Illinois State University

[ISU ReD: Research and eData](https://ir.library.illinoisstate.edu/)

[Theses and Dissertations](https://ir.library.illinoisstate.edu/etd)

7-1-2022

Mathieu-Zhao Subspaces of Burnside Algebras of Some Finite Groups

Andrew Burak Hatfield Illinois State University, andrew.hatfield@me.com

Follow this and additional works at: [https://ir.library.illinoisstate.edu/etd](https://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Hatfield, Andrew Burak, "Mathieu-Zhao Subspaces of Burnside Algebras of Some Finite Groups" (2022). Theses and Dissertations. 1601. [https://ir.library.illinoisstate.edu/etd/1601](https://ir.library.illinoisstate.edu/etd/1601?utm_source=ir.library.illinoisstate.edu%2Fetd%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Thesis is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more information, please contact [ISUReD@ilstu.edu.](mailto:ISUReD@ilstu.edu)

MATHIEU-ZHAO SUBSPACES OF BURNSIDE ALGEBRAS OF SOME FINITE GROUPS

ANDREW B. HATFIELD

16 Pages

In 2010, W. Zhao introduced the notion of a Mathieu subspace as a common framework for study of the Jacobian conjecture and related topics. As a generalization of ideals, Mathieu subspaces provide a new viewpoint to investigate the structure of associative algebras and rings. In this paper, we classify Mathieu subspaces of the Burnside algebras $\mathscr{B}_k(G)$ and $\mathscr{B}_k(D_{2p})$ where k is a field of characteristic $p > 0$, $G = H \times K$ for a p-group H and a p'-group K, and D_{2p} is the dihedral group of order $2p$ (for p odd).

KEYWORDS: Mathieu subspaces (Mathieu-Zhao subspaces), Burnside rings (Burnside algebras), finite groups, p -groups, p' -groups, dihedral groups

MATHIEU-ZHAO SUBSPACES OF BURNSIDE ALGEBRAS OF SOME FINITE GROUPS

ANDREW B. HATFIELD

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Department of Mathematics

ILLINOIS STATE UNIVERSITY

2022

Copyright 2022 Andrew B. Hatfield

MATHIEU-ZHAO SUBSPACES OF BURNSIDE ALGEBRAS OF SOME FINITE GROUPS

ANDREW B. HATFIELD

COMMITTEE MEMBERS: Wenhua Zhao, Chair George F. Seelinger

CONTENTS

CHAPTER I: INTRODUCTION

Let f_1, \dots, f_n be a set of polynomials over $\mathbb C$ in variables x_1, \dots, x_n . Define the polynomial map $F: \mathbb{C}^n \to \mathbb{C}^n$ by

$$
F(x_1,\dots,x_n)=(f_1(x_1,\dots,x_n),\dots,f_n(x_1,\dots,x_n)).
$$

Denote by J_F the Jacobian of F, which is the determinant of the $n \times n$ matrix

.

$$
\mathcal{M} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}.
$$

First formulated by O.-H. Keller in 1939, the Jacobian conjecture can be stated as follows.

Conjecture 1.1. (Keller, [\[6\]](#page-20-1)) Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map. If J_F is a nonzero constant, then F has an inverse polynomial map G.

Although the statement of the conjecture is quite simple, the conjecture remains today wide open in general with very few special cases proven. For a survey of related results, we refer the reader to $[1]$, $[10]$, and $[11]$.

Although direct proof attempts have been mostly unsuccessful, it has been shown that numerous conjectures imply the Jacobian conjecture. Motivated by Mathieu's conjecture [\[8\]](#page-20-5) and the Image conjecture [\[13\]](#page-21-0), W. Zhao introduced in [\[12\]](#page-20-6) the following notion with the goal of creating a common framework for the study of the Jacobian conjecture and related conjectures.

Definition 1.2. Let R be a commutative ring and $\mathcal A$ be a commutative R-algebra. We say that a subspace M of A is a **Mathieu subspace** of A if the following condition holds: for $a, b \in \mathcal{A}$ with $a^m \in \mathcal{M}$ for all $m \geq 1$, we have $a^m b \in \mathcal{M}$ when $m \gg 0$, i.e. there exists $N \geq 1$ (depending on a, b) such that $a^m b \in \mathcal{M}$ for all $m \geq N$.

Note that Mathieu subspaces are now commonly called Mathieu-Zhao subspaces in the literature.

Several conjectures related to the Jacobian conjecture can be restated in terms of Mathieu-Zhao subspaces (for example, the Mathieu and Image conjecture as in [\[12\]](#page-20-6)). Mathieu-Zhao subspaces are also a natural generalization of the concept of ideals, and as such, the study of Mathieu-Zhao subspaces of associative algebras and rings has grown into a field of its own. In this paper, we investigate the Mathieu-Zhao subspaces of Burnside algebras of certain classes of finite groups over fields of prime characteristic. We begin by fixing some definitions.

Let G denote a finite group and R a commutative, unital ring. Let S be a finite set and denote by $A(S)$ the symmetric group of all permutations of S. We say that S is a $G\text{-}set$ if there exists a group homomorphism $\tau : G \to A(S)$. We call τ a group action of G on S and typically write gs to denote $(\tau(g))(s)$ for all $s \in S$.

Let S, T be G-sets. We say that S and T are isomorphic as G-sets if there exists a bijection $f : S \to T$ such that f preserves the group actions of G on S and T, i.e. for any $g \in G$ and $s \in S$, we have $f(gs) = gf(s)$. The Cartesian product of S and T is also a G-set under the diagonal action $g(s, t) = (gs, gt)$ for all $g \in G$, $(s, t) \in S \times T$. We define the *orbit* of s to be the set $Gs = \{gs \mid g \in G\}$. We say that S is transitive if $S = Gs$ for some $s \in S$, or equivalently, the action of G on S has exactly one orbit. Let $s \in S, t \in T$. For transitive G-sets S and T, S and T are isomorphic as G-sets if and only if $stab(s)$ is conjugate to stab(t), where stab(s) = { $g \in G | gs = s$ } denotes the *stabilizer* (or *isotropy group*) of s [\[9\]](#page-20-7). For any G -set S, we may uniquely decompose S into the disjoint union of transitive G -sets which are precisely the orbits of S under the action of G. For any subgroup $H \leq G$, the left coset space G/H defines a transitive G-set with action given by left multiplication. For any $s \in S$, we have $S \cong G/\text{stab}(s)$ if S is transitive.

Let P denote the set of conjugacy classes of subgroups of G. For each $a \in P$, let H_a denote a representative of the class a and $[G/H_a]$ denote the isomorphism class of G/H_a . Let $\mathscr{B}_R(G)$ denote the free R-module generated by the set $\{[G/H_a] \mid a \in P\}$. For any two basis elements $[G/H_a], [G/H_b] \in \mathscr{B}_R(G)$, define

$$
[G/H_a] \cdot [G/H_b] = \sum [G/K_i]
$$

where the sum is taken over all G-orbits in $G/H_a \times G/H_b$ and K_i is the stabilizer of the *i*th G-orbit. Extending the product by linearity makes $\mathscr{B}_R(G)$ a commutative ring with identity [G/G], and we call $\mathcal{B}_R(G)$ the *Burnside ring of G over R*. If R is a field, we call $\mathcal{B}_R(G)$ the Burnside algebra of G over R. The Burnside ring is named after W. Burnside, who introduced the notion in [\[2\]](#page-20-8).

We say that a finite group G is a p-group for a prime p if $|G| = p^k$ for some k, and say that G is a p'-group if $p \nmid |G|$.

Let A be an associative algebra and $\langle e \rangle$ denote the principal ideal of A generated by $e \in \mathcal{A}$. In this thesis, we prove the following main theorems.

Theorem 1.3. Let k be a field of characteristic p and $G = H \times K$ where H is a p-group and K is a p'-group. Let V be a subspace of $\mathscr{B}_k(G)$. Then V is a Mathieu-Zhao subspace of $\mathscr{B}_k(G) \cong$ $\mathscr{B}_k(H)\otimes_k \mathscr{B}_k(K)$ if and only if V contains no nonzero idempotents or $\mathscr{B}_k(H)\otimes \langle j \rangle \subseteq V$ for each nonzero idempotent j of $\mathcal{B}_k(K)$ such that $1 \otimes j \in V$, where $\langle j \rangle$ is the principal ideal of $\mathscr{B}_k(K)$ generated by j.

Theorem 1.4. Let p be an odd prime, k be a field of characteristic p, and $A = \mathscr{B}_k(D_{2p})$. Then $A \cong e_1A \times e_2A \times e_3A$ for some nonzero idempotents e_i . A subspace V of A is a Mathieu-Zhao subspace of A if and only if V contains no nonzero idempotents or \bigoplus j∈J $e_j\mathcal{A} \subseteq V$ for each nonzero idempotent $\sum_{j\in J} e_j$ contained in V, where $J \subseteq \{1,2,3\}$.

The rest of the paper is organized as follows: in Chapter II, we discuss results necessary for the proof of Theorems [1.3](#page-8-0) and [1.4.](#page-8-1) In Chapter III, we prove Theorem [1.3.](#page-8-0) In Chapter

IV, we prove Theorem [1.4.](#page-8-1)

CHAPTER II: PRELIMINARIES

The following theorem due to G. Karpilovsky allows the splitting of Burnside rings over the cross product of groups.

Theorem 2.1 (Karpilovsky, [\[5\]](#page-20-9)). Let G and H be groups with representatives of all conjugacy classes given by G_1, \dots, G_n and H_1, \dots, H_m respectively. Then the map $\phi : \mathscr{B}_{\mathbb{Z}}(G) \otimes_{\mathbb{Z}}$ $\mathscr{B}_{\mathbb{Z}}(H) \to \mathscr{B}_{\mathbb{Z}}(G \times H)$ given by $\phi([G/G_i] \otimes_{\mathbb{Z}} [H/H_j]) = [(G \times H)/(G_i \times H_j)]$ is an injective ring homomorphism. Furthermore, if G and H are of relatively prime order, then ϕ is a ring isomorphism.

Let p be a prime and let \mathbb{Z}_p denote the field of integers modulo p. The following theorem due to E. Jacobson classifies local Burnside rings of the form $\mathscr{B}_{\mathbb{Z}_p}(G)$ where G is a finite group.

Theorem 2.2 (Jacobson, [\[4\]](#page-20-10)). Let G be a finite group. G is a p-group if and only if $\mathscr{B}_{\mathbb{Z}_p}(G)$ is local.

The following theorem is an analogue of the well-known Maschke's theorem for group algebras. For a unital ring R, we say that $e \in R$ is *idempotent* if $e^2 = e$ and we call e central if $eR(1-e) = (1-e)Re = 0$. We say that idempotents e and f are orthogonal if $ef = fe = 0$, and we say that a central idempotent e is *centrally primitive* if $e \neq 0$ and e cannot be written as the sum of two nonzero orthogonal central idempotents in R . Furthermore, we say a set E of orthogonal centrally primitive idempotents is *complete* if $\sum_{e \in E} e = 1$. We note for the Burnside algebras $\mathscr{B}_k(G)$ that all idempotents are central as $\mathscr{B}_k(G)$ is commutative.

Theorem 2.3 (Solomon, [\[9\]](#page-20-7)). Let G be a finite group and let k be a field of characteristic 0 or coprime to |G|. Then the Burnside algebra $\mathcal{B}_k(G)$ is semisimple and isomorphic to $\bigoplus_{e\in E}$ ke for a complete set of orthogonal centrally primitive idempotents $E.$

The following theorem is a standard result for Burnside rings describing the product of G-sets $|G/H|$ and $|G/K|$ such that H, K are normal subgroups of G.

Lemma 2.4. Let G be a finite group and let k be a field of characteristic p. Let H, K be normal subgroups of G. Then the multiplication of transitive G-sets $[G/H], [G/K]$ in $\mathscr{B}_k(G)$ is given by

$$
[G/H] \cdot [G/K] = \frac{|H \cap K||G|}{|H||K|} [G/H \cap K].
$$

Proof. Let $(aH, bK) \in G/H \times G/K$. As H, K are normal, the stabilizer stab (aH, bK) is given by

$$
stab(aH, bK) = aHa^{-1} \cap bKb^{-1} = H \cap K.
$$

Counting the number of elements on both sides gives $[G/H] \cdot [G/K] = \frac{|H \cap K||G|}{|H||K|} [G/H \cap K]$. \Box

The following theorem due to W. Zhao allows for simple classification of the Mathieu-Zhao subspaces of some algebras given their idempotents. Let k be a field and $\mathcal A$ an associative algebra over k. We say $V \subseteq \mathcal{A}$ is algebraic over k if every element of V is the root of a monic polynomial with coefficients in k . Denote by \sqrt{V} the radical of V, i.e., the set of all $a \in \mathcal{A}$ such that $a^m \in V$ for sufficiently large m.

Theorem 2.5 (Zhao, [\[14\]](#page-21-1)). Let k be a field and A an associative algebra over k. Let V be a k-subspace such that \sqrt{V} is algebraic over k. Then V is a Mathieu-Zhao subspace of A if and only if for each idempotent $e \in V$, we have the principal ideal $\langle e \rangle \subseteq V$.

Lemma 2.6. Let G be a finite group and k be a field. Then $\mathscr{B}_k(G)$ is algebraic.

Proof. Let $b \in \mathcal{B}_k(G)$. Then the set $\{1, b, b^2, \dots\}$ must be linearly dependent, so there exists a nonconstant polynomial q such that $q(b) = 0$. Let $\alpha \in k$ be the leading coefficient of q. Then $\alpha^{-1}p(b) = 0$, hence b is algebraic. Therefore, $\mathscr{B}_k(G)$ is algebraic. \Box

Let p be an odd prime and D_{2p} denote the dihedral group of order $2p$. Write D_{2p} as $\langle r, s \rangle$, where r has order p and s has order 2. In D_{2p} , conjugacy classes of some subgroups are nontrivial. The following theorem due to K. Conrad allows us to classify all subgroups of D_{2p} into one of 4 conjugacy classes.

Theorem 2.7 (Conrad, [\[3\]](#page-20-11)). Let n be odd and $m \mid 2n$. If m is odd, then all m subgroups of D_{2n} with index m are conjugate. If m is even, then the only subgroup of D_{2n} with index m is $\langle r^{m/2} \rangle$. In particular, all subgroups of D_{2n} with the same index are conjugate to each other.

The following theorem is a well-known result relating the idempotents of a ring and its decomposition (e.g., [\[7\]](#page-20-12)).

Theorem 2.8. Let R be a (not necessarily commutative) ring. Then R can be expressed as a finite direct product of indecomposable rings if and only if $1 \in R$ can be written as a sum of orthogonal centrally primitive idempotents. If such a decomposition exists, each factor of the decomposition of R contains no nontrivial central idempotents.

CHAPTER III: MATHIEU-ZHAO SUBSPACES OF $\mathcal{B}_k(G)$

Let $G = H \times K$ where H is a p-group and K is a p'-group. Then by Theorem [2.1,](#page-10-1) we have $\mathcal{B}_k(G) \cong \mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$. To find the Mathieu-Zhao subspaces of $\mathcal{B}_k(G)$, we first investigate the idempotents of each of $\mathcal{B}_k(H), \mathcal{B}_k(K)$.

Theorem 3.1. Let H be a p-group and k be a field of characteristic p. Then $\mathscr{B}_k(H)$ is local.

Proof. By Theorem [2.2,](#page-10-2) $\mathscr{B}_{\mathbb{Z}_p}(H)$ is local. As $\mathscr{B}_k(H) = k \otimes_{\mathbb{Z}_p} \mathscr{B}_{\mathbb{Z}_p}(H)$, we see that $\mathscr{B}_k(H)$ \Box must also be local.

Recall that K is a p'-group. Let $l = \dim_k \mathcal{B}_k(K)$. By Theorem [2.3,](#page-10-3) $\mathcal{B}_k(K) \cong \bigoplus_{i=1}^l k$, and $\mathcal{B}_k(K)$ has a complete set of primitive idempotents $\{e_1, \dots, e_l\}$.

In some cases, it is simple to list the primitive idempotents of $\mathcal{B}_k(K)$. Let C_n denote the cyclic group with n elements.

Example 3.2. Let $K = C_{q^s}$ with q prime and let $f_i = q^{i-s}[K/C_{q^i}]$. Then a complete set of primitive idempotents of $\mathcal{B}_k(K)$ is given by $F = \{f_0, f_1 - f_0, \cdots, f_s - f_{s-1}\}.$

Proof. For $i \leq j$, we have

$$
f_i \cdot f_j = q^{i-s} [K/C_{q^i}] \cdot q^{j-s} [K/C_{q^j}] = q^{i+j-2s} q^{s-j} [K/C_{q^i}] = f_i
$$

by Lemma [2.4.](#page-11-0) Then $f_i^2 = f_i$, and for $i \ge 1$,

$$
(f_i - f_{i-1})^2 = f_i^2 - 2f_{i-1} + f_{i-1}^2 = f_i - f_{i-1}.
$$

For $1 \leq i \leq s$, we have

$$
f_0(f_i - f_{i-1}) = f_0 - f_0 = 0
$$

and for $1 \leq i < j \leq s$,

$$
(f_i - f_{i-1})(f_j - f_{j-1}) = f_i - f_{i-1} - f_i + f_{i-1} = 0,
$$

thus F is a set of orthogonal idempotents. As $\dim \mathcal{B}_k(K) = s+1 = |F|$, each $f \in F$ must be primitive. As $\sum_{f \in F} f = f_s = 1$, F is a complete set of primitive idempotents as desired.

We now investigate the idempotents of $\mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$.

Lemma 3.3. Let $\{e_1, \dots, e_l\}$ be a complete set of orthogonal primitive idempotents of $\mathscr{B}_k(K)$. Then the set $E = \{1 \otimes e_1, \dots, 1 \otimes e_l\}$ is a complete set of orthogonal primitive idempotents in $\mathcal{B}_k(G) \cong \mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$.

Proof. We have

$$
\mathscr{B}_k(G) \cong \mathscr{B}_k(H) \otimes_k \mathscr{B}_k(K)
$$

$$
\cong \mathscr{B}_k(H) \otimes_k \left(\bigoplus_{i=1}^l k\right)
$$

$$
\cong \bigoplus_{i=1}^l (\mathscr{B}_k(H) \otimes_k k)
$$

$$
\cong \bigoplus_{i=1}^l \mathscr{B}_k(H)
$$

as $\mathscr{B}_k(H) \otimes_k k \cong \mathscr{B}_k(H)$. Note that every $1 \otimes e_i \in E$ satisfies $(1 \otimes e_i)^2 = 1 \otimes e_i^2 = 1 \otimes e_i$, so each $1 \otimes e_i$ is idempotent. For $i \neq j$, $(1 \otimes e_i)(1 \otimes e_j) = 1 \otimes e_i e_j = 0$, so the elements of E are pairwise orthogonal. Let $f = (f_i)_{i=1}^l$ be an idempotent of $\mathscr{B}_k(G) \cong \bigoplus_{i=1}^l \mathscr{B}_k(H)$. Then

$$
f = f \cdot \left(\sum_{i=i}^{l} 1 \otimes e_i\right) = \sum_{i=1}^{l} f(1 \otimes e_i).
$$

As $\mathcal{B}_k(H)$ is local by Theorem [3.1,](#page-13-1) any nonzero idempotent f that is not the identity must be in the unique maximal ideal. Similarly, $1 - f$ must also be in the same maximal ideal,

which implies 1 is in this maximal ideal. This is a contradiction, thus each f_i is either 0 or 1. Then either $f = 0$ or

$$
f = \sum_{j \in J} (1 \otimes e_j) = 1 \otimes \sum_{j \in J} e_j
$$

for some $J \subseteq \{1, \dots, l\}$. As each nonzero idempotent f has such a decomposition, we see that E is a primitive set of idempotents. We have $\sum_{i=1}^{l} 1 \otimes e_l = 1$, so E is a complete set.

With the idempotents of $\mathcal{B}_k(G)$ clear, Theorem [1.3](#page-8-0) becomes a consequence of Theorem [2.5.](#page-11-1)

Proof of Theorem [1.3.](#page-8-0) (⇒) Let V be a Mathieu-Zhao subspace of $\mathcal{B}_k(H) \otimes \mathcal{B}_k(K)$. If V contains no nonzero idempotents, then the proof is complete. If V contains a nonzero idempotent, it must be of the form $1 \otimes j$ by Lemma [3.3.](#page-14-0) As V is a Mathieu-Zhao subspace, $\langle 1 \otimes j \rangle = \mathscr{B}_k(H) \otimes \langle j \rangle$ must be contained in V by Theorem [2.5.](#page-11-1)

√ (←). Let V be a subspace of $\mathcal{B}_k(H) \otimes \mathcal{B}_k(K)$. Then by Lemma [2.6,](#page-11-2) V is algebraic. If V contains no nonzero idempotents, then V is a Mathieu-Zhao subspace by Theorem [2.5.](#page-11-1) If V contains a nonzero idempotent f, then by Lemma [3.3,](#page-14-0) $f = 1 \otimes j$ for some idempotent j of $\mathscr{B}_k(K)$. By assumption, $\langle 1 \otimes j \rangle \subseteq V$, so V satisfies Theorem [2.5](#page-11-1) and is therefore a Mathieu-Zhao subspace. \Box

Corollary 3.4. Let V be a subspace of $\mathcal{B}_k(H)$ not containing 1. Then for any subspace W of $\mathcal{B}_k(K)$, $V \otimes W$ does not contain any nonzero idempotents, hence is a Mathieu-Zhao subspace of $\mathcal{B}_k(G)$.

Proof. Note that $\sqrt{V \otimes W}$ is algebraic by Lemma [2.6.](#page-11-2) Let $\{v_1, \dots, v_m\}$ be a basis of V and let $\{w_1, \dots, w_n\}$ be a basis of W. If $V \otimes W$ contains a nonzero idempotent f, then by Lemma [3.3,](#page-14-0) $f = 1 \otimes j$ for some idempotent j in $\mathcal{B}_k(K)$. Then

$$
1\otimes j=\sum_{s,t}\alpha_{s,t}v_s\otimes w_t,
$$

for some $\alpha_{s,t} \in k$, so $1 \in \text{span}\{v_1, \dots, v_m\}$, contradicting the assumption that $1 \notin V$. So $V \otimes W$ contains no nonzero idempotents, and by Theorem [1.3,](#page-8-0) $V \otimes W$ is a Mathieu-Zhao subspace of $\mathscr{B}_k(G)$. \Box

Corollary 3.5. Let W be a subspace of $\mathcal{B}_k(K)$ containing no nonzero idempotents. Then for any subspace V of $\mathcal{B}_k(H)$, $V \otimes W$ contains no nonzero idempotents, hence is a Mathieu-Zhao subspace of $\mathscr{B}_k(G)$.

Proof. Again, note $\sqrt{V \otimes W}$ is algebraic over k by Lemma [2.6.](#page-11-2) By Corollary [3.4,](#page-15-0) we may assume V contains 1. Let $\{v_1, \dots, v_m\}$ be a basis of V with $v_1 = 1$ and $\{w_1, \dots, w_n\}$ be a basis of W. Let f be a nonzero idempotent contained in $V \otimes W$. Then by Lemma [3.3,](#page-14-0) $f = 1 \otimes j$ for some idempotent j in $\mathscr{B}_k(K)$. Then

$$
f = 1 \otimes j = \sum_{s,t} \alpha_{s,t} v_s \otimes w_t
$$

=
$$
\sum_t \alpha_{1,t} 1 \otimes w_t + \sum_{\substack{s,t \\ s \neq 1}} \alpha_{s,t} v_s \otimes w_t,
$$

but as $\{v_s \otimes w_t \mid 1 \leq s \leq m, 1 \leq t \leq n\}$ are linearly independent, we see that the second summand must be 0. Then

$$
1 \otimes j = \sum_{t} 1 \otimes \alpha_{1,t} w_t = 1 \otimes \left(\sum_{t} \alpha_{1,t} w_t\right)
$$

and we see that j is a linear combination of basis vectors of W and therefore $j \in W$. But j is an idempotent and W contains no nonzero idempotents, so we must have $j = 0$. Then $1 \otimes j = 0$, and by Theorem [1.3,](#page-8-0) $V \otimes W$ is a Mathieu-Zhao subspace of $\mathscr{B}_k(G)$. \Box

Remark 3.6. By the Classification Theorem of Finite Abelian Groups, every finite abelian group G is isomorphic to $H \times K$ for some p-group H and p'-group K. Therefore, Theorem [1.3](#page-8-0) and Corollaries [3.4](#page-15-0) and [3.5](#page-16-0) hold for all finite abelian groups.

CHAPTER IV: MATHIEU-ZHAO SUBSPACES OF $\mathscr{B}_k(D_{2p})$

Throughout this chapter, let p be an odd prime, k be a field of characteristic p, and $G = D_{2p}$ denote the dihedral group of order $2p$. Write G as $\langle r, s \rangle$, where r has order p and s has order 2. Let A denote the Burnside algebra $\mathcal{B}_k(G)$. As G is not abelian, conjugacy classes of subgroups are sometimes nontrivial, therefore the structure of A is slightly more complex than the cyclic case.

Let C_n denote the cyclic subgroup of G with n elements and let S be the subgroup {1, s}. By Theorem [2.7,](#page-12-0) a complete set of representatives of conjugacy classes of subgroups of G is given by $\{G, C_p, S, C_1\}$. For each representative subgroup H, let T_H denote the class $[G/H]$. Note that C_1 , C_p , and G are all normal subgroups of G.

Lemma 4.1. Let $G = D_{2p}$. The product of G-sets in A is given by the table below.

	T_G	T_{C_p}	T_S	T_{C_1}
T_G	T_G	T_{C_p}	T_S	T_{C_1}
T_{C_p}	T_{C_p}	$2T_{C_p}$	T_{C_1}	$2T_{C_1}$
T_S	T_S	T_{C_1}	$T_S - \frac{1}{2}T_{C_1}$	
T_{C_1}	T_{C_1}	$2T_{\mathcal{C}_1}$		

Proof. For the product of G-sets corresponding to normal subgroups, use Lemma [2.4.](#page-11-0)

For the product of T_S and T_N where N is a normal subgroup of G, note that the stabilizer of a pair $(aS, bN) \in G/S \times G/N$ is given by

$$
stab(aS, bN) = aSa^{-1} \cap bNb^{-1} = aSa^{-1} \cap N.
$$

If $N = C_1$ or C_p , then $aSa^{-1} \cap N = C_1$ as all conjugates of S are of the form $\{1,r^is\}$ for some *i*. Then every element of $G/S \times G/N$ has stabilizer C_1 and counting the number of elements on both sides gives

$$
T_S \cdot [G/N] = \frac{|G||C_1|}{|S||N|}T_{C_1} = \frac{p}{|N|}T_{C_1},
$$

which is 0 for $N = C_1$ and T_{C_1} for $N = C_p$. If $N = G$, the G-set T_G is the identity element of $\mathcal{B}_k(G)$ and the product is trivial.

Finally, consider the product $T_S \cdot T_S$. Again, let $(aS, bS) \in G/S \times G/S$. We may assume $a, b \in C_p$. Then

$$
stab(aS, bS) = aSa^{-1} \cap bSb^{-1},
$$

so we see that the stabilizer depends on the choice of (aS, bS) . The intersection $aSa^{-1}\cap bSb^{-1}$ is trivial unless $aSa^{-1} = bSb^{-1}$, which is the case if and only if $a \equiv b \mod N(S)$ where $N(S)$ denotes the normalizer of S. But $N(S) = S$ in D_{2p} , and therefore (aS, bS) has stabilizer conjugate to S if and only if $a \equiv b \mod S$ if and only if $a = b$, since $ab^{-1} \in S$ if and only if $ab^{-1} = 1$. Then there are p^2 total elements in $G/S \times G/S$, of which p of them have stabilizer conjugate to S and $p^2 - p$ of them have stabilizer conjugate to C_1 . Then

$$
T_S \cdot T_S = \frac{|S|}{|G|} pT_S + \frac{|C_1|}{|G|} (p^2 - p) T_{C_1}
$$

= $\frac{2p}{2p} T_S + \frac{(p^2 - p)}{2p} T_{C_1}$
= $T_S + \frac{p - 1}{2} T_{C_1}$
= $T_S - \frac{1}{2} T_{C_1}$

as k has characteristic p .

Lemma 4.2. Let $e_1 = \frac{1}{2}$ $\frac{1}{2}T_{C_p}, e_2 = T_S - \frac{1}{2}$ $\frac{1}{2}T_{C_1}$ and $e_3 = 1 - e_1 - e_2$. Then $E = \{e_1, e_2, e_3\}$ is a complete set of orthogonal primitive idempotents in A.

Proof. Note that $e_1^2 = (\frac{1}{2}T_{C_p})^2 = \frac{1}{2}$ $\frac{1}{2}T_{C_p}$ and $e_2^2 = (T_S - \frac{1}{2})$ $\frac{1}{2}T_{C_1}$ ² = $T_S - \frac{1}{2}$ $\frac{1}{2}T_{C_1}$, so e_1 and e_2 are idempotent. Then

$$
e_1 e_2 = \left(\frac{1}{2}T_{C_p}\right)\left(T_S - \frac{1}{2}T_{C_1}\right) = \frac{1}{2}T_{C_1} - \frac{2}{4}T_{C_1} = 0,
$$

 \Box

so $e_1e_3 = e_1(1 - e_1 - e_2) = e_1 - e_1^2 - e_1e_2 = 0$ and $e_2e_3 = e_2(1 - e_1 - e_2) = e_2 - e_2e_1 - e_2^2 = 0$ and we see the elements of E are pairwise orthogonal. Then e_3 is also idempotent, as

$$
e_3^2 = (1 - e_1 - e_2)^2 = 1 - e_1 - e_2 - e_1 + e_1 - e_1e_2 - e_2 - e_2e_1 + e_2 = 1 - e_1 - e_2 = e_3.
$$

By Lemma [4.1,](#page-17-1) $e_1\mathcal{A} = \text{span}\{T_{C_p}, T_{C_1}\}$, $e_2\mathcal{A} = \text{span}\{e_2\}$, $e_3\mathcal{A} = \text{span}\{e_3\}$. Note that $e_2\mathcal{A}$, $e_3\mathcal{A}$ are simple and therefore e_2, e_3 are primitive. Assume that e_1 is not primitive. Then there exist some orthogonal idempotents f, f' such that $e_1 = f + f'$ and $e_1\mathcal{A} = f\mathcal{A} \oplus f'\mathcal{A}$ with each of $f\mathcal{A}, f'\mathcal{A}$ simple. Then

$$
\mathcal{A} = f\mathcal{A} \oplus f'\mathcal{A} \oplus e_2\mathcal{A} \oplus e_3\mathcal{A} \cong k \oplus k \oplus k \oplus k,
$$

so A has no nonzero nilpotent element. But $T_{C_1}^2 = 0$ is nilpotent in A, which is a contradiction. As $\sum_{e \in E} e = 1$, we see that E is a complete set of orthogonal primitive idempotents.

Proof of Theorem [1.4.](#page-8-1) By Lemma [4.2,](#page-18-0) $E = \{e_1, e_2, e_3\}$ is a complete set of orthogonal primitive idempotents. Then by Theorem [2.8,](#page-12-1) we have $\mathcal{A} = \bigoplus_{i=1}^3 e_i \mathcal{A}$ where the idempotents of each subalgebra $e_i \mathcal{A}$ are exactly 0 and e_i .

(⇒) Let V be a Mathieu-Zhao subspace of A. Assume V contains some nonzero idempotent f. Then by Lemma [4.2,](#page-18-0) $f = \sum_{j \in J} e_j$ where J is a nonempty subset of $\{1, 2, 3\}$. As V is a Mathieu-Zhao subspace, $\langle f \rangle = \bigoplus_{j \in J} e_j \mathcal{A}$ is a subset of V by Theorem [2.5.](#page-11-1)

√ (←) Let V be a subspace of A. By Lemma [2.6,](#page-11-2) V is algebraic. If V contains no nonzero idempotents, then V is a Mathieu-Zhao subspace of $\mathcal A$ by Theorem [2.5.](#page-11-1) If V contains a nonzero idempotent f, then by Lemma [4.2,](#page-18-0) $f = \sum_{j \in J} e_j$ for some nonempty subset J of $\{1,2,3\}$. By assumption, $\bigoplus_{j\in J} e_j\mathcal{A}$ is contained in V, therefore V satisfies Theorem [2.5](#page-11-1) and is a Mathieu-Zhao subspace. \Box

REFERENCES

- [1] H. Bass, E. H. Connell, and D. Wright. The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse. Bulletin (New Series) of the American Mathematical Society, 7(2):287 – 330, 1982.
- [2] W. Burnside. On the Representation of a Group of Finite Order as a Permutation Group, and on the Composition of Permutation Groups. *Proceedings of the London* Mathematical Society, 1(1):159–168, 1901.
- [3] K. Conrad. Dihedral Groups II. [https://kconrad.math.uconn.edu/blurbs/grouptheory/](https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf) [dihedral2.pdf,](https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf) 2009. Accessed: 2022-7-27.
- [4] E. Jacobson. The Burnside Ring Modulo a Prime. Journal of Algebra, 99(1):58–71, 1986.
- [5] G. Karpilovsky. Group Representations, volume 4 of Ecosystems of the World. North-Holland, 1992.
- [6] O.-H. Keller. Ganze Cremona-Transformationen. Monatshefte für Mathematik und Physik, 47, 1939.
- [7] T. Y. Lam. A First Course in Noncommutative Rings, volume 131 of Grad. Texts in Math. Springer New York, NY, 2001.
- [8] O. Mathieu. Some Conjectures about Invariant Theory and their Applications. Algebre non commutative, groupes quantiques et invariants (Reims, 1995), 2:263–279, 1995.
- [9] L. Solomon. The Burnside Algebra of a Finite Group. J. Combinatorial Theory, 2:603– 615, 1967.
- [10] A. van den Essen. Polynomial Automorphisms and the Jacobian Conjecture. In $Alq\grave{e}bre$ non commutative, groupes quantiques et invariants, septième contact, 1995.
- [11] A. van den Essen, S. Kuroda, and A. J. Crachiola. Polynomial Automorphisms and the Jacobian Conjecture. Birkhäuser Cham, 2021.
- [12] W. Zhao. Generalizations of the Image Conjecture and the Mathieu Conjecture. Journal of Pure and Applied Algebra, 214(7):1200–1216, 2010.
- [13] W. Zhao. Images of Commuting Differential Operators of Order One with Constant Leading Coefficients. Journal of Algebra, 324(2):231–247, 2010.
- [14] W. Zhao. Mathieu Subspaces of Associative Algebras. Journal of Algebra, 350(1):245– 272, 2012.