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MATHIEU-ZHAO SUBSPACES OF BURNSIDE ALGEBRAS

OF SOME FINITE GROUPS

ANDREW B. HATFIELD
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In 2010, W. Zhao introduced the notion of a Mathieu subspace as a common frame-

work for study of the Jacobian conjecture and related topics. As a generalization of ideals,

Mathieu subspaces provide a new viewpoint to investigate the structure of associative alge-

bras and rings. In this paper, we classify Mathieu subspaces of the Burnside algebras Bk(G)

and Bk(D2p) where k is a field of characteristic p > 0, G = H ×K for a p-group H and a

p′-group K, and D2p is the dihedral group of order 2p (for p odd).

KEYWORDS: Mathieu subspaces (Mathieu-Zhao subspaces), Burnside rings (Burnside al-

gebras), finite groups, p-groups, p′-groups, dihedral groups
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CHAPTER I: INTRODUCTION

Let f1, · · · , fn be a set of polynomials over C in variables x1, · · · , xn. Define the

polynomial map F : Cn → Cn by

F (x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fn(x1, · · ·xn)) .

Denote by JF the Jacobian of F , which is the determinant of the n× n matrix

M =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fn
∂x1

· · · ∂fn
∂xn

 .
.

First formulated by O.-H. Keller in 1939, the Jacobian conjecture can be stated as

follows.

Conjecture 1.1. (Keller, [6]) Let F : Cn → Cn be a polynomial map. If JF is a nonzero

constant, then F has an inverse polynomial map G.

Although the statement of the conjecture is quite simple, the conjecture remains today

wide open in general with very few special cases proven. For a survey of related results, we

refer the reader to [1], [10], and [11].

Although direct proof attempts have been mostly unsuccessful, it has been shown that

numerous conjectures imply the Jacobian conjecture. Motivated by Mathieu’s conjecture [8]

and the Image conjecture [13], W. Zhao introduced in [12] the following notion with the

goal of creating a common framework for the study of the Jacobian conjecture and related

conjectures.

Definition 1.2. Let R be a commutative ring and A be a commutative R-algebra. We say

that a subspace M of A is a Mathieu subspace of A if the following condition holds: for
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a, b ∈ A with am ∈ M for all m ≥ 1, we have amb ∈ M when m � 0, i.e. there exists

N ≥ 1 (depending on a, b) such that amb ∈M for all m ≥ N .

Note that Mathieu subspaces are now commonly called Mathieu-Zhao subspaces in

the literature.

Several conjectures related to the Jacobian conjecture can be restated in terms of

Mathieu-Zhao subspaces (for example, the Mathieu and Image conjecture as in [12]). Mathieu-

Zhao subspaces are also a natural generalization of the concept of ideals, and as such, the

study of Mathieu-Zhao subspaces of associative algebras and rings has grown into a field of

its own. In this paper, we investigate the Mathieu-Zhao subspaces of Burnside algebras of

certain classes of finite groups over fields of prime characteristic. We begin by fixing some

definitions.

Let G denote a finite group and R a commutative, unital ring. Let S be a finite set

and denote by A(S) the symmetric group of all permutations of S. We say that S is a G-set

if there exists a group homomorphism τ : G → A(S). We call τ a group action of G on S

and typically write gs to denote (τ(g))(s) for all s ∈ S.

Let S, T be G-sets. We say that S and T are isomorphic as G-sets if there exists a

bijection f : S → T such that f preserves the group actions of G on S and T , i.e. for any

g ∈ G and s ∈ S, we have f(gs) = gf(s). The Cartesian product of S and T is also a G-set

under the diagonal action g(s, t) = (gs, gt) for all g ∈ G, (s, t) ∈ S × T . We define the orbit

of s to be the set Gs = {gs | g ∈ G}. We say that S is transitive if S = Gs for some s ∈ S,

or equivalently, the action of G on S has exactly one orbit. Let s ∈ S, t ∈ T . For transitive

G-sets S and T , S and T are isomorphic as G-sets if and only if stab(s) is conjugate to

stab(t), where stab(s) = {g ∈ G | gs = s} denotes the stabilizer (or isotropy group) of s [9].

For any G-set S, we may uniquely decompose S into the disjoint union of transitive G-sets

which are precisely the orbits of S under the action of G. For any subgroup H ≤ G, the left

coset space G/H defines a transitive G-set with action given by left multiplication. For any

s ∈ S, we have S ∼= G/ stab(s) if S is transitive.
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Let P denote the set of conjugacy classes of subgroups of G. For each a ∈ P , let Ha

denote a representative of the class a and [G/Ha] denote the isomorphism class of G/Ha.

Let BR(G) denote the free R-module generated by the set {[G/Ha] | a ∈ P}. For any two

basis elements [G/Ha], [G/Hb] ∈ BR(G), define

[G/Ha] · [G/Hb] =
∑

[G/Ki]

where the sum is taken over all G-orbits in G/Ha ×G/Hb and Ki is the stabilizer of the ith

G-orbit. Extending the product by linearity makes BR(G) a commutative ring with identity

[G/G], and we call BR(G) the Burnside ring of G over R. If R is a field, we call BR(G)

the Burnside algebra of G over R. The Burnside ring is named after W. Burnside, who

introduced the notion in [2].

We say that a finite group G is a p-group for a prime p if |G| = pk for some k, and

say that G is a p′-group if p - |G|.

Let A be an associative algebra and 〈e〉 denote the principal ideal of A generated by

e ∈ A. In this thesis, we prove the following main theorems.

Theorem 1.3. Let k be a field of characteristic p and G = H×K where H is a p-group and K

is a p′-group. Let V be a subspace of Bk(G). Then V is a Mathieu-Zhao subspace of Bk(G) ∼=

Bk(H)⊗k Bk(K) if and only if V contains no nonzero idempotents or Bk(H)⊗〈j〉 ⊆ V for

each nonzero idempotent j of Bk(K) such that 1⊗ j ∈ V , where 〈j〉 is the principal ideal of

Bk(K) generated by j.

Theorem 1.4. Let p be an odd prime, k be a field of characteristic p, and A = Bk(D2p).

Then A ∼= e1A×e2A×e3A for some nonzero idempotents ei. A subspace V of A is a Mathieu-

Zhao subspace of A if and only if V contains no nonzero idempotents or
⊕
j∈J

ejA ⊆ V for

each nonzero idempotent
∑

j∈J ej contained in V , where J ⊆ {1, 2, 3}.

The rest of the paper is organized as follows: in Chapter II, we discuss results necessary

for the proof of Theorems 1.3 and 1.4. In Chapter III, we prove Theorem 1.3. In Chapter
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IV, we prove Theorem 1.4.
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CHAPTER II: PRELIMINARIES

The following theorem due to G. Karpilovsky allows the splitting of Burnside rings

over the cross product of groups.

Theorem 2.1 (Karpilovsky, [5]). Let G and H be groups with representatives of all conjugacy

classes given by G1, · · · , Gn and H1, · · · , Hm respectively. Then the map φ : BZ(G) ⊗Z

BZ(H)→ BZ(G×H) given by φ([G/Gi]⊗Z [H/Hj]) = [(G×H)/(Gi ×Hj)] is an injective

ring homomorphism. Furthermore, if G and H are of relatively prime order, then φ is a ring

isomorphism.

Let p be a prime and let Zp denote the field of integers modulo p. The following

theorem due to E. Jacobson classifies local Burnside rings of the form BZp(G) where G is a

finite group.

Theorem 2.2 (Jacobson, [4]). Let G be a finite group. G is a p-group if and only if BZp(G)

is local.

The following theorem is an analogue of the well-known Maschke’s theorem for group

algebras. For a unital ring R, we say that e ∈ R is idempotent if e2 = e and we call e central

if eR(1−e) = (1−e)Re = 0. We say that idempotents e and f are orthogonal if ef = fe = 0,

and we say that a central idempotent e is centrally primitive if e 6= 0 and e cannot be written

as the sum of two nonzero orthogonal central idempotents in R. Furthermore, we say a set

E of orthogonal centrally primitive idempotents is complete if
∑

e∈E e = 1. We note for the

Burnside algebras Bk(G) that all idempotents are central as Bk(G) is commutative.

Theorem 2.3 (Solomon, [9]). Let G be a finite group and let k be a field of characteristic

0 or coprime to |G|. Then the Burnside algebra Bk(G) is semisimple and isomorphic to⊕
e∈E ke for a complete set of orthogonal centrally primitive idempotents E.

The following theorem is a standard result for Burnside rings describing the product

of G-sets [G/H] and [G/K] such that H,K are normal subgroups of G.
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Lemma 2.4. Let G be a finite group and let k be a field of characteristic p. Let H,K be

normal subgroups of G. Then the multiplication of transitive G-sets [G/H], [G/K] in Bk(G)

is given by

[G/H] · [G/K] =
|H ∩K||G|
|H||K|

[G/H ∩K].

Proof. Let (aH, bK) ∈ G/H × G/K. As H,K are normal, the stabilizer stab(aH, bK) is

given by

stab(aH, bK) = aHa−1 ∩ bKb−1 = H ∩K.

Counting the number of elements on both sides gives [G/H]·[G/K] = |H∩K||G|
|H||K| [G/H∩K].

The following theorem due to W. Zhao allows for simple classification of the Mathieu-

Zhao subspaces of some algebras given their idempotents. Let k be a field and A an asso-

ciative algebra over k. We say V ⊆ A is algebraic over k if every element of V is the root

of a monic polynomial with coefficients in k. Denote by
√
V the radical of V , i.e., the set of

all a ∈ A such that am ∈ V for sufficiently large m.

Theorem 2.5 (Zhao, [14]). Let k be a field and A an associative algebra over k. Let V be

a k-subspace such that
√
V is algebraic over k. Then V is a Mathieu-Zhao subspace of A if

and only if for each idempotent e ∈ V , we have the principal ideal 〈e〉 ⊆ V .

Lemma 2.6. Let G be a finite group and k be a field. Then Bk(G) is algebraic.

Proof. Let b ∈ Bk(G). Then the set {1, b, b2, · · · } must be linearly dependent, so there exists

a nonconstant polynomial q such that q(b) = 0. Let α ∈ k be the leading coefficient of q.

Then α−1p(b) = 0, hence b is algebraic. Therefore, Bk(G) is algebraic.

Let p be an odd prime and D2p denote the dihedral group of order 2p. Write D2p as

〈r, s〉, where r has order p and s has order 2. In D2p, conjugacy classes of some subgroups
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are nontrivial. The following theorem due to K. Conrad allows us to classify all subgroups

of D2p into one of 4 conjugacy classes.

Theorem 2.7 (Conrad, [3]). Let n be odd and m | 2n. If m is odd, then all m subgroups of

D2n with index m are conjugate. If m is even, then the only subgroup of D2n with index m is

〈rm/2〉. In particular, all subgroups of D2n with the same index are conjugate to each other.

The following theorem is a well-known result relating the idempotents of a ring and

its decomposition (e.g., [7]).

Theorem 2.8. Let R be a (not necessarily commutative) ring. Then R can be expressed as

a finite direct product of indecomposable rings if and only if 1 ∈ R can be written as a sum

of orthogonal centrally primitive idempotents. If such a decomposition exists, each factor of

the decomposition of R contains no nontrivial central idempotents.
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CHAPTER III: MATHIEU-ZHAO SUBSPACES OF Bk(G)

Let G = H ×K where H is a p-group and K is a p′-group. Then by Theorem 2.1, we

have Bk(G) ∼= Bk(H) ⊗k Bk(K). To find the Mathieu-Zhao subspaces of Bk(G), we first

investigate the idempotents of each of Bk(H),Bk(K).

Theorem 3.1. Let H be a p-group and k be a field of characteristic p. Then Bk(H) is local.

Proof. By Theorem 2.2, BZp(H) is local. As Bk(H) = k ⊗Zp BZp(H), we see that Bk(H)

must also be local.

Recall that K is a p′-group. Let l = dimk Bk(K). By Theorem 2.3, Bk(K) ∼= ⊕l
i=1k,

and Bk(K) has a complete set of primitive idempotents {e1, · · · , el}.

In some cases, it is simple to list the primitive idempotents of Bk(K). Let Cn denote

the cyclic group with n elements.

Example 3.2. Let K = Cqs with q prime and let fi = qi−s[K/Cqi ]. Then a complete set of

primitive idempotents of Bk(K) is given by F = {f0, f1 − f0, · · · , fs − fs−1}.

Proof. For i ≤ j, we have

fi · fj = qi−s[K/Cqi ] · qj−s[K/Cqj ] = qi+j−2sqs−j[K/Cqi ] = fi

by Lemma 2.4. Then f 2
i = fi, and for i ≥ 1,

(fi − fi−1)2 = f 2
i − 2fi−1 + f 2

i−1 = fi − fi−1.

For 1 ≤ i ≤ s, we have

f0(fi − fi−1) = f0 − f0 = 0

8



and for 1 ≤ i < j ≤ s,

(fi − fi−1)(fj − fj−1) = fi − fi−1 − fi + fi−1 = 0,

thus F is a set of orthogonal idempotents. As dim Bk(K) = s+1 = |F |, each f ∈ F must be

primitive. As
∑

f∈F f = fs = 1, F is a complete set of primitive idempotents as desired.

We now investigate the idempotents of Bk(H)⊗k Bk(K).

Lemma 3.3. Let {e1, · · · , el} be a complete set of orthogonal primitive idempotents of

Bk(K). Then the set E = {1 ⊗ e1, · · · , 1 ⊗ el} is a complete set of orthogonal primitive

idempotents in Bk(G) ∼= Bk(H)⊗k Bk(K).

Proof. We have

Bk(G) ∼= Bk(H)⊗k Bk(K)

∼= Bk(H)⊗k

(
l⊕

i=1

k

)

∼=
l⊕

i=1

(Bk(H)⊗k k)

∼=
l⊕

i=1

Bk(H)

as Bk(H) ⊗k k ∼= Bk(H). Note that every 1 ⊗ ei ∈ E satisfies (1 ⊗ ei)2 = 1 ⊗ e2i = 1 ⊗ ei,

so each 1⊗ ei is idempotent. For i 6= j, (1⊗ ei)(1⊗ ej) = 1⊗ eiej = 0, so the elements of E

are pairwise orthogonal. Let f = (fi)
l
i=1 be an idempotent of Bk(G) ∼=

⊕l
i=1 Bk(H). Then

f = f ·

(
l∑

i=i

1⊗ ei

)
=

l∑
i=1

f(1⊗ ei).

As Bk(H) is local by Theorem 3.1, any nonzero idempotent f that is not the identity must

be in the unique maximal ideal. Similarly, 1 − f must also be in the same maximal ideal,
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which implies 1 is in this maximal ideal. This is a contradiction, thus each fi is either 0 or

1. Then either f = 0 or

f =
∑
j∈J

(1⊗ ej) = 1⊗
∑
j∈J

ej

for some J ⊆ {1, · · · , l}. As each nonzero idempotent f has such a decomposition, we see

that E is a primitive set of idempotents. We have
∑l

i=1 1⊗el = 1, so E is a complete set.

With the idempotents of Bk(G) clear, Theorem 1.3 becomes a consequence of Theo-

rem 2.5.

Proof of Theorem 1.3. (⇒) Let V be a Mathieu-Zhao subspace of Bk(H)⊗Bk(K).

If V contains no nonzero idempotents, then the proof is complete. If V contains a nonzero

idempotent, it must be of the form 1⊗ j by Lemma 3.3. As V is a Mathieu-Zhao subspace,

〈1⊗ j〉 = Bk(H)⊗ 〈j〉 must be contained in V by Theorem 2.5.

(⇐). Let V be a subspace of Bk(H)⊗Bk(K). Then by Lemma 2.6,
√
V is algebraic.

If V contains no nonzero idempotents, then V is a Mathieu-Zhao subspace by Theorem 2.5.

If V contains a nonzero idempotent f , then by Lemma 3.3, f = 1⊗ j for some idempotent

j of Bk(K). By assumption, 〈1 ⊗ j〉 ⊆ V , so V satisfies Theorem 2.5 and is therefore a

Mathieu-Zhao subspace.

Corollary 3.4. Let V be a subspace of Bk(H) not containing 1. Then for any subspace

W of Bk(K), V ⊗W does not contain any nonzero idempotents, hence is a Mathieu-Zhao

subspace of Bk(G).

Proof. Note that
√
V ⊗W is algebraic by Lemma 2.6. Let {v1, · · · , vm} be a basis of V

and let {w1, · · · , wn} be a basis of W . If V ⊗W contains a nonzero idempotent f , then by

Lemma 3.3, f = 1⊗ j for some idempotent j in Bk(K). Then

1⊗ j =
∑
s,t

αs,tvs ⊗ wt,
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for some αs,t ∈ k, so 1 ∈ span{v1, · · · , vm}, contradicting the assumption that 1 6∈ V . So

V ⊗W contains no nonzero idempotents, and by Theorem 1.3, V ⊗W is a Mathieu-Zhao

subspace of Bk(G).

Corollary 3.5. Let W be a subspace of Bk(K) containing no nonzero idempotents. Then for

any subspace V of Bk(H), V ⊗W contains no nonzero idempotents, hence is a Mathieu-Zhao

subspace of Bk(G).

Proof. Again, note
√
V ⊗W is algebraic over k by Lemma 2.6. By Corollary 3.4, we may

assume V contains 1. Let {v1, · · · , vm} be a basis of V with v1 = 1 and {w1, · · · , wn} be

a basis of W . Let f be a nonzero idempotent contained in V ⊗W . Then by Lemma 3.3,

f = 1⊗ j for some idempotent j in Bk(K). Then

f = 1⊗ j =
∑
s,t

αs,tvs ⊗ wt

=
∑
t

α1,t1⊗ wt +
∑
s,t
s 6=1

αs,tvs ⊗ wt,

but as {vs ⊗ wt | 1 ≤ s ≤ m, 1 ≤ t ≤ n} are linearly independent, we see that the second

summand must be 0. Then

1⊗ j =
∑
t

1⊗ α1,twt = 1⊗

(∑
t

α1,twt

)

and we see that j is a linear combination of basis vectors of W and therefore j ∈ W . But

j is an idempotent and W contains no nonzero idempotents, so we must have j = 0. Then

1⊗ j = 0, and by Theorem 1.3, V ⊗W is a Mathieu-Zhao subspace of Bk(G).

Remark 3.6. By the Classification Theorem of Finite Abelian Groups, every finite abelian

group G is isomorphic to H ×K for some p-group H and p′-group K. Therefore, Theorem

1.3 and Corollaries 3.4 and 3.5 hold for all finite abelian groups.
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CHAPTER IV: MATHIEU-ZHAO SUBSPACES OF Bk(D2p)

Throughout this chapter, let p be an odd prime, k be a field of characteristic p, and

G = D2p denote the dihedral group of order 2p. Write G as 〈r, s〉, where r has order p and

s has order 2. Let A denote the Burnside algebra Bk(G). As G is not abelian, conjugacy

classes of subgroups are sometimes nontrivial, therefore the structure of A is slightly more

complex than the cyclic case.

Let Cn denote the cyclic subgroup of G with n elements and let S be the subgroup

{1, s}. By Theorem 2.7, a complete set of representatives of conjugacy classes of subgroups

of G is given by {G,Cp, S, C1}. For each representative subgroup H, let TH denote the class

[G/H]. Note that C1, Cp, and G are all normal subgroups of G.

Lemma 4.1. Let G = D2p. The product of G-sets in A is given by the table below.

· TG TCp TS TC1

TG TG TCp TS TC1

TCp TCp 2TCp TC1 2TC1

TS TS TC1 TS − 1
2
TC1 0

TC1 TC1 2TC1 0 0

Proof. For the product of G-sets corresponding to normal subgroups, use Lemma 2.4.

For the product of TS and TN where N is a normal subgroup of G, note that the

stabilizer of a pair (aS, bN) ∈ G/S ×G/N is given by

stab(aS, bN) = aSa−1 ∩ bNb−1 = aSa−1 ∩N.

If N = C1 or Cp, then aSa−1 ∩ N = C1 as all conjugates of S are of the form {1, ris} for

some i. Then every element of G/S × G/N has stabilizer C1 and counting the number of

elements on both sides gives

TS · [G/N ] =
|G||C1|
|S||N |

TC1 =
p

|N |
TC1 ,
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which is 0 for N = C1 and TC1 for N = Cp. If N = G, the G-set TG is the identity element

of Bk(G) and the product is trivial.

Finally, consider the product TS · TS. Again, let (aS, bS) ∈ G/S × G/S. We may

assume a, b ∈ Cp. Then

stab(aS, bS) = aSa−1 ∩ bSb−1,

so we see that the stabilizer depends on the choice of (aS, bS). The intersection aSa−1∩bSb−1

is trivial unless aSa−1 = bSb−1, which is the case if and only if a ≡ b mod N(S) where N(S)

denotes the normalizer of S. But N(S) = S in D2p, and therefore (aS, bS) has stabilizer

conjugate to S if and only if a ≡ b mod S if and only if a = b, since ab−1 ∈ S if and only if

ab−1 = 1. Then there are p2 total elements in G/S×G/S, of which p of them have stabilizer

conjugate to S and p2 − p of them have stabilizer conjugate to C1. Then

TS · TS =
|S|
|G|

pTS +
|C1|
|G|

(p2 − p)TC1

=
2p

2p
TS +

(p2 − p)
2p

TC1

= TS +
p− 1

2
TC1

= TS −
1

2
TC1

as k has characteristic p.

Lemma 4.2. Let e1 = 1
2
TCp , e2 = TS − 1

2
TC1 and e3 = 1− e1 − e2. Then E = {e1, e2, e3} is

a complete set of orthogonal primitive idempotents in A.

Proof. Note that e21 = (1
2
TCp)2 = 1

2
TCp and e22 = (TS − 1

2
TC1)

2 = TS − 1
2
TC1 , so e1 and e2 are

idempotent. Then

e1e2 =

(
1

2
TCp

)(
TS −

1

2
TC1

)
=

1

2
TC1 −

2

4
TC1 = 0,

13



so e1e3 = e1(1− e1− e2) = e1− e21− e1e2 = 0 and e2e3 = e2(1− e1− e2) = e2− e2e1− e22 = 0

and we see the elements of E are pairwise orthogonal. Then e3 is also idempotent, as

e23 = (1− e1 − e2)2 = 1− e1 − e2 − e1 + e1 − e1e2 − e2 − e2e1 + e2 = 1− e1 − e2 = e3.

By Lemma 4.1, e1A = span{TCp , TC1}, e2A = span{e2}, e3A = span{e3}. Note that e2A, e3A

are simple and therefore e2, e3 are primitive. Assume that e1 is not primitive. Then there

exist some orthogonal idempotents f, f ′ such that e1 = f + f ′ and e1A = fA ⊕ f ′A with

each of fA, f ′A simple. Then

A = fA⊕ f ′A⊕ e2A⊕ e3A ∼= k ⊕ k ⊕ k ⊕ k,

so A has no nonzero nilpotent element. But T 2
C1

= 0 is nilpotent in A, which is a contradic-

tion. As
∑

e∈E e = 1, we see that E is a complete set of orthogonal primitive idempotents.

Proof of Theorem 1.4. By Lemma 4.2, E = {e1, e2, e3} is a complete set of orthogonal

primitive idempotents. Then by Theorem 2.8, we haveA =
⊕3

i=1 eiA where the idempotents

of each subalgebra eiA are exactly 0 and ei.

(⇒) Let V be a Mathieu-Zhao subspace of A. Assume V contains some nonzero

idempotent f . Then by Lemma 4.2, f =
∑

j∈J ej where J is a nonempty subset of {1, 2, 3}.

As V is a Mathieu-Zhao subspace, 〈f〉 =
⊕

j∈J ejA is a subset of V by Theorem 2.5.

(⇐) Let V be a subspace of A. By Lemma 2.6,
√
V is algebraic. If V contains no

nonzero idempotents, then V is a Mathieu-Zhao subspace of A by Theorem 2.5. If V contains

a nonzero idempotent f , then by Lemma 4.2, f =
∑

j∈J ej for some nonempty subset J of

{1, 2, 3}. By assumption,
⊕

j∈J ejA is contained in V , therefore V satisfies Theorem 2.5

and is a Mathieu-Zhao subspace.
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