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Abstract

This paper presents a new approach to the tracking of multiple objects in CCTV
surveillance using a combination of simple neural cost functions based on Self-
Organizing Maps, and a greedy assignment algorithm. Using a reference standard
data set and an exhaustive search algorithm for benchmarking, we show that the
cost function plays the most significant role in realizing high levels of performance.
The neural cost function’s context-sensitive treatment of appearance, change of ap-
pearance and trajectory yield better tracking than a simple, explicitly designed cost
function. The algorithm matches 98.8% of objects to within 15 pixels.
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PACS:

Automated video surveillance systems monitor CCTV systems and detect
anomalous or suspicious behavior [3] [6] [4] [7] [2], with a view to alerting
human operators who can take appropriate actions. The most popular ap-
proaches rely on motion detection algorithms to identify objects of interest.
Two main classes of motion detection algorithms are used: optic flow algo-
rithms based on tracking movement of some salient points [8], and background
differencing-based systems, which assume a static camera, maintain a model
of the background of the scene, and detect foreground objects by calculating
the difference between the current scene and the background model [9] [6] [4].

Background differencing algorithms yield, at each frame, a binary image, the
silhouette map, with silhouettes (connected components) corresponding to
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moving objects. A good overview of the manifold problems inherent in the
approach is given in the papers by Javed [10] and Toyama et al [11]. Surveil-
lance systems based on background differencing use the silhouette map to
detect objects of interest (typically people and/or vehicles) which are then
tracked; the trajectory of the objects may then be used to highlight objects
of interest. A typical system thus has three stages: background differencing,
tracking, and event detection. Events of interest may be defined either explic-
itly (e.g. movement within a defined zone), or implicitly (e.g. anomalous or
unusual object trajectories). The output of the tracking system is a number of
object identities and trajectories, which may be used for a variety of purposes,
including anomalous behavior detection [5] [12] [13]. Here, we discuss only the
tracking problem.

This paper is concerned with the tracking phase in a background-differencing
based system (further details are available in [14]). This phase must deal with
a variety of common problems, including: occlusions (which may lead to ob-
jects disappearing temporarily from view), mutual occlusions (where multiple
moving objects overlap – tracking objects in busy scenes is extremely chal-
lenging), appearance and disappearance (as objects move in and out of the
frame), and inherent failings of the background differencing approach. The lat-
ter include: false positive silhouettes induced by reflection artefacts, shadows,
camera jitter, and other problems; object fragmentation (where an object is
broken into several silhouettes); object merging (where two or more objects
create a single silhouette).

A number of approaches to tracking have been proposed in the context of
background-differencing based systems. We are concerned with the approach
where the algorithm assigns an object identity to newly detected silhouettes,
and attempts to maintain this identity through successive frames, deleting
objects when they ultimately disappear [1] [15] [9] [3].

The tracking component essentially solves a correspondence problem (assign-
ing silhouettes to objects) – with the added complication that objects may be
created and deleted. The difficulty of the problem relates to the number of
objects in the scene; background differencing based systems are able to deal
only with low to medium density traffic, with advances in tracking contribut-
ing to the ability to deal with higher densities. The correspondence problem
is solved by exploiting consistencies in the objects between frames – typi-
cally of motion, position and/or appearance. Cost functions are often defined,
implicitly or explicitly, to characterize the appropriateness of assigning partic-
ular silhouettes to particular objects, combined with algorithms that try out
different assignment possibilities in the search for a low cost solution.

Simple approaches to the correspondence include matching simple features of
the objects and silhouettes, such as bounding boxes, areas and appearance
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histograms [9]. A number of authors have investigated relatively sophisticated
methods based on matching shape models, including splines [4], eigenshapes [1]
and active contours [15]. These matching algorithms are typically integrated
with simple search algorithms designed to make local searches for appropriate
silhouettes to match.

In this paper we cast this correspondence problem explicitly as one of defining
two components: an appropriate cost function, together with a search algo-
rithm to identify an acceptable (and preferably optimal) correspondence. We
use a detailed reference standard data set with correct correspondences de-
fined, and an exhaustive search algorithm, as benchmarks. This allows us to
explicitly separate the issues of cost function and search algorithm develop-
ment. We demonstrate two effective cost functions: one using a simple, explicit
appearance discrepancy measure; the other an implicit neural cost function us-
ing Self-Organizing Feature Maps. The latter demonstrates the improvements
that can be made by taken into account position in the scene, and contextual
information such as typical behavior, in solving the correspondence problem.
For the search problem, we introduce a simple greedy algorithm with close to
optimal performance. These experiments indicate that a relatively simple fea-
tures are sufficient to allow robust tracking, provided that the cost function is
sophisticated and makes full use of both appearance and motion invariances.

1 The correspondence problem

Background differencing maintains a background image, Bt; as each new frame
Ft arrives, it updates the background image, and produces a foreground map
(a binary image), St, by thresholding the difference image St = (Ft−Bt) > θ
(and possible applying some morphological clean-up). Connected components
in the foreground map are called silhouettes, St

j. To track objects, the al-
gorithm maintains a relationship between N object records, Qi, and the M
silhouettes, Sj; this is conveniently described using a bipartite graph, which
may be represented by a binary M × N match matrix (see figure 1). The
correspondence problem requires, on each time-step, the generation of a new
match matrix, based on the previous time-step and current silhouette image.

Our approach is to define a search algorithm which produces candidate match
matrices. Potential algorithms range from the simple, fast greedy algorithm
which produces a single (possibly sub-optimal) match matrix, to the slow, re-
liable exhaustive algorithm which produces all possible match matrices within
certain constraints. In both cases, the search algorithm makes use of a cost
function, which is designed to identify good object-silhouette matches by com-
paring the current object position, motion and appearance with the previous
frame.
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Fig. 1. A candidate match matrix illustrated as a bipartite graph

A number of complications arise in establishing a proper correspondence. First,
multiple silhouettes may be assigned to a single object, which has broken up
during detection. Second, multiple objects may correspond to a single silhou-
ette, due to proximity. Third, there may be spurious silhouettes caused by
noise, shadows, reflections, and other artefacts. Fourth, parts of objects may
sometimes not be represented in silhouettes, due to occlusions or low contrast
with the background. Fifth, silhouettes may sometimes include both parts of
an object and spurious areas (most commonly, from shadows). Sixth, object
appearance may change over time, for a variety of reasons, but most com-
monly changes of facing. Complex cases may involve several of these factors
simultaneously.

The cost functions require that a one to one correspondence between objects
and silhouettes be established. To deal with the first and second issues, we
allow silhouettes to be merged or partitioned (resulting in new silhouettes)
in a conflict resolution step. We also allow silhouettes to be left unmatched,
corresponding to noise patches. This may create a greater or smaller number
of silhouettes than the number of original connected components. We may
also create new objects to correspond to silhouettes that are not assigned to
existing objects. Each object is ultimately assigned a single silhouette (which
may or may not have been created by merging and/or partitioning), and this
silhouette is considered to define the position and appearance of the object.

The overall structure is therefore of a search algorithm that generates one or
more candidate match matrices; a conflict resolution step that resolves such
match matrices so that only one to one correspondences between objects and
silhouettes exists; and a cost function which evaluates the resulting correspon-
dence to drive the search algorithm.

2 An explicit cost function

In general, we expect that a moving object will retain approximately the same
appearance from frame to frame. There may be some changes, including: scale
changes due to distance from the camera, lighting conditions in different parts
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of the scene, facing of object with respect to the camera, articulation of the
object (e.g. human pose), and changes in occlusion. However, for a sufficiently
rapid frame rate these changes are usually reasonably gradual. In addition,
we expect that the position of an object will not change very much in a sin-
gle frame, and will do so in a predictable fashion. Many trackers implicitly
or explicitly construct a cost function based on differences between expected
and actual measurements of appearance and/or position. For appearance cor-
respondence, we may extract a number of features, including: size (in pixels),
aspect ratio, bounding box, color or intensity histogram, etc. To ensure effi-
cient merging, it is helpful if these features can be composed (i.e. given two
silhouettes, it is possible to directly calculate the features of the union of
the silhouettes from the features of the individual silhouettes); partitioning
invariably involves recourse back to the pixel values.

Let St
j be the jth silhouette at frame t, and Qt−1

i be the ith object record.
Let f be a function mapping a silhouette or object record to a column vector
of features (which may also involve sampling the pixels corresponding to the
silhouette). Let g(.) be a matching cost function.

The cost function g is easily defined for matching a particular object, Qt−1
i ,

with a particular silhouette, St
j, based on disparity between the two; see equa-

tion 1. A typical choice for g is a weighted sum-square of the disparities; see
equation 2.

Et
i,j = g(f(Qt−1

i )− f(St
j)) (1)

g(x) = x′.x (2)

A global cost function, for a particular configuration matching all objects and
silhouettes, is derived by summing the costs of individual matches. However,
the issue is complicated by the need to handle multiple matches, object cre-
ation and object deletion. We therefore introduce a conflict resolution step,
which takes a given match matrix M, and produces a new match matrix C(M)
with a new set of silhouettes and objects such that each object is matched to
exactly one silhouette, and each silhouette to exactly one object (a binary
monomial matrix). New objects are created and existing objects removed as
necessary during the conflict resolution stage. We may then define the global
cost function as in equation 3, where δ is an object creation cost, u is the
number of newly-created objects, γ is an object removal cost function, and c
the number of removed objects. These costs prevent excessive object removal
and addition.

Et =
∑

i,j∈M

Et
i,j + cδ + uγ (3)
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We represent silhouettes and objects using a feature vector f = (x, y, a, h, w,g),
where (x, y) is the centroid position of the pixels, a the area in pixels, h and
w the height and width respectively of the bounding box, and g = (gk) is the
16-bin normalized histogram of the pixel intensities (

∑
k gk = 1). Let fi and fj

represent the feature vectors for the ith object and jth silhouette respectively.
Then we define the matching cost using normalized disparities in the size and
appearance histogram, following a cost function implicitly defined by Owens
[9]; see equation 4.

Ei,j = pA + pH + pW + dH =
ai − as

ai

+
hi − hs

hi

+
wi − ws

wi

+ ‖gi − gj‖(4)

3 A Neural Approach to Cost Functions

Self-Organizing Feature Maps (SOMs), are frequently used to characterize
normal and abnormal features. For example, in surveillance they may be used
to identify anomalous trajectories [5] [12] [13]. In such systems, a large number
of trajectories are tracked, and the SOM is trained by examples to identify
normal and unusual activity. Such systems can pick up surprisingly subtle
events, and have the potential benefit of context-sensitivity (e.g. particular
events may be more common in particular parts of the scene).

In this section we propose the use of SOMs to provide the matching cost
function, by learning based on hand-marked reference matches. SOMs are
designed to produce a novelty signal, which is monotonically related to the
a posteriori probability of observing the given activity, assuming a “normal”
event (i.e. one which is consistent with the events present in the training set).
Matching cost functions require precisely such signals, with lower probability
matches being accorded higher costs. The use of a SOM allows us to capture
subtleties, and context-specific issues, that are very hard to build into a “hand-
coded” cost function. The price paid for this improved performance is the need
to hand-label a reference match set.

The cost function is provided by three SOMs, which characterise correct
matches from objects to silhouettes: the Motion SOM, Comparative SOM,
and Appearance SOM. In operation, a proposed match of object Qi to silhou-
ette Sj is costed by assuming that the match is made, and then summing the
output of the SOMs (the novelty signal, the Euclidian distance from the input
feature vector to the prototype vector of the winning neuron). Each 40 × 40
SOM is trained using a classic two-phase approach: 100 iterations with learn-
ing rate α = 0.1 → 0.02 and neighbourhood w = 3 → 1, then 1000 iterations
with a = 0.1 → 0.02, w = 0.

The Motion SOM is similar to that described by Owens et. al. [5] to perform
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motion analysis. It is trained to detect whether the combination of current
and recent positions is a usual combination. In its original role, it indicates
whether a detected object trajectory is unusual (and therefore worthy of op-
erator attention) or not, and can be deployed to this intent in addition to
being used as part of the matching cost function. The SOM has eight inputs:
(x, y, dx, dy, w(x), w(y), w(dx), w(dy)) where (x, y) is the current position, the
motion vector (dx, dy) is given by (dx, dy) = (xt − xt−1, yt − yt−1), and w(.)
is a time-smoothed average function given by equation 5, where n = 5 is the
window size.

wt(x) =
1

n
xt +

n− 1

n
wt−1 (5)

This SOM learns to identify normal motion patterns, which are locale-specific.
For example, in an area where north-to-south motion is normal it will generate
a high cost for south-to-north motion. It is worth contrasting this approach
with the use of prediction-corrective tracking (e.g. Kalman filtering), which
is typically not locale-specific, and therefore gives preference to conservation
of movement [16] [17]. Consider a location with a sharply-turning path; the
Motion SOM will learn to treat a rapid change of direction to follow the path
as normal, while motion directly ahead and leaving the path may be unusual;
in contrast, the Kalman filter is likely to predict that the next location will
be straight ahead and off the path. This location-sensitivity gives the Motion
SOM advantages in resolving uncertainties in match-conflicts. The effect is to
favor matches which produce normal movement patterns; for example, if two
objects taking different paths come together and separate, this element of the
cost function will tend to select the match which produces the most usual pair
of resulting trajectories.

The Comparative SOM plays a similar role to the Owen’s cost function pre-
sented in the previous section. It has eight inputs: (x, y, dx, dy, pA, pH, pW, dH),
where (x, y) is the centroid position, (dx, dy) the motion vector, and pA, pW ,
pH and dH are the four terms in the Owen’s cost function; see equation 4.
The last four terms allow the Comparative SOM to assign costs to changes
in the basic appearance of object. The first four terms provide the “context,”
allowing the system to estimate the cost differently according to position and
velocity. For example, an object entering the edge of the screen tends to grow
in size rapidly as it becomes visible. Similarly, pedestrians exiting their vehicles
may be partially occluded by their own or other cars; they then apparently
grow in size as they emerge from occlusion. The Comparative SOM learns
to model these localized effects, becoming tolerant of various context-specific
changes in object appearance.

The Appearance SOM is the third element of the system. Its role is to assess
whether the appearance of the object is normal – again, in a location-specific
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way. In contrast with the Comparative SOM, it assesses the absolute appear-
ance rather than change in appearance. The inputs are (x, y, a, ar, h, w), with
(x, y) the centroid location, a the area, (ar, h, w) the aspect-ratio, height and
width of the bounding box. Critically, the object size typically varies with
y (since high-mounted cameras tilted downwards show more distant objects
higher on the y axis). More subtle location-specific variations may also be
captured, including again differences due to partial occlusions and appear-
ance/disappearance zones.

Arguably, the three SOMs could be combined into a single SOM with an input
vector including the features of all three; however, our experiments indicate
inferior performance, no doubt due to the higher dimensionality. We have also
experimented with the use of a single set of SOMs for all objects, versus two
sets of SOMs – one for pedestrians, and one for vehicles. Again, although in
principle a single SOM should suffice, we achieved higher performance with
separate versions for pedestrians and vehicles.

In order to apply separate SOMs for pedestrians and vehicles, it is necessary
to classify objects. We experimented with two classifiers; a simple Bayesian
classifier based solely on object area, which correctly classified 95% of objects;
and a Multilayer Perception with input vector (a, w, h, ar, max(s), y) (where
s is the inter-frame centroid speed in pixels), and four hidden units, which
correctly classified 99.2%. The rare object classification failures of the MLP
are invariably due to occlusion events. Further details are available in reference
[14].

4 Conflict Resolution

The conflict resolution stage processes a match matrix with conflicts (multiple
objects matched to a single silhouette and/or multiple silhouettes matched to
a single object), and removes these conflicts by merging and splitting silhou-
ettes. In merging, multiple silhouettes are combined into a single silhouette; in
splitting, a silhouette is divided into several sub-silhouettes (one per matching
object).

In merging, the new silhouette is effectively created from the statistics of the
union of the pixels in the merged silhouettes. However, the use of composable
features allows us to generate a new feature vector efficiently. Given the silhou-
ette feature vectors f1 = (x1, y1, a1, h1, w1,g1) and f2 = (x2, y2, a2, h2, w2,g2),
and the bounding box definitions ((ti, bi, li, ri), hi = ti−bi, wi = ri−li, i ∈ 1, 2)
the merged vector is calculated as below.

am = a1 + a2 (6)
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xm =
x1a1 + x2a2

am

(7)

ym =
y1a1 + y2a2

am

(8)

gi
m =

gi
1a1 + gi

2a2

am

(9)

lm = min(l1, l2); rm = max(r1, r2); tm = min(t1, t2); bm = max(b1, b2) (10)

Splitting is more complex. Our approach is to split a silhouette that is matched
to multiple objects along a single direction, in proportion to the size of the
source objects. Our first approach was to calculate the principal component
of the pixel coordinates of the silhouette, and to split along a line orthogonal
to this. This approach relies on the assumption that the principal axis is likely
to run between objects, and that the level of mutual occlusion is not too high.
The first of these assumptions is routinely violated by pedestrians walking
side by side, a problem which may be corrected by adjusting the covariance
matrix in the PCA calculations using the typical pedestrian aspect ratio (2.5);
see figure 2.

Fig. 2. The PCA-based partitioning of two merged pedestrians. The merged sil-
houette is taller than it is wide, causing partitioning to fail. Scaling corrects the
problem.

A more computationally expensive approach to line partitioning is to search
through a number of splits at different angles, choosing that with the lowest
cost (we take 30 divisions at every 15 degrees); see figure 3. This algorithm has
excellent performance providing its inherent assumptions are not violated: the
objects have been tracked correctly, there is little mutual occlusion, division
along a line is possible, and the visible area has not changed significantly,
and we use it throughout this work. Figure 3 also shows the cost versus angle
for this case, where the cost is estimated using the SOMs on the silhouettes
arising from each tested angle.

The conflict resolution algorithm applies merges and splitting efficiently as
follows. The (binary) candidate match matrix can also be represented using
a bipartite graph; see figure 1. The match matrix is augmented with two
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Fig. 3. Angle-search method – (a) 30 different angles are assessed, and (b) the best
angle is chosen

additional working states, as follows:

Mc(q, s) =





0 No link between silhouette and object

1 Link between object and silhouette that needs resolving

2 Secure link between object and silhouette

3 Silhouette-object match no longer possible

All matches are initialized to state 1. Splitting and merging operations both
result in extension of the match matrix, with new silhouettes and/or objects
added, and some original silhouettes marked as no longer used (state 3). Ulti-
mately, all matches resolve to state 2 (secure links). The algorithm has three
steps, with the first two repeated until there are no conflicts; the final step
consolidates results; see figure 4. In step one, fully connected subgraphs are
resolved. Such a sub-graph contains silhouettes and objects that have been
mutually assigned to each other and to no others. Trivial cases include one
to one matches (which are accepted as is), a single object matching multiple
silhouettes (which are merged), and a single silhouette which matches multiple
objects (which are split). Many to many fully connected subgraphs typically
occur when a group of objects are moving closely together and the joint silhou-
ette breaks up due to noise effects. Such a subgraph is resolved by merging
all the silhouettes and then splitting using the algorithms discussed above.
Subgraph identification is performed efficiently by sorting objects by valency
(since members of a fully connected subgraph must have the same valency).

  

No 

Yes Step 1: resolve fully 

connected subgraphs 

Step 2: resolve non-fully 

connected subgraphs 

Insecure (“1” ) 

matches 

remain in M? 

Step 3: consolidate 

secure matches 

Fig. 4. An overview of the steps taken by the conflict resolution module

Step two reduces the number of insecure matches, yielding further fully con-
nected subgraphs that can be resolved by iteration through step one. This step
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deals with the unsatisfactory situation where we have non-fully connected sub-
graphs, where it is not so clear how to merge and/or partition. One option is to
enforce full connection within the subgraph and treat as above. However, this
leads to a less powerful search algorithm than the method described below.
Instead, we find the lowest valency silhouette, and make the match secure for
this silhouette, splitting it in the case that the valency is greater than one.
The areas of the matched object(s) are temporarily adjusted by subtraction
of the silhouette area, so that any further splitting is appropriate. The most
common case here is that a single silhouette (valency one) is firmly matched
to an object, and iteration through step one leads to further merges and splits
to resolve the remaining areas of that object.

Step three resolves any remaining matches of multiple silhouettes to single
objects – these are firm matches arising when step two has confirmed a match
and further iterations of step one have assigned other silhouettes to the same
object. This stage ensures that all remaining matches are one to one. With
a one to one match established, the cost function can be used to assess how
acceptable the assignment is.

5 The Search Algorithm

The object correspondence is solved by a search algorithm, which considers
some or all of the possible match matrices arising from the current set of
silhouettes and objects. Naively, The number of possible match matrices is
2M∗N . We can reduce the size of the problem trivially by specifying a maximum
match radius between object and silhouette centroids; this is used to initialize
a binary valid match matrix, with unit entries only for “in-range” object-
silhouette matches. The number of possible match matrices is then 2V , where
V is the number of unit entries in the valid match matrix.

A global search algorithm finds the lowest cost of all possible match matrices.
This is particularly useful during development, as it allows us to analyze the
performance of the cost function separately from the search algorithm. Any
inadequate matches generated while using a global search algorithm are the
fault of the cost function. When testing any other search algorithm, we can
benchmark its performance against the global search algorithm. The simplest
global search is the exhaustive search algorithm, which considers all possible
match matrices. However, this has high computational expenses, and so is not
suitable for real-time use.

We introduce a greedy algorithm that is designed to yield an acceptable (but
possibly sub-optimal) match matrix rapidly, and is capable of real-time exe-
cution. It has four stages:
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In stage one, each object in turn is matched to the single valid silhouette with
the lowest cost match. Objects are left unmatched only if there are no valid (in
range) silhouettes; some silhouettes may be matched to multiple objects. An
analysis of the reference standard shows that 98.7% of silhouettes are assigned
by this phase to an object that is at least part of that silhouette.

In stage two, we try to verify if potential merges of objects are likely to be
valid. Such potential merges are represented by multiple objects assigned to
the same silhouette by stage one. We create a temporary “macro object”
by merging the object records using the technique described for silhouette
merging above, with the modification that the object positions are projected
forward one time-step in space using the previous time-step velocity. The cost
of matching the macro object to the silhouette is compared with the cost of
matching the single best-matching object to the silhouette; if the macro object
matches best, it is assumed that a “merge event” has occurred.

If it is concluded that a merge event has not occurred, only the best-matching
correspondence is maintained. The other objects are reassigned to their next-
best match. This may in turn cause further match conflicts, and the process
is repeated until these have all been removed.

In stage three, unmatched silhouettes are considered. Each such silhouette is
considered against each valid object; the silhouette is assigned to the object
where this yields the lowest cost, provided the resulting cost is less than the
cost of leaving the silhouette unassigned (bearing in mind that leaving the sil-
houette unassigned imposes an “unmatched silhouette” cost). The assignment
costs are calculated by using the conflict resolution and global cost function
steps.

Step four removes poor object matches. It unmatches each object in turn from
its silhouettes, and calculates if this lowers the global cost. Such matches may
arise, for example, when an object leaves the scene and the record is matched
to a noise silhouette within the valid range.

This greedy algorithm is extremely simple, with complexity O(MN), and has
performance close to optimal, as discussed in the next section.

6 Evaluation

A key part of the work reported in this paper is the use of a reference stan-
dard data set. In this data set, the correct object-silhouette correspondence is
manually identified. Given the complexity of the algorithm, generating such
a reference standard offers some challenges, which are discussed below. The
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benefits include the ability to develop the cost function and search algorithm
independently, and to have a powerful mechanism to evaluate both. This has
allowed us to develop algorithms which are both simpler and more powerful
than our previously-published versions – including discarding features which
intuitively seemed helpful, but in reality were shown to have no impact on
performance.

In the context of object tracking, a large number of video frames are required
to provide a reasonably diverse set of activities. We used three sequences of 1.5
hours each, sampled at 4 frames per second; there were approximately 15000
frames with some activity. The scene chosen exhibits a mixture of pedestrian
and car traffic, with low to medium levels of crowding (up to twenty or so
visible objects, but usually much lower).

An ideal reference standard for this problem would have each object labelled,
pixel by pixel, for every frame. This is clearly impracticable for such a large
number of frames. Given that our aim is to investigate effective algorithms for
generating match matrices, we instead use a reference standard which speci-
fies the optimal match matrix. To generate the reference standard, a special
version of the tracking programme was developed with a simple greedy assign-
ment algorithm, and the ability to walk through the sequence frame by frame.
The user interface displays object identities and types against silhouettes, and
allows these to be altered where the greedy algorithm makes mistakes.

In evaluation of a tracking algorithm against the reference standard, it is nec-
essary to “reset” the tracking algorithm objects to those found in the reference
standard on each frame – if the tracking algorithm is run continuously, object
identities may be permuted with respect to the reference standard, and so
match statistics cannot be easily and automatically generated. A disadvan-
tage of this approach is that our statistics do not address the capability of a
tracking algorithm to recover from errors.

In both reference standard and tracker, each object from the previous frame
may either be matched (assigned to a silhouette), or unmatched. This yields
four possible results: if the object is matched in both, we can assess to what
extent the match is consistent; if matched in neither, then the object has
been correctly removed. If the reference standard has a match and the tracker
none, then the object is defined as lost. Hanging objects are created when
the reference standard removes an object, but the tracker retains it (e.g. by
spuriously assigning it to a noise patch). In addition, errors sometimes cause
the tracker to create entirely new spurious extra objects (e.g. as a result of
camera jitter). When the object has been matched in both reference standard
and tracker, we can assess the correctness of the match in a variety of ways.
Perhaps the most useful is the distance between the reference and tracker
centroids, which we place into five pixel bins for simplicity of analysis. A

13



second measure is the number of “flips” - disparities in the match-matrix for
a given object (i.e. a count of the number of silhouettes missing or added).
This gives us a good picture of the goodness of fit at the match matrix level,
although it does not distinguish between the effect of small and large silhouette
errors.

The use of the reference standard has several deficiencies. It accepts the back-
ground differencing results as fact, although this stage in the processing some-
times produces serious errors. Figure 5 illustrates one extreme case, where a
pedestrian is exiting a car and his or her shadow has caused very poor seg-
mentation. Any match matrix will give questionable results here. To avoid
distorting effects, we have excluded a small number of frames from the refer-
ence standard, where such issues are particularly severe.

Fig. 5. A poorly segmented pedestrian. Whichever match matrix is chosen for the
reference standard, the result will always be unsatisfactory

The exhaustive algorithm, although very useful, is extremely slow for frames
with large numbers of objects. Consequently, we removed a small proportion
of very busy frames (1.3%; the removal of the worst three alone reduced the
processing time by a third).

The reference standard data set consists of three sequences of 1.5 hours each.
The first sequence was used to train the SOMs for the neural cost function.
The second sequence, the selection set, was used during the development of
the system to identify effective algorithms, SOM configuration, and control
settings. The third sequence, the test sequence, is used to generate unbiased
performance statistics, reported below. The test set contains 5785 frames.
Figures 6 shows the performance of four system configurations (combining
greedy and exhaustive algorithms with Owen’s and SOM cost functions) on
the test set.

It is apparent that the greatest factor in performance is the cost function,
with the SOM neural cost function out-performing the explicit Owens cost
function. There is surprisingly little differentiation between the exhaustive
and greedy algorithms when the neural cost function is used, indicating that
the greedy algorithm is more than adequate to the search task. Using the
Owens cost function, the exhaustive algorithm matches 99.72% of objects to
within 15 pixels, whereas the greedy algorithm manages only 98.83% (roughly
three times the error rate). As the cost function improves, the search algorithm
becomes less relevant – perhaps because the first stage match in the greedy
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Fig. 6. Percentage of object matches within given distance and flips of the reference
standard, using four combinations of cost and search function

algorithm is more likely to be correct. The initial step of the neural cost
function finds a silhouette which is part of the object 98.7% of the time,
compared with 96.6% for the Owen’s cost function.

The number of lost, hanging and extra objects is shown in table 1. The picture
is rather more ambiguous here, with the SOM and exhaustive approaches
showing overall advantages over the Owen’s and greedy approaches, but with
some differences in performance. The exhaustive algorithms tend to do worse
on hanging objects, as they search more thoroughly for a matching silhouette
when an object has gone out of sight, and are consequently more prone to
falsely assign the object to a noise silhouette. A substantial number of extra
objects are created in the test sequence – these are transients due to camera
judder in high winds, and are an inevitable occurrence. However, they do not
damage the quality of the tracking of true objects, and are rapidly eliminated
by further stages of processing [14].

To illustrate how and why the SOM-based cost function out-performs the
Owen’s cost function, we conducted a number of sensitivity analysis experi-
ments. The Motion SOM is designed to respond to unusual paths. Figure 7
shows the effect of modifying two normal silhouettes by artificially displacing
their positions a short distance at a variety of angles; object A was sampled
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Table 1
Lost, hanging and extra objects

Algorithm Lost Hanging Extra

Owens, Greedy 18 14 425

Owens, Exhaust 11 17 416

SOM, Greedy 12 2 411

SOM, Exhaust 1 4 410

at a position where movement up and down the screen are usual, whereas
object B was sampled at a position where only downward motion is normal.
The graph illustrates that the Motion SOM is extremely sensitive to context-
dependent direction of motion.
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Fig. 7. Performance of the motion SOM, given a specific point and speed but dif-
ferent angles of motion.

Figure 8 illustrates context-sensitive performance of the Comparative SOM.
In this experiment, object A is a car ready to park near the centre of the
scene; object B is another car entering the camera view. The figure illustrates
sensitivity to changes of the object area. For object A, the lowest cost occurs
where the area does not change, as expected. However, for object B the Com-
parative SOM assigns the lowest cost when the area increases at the normal
rate for a car entering the scene in this location.

Figure 9 shows the performance of the Appearance SOM, under manipulation
of the aspect ratio. Pedestrian A is getting into a car parked amid a row of
cars, and consequently is partially occluded, which is usual in this location;
pedestrian B is in an uncluttered part of the scene. The SOM demonstrates a
clear locale-dependent preference for particular aspect ratios.

It is this ability of the SOM cost function to model context-dependent cost
relationships (including position and velocity dependent costs) which makes it
so effective. Further sensitivity experiments reveal similar responses to other
input variables of the cost function. This is well-illustrated by the performance
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Fig. 8. Performance of the comparative SOM, testing the effect of changing pArea
on the output cost. Vehicle A is in the centre of the scene, about to park. Vehicle
B is just entering the scene.
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Fig. 9. Performance of the appearance SOM, testing the effect of changing aspect
ratio on the output cost. Pedestrian A has just exited his/her vehicle. Pedestrian B
is in an unobstructed area of the scene.

Fig. 10. The two pedestrians used to capture the data for figure 9

of the neural cost function on objects touching the edge of the image, where
object appearance and disappearance is most common. Contrary to our initial
expectations, the greedy neural system matches 99.55% of such objects to
within five pixels, as opposed to 99.1% of non-edge objects, thus indicating
that the context-sensitivity of the SOMs is able to handle such appearance
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and disappearance zones perfectly adequately, without the need to explicitly
model them.

7 Conclusion

We have introduced a new algorithm for the tracking of multiple objects in
a background-differencing based system using object to silhouette matching.
The algorithm uses a neural cost function based on three SOMs that learn
normal patterns of motion, change and appearance of objects in the scene in a
context-sensitive fashion. This cost function is combined with a simple, highly
effective greedy algorithm to allow object identification consistent with normal
patterns of behavior in the scene. We have used a reference standard data set,
an explicitly designed cost function and an exhaustive search algorithm to
benchmark the new algorithm. This study shows that the context-sensitive
performance of the neural cost function is key in achieving good tracking
performance, allowing us to use a relatively simple approach to assigning the
best match. We have thus established that the use of SOMs in constructing
cost functions for configuration problems is viable.

The most significant drawback of the approach is the need for a reference-
standard marked-up data set to train the SOMs. The mark-up is a time-
consuming procedure, and is clearly not viable for practical use. However,
it should be possible to automatically produce a training reference set, by
gathering data for a period of time, and inserting into the reference set only
data that can be unambiguously identified automatically – that is, where there
are no other objects within the vicinity, and a “clean track” (with no break-up
of the silhouette) is achieved throughout. This will be the subject of future
work.
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Statement regarding amendments

The reviewer made two comments:

That the model requires training using hand-marked data, and this is time-
consuming. As the reviewer notes, we have drawn attention to this, and con-
sider it a subject for future work. It does not invalidate the scientific contri-
bution of the paper, and I think the reviewer has recognised this, and has not
actually asked for any change to this part of the paper. A future paper will
consider the impact of automatic data gathering for this purpose.

Eqn. four looks like there should be some normalization. The reviewer is cor-
rect to recognise a problem. In fact the dH term is formed from a normalized
histogram, which we had not described properly in the previous paragraph.
We have therefore reworded the definition of g to make this clear. With this
definition, the histogram cost is correctly scaled to be composed with the other
costs by addition without need for further normalization.
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