group homomorphism 7 : G — A(S). We call 7 a group action of G on S
and typically write gs to denote (7(g))(s) for all s € S.

Let S,T be G-sets. We say that S and T are isomorphic as G-sets if there exists a
bijection f : S — T such that f preserves the group actions of G on S and T, i.e. for any
g € G and s € S, we have f(gs) = gf(s). The Cartesian product of S and T is also a G-set
under the diagonal action g(s,t) = (gs, gt) for all g € G, (s,t) € S x T. We define the orbit
of s to be the set Gs = {gs | g € G}. We say that S is transitive if S = Gs for some s € S,
or equivalently, the action of G on S has exactly one orbit. Let s € S,t € T. For transitive
G-sets S and T, S and T are isomorphic as G-sets if and only if stab(s) is conjugate to
stab(t), where stab(s) = {g € G | gs = s} denotes the stabilizer (or isotropy group) of s [9].
For any G-set S, we may uniquely decompose S into the disjoint union of transitive G-sets
which are precisely the orbits of .S under the action of G. For any subgroup H < G, the left
coset space G/H defines a transitive G-set with action given by left multiplication. For any

s € S, we have S = GG/ stab(s) if S is transitive.



Let P denote the set of conjugacy classes of subgroups of G. For each a € P, let H,
denote a representative of the class a and [G/H,] denote the isomorphism class of G/H,.
Let #r(G) denote the free R-module generated by the set {[G/H,] | a € P}. For any two
basis elements [G/H,)], [G/H,| € Br(G), define

(G/H,) - [G/Hy) =Y |G/K)]

where the sum is taken over all G-orbits in G/H, x G/H, and K; is the stabilizer of the ith
G-orbit. Extending the product by linearity makes Zr(G) a commutative ring with identity
|G/G], and we call Zr(G) the Burnside ring of G over R. If R is a field, we call ZBg(G)
the Burnside algebra of G over R. The Burnside ring is named after W. Burnside, who
introduced the notion in [2].

We say that a finite group G is a p-group for a prime p if |G| = p* for some k, and
say that G is a p'-group if p 1 |G].

Let A be an associative algebra and (e) denote the principal ideal of A generated by

e € A. In this thesis, we prove the following main theorems.

Theorem 1.3. Let k be a field of characteristic p and G = Hx K where H is a p-group and K
is a p'-group. LetV be a subspace of Bi(G). Then'V is a Mathieu-Zhao subspace of By (G) =
PBr(H) @k Br(K) if and only if V' contains no nonzero idempotents or Bx(H) @ (j) CV for
each nonzero idempotent j of By(K) such that 1 ®@ j € V', where (j) is the principal ideal of
PBr(K) generated by j.

Theorem 1.4. Let p be an odd prime, k be a field of characteristic p, and A = PBy(Dap).
Then A = ey Ax es Ax ez A for some nonzero idempotents e;. A subspace V' of A is a Mathieu-
Zhao subspace of A if and only if V contains no nonzero idempotents or @ e;A CV for
each nonzero idempotent Zjej e; contained in V', where J C {1,2,3}. "

The rest of the paper is organized as follows: in Chapter 11, we discuss results necessary

for the proof of Theorems 1.3 and 1.4. In Chapter III, we prove Theorem 1.3. In Chapter

3



IV, we prove Theorem 1.4.



CHAPTER II: PRELIMINARIES
The following theorem due to G. Karpilovsky allows the splitting of Burnside rings

over the cross product of groups.

Theorem 2.1 (Karpilovsky, [5]). Let G and H be groups with representatives of all conjugacy
classes given by Gy,---,G, and Hy,--- , H,, respectively. Then the map ¢ : PBz(G) ®z
Br(H) — Bz(G x H) given by ¢(|G/G;] ®z [H/H;]) = [(G x H)/(G; x H;)] is an injective
ring homomorphism. Furthermore, if G and H are of relatively prime order, then ¢ is a ring

1somorphism.

Let p be a prime and let Z, denote the field of integers modulo p. The following
theorem due to E. Jacobson classifies local Burnside rings of the form %, (G) where G is a

finite group.

Theorem 2.2 (Jacobson, [4]). Let G be a finite group. G is a p-group if and only if Bz, (G)

15 local.

The following theorem is an analogue of the well-known Maschke’s theorem for group
algebras. For a unital ring R, we say that e € R is idempotent if e = e and we call e central
ifeR(1—e) = (1—e)Re = 0. We say that idempotents e and f are orthogonal if ef = fe =0,
and we say that a central idempotent e is centrally primitive if e # 0 and e cannot be written
as the sum of two nonzero orthogonal central idempotents in R. Furthermore, we say a set
E of orthogonal centrally primitive idempotents is complete if ) e = 1. We note for the

Burnside algebras % (G) that all idempotents are central as %y (G) is commutative.

Theorem 2.3 (Solomon, [9]). Let G be a finite group and let k be a field of characteristic
0 or coprime to |G|. Then the Burnside algebra %By(G) is semisimple and isomorphic to

@D.cp ke for a complete set of orthogonal centrally primitive idempotents E.

The following theorem is a standard result for Burnside rings describing the product

of G-sets [G/H]| and [G/K] such that H, K are normal subgroups of G.



Lemma 2.4. Let G be a finite group and let k be a field of characteristic p. Let H, K be
normal subgroups of G. Then the multiplication of transitive G-sets [G/H], |G/ K] in ZBx(G)

s given by

G/H) - (C/K] = %[G/ﬂ K]

Proof. Let (aH,bK) € G/H x G/K. As H,K are normal, the stabilizer stab(aH,bK) is

given by
stab(aH,bK) = aHa *NbKb ™' = HN K.

Counting the number of elements on both sides gives [G/H]-[G/K] = ‘}Eﬂ(l@?‘ [G/HNK]. O

The following theorem due to W. Zhao allows for simple classification of the Mathieu-
Zhao subspaces of some algebras given their idempotents. Let k£ be a field and A an asso-
ciative algebra over k. We say V' C A is algebraic over k if every element of V' is the root
of a monic polynomial with coefficients in k. Denote by vV the radical of V, i.e., the set of

all a € A such that ™ € V for sufficiently large m.

Theorem 2.5 (Zhao, [14]). Let k be a field and A an associative algebra over k. Let V' be
a k-subspace such that \/V is algebraic over k. Then V is a Mathieu-Zhao subspace of A if

and only if for each idempotent e € V', we have the principal ideal (e) C V.
Lemma 2.6. Let G be a finite group and k be a field. Then PB(G) is algebraic.

Proof. Let b € $,(G). Then the set {1,b,b%, - - - } must be linearly dependent, so there exists
a nonconstant polynomial g such that ¢(b) = 0. Let o € k be the leading coefficient of q.
Then a~'p(b) = 0, hence b is algebraic. Therefore, %;(G) is algebraic. ]

Let p be an odd prime and Ds, denote the dihedral group of order 2p. Write Dy, as

(r,s), where r has order p and s has order 2. In D,,, conjugacy classes of some subgroups



are nontrivial. The following theorem due to K. Conrad allows us to classify all subgroups

of Dy, into one of 4 conjugacy classes.

Theorem 2.7 (Conrad, [3]). Let n be odd and m | 2n. If m is odd, then all m subgroups of
Dy, with index m are conjugate. If m is even, then the only subgroup of Ds, with index m s

(r™/2). In particular, all subgroups of Da, with the same index are conjugate to each other.

The following theorem is a well-known result relating the idempotents of a ring and

its decomposition (e.g., [7]).

Theorem 2.8. Let R be a (not necessarily commutative) ring. Then R can be expressed as
a finite direct product of indecomposable rings if and only if 1 € R can be written as a sum
of orthogonal centrally primitive idempotents. If such a decomposition exists, each factor of

the decomposition of R contains no nontrivial central idempotents.



CHAPTER III: MATHIEU-ZHAO SUBSPACES OF %, (G)
Let G = H x K where H is a p-group and K is a p/-group. Then by Theorem 2.1, we
have %By(G) = Bi(H) @k PBr(K). To find the Mathieu-Zhao subspaces of % (G), we first

investigate the idempotents of each of By (H), Br(K).
Theorem 3.1. Let H be a p-group and k be a field of characteristic p. Then PBy(H) is local.

Proof. By Theorem 2.2, %7 (H) is local. As Bi(H) = k ®z, #z,(H), we see that %), (H)

must also be local. O

Recall that K is a p/-group. Let [ = dimy, %,(K). By Theorem 2.3, %, (K) = @!_,k,
and %By(K) has a complete set of primitive idempotents {e,--- ,e;}.
In some cases, it is simple to list the primitive idempotents of % (K). Let C,, denote

the cyclic group with n elements.

Example 3.2. Let K = Cys with ¢ prime and let f; = ¢ *[K/C]. Then a complete set of

primitive idempotents of By (K) is given by F = {fo, fr — fo, -, fs — fs—1}

Proof. For ¢ < j, we have

fio [i = d°K/Cul - ¢ °IK[Cy] = ¢ ¢ [K)Cp] = f;

by Lemma 2.4. Then f? = f;, and for i > 1,

(fi— fim))> = f} =2fica+ [P0 = fi— fim1.

For 1 <1 <'s, we have

folfi—fizi)=fo—fo=0



and for 1 <1< j < s,

(fi—fic)(fi—fi)=fi—fii— fit+ fiii=0,
thus F'is a set of orthogonal idempotents. As dim % (K) = s+1 = |F|, each f € F must be
primitive. As > fer f=fs=1, Fis a complete set of primitive idempotents as desired. []
We now investigate the idempotents of By (H) @ Br(K).

Lemma 3.3. Let {e1,---,e;} be a complete set of orthogonal primitive idempotents of
PBr(K). Then the set E = {1 ®ey,---,1® e} is a complete set of orthogonal primitive
idempotents in Br(G) = Br(H) @k Br(K).

Proof. We have

as Br(H) @ k = Br(H). Note that every 1 @ e; € E satisfies (1®¢;)? =1®ef =1Q e,
so each 1 ® e; is idempotent. For i # j, (1 ®e€;)(1®e;) = 1 @ e;e; = 0, so the elements of E
are pairwise orthogonal. Let f = (f;)!_, be an idempotent of %;(G) = @2:1 PBr(H). Then

f=f- (Zw@ei) ZZf(1®ei).

As A1 (H) is local by Theorem 3.1, any nonzero idempotent f that is not the identity must

be in the unique maximal ideal. Similarly, 1 — f must also be in the same maximal ideal,



which implies 1 is in this maximal ideal. This is a contradiction, thus each f; is either 0 or

1. Then either f =0 or

F=) (loeg) =18 ¢

jedJ jedJ

for some J C {1,---,l}. As each nonzero idempotent f has such a decomposition, we see

that E' is a primitive set of idempotents. We have 22:1 1®e; =1, so E is a complete set. [

With the idempotents of % (G) clear, Theorem 1.3 becomes a consequence of Theo-
rem 2.5.

Proof of Theorem 1.3. (=) Let V be a Mathieu-Zhao subspace of By(H) ® Bi(K).
If V' contains no nonzero idempotents, then the proof is complete. If V' contains a nonzero
idempotent, it must be of the form 1 ® 5 by Lemma 3.3. As V' is a Mathieu-Zhao subspace,
(1®j) = ABr(H) ® (j) must be contained in V' by Theorem 2.5.

(<). Let V be a subspace of %y (H)® %, (K). Then by Lemma 2.6, v/V is algebraic.
If V' contains no nonzero idempotents, then V' is a Mathieu-Zhao subspace by Theorem 2.5.
If V' contains a nonzero idempotent f, then by Lemma 3.3, f = 1 ® j for some idempotent
j of Z(K). By assumption, (1 ® j) C V| so V satisfies Theorem 2.5 and is therefore a

Mathieu-Zhao subspace. ]

Corollary 3.4. Let V' be a subspace of Br(H) not containing 1. Then for any subspace
W of Bi(K), V& W does not contain any nonzero idempotents, hence is a Mathieu-Zhao
subspace of Br(Q).

Proof. Note that /V ® W is algebraic by Lemma 2.6. Let {vy, -+ ,v,} be a basis of V
and let {wy,--- ,w,} be a basis of W. If V® W contains a nonzero idempotent f, then by

Lemma 3.3, f = 1 ® j for some idempotent j in % (K). Then
1 ®] = Zas,tvs ® Wy,
s,t

10



for some ay; € k, so 1 € span{vy,--- ,v,}, contradicting the assumption that 1 € V. So
V @ W contains no nonzero idempotents, and by Theorem 1.3, V ® W is a Mathieu-Zhao
subspace of %y (G). O

Corollary 3.5. Let W be a subspace of By (K) containing no nonzero idempotents. Then for
any subspace V' of Br(H), VQW contains no nonzero idempotents, hence is a Mathieu-Zhao
subspace of B(Q).

Proof. Again, note vV ® W is algebraic over k by Lemma 2.6. By Corollary 3.4, we may
assume V' contains 1. Let {vq, -+ ,v,} be a basis of V with v; = 1 and {wy,--- ,w,} be
a basis of W. Let f be a nonzero idempotent contained in V' ® W. Then by Lemma 3.3,

f =1® j for some idempotent j in Ay (K). Then

le@szas,tvS@)wt

s,t
= Z a1l @ wy + Z Qs ,tUs @ Wy,
! sssjétl
but as {vs @ w; | 1 < s <m,1 <t < n} are linearly independent, we see that the second

summand must be 0. Then

1®jg= Z I1®ajw=1® (Z Oél,twt)
¢ ¢

and we see that j is a linear combination of basis vectors of W and therefore 7 € W. But
7 is an idempotent and W contains no nonzero idempotents, so we must have j = 0. Then

1®j =0, and by Theorem 1.3, V' ® W is a Mathieu-Zhao subspace of Z(G). O

Remark 3.6. By the Classification Theorem of Finite Abelian Groups, every finite abelian
group G is isomorphic to H x K for some p-group H and p'-group K. Therefore, Theorem

1.3 and Corollaries 3.4 and 3.5 hold for all finite abelian groups.

11



CHAPTER IV: MATHIEU-ZHAO SUBSPACES OF %;.(D5,)

Throughout this chapter, let p be an odd prime, k£ be a field of characteristic p, and
G = D,, denote the dihedral group of order 2p. Write G as (r, s), where r has order p and
s has order 2. Let A denote the Burnside algebra %, (G). As G is not abelian, conjugacy
classes of subgroups are sometimes nontrivial, therefore the structure of A is slightly more
complex than the cyclic case.

Let C), denote the cyclic subgroup of G with n elements and let S be the subgroup
{1, s}. By Theorem 2.7, a complete set of representatives of conjugacy classes of subgroups
of G is given by {G, C,, S, C1}. For each representative subgroup H, let Ty denote the class
|G/H]. Note that Cy, C,, and G are all normal subgroups of G.

Lemma 4.1. Let G = D,,. The product of G-sets in A is given by the table below.

Te | T¢, Ts Te,
T | Tc | Tg, Ts Te,
Te, | Te, | 2Te, | Te, | 21,

Ts | Ts | To, | Ts—3To, | 0

Te, | Te, | 2T¢, 0 0

Proof. For the product of G-sets corresponding to normal subgroups, use Lemma 2.4.
For the product of Ts and Ty where N is a normal subgroup of GG, note that the
stabilizer of a pair (aS,bN) € G/S x G/N is given by

stab(aS,bN) = aSa ' NbNb~' = aSa™' N N.

If N =Cj or Cp, then aSa™* NN = C} as all conjugates of S are of the form {1,7's} for
some i. Then every element of G/S x G/N has stabilizer C| and counting the number of
elements on both sides gives

G||C] S
[S[IN| N

Ts - [G/N] =

12



which is 0 for N = C; and T, for N = C,. If N = G, the G-set Ti; is the identity element
of % (G) and the product is trivial.
Finally, consider the product Ts - Ts. Again, let (aS,0S) € G/S x G/S. We may

assume a,b € C,. Then
stab(aS,bS) = aSa~' NbSH™L,

so we see that the stabilizer depends on the choice of (aS, bS). The intersection aSa~*NbSbh™!
is trivial unless aSa™! = bSb~!, which is the case if and only if a = b mod N(S) where N(5)
denotes the normalizer of S. But N(S) = S in Dy, and therefore (aS,bS) has stabilizer
conjugate to S if and only if @ = b mod S if and only if a = b, since ab~! € S if and only if
ab™! = 1. Then there are p? total elements in G/S x G/S, of which p of them have stabilizer

conjugate to S and p? — p of them have stabilizer conjugate to C;. Then

5] Gl o
Ts - Tg = —pTs+ —(p° — p)1;

as k has characteristic p. O

Lemma 4.2. Let e; = %TCP,GQ =Tg — %TC1 and e3 =1 —e; —ey. Then E = {ey,e9,e3} is

a complete set of orthogonal primitive idempotents in A.

Proof. Note that e} = (37¢,)* = 3T¢, and €3 = (Ts — 17¢,)? = Ts — 3T, so €1 and ey are

idempotent. Then

1 1 1 2
e16g = (—Tcp> (Ts — —T(,*l) = T¢, — -1¢, =0,



soeres =ei(l—e;—ey) =e; —e2 —ejep =0 and eges = ex(1 — €1 — e3) = €9 — ege; — €5 = 0

and we see the elements of E are pairwise orthogonal. Then e3 is also idempotent, as
e3=(1—e —e)’=1—e—ey—e+ej—ereg—ey—ege; +ea=1—e;—ey=e
3= 1—€2)" = 1— €6 —e€+te 1€2 — €2 — €2€] + €2 = 1 — €2 = ée3.

By Lemma 4.1, e; A = span{T¢,, Tc, }, ea A = span{es}, e3 A = span{es}. Note that e;.A, es.A
are simple and therefore es, e3 are primitive. Assume that e; is not primitive. Then there
exist some orthogonal idempotents f, f such that e; = f + f and e; A = fA P f' A with

each of fA, f'A simple. Then
A= fAD AP ADesAZkDEDEDE,

so A has no nonzero nilpotent element. But T, gl = 0 is nilpotent in A, which is a contradic-

tion. As ) .pe =1, wesee that I is a complete set of orthogonal primitive idempotents. [

Proof of Theorem 1.4. By Lemma 4.2, E = {e;, 3, €3} is a complete set of orthogonal
primitive idempotents. Then by Theorem 2.8, we have A = @;5:1 e; A where the idempotents
of each subalgebra ¢; A are exactly 0 and e;.

(=) Let V be a Mathieu-Zhao subspace of A. Assume V contains some nonzero

idempotent f. Then by Lemma 4.2, f =>"._, e; where .J is a nonempty subset of {1, 2, 3}.

jed
As V is a Mathieu-Zhao subspace, (f) = D,.; €;A is a subset of V' by Theorem 2.5.
(<) Let V be a subspace of A. By Lemma 2.6, vV is algebraic. If V' contains no

nonzero idempotents, then V' is a Mathieu-Zhao subspace of A by Theorem 2.5. If V' contains

a nonzero idempotent f, then by Lemma 4.2, f = " e; for some nonempty subset J of

jeJ

{1,2,3}. By assumption, P e; A is contained in V, therefore V' satisfies Theorem 2.5

jeJ

and is a Mathieu-Zhao subspace. O
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