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  I. LIST OF ABBREVIATIONS 

 

AA       arachidonic acid 

ASA       acetylsalicylic acid 

BSA       bovine serum albumin 

CD       cluster of differentiation 

ConA       concanavalin A 

COX       cyclooxygenase 

CTL       cytotoxic T lymphocyte 

ELISA       emzime linked immunosorbert assay 

HLA       human leukocyte antigen 

IFN-γ       interferon γ 

IL       interleukin 

INDO       indomethacine 

IVF       in vitro fertilization 

KAR       killer activator receptor 

KIR       killer inhibitory receptor 

LAK       lymphokine activated killer 

LPS       lipopolysacharide 

MAb       monoclonal antibody 

MHC       major histocompatibility complex 

NC       natural cytotoxic 

NK       natural killer 

PBL       peripheral blood lymphocyte 

PBMC       peripheral blood mononuclear cell 

PBS       phosphate buffered saline 

PG       prostaglandin 

PHA       phytohaemagglutinin 

PIBF       progesterone-induced blocking factor 

PLA2       phospholipase A2 

RSA       recurrent spontaneous abortion 

TBS       tris buffered saline 

TCR       T cell receptor 
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Th       T helper 

TNF-α       tumor necrosis factor α 

II. INTRODUCTION 

 

 

1. Immunological relationship between the mother and fetus. The role of the trophoblast 

 

 

Medawar1 was the first to formulate the basic problem of human pregnancy : “ How does 

the pregnant mother contrive to nourish within itself, for many weeks or months, a fetus that 

is antigenically foreign body ? “ . Fifty percent of fetal antigens are of paternal origin, thus the 

fetus should be seen as an allograft and rejected via T cell mediated, major histocompatibility 

complex restricted mechanisms.  

It would seem plausible that non-recognition of fetal antigens by the maternal immune 

system favors a normal pregnancy outcome. However, this is not true. Antibodies with anti-

parental specificity have been detected in sera of multiparous women 2 , clearly showing that 

maternal recognition of fetal antigens does not compromise pregnancy. Inadequate recognition 

of fetal antigens might result in failed pregnancy. Activation of the immune system seems to 

be necessary for a normal pregnancy outcome. Non-specific immunstimulation of the pregnant 

females reduces the originally high resorption rates in abortion prone murine strain 

combination 3 and a similar effect is achieved by immunization of the mothers with paternal 

strain type spleen cells 4. These findings obtained in murine model, can be extended to human 

system. In women suffering recurrent spontaneous abortions (RSA) the induction of 

recognition of paternally derived human leukocyte antigen by lymphocyte immunization 

improves pregnancy outcome 5,6,7. Komlos et al.8 suggested that HLA matching between the 

parents is associated with spontaneous abortion and in a recently published 10 year 

prospective study Ober et al.9 confirmed these data.  

Taken together these data suggest that immunologic recognition of pregnancy is needed 

for the success of gestation.         

The fetus itself does not come into direct contact with maternal tissue. It is the trophoblast, 

which forms the interface between the maternal and fetal compartments. The trophoblast is a 

tissue of fetal origin and it is in intimate and continuous contact with maternal 

immunocompetent cells throughout gestation. Thus, the trophoblast should be the interface 
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where fetal antigens are presented to the maternal immune system, and also the target of 

maternal anti-fetal effector mechanisms. Since placental cells are devoid of HLA class II 

antigens, interest has focused on the expression of HLA class I molecules. Different classes of 

the trophoblast (ec. syncyctiotrophoblast, villous cytotrophoblast ) are devoid of HLA 

antigens. Extravillous cytotrophoblast cells form the only trophoblast subpopulation which do 

express HLA molecules 10,11. The HLA class Ia or classical gene family include the three 

highly polymorphic molecules HLA-A, -B and -C, which are expressed in most somatic 

tissues and able to present intracellular peptides to cytotoxic T cells 12. Three additional class I 

genes, the less polymorphic HLA-E, -F and -G antigens form the class Ib or non-classical 

group. These molecules show homology to classical class I molecules but generally have 

limited polymorphism, low level cell surface expression and more restricted tissue distribution 
13. Immunohistochemically HLA-G 14, -E and a small amount of HLA-C were the only HLA 

class I molecules that could be detected in extravillous chorionic cytotrophoblast cells 15,16,17.  

The polymorphism of HLA-G is low, only a few allels have been described. Since 

paternally inherited HLA-G is present on the trophoblast cells, it would be possible to be 

recognized as foreign by the maternal immune system. The limited HLA-G polymorphism 

ensures that paternal and maternal HLA-G are extremely similar or identical and hereby does 

not induce a maternal alloresponse. 

The trophoblast does not induce transplantation immunity and resists NK as well as 

CTL mediated lysis in vitro 18. Transfection with HLA-G renders cells that had been originally 

CTL or NK sensitive, resistant to lysis by these effectors. In addition HLA-G may cause 

anergy and apoptosis of allogeneic cytotoxic CD8+ T cells 19.  This suggest that resistance of 

trophoblast cells to cytotoxic effectors is due to the presence of HLA-G. Antigen recognition 

by cytotoxic T lymphocytes is MHC restricted, whereas activation of NK cells depends on the 

lack of MHC expression on the target cells. Since trophoblast is readily killed by lymphokine 

activated killer cells, the former phenomenon can be explained by a disturbed antigen 

recognition. HLA-G might induce resistance to lysis by decidual NK cells expressing KIR ( 

ec. LIR1/ILT2, ILT4, p49, BY55) that recognize HLA-G 20, 21,22. Ligand binding of these 

receptors conveys a negative signal, thus the presence of HLA-G might defend the trophoblast 

from NK mediated lysis. 

The next potential function that HLA-G could exert, upon ligation to KIR receptors, 

would be the release of particular cytokines by these NK cells 23. In vitro experiments have 
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shown that co-culture of human peripheral mononuclear blood cells with HLA-G expressing 

cells resulted in a Th2 response 24. 

Another possible role of HLA-G is antigen presentation. According to our present 

knowledge HLA-G presents antigens for  γ/δ T cells. HLA-G is likely to exert anti-viral 

function as well. There is evidence that HLA-G is capable of binding peptides of viral origin 

and play a critical role in the presentation of viral peptides to cytotoxic T cells in the placenta 

14. 

The other important MHC class Ib molecule is HLA-E. However, the importance and 

function of HLA-E during pregnancy is still under investigation. NK cells can interact with 

HLA-E complexed with specific peptides on target cells and it is mediated by the 

CD94/NKG2 receptor 25. Recent studies have demonstrated that the ligand of CD94/NKG2A 

was in fact HLA-E and not HLA-G 26,27. There is evidence now that HLA-G plays a role in the 

regulation of HLA-E expression 28. All these data indicate that HLA-G presents antigens for 

γ/δ T cells and at the same time defends the trophoblast from cytotoxic effector mechanisms. 

 

2. Progesterone dependent immunmodulation 

 

a. The effects of progesterone 

 

Progesterone is essential for the maintenance of pregnancy in a number of mammalian 

species. It inhibits the contractions of myometrial smooth muscle 29, blocks the activity of 

uterine collagenase 30 and modifies the activity of proteolytic enzymes in blastocyst as well as 

in the uterus 31. It is produced first by corpus luteum and later by placenta. The serum 

concentrations of progesterone range from 100 to 500 nM during pregnancy. High 

concentrations of progesterone prolong the survival of xenogenic and allogeneic grafts 32,33 

and this hormone affects various phases of the immune response in vitro. Many publications 

reported that progesterone blocks T cell activation in concentrations of 5 to 20 µg/ml 34. Stites 

et al.35 reported on different mechanisms resulting in T cell activation blocking by 

progesterone and cortisol. In most investigations dealing with in vitro effects of progesterone 

on lymphocytes reactivity, only supraphysiological (0.5 –20 µg/ml ) doses were found to be 

effective. Thus, it was concluded that progesterone might have a role as a natural 

immunosuppressant during pregnancy, although its action was assumed to be restricted to the 

materno-fetal interface where progesterone concentrations reaches the high level required for 
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in vitro blocking 36. NK activity of healthy pregnant women’s lymphocytes can be suppressed 

by relatively low (100-400 nM) concentration of progesterone, whereas 100 times higher 

concentrations are required for reducing the natural cytotoxic activity of non-pregnancy 

lymphocytes 37 and this effect was shown to be inhibited by equimolar concentrations of 

progesterone receptor blocker RU486 28. In lymphocytes from pregnant women progesterone 

at physiological concentrations inhibited natural cytotoxic (NC) activity in a dose-related 

manner, and in vitro an inverse relationship was found between progesterone concentration 

and cytotoxic activity of these lymphocytes. Preincubation of lymphocytes with progesterone 

depleted pregnancy serum did not result in significant inhibition on cytotoxic activity. In fact, 

absorption with anti-progesterone antibody caused an 80 % decrease on cytotoxic activity of 

pregnant sera 38,39. This findings led to the hypothesis that progesterone sensitive pregnancy 

lymphocytes might express specific progesterone binding sites.    

 

b. Progesterone receptor expression on lymphocytes 

 

Lymphocytes of healthy pregnant women are more sensitive to the natural cytotoxicity 

blocking effect of progesterone because they have significantly higher progesterone binding 

capacities than those from nonpregnant individuals or pregnant women at risk for premature 

pregnancy termination 40. By immuncytochemistry with different progesterone receptor 

specific monoclonal antibodies our laboratory demonstrated progesterone-receptors in 

peripheral pregnancy lymphocytes 41. The incidence of progesterone receptor expressing 

lymphocytes was neglectable in peripheral blood of non-pregnant individuals. The reactivity 

was mainly localized in the CD8+ population, and the majority of progesterone receptor 

bearing peripheral lymphocytes expressed  γ/δ TCR 42,43. Lymphocyte progesterone receptors 

with a molecular weight of 40 kDa do not seem to be identical with the classical progesterone 

binding sites (110 kDa). The percentage of progesterone receptor positive lymphocytes in 

peripheral blood increased throughout gestation. Progesterone receptors appear in peripheral 

blood lymphocytes as early as the tenth day of gestation and disappear during term labor. 

Recurrent abortion, spontaneous abortion and threatened pre-term delivery were associated 

with lower number of receptor positive cells 44. Therefore, it is conceivable, that lack of 

lymphocytic progesterone receptors during pregnancy might have functional consequences. 

The regulation of lymphocyte progesterone receptor expression is activation dependent, but 

hormone independent. In resting human lymphocytes progesterone receptors are induced by 
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mitogenic or alloantigenic stimulation and the mRNA of progesterone receptor is present in 

activated, but not in resting human lymphocytes 42. Furthermore, due to a chronic stimulation, 

lymphocytes of transplanted patients express progesterone receptors also 45. Recurrent 

spontaneous abortions are claimed by some authors to be associated with the lack of maternal 

allorecognition of the conceptus. A high rate of HLA matching between the parents has been 

implied by some groups 8,9. In pregnant women with spontaneous abortions of unexplained 

etiology the rate of receptor positive cells was significantly lower than that in healthy pregnant 

women of corresponding gestational ages 41. It is likely, that in these cases, owing to unusually 

coincident HLA matching or to holes in the T cell repertoire for placental antigens, fetal cells 

fail to stimulate maternal lymphocytes, which might account for the failure of the latter to 

develop progesterone receptors. Immunotherapy with paternal lymphocytes for unexplained 

recurrent abortion induced a higher expression of progesterone receptors on lymphocytes. 

Increase of progesterone receptor expression correlated with the success or failure of gestation 
46. These data suggest that in pregnancy a chronic alloantigeneic stimulation due to the 

presence of fetus might be responsible for induction of progesterone receptors.  

In the decidua γ/δ TCR positive cells significantly increase in number 47,48. The 

number of these cells in the uterus is higher in allogeneic than in syngeneic pregnancy and the 

expression of the γ/δ TCR in the pregnant uterus has been shown to be hormonally controlled 
49. Therefore, it can not be ruled out that this population might play a role in recognition of 

fetal antigens. The majority of decidual  γ/δ T cells are in activated form 47,48,50. In peripheral 

blood of pregnant women there is an increased ratio of γ/δ TCR positive lymphocytes and 

more than 90% of these cells express progesterone receptor suggesting a state of activation 43. 

These data allow the assumption that decidual γ/δ cells play a major role in progesterone 

dependent immunomodulation.  

 

c.  Progesterone-induced blocking factor  

 

In the presence of progesterone, progesterone receptor positive lymphocytes produce a 34 kD 

protein 51 , named the progesterone-induced blocking factor (PIBF). PIBF appears on the 

lymphocytes of healthy pregnant women 52, but not on those from pathological pregnancies. 

The percentage of positive cells is significantly lower among peripheral blood lymphocytes of 

women showing clinical symptoms of threatened preterm delivery and also from women with 

miscarriages and preterm deliveries. Similar results were obtained by ELISA. PIBF can be 
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detected in sera of pregnant women and its concentration is higher than that of non-pregnant 

individuals or pregnant women with symptoms of threatened abortion. Furthermore, the 

majority of sera from term deliveries was characterized by lower than normal concentrations 

of PIBF, suggesting an association between the serum level of this protein and the termination 

of pregnancy 53. Thus, the presence or absence of PIBF correlates with the failure or success 

of gestation. 

  NK activity of peripheral blood lymphocytes is inversely correlated to their PIBF 

positivity. Van den Heuven et al.54 have demonstrated the presence of progesterone receptor 

positive NK cells in the decidua. Decidual CD56+ cells inspite of their high perforin content 

show a low rate of cytotoxicity. All decidual CD56+ cells produce PIBF 55. PIBF blocks NK 

activity by inhibiting degranulation of peripheral lymphocytes 55 therefore, it can not be 

excluded, that low NK activity of decidual NK cells is due to the high presence of PIBF in the 

decidua. 

Progesterone-treated murine pregnancy lymphocytes release a similar factor. 

Treatment of Balb/c mice that were 8 days pregnant with progesterone receptor blocker 

(RU486) resulted in 100 % resorption of the fetuses. Simultaneous administration of the 

supernatant from progesterone-treated murine pregnancy spleen cells restored the resorption 

rate to the original 6 % 56. These data suggest that functional lymphocytic progesterone 

binding sites are needed for the maintenance of normal murine pregnancy as well. In pregnant 

mice PIBF exerts a strong anti-NK activity and it has an anti-abortive effect, since PIBF 

prevents resorptions induced by transfer of high NK activity spleen cells 57. 

In women with recurrent spontaneous abortions paternal lymphocyte immunization not 

only induces a higher expression of progesterone receptor expression but suppresses NK cell 

activity as well 58.  

 Studies on IVF patients showed, that PIBF appears on the lymphocytes of pregnant 

women early after implantation. The percentage of PIBF expressing cells increases as a result 

of pregnancy and the stimulus for PIBF induction occurs in an early period of periimplantation 

event, and may thus help with early escape from maternal immune surveillance 59. These data 

support the concept that PIBF may play an important role in early implantation possibly by 

inhibiting destructive function of natural killer lymphocytes.  

Another immunmodulatory effect of PIBF is influencing the rate of antibody synthesis 

and the quality of antibody production. PIBF enhances asymmetric antibody production of 

hybridoma cells 60. Asymmetric antibodies have a mannose-rich olygosaccharide linked to one 
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of the Fab arms of the molecule and though they bind the antigen with the same specificity as 

this conventional counterparts, these Ig molecules are generally unable to activate effector 

functions, such as complement fixation, phagocytosis and cytotoxicity, however, they can 

block the antigen and thus might play a role in the protection of the fetus. The sera of pregnant 

mice treated with anti-PIBF antibody contained four times less asymmetric antibodies than 

those of normal pregnant animals 61 suggesting the role of progesterone in the regulation of 

nonprecipitating antibody production as well.   

 

 

 

3. Altered cytokine production during pregnancy 

 

   

Cytokines play a major role both in the establishment and in the maintenance of 

normal, human pregnancy and may have beneficial or negative influence on pregnancy 

outcome depending on the cytokine level present.  

CD4+ cells can be subdivided into different subsets on the kind of lymphokines they 

produce 62. T helper 1 (Th1) cells secrete IFN-γ and TNF, whereas T helper 2 (Th2) cells 

secrete IL-4, IL-5 and IL-13. Th1 cells induce cellular-mediated inflammation and tissue 

injury, whereas Th2 cells are prominent in the pathogenesis of allergic diseases 63,64. 

Cytokines present during the initiation of a T cell response can determine the development of 

a particular Th subset. For example Th2 cells develop when naive T cells are stimulated in the 

presence of IL-4, while IL-12 is a critical factor driving the development of Th1 cells 65,66,67,68.     

Gestation is associated with a transient depression of maternal cell-mediated immunity to 

protect the semi-allogeneic embryo from rejection. The hallmark of this immune tolerance is a 

profound modulation of T cell responses, best characterized by a sift from Th1 (IL-2, IFN-γ) 

to a Th2 (IL-4, IL-10, IL-13) type cytokine response 69,70,71,72 It was demonstrated that a 

failure of the generation of Th2-type cytokine responses is associated with recurrent abortions 
73, complications 74, and poor pregnancy outcome. Th2 cytokines with anti-inflammatory 

characteristics has been suggested to be compatible with a successful pregnancy 75. Abortion-

prone matings (CBAxDBA/2) in mice associated with the predominant production of Th1 

cytokines, including IFN-γ, IL-2 and TNF−α, culminate in fetal loss, which can be reversed by 

administration of the Th2 cytokine IL-10 during pregnancy 76,77,78,79. Although both pro- and 
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anti-inflammatory cytokines, including IL-2, IL-4, IL-10 and IFN-γ, are expressed in activated 

PBMCs throughout pregnancy in contrast to their placental production, there is a significant 

up-regulation of IL-10 during early pregnancy, which may be sufficient to exert moderate Th2 

predominance 80. On the other hand there is a more profound systemic Th1 balance in 

pathologic pregnancies 81. These studies suggest that systemic or placental presence of Th2 

cytokines, particularly IL-10, would be supportive of normal pregnancy.  

 

a. The protective role of IL-10 in pregnancy  

 
Although human IL-10 does not fit in the classical Th2 cytokine profile because it can be 

produced by both Th1 and Th2 cells as well as non-T cells, this 18-kDa polypeptid exhibits 

predominantly inhibitory effects on inflammatory reactions 82. One of the major roles of IL-10 

is down-regulation of chemokine and cytokine production by Th1 cells and macrophages 
83,84,85. IL-10 also interferes with antigen presentation and directly or indirectly inhibits CD8+ 

T cell or NK cell responses 86,87,88,89.   

IL-10 may also act as the mediator of several other intrauterine regulators 90,91. 

Progesterone, catecholamines and prostaglandins have been shown to induce production of 

IL-10 92,93,94. It has been demonstrated that IL-10 is a key cytokine produced by human 

placenta, the expression of which was significantly down-regulated at term before the onset of 

labor 80. Several lines of evidence suggest that IL-10 may play a major role in influencing the 

activity of the placental trophoblast, which has been proposed as a key cell type in regulating 

fetal immunoprotection 91,95,96. The placenta produces proinflammatory cytokines, which are 

thought to be associated with trophoblast apoptosis, protease production, and stimulation of 

several uterotonins (prostaglandins, etc.) which are produced in increased levels at the time of 

spontaneous or preterm labor 97,98,99. IL-10 displays a potent bioactivity in down-regulating the 

expression and activities of proinflammatory cytokines and uterotonins 82,100. Importantly, IL-

10 modifies the activity and expression of prostaglandin dehydrogenase in cultured term 

human villous trophoblast and chorion trophoblast cells 100. Furthermore IL-10 is a potent 

inhibitor of cell-mediated immunity, which has been shown to be immunologically 

incompatible with establishment of the feto-placental unit in mice 70. The down-regulation of 

IL-10 at term may serve as one of the initial signals in a complex regulatory scheme necessary 

to ensure up-regulation of proinflammatory cytokines (such as TNF-α, IL-1β) and uterotonins 

at parturition 80.  
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The regulatory role of IL-10 is supported by the observations that this cytokine 

successfully blocks LPS-induced preterm delivery in mice 101. In the resorption prone CBA x 

DBA/2 murine mating combinations the placentas are quantitatively or qualitatively deficient 

in their production of the anti-inflammatory Th2-type cytokines IL-4 and IL-10 compared with 

the non resorption-prone CBA x BALB/c mating combination. Wastage in the previous 

mating combination is accompanied by increased levels of local inflammatory cytokines. 

Alloimmunization enhances the placental production of IL-4 and IL-10 in CBA x DBA/2 

matings 79. The re-expression of IL-10 mRNA after labor has been also described 80 which 

might be a part of delayed negative feedback mechanism. It has been suggested that TNF-α, 

IL-12 and prostaglandin E2 induce IL-10 to autoregulate their own production 102,103. IL-10 

has been shown to reverse experimental fetal growth restriction and demise 104 , while human 

placental tissues or isolated cytotrophoblasts from 26-wk and 33-wk preterm labor deliveries 

lack expression of IL-10 80. The lack of IL-10 results in pregnancy failure. IL-10 gene knock 

out mice are born with significantly lower birth weight than their heterozygous siblings. This 

can be prevented by rIL-10 or anti-TNF treatment 105. Thus IL-10 may be critical in normal 

fetal development and down-regulation of inflammatory responses in the placental 

microenvironment. These results indicate that the placentally produced anti-inflammatory 

cytokines can play a key role in the survival to term of the fetal allograft, by counteracting 

deleterious inflammatory cytokines.         

 

b. Th-1 type cytokines in pregnancy   

 

Several lines of evidence from studies using ex vivo cultures or gene-knockout mutations 

mice, suggest that multiple cytokines are involved at various distinct steps in NK-cell 

development and in the  regulation of the activity of these cells.. IL-15 plays important role in 

an early differentiation step of NK cells and their subsequent expansion 106,107. IL-12 and IL-

18 can induce IFN-γ production by immune cells and enhance NK-cell cytotoxicity 108,109. IL-

12 is produced by myelomonocytic cells as a heterodimer composed of two disulfide-linked 

chains, p35 and p40, encoded by separate genes 110,111. Simultaneous expression of the two 

genes is required for the production of biologically active IL-12 heterodimer.  In mice 

deficient in IL-12 p40 or IL-18, production of IFN-γ and NK-cell cytotoxicity decrease 

significantly 112,113. The reduced cytotoxicity of NK cells can be corrected to normal levels by 

treatment with IL-2 in vitro or with IL-12 and IL-18 in vivo. Based on these results it is 
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tempting to postulate that IL-12 and/or IL-18 are needed for the terminal differentation of NK 

cells into fully functioning cells with the ability to produce IFN-γ114.   

Several reports have now confirmed that unbalanced presence of Th1 cytokines IL-2, IFN-

γ, TNF−α during murine pregnancy results in fetal ablation. In human studies significantly 

lower mRNA levels of the Th1-type cytokines (IL-2 and IFN-γ) were observed during 

pregnancy compared with non-pregnant female controls. The mRNA levels of IL-18 were also 

significantly reduced during gestation. These effects were already prominent in women during 

the first trimester and continued throughout pregnancy. IL-2 and IFN-γ levels tended to 

increase towards late pregnancy but decreased again immediately after delivery. The IL-

4/IFN-γ ratio (as an indicator of TH1/Th2 balance) was significantly higher during first and 

second trimesters compared with early post-partum or with non-pregnant women. This 

dominant Th2 cytokine profile was even more pronounced if the IL-4/IL-2 ratio was 

calculated 72.  Th1-type cytokines clearly have adverse effects on the conceptus in vitro and in 

vivo. IL-2 and TNF-α are abortificent in mice 115. Excessive TNF and IFN-γ have also been 

demonstrated in the placenta and decidua of aborting CBAxDBA/2 mice 77, on the other hand 

anti-TNF antibodies or TNF antagonists, e.g. pentoxifillin normalize the high resorption rates 

in CBA/J x DBA/2 matings116. IFN-γ inhibits trophoblast outgrowth and causes the 

degeneration of attached blastocysts117. IFN-γ also activates cytotoxic T cells and NK cells, 

which, in a lymphokine activated state may damage trophoblast. In mice low doses of IFN-γ 

slow down intrauterine developement, whereas administration of high doses result in abortion 
116. TNF-α inhibit mouse embryonic and fetal developement and also the proliferation of 

human trophoblastic cell lines in vitro. Yui et al. have shown that TNF−α causes apoptosis of 

the human cytotrophoblast cells which are known to express receptors for TNF-a, and they 

suggested that TNF-α augmented by IFN-γ may bring about a premature depletion of 

progenitor trophoblast cells resulting in intrauterine damage 97. In vivo inflammatory 

cytokines such as IL-2, TNF-α and IFN-γ can terminate normal pregnancy when injected into 

pregnant mice 118. In supernatants of trophoblast activated peripheral lymphocytes of recurrent 

spontaneous aborters elevated levels of TNF-α and β have been demonstrated, suggesting that 

these cytokines might act as a mediators in the developement of RSA. These data above 

nevertheless led to the concept that succesful allopregnancy is a Th2 phenomenon 71. 

These observations may explain the beneficial effect of pregnancy on various T cell-

mediated, organ specific autoimmune diseases. It has been described that the activity of 

multiple sclerosis, rheumatoid arthritis or Crohn’s disease is reduced during pregnancy but 
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flares up in the post-partum period 119,120,121. As disease activity in these disorders is often 

associated with increased Th1-type cytokine responses in the blood, it was suggested that a 

cytokine shift during pregnancy may be protective process. Systemic lupus erythematosis, in 

which the principal pathology is mediated by excessive autoantibody production, tends to flare 

up during pregnancy, especially in women with recently active disease before contraception 
122. There are also a number of infectious diseases caused by intracellular pathogens (ec. HIV-

associated infections 123, malaria 124 and toxoplasmosis 125 ) which appear to be exacerbated 

by pregnancy.    

Thus, a shift in the balance of these two cytokines appears to be an important element in 

the generation or correction of immune dysfunctions. During pregnancy materal immune 

response is biased towards humoral immunity and away from cell-mediated immunity which 

could be harmful to the fetus.  

Taken together, these data suggest that normal intrauterine developement largely depends 

on the cytokine balance. A Th2 biased cytokine pattern favors a normal outcome, whereas, a 

Th1 dominant response is deleterious.    

 

4. The role of NK cells in the feto-maternal relationship 

 

Natural killer (NK) cells belong to the system of innate immunity and for cytolytic 

activity do not require former antigenic stimulation. NK cells are defined as large granular 

lymphocytes, which usually express CD16 and/or CD56 in human and do not express CD3 or 

any known T-cell receptors126. NK cells may kill target cells by utilizing both secretory 

mechanism ( perforin/granzyme-mediated) and non-secretory ( cell membrane-bound Fas 

ligand-mediated) mechanisms, where Fas ligand is expressed on the cell surface of NK cells 

and responsible for Fas-mediated cytotoxicity against Fas-expressing target cells 127,128.     

NK cells are able to kill MHC negative target cells ( a common consequence of virus 

infection or malignant transformation) without prior sensitization. A recent model of NK 

activity, the so-called „two-receptor model” 129 suggest the role of two different receptors at 

the same time. The NK cell activation receptor (so called killer activating receptor or KAR) 

that binds to target cell carbohydrate structures, and the killer inhibitory receptor (or KIR) 

specific for MHC class I molecules. The specific recognition of self-MHC class I molecules 

on target cells upon NK cell receptors may repress cytotoxic function of NK cells. 

Cytotoxicity may occur if target cells lose MCH class I expression, if NK cells lack the 
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appropriate killer inhibitory receptor or if there are changes in the structure of the peptide-

MHC molecule that impair recognition 130. Engagement of the MHC class I specific receptor 

transmits negative signals that override the action of KAR, probably downstream of early 

activation events. Multiple forms of each receptor, with potentially different specifities may 

be expressed by a single NK cell.   

NK activity plays an important role during pregnancy : it was shown to display 

deleterious effects on fetal development, resulting in spontaneous abortion in mice 131. On the 

other hand NK cells function is a first line of defence against infectious agents and malignant 

processes. Normal human pregnancy is characterized by low peripheral NK activity 132,133. In 

humans increased NK activity seems to play a role in spontaneous abortions of unknown 

etiology, since it is well known that there is an increase in NK activity preceding all forms of 

spontaneous pregnancy termination 37,134. Cytotoxic mechanisms exerted by NK cells can 

induce ablation of placenta, on the other hand , TNF-α produced by NK cells via facilitating 

prostaglandin synthesis induces uterine contractions and initiates the induction of labor. NK 

cells also play a physiological role in the regulation of haematopoesis, where their effects are 

exerted by cytokine production. In early human pregnancy the majority of uterine lymphocytes 

resembles phenotypically fetal NK cells. They are CD56bright granulated NK cells, which do 

not express CD16 or CD3 135. Only 10 % of peripheral NK cells shows similar characteristics. 

These NK cells show a low spontaneous cytotoxic activity in spite of their high perforin 

content, but when activated by IL-2 they kill trophoblast cells. Since in early pregnancy these 

cells are enriched at the implantation sites ( where trophoblast infiltrates the decidua) it 

suggests that one of the functions of these cells is control of placentation.  

In mice there is a direct evidence for the involvement of high NK activity in abortion. 

NK cell infiltration was demonstrated in damaged mouse fetuses and placentae. Adoptive 

transfer of high NK activity spleen cells to pregnant mice induces abortion136. 

The lack of harmful NK activity to the trophoblast during normal pregnancy is due to 

several mechanisms. The presence of HLA-G and HLA-E on the trophoblast provides 

protection againts NK activity partly due to recognition of  these self MHC class I molecules 

via killer inhibitory receptors137, partly due to inhibitory effect of HLA-G on transendothelial 

migration of NK cells, by which HLA-G may inhibit NK cell trafic across the placenta138. On 

the other hand the generalized shift of systemic T-cell responses to Th2, as well as the effect 

of PIBF are also responsible for the inhibiton of NK activity. 
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5. The immunologic effects of  prostaglandins 

 

The biochemical signals that initiate human parturition are not completely understood. 

There is a evidence that prostaglandins, in particular PGE2 and PGF2α, are important 

mediators in the onset of human labor by inducing myometrial contractions 139, ripening of the 

cervix 140 and membrane rupture 141. Prostaglandins are produced by amnion, chorion, 

decidua, myometrium and placenta 142. Many factors can increase prostaglandin production, 

including cytokines and growth factors 143,144,145,146.  

The first step in the synthesis of prostaglandins is the hydrolysis of arachidonic acid 

from cell membrane phospholipids, predominantly by the action of phospholipase A2 (PLA2). 

There are multiple forms of PLA2 which include the cytosolic group IV (cPLA2) 147, the 

secretory group (sPLA2) 148 and a cytosolic Ca2+-independent PLA2 (iPLA2) 149. The free 

arachidonic acid can then be converted to the intermediates PGG2 and PGH2 by the action of 

prostaglandin H synthase (alternatively known as cyclo-oxygenase (COX) and then be further 

metabolised to prostaglandins, prostacyclin or tromboxanes. There are two isoforms of 

COX150 : COX-1 is constitutively expressed, and COX-2, which can be upregulated in 

response to stimuli such as cytokines and growth factors 144,151. Fetal membrane PLA2 activity 

increases throughout gestation and total cellular cPLA2 has also been found to be high before 

the onset of labor 152. Futhermore there is evidence for increased amnion COX enzyme 

activity and mRNA expression of COX-2  at term 153.  

 Since inflammatory mediators such as IL-1β can rapidly induce cPLA2 and COX-2 

mRNA and protein expression and activity,  with a parallel increase in PGE2 synthesis in 

amnion-derived WISH cells154 and also in villous and chorion trophoblast, it is possible that 

they are involved in the biochemical mechanisms of parturition. This hypothesis is supported 

by the data that IL-1β is found in increased levels in the aminotic fluid of women in preterm 

labor associated with infection 155 as well as spontanous labor at term 156. IL-1ra has been 

found to prevent IL-1 induced preterm labor in mice 157. Other pro-inflammatory cytokines 

such as TNF-α or IL-6 cause similar changes in COX-2 expression and prostaglandin output 

when added to fetal membranes in vitro 143,145. Anti-inflammatory cytokines may oppose these 

effects. For example IL-10 inhibited the output of PGE2 from intact fetal membranes under 
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basal and LPS-stimulated conditions, and there was a parallel decrease in the expression of 

mRNA for COX-2 158. IL-4 also inhibits COX-2 mRNA and protein production in cytokine-

stimulated WISH cells 159. These data suggest that in inflammatory conditions, 

proinflammatory cytokines ( such as IL-1, IL-6 and TNF−α) can influence PG output through 

effects on PG synthesis and metabolism and that these effects may be opposed by an 

antiinflammatory cytokine. These interactions may be important in the progression of preterm 

labor 100.  

The stimulating effect of proinflammatory cytokines in prostaglandin synthesis can be 

inhibited by glucocorticoids and progesterone, since they downregulate cPLA2 and COX2 

mRNA expression 160,161. Other inhibitors of PLA2 catalysis, such as quinacrine inhibit IL-1 

and TNF release from LPS-stimualted cells 162, while the activatos of PLA2, such as melittin, 

can cause cells to increase cytokine synthesis in the absence of LPS. Taken together, these 

data indicate a pivotal role for PLA2 in the regulation of cytokine production 163,164. 

These findings suggest that COX-2 inhibitors may be useful tocolytics in the setting of 

preterm labor with occult chorio-decidual infection. Selective COX-2 inhibitors have been 

shown to block spontaneous uterine contractions in the rat and prevent preterm birth in 

humans 165,166. Some authors described that PGE2 inhibits lymphocyte function in vitro and it 

has been proposed to be important in suppressing maternal rejection of the implanted 

intrauterine conceptus 167. Other observations gave no support to this concept. Studies by 

Hilkens et al have shown that the net modulatory effect of PGE2 on the cytokine secretion 

profile of T cells critically depends on the mode of T cell activation and consequently the 

availability of IL-2. Since this parameter varies with the experimental conditions and the T 

cell population studied, these findings may explain why certain immune responses may be 

either up- or down-regulated by PGE2 under different conditions 168. On the other hand the 

effects of PGE2 on human peripheral blood lymphocyte responses to PHA are concentration-

dependent. PBL response to PHA is stimulated at low concentrations of PGE series (10-7 M), 

whereas high concentrations (10-5 M) markedly inhibit the response 169. High concentrations 

(10-6–10-7 M) of PGE2 inhibit the generation of both antigen-specific cytotoxic T lymphocytes 

(CTL) and activated killers from precursor cells. As with PGF2, lower concentrations of the E 

series (10-8–10-9 M) enhance the generation of antigen-specific CTL but inhibit the generation 

of lymphokine and spontaneously-activated CTL 170. Though PGE2 is the most studied 

prostaglandin, it is not the only one produced, and certainly not the only one endowed with an 

immunomodulatory potential. Ching et al. demonstrated a significant correlation between NK 
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cell cytotoxicity and the plasma prostaglandin F series concentration in cord blood 171. Mice 

with ablated gene for the PGF2α receptor experience normal gestation but fail to initiate 

labour and delivery 172. Our earlier studies reveled an increased PGF2α sensitivity of human 

peripheral lymphocytes together with a decreased PGE2 sensitivity during labor 173.  

Both in human and rat decidua, the constitutive level of cyclooxygenase appears to be 

down-regulated. Smith and Kelly showed 174 that  PGE2 synthesis is normally suppressed in 

the first trimester decidua by a progesterone-dependent mechanism, and others found that 

PGE2 is present at inceased concentrations in decidua of human and mouse spontaneous 

abortions 175. Gerdon et al. 176 reported on increased PGE2 levels in the decidua of DBA/2-

mated CBA/J mice prior to the onset of resorption.  

These results above questioned the in vivo relevance of PGE2 data obtained in vitro, gave no 

support to the view that PGE2 represents an important intrauerine molecular blocking process 

and concluded that inhibition of PGE2 synthesis by indomethacine (INDO) does not generally 

lead to maternal rejection of the conceptus 177. Women who take INDO or acetylsalicylic acid 

(ASA) have not been reported to suffer a high abortion rate (even though clinically used doses 

of INDO and ASA appear to reduce PGE2 production in vivo) as reflected in clinical 

improvement in conditions such as threatened abortion, polyhydramnions, and arthritic 

inflammation 178. ASA treatment starting before implantation may reduce the rate of abortion 

in some types of patients suffering from recurrent miscarriages 179 furthermore, the frequency 

of post-maturity and the length of gestation were significantly increased in women who 

regularly took large doses of prostaglandin synthesis inhibitors 180. As a site of action, the 

uterine smooth muscle has generally been accepted. Data above suggest that immunologic 

actions of prostaglandin synthesis inhibitors provide additional benefit to their known effects 

on the uterine musculature and blood supply.  
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III. AIMS OF THE STUDY AND RESULTS 

 

1. The mechanims participating in the anti-abortive effect of PIBF in mice  (paper 1.) 

 

Immunologic effects of progesterone are mediated by a protein named the progesterone-

induced blocking factor (PIBF) 51. Lymphocytes of healthy pregnant women are able to 

produce PIBF and the percentage of PIBF-positive cells is significantly reduced in peripheral 

blood lymphocytes of recurrent aborters 52. Among other effects this protein inhibits NK 

activity 38 and displays an antiabortive effect in mice 57. Earlier data show that adoptive 

transfer of high NK activity spleen cells into pregnant mice induces abortion 136. Simultaneous 

PIBF treatment of pregnant mice corrects the abortive effect of NK activity 57. The above data 

provide indirect evidence for the importance of PIBF in maintaining normal gestation. Direct 

evidence for the biological significance of PIBF would be the induction of pregnancy loss by 

neutralization of endogenous PIBF. NK activity is one major component of natural cell-

mediated cytotoxicity with natural cytotoxic (NC) activity being the second component 181. 

Limited data indicate that NC activity is present in the decidua of pregnant mice 182.  

Since PIBF is antiabortive in mice and inhibits NK activity in vitro, the present study was 

aimed at investigating wheter neutralization of endogenous PIBF activity in vivo results in 

pregnancy termination and if it does, what are the mechanisms that lead to this event.     

We have shown that neutralization of endogenous PIBF activity results in pregnancy loss 

in mice. Both progesterone receptor block and anti-PIBF treatment induced an increased rate 

of resorptions, and in the former case pregnancy loss was due to the inability of spleen cells to 

produce PIBF. However, anti-PIBF treatment did not in all cases result in pregnancy 

termination, 23 % of mice did not respond. In non-responders, NK activity was significantly 

lower than that in good responders. It is conceivable that in these mice abortion did not occur 

because the spleen cells of the animals produced more than normal levels of PIBF, which was 

not all neutralized by the addition of anti-PIBF and abortion was not induced.   

NK and NC activities are probably the most important effector pathways in the 

fetomaternal immunological relationship. NK activity has been shown to play role in 

spontaneous pregnancy termination 131,132,134. Previously we showed that PIBF exerted a 

marked inhibitory effect on NK activity in vitro 38. NK activity is the major factor in 

spontaneous abortions in mice. In murine systems increased NK activity results in pregnancy 

termination 136 , which can be corrected by simultaneous PIBF administration 57. 
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 Our results show that treatment of anti-PIBF-treated mice with an anti-NK antibody (anti-

NK-1.1 monoclonal antibody, PK136) corrected the resorption rates and the mean number of 

implantation sites. Anti-NC (1C4) treatment that neutralize cytotoxic cells also completely 

corrected the anti-PIBF induced resorptions. The third monoclonal antibody (2B6-F2) reduces 

both NK and NC activity in Balb/c mice 183, and corrected both high resorption rates and low 

implantation rates due to the lack of PIBF. Our findings suggest that both NC and NK activity 

are involved in pregnancy termination in Balb/c mice, and that PIBF exerts its antiabortive 

effect via inhibition of nonspecific effector mechanisms. 

         

 

2. The in-vivo effect of PIBF on cytokine production, and the relationship 

      between cytokine production, NK activity and pregnancy loss in mice  (paper 2.) 

 

A long line of evidence supports the role of nonspecific immunologic mechanisms in 

pregnancy loss both in mice and humans. Natural killer (NK) activity is decreased in human 

pregnancy, whereas spontaneous pregnancy termination is associated with increased NK 

activity 173. There is direct evidence for the role of high NK activity in pregnancy termination 

in mice. Modulation of NK activity influences resorption rates 131. NK activity in the decidua 

of pregnant mice is mediated in part by NC cells 182.  

Normal pregnancy is characterized by decreased cell-mediated responses 184, 185 and an 

increased rate of antibody production, indicating a Th2-biased immune response. In 

experimental conditions the outcome of pregnancy can be influenced by modulating the 

cytokine balance. The administration of tumor necrosis factor alpha (TNF-α), interferon (IFN-

γ) or interleukin-2 (IL-2) to normal pregnant mice causes abortions 186,187.  Th2-type cytokines 

IL-4, IL-5 and IL-10 are detectable in murine feto-placental units in all three trimesters of 

pregnancy 188. It has been shown that PIBF alters the profile of cytokine secretion by activated 

lymphocytes, since IL-3, IL-4 and IL-10 production of ConA-activated murine spleen cells 

was significantly increased in the presence of PIBF 189. Progesterone has been shown to exert 

a positive effect on the induction of IL-5 gene expression in T cell lines 190. Among other 

effects PIBF inhibits NK activity and displays an anti-abortive effect in mice 38,183 .  Our 

previous data revealed an association of pregnancy termination and the lack of lymphocytic 

PIBF positivity, as well as a negative correlation between PIBF production and NK activity in 
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humans. Thus, PIBF determines the relationship between pregnancy termination and increased 

NK activity.  

The mechanism through which PIBF influences NK activity is manifested via multiple 

systems, and the relationship between the different pathways has not been clarified yet. Since 

PIBF affects cytokine secretion of in vitro activated lymphocytes, its action on NK activity 

might involve cytokine effect, because though the trophoblast resists NK-mediated lysis in 

vitro, it is susceptible to lysis by lymphokine-activated killer (LAK) cells 191.   

Our study was aimed at investigating the in vivo effect of PIBF on cytokine production 

as well as the relationship between altered cytokine production, NK activity, and pregnancy 

loss in anti-PIBF treated mice.  

In pregnant mice, the neutralization of endogenous PIBF activity, resulted in a high 

resorption rate and NK activity, together with decreased splenic IL-10 production. Because IL-

10 inhibits cytokine production by Th1-type cells as well as CD8+ T cells, the lack of IL-10 

production might be one of the factors responsible for high NK activity.  The treatment 

resulted in an increased percentage of IFN-γ-positive spleen cells as well. We found a positive 

relationship between NK activity and the percentage of IFN-γ positive spleen cells. 

Futhermore in animals with a high resorption rate the rate of splenic IFN-γ expression was 

significantly higher than in those with a low resorption rate. Splenic IL-10 production, on the 

other hand, was inversely related to resorption rates.     

Earlier (paper1) we have shown that treatment of anti-PIBF-treated mice with anti-NK 

or anti-NC monoclonal antibodies (PK136, 1C4, 2B6F2) corrected the high resorption rates 

and the low mean implantation sites. The PK136 antibody reacts with LGL-1-cells. This 

functional subset of NK-1.1+ cells that contains the majority of LAK cell progenitors 192. The 

trophoblast is resistant to lysis by NK cells, but it is lysed by LAK cells 191, thus the latter cell 

type may be involved in trophoblast damage. The antibody 1C4 reacts with natural cytotoxic 

cells, and the third monoclonal antibody (2B6F2) reduces both NK and NC activity in Balb/c 

mice.  

In the present experiments injection of anti-PIBF-treated mice with anti-NK and anti-

NC monoclonal antibodies corrected the high splenic IFN-γ, and decreased IL-10 production. 

The highest inhibiton in the ratio of IFN-γ positive spleen cells was obtained using the 

antibody 2B6F2, which neutralizes both NK and NC activity. Since neutralization of NK and 

NC activity in anti-PIBF treated mice corrected not only resorption rates but also cytokine 

values, this implies that NK cells are not simply targets of cytokines but these cells are 
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producers of the cytokines themselves. In mouse IL-10 is produced by Th2 cells as well as by 

macrophages and B cells 193,194. IFN-γ is produced by NK cells. Our findings are in 

accordance with the results of Clark and Chaouat 192   showing that not NK activity per se, but 

cytokines produced by the NK cells are responsible for the high resorption rates in mice.  

Our data suggest that PIBF contributes to the success of gestation via cytokine-mediated 

inhibition of NK activity.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Fig. 1. The putative mechanism of progesterone dependent immunomodulation 

and the effects of RU486, anti-PIBF and anti-NK treatment in murine pregnancy 

 

 

 

3. The relationship between the effect of PIBF on arachidonic acid metabolism and the 

IL-12 expression in humans (paper 3. and paper 4.) 

 

PIBF exerts a strong anti-natural killer activity 51. The mechanism through which PIBF 

influences NK activity is manifested via multiple systems, and the relationship between the 
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different pathways has not been clarified yet. We have shown that PIBF affects cytokine 

secretion, via increasing IL-10 and decreasing  IFN-γ and IL-12 production, PIBF inhibits NK 

cell cytotoxicity 189.  

Earlier data from this laboratory show that PIBF inhibits arachidonic acid (AA) release 

from mononuclear cells. In vitro AA increased the cytotoxicity by peripheral blood 

lymphocytes. Although the phospholipase inhibitory potential of our substance has not been 

tested, it is likely that PIBF acts before the level of the cyclooxygenase and lipooxygenase 

enzymes, since its blocking effect on cytotoxic activity was voided in the presence of 

exogenous AA 195. Our previous observations revealed a relationship between PGF2α levels, 

progesterone binding capacity and cytotoxic activity of the lymphocytes 196. Earlier we 

showed that LPS selectively stimulated prostaglandin synthesis and enhanced cytotoxicity 196.  

IL-12 stimulates cytotoxic NK activity, therefore in this study  we investigated the 

effect of LPS on IL-12 production by peripheral blood mononuclear cells. LPS treatment 

significantly increased the percentage of IL-12 positive cells compared to the control. In a 

previous experiment we demonstrated a significant reduction of cytotoxicity as a result of 

treatment with the specific cyclooxygenase inhibitor, indomethacin (INDO). Therefore we 

investigated the effect of INDO on LPS induced IL-12 production. In our hands inhibition of 

prostaglandin synthesis by either blocking the phospholipase A2 enzyme or the 

cyclooxygenase enzyme counteracted the effect of LPS on IL-12 expression, thus LPS 

possibly acts on IL-12 production by increasing prostaglandin synthesis. 

We also investigated the relationship between the effect of PIBF on AA metabolism 

and IL-12 production. Neutralization of endogenously produced PIBF by anti-PIBF antibody 

stimulated IL-12 production, while control antibody (preimmune polyclonal rabbit IgG) and 

INDO did not cause any change in the IL-12 expression. PIBF blocks cytotoxicity by 

inhibiting arachidonic acid liberation from phospholipids. Since anti-PIBF treatment 

significantly increased IL-12 production, we investigated whether a simultaneous treatment 

with quinacrine (that blocks phospholipase A2 enzyme) or INDO (  a known inhibitor of 

cyclooxygenase) could reduce the effect of anti-PIBF on IL-12 production. Both quinacrine 

and INDO treatment corrected anti-PIBF induced increased IL-12 production, suggesting that 

PIBF inhibits IL-12 production via an action on arachidonic acid metabolism. 

Prostaglandin synthesis inhibitors were reported to be effective in the treatment of 

threatened abortion and preterm labor in humans, although the value of indomethacin 

treatment for threatened abortion has been questioned. As a site of action, the uterine smooth 
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muscle has generally been accepted. The present data suggest that immunological actions of 

prostaglandin synthesis inhibitors provide additional benefit to their known effects on the 

uterine musculature and blood supply.  

Earlier we reported that progesterone binding capacity in lymphocytes of patients at 

risk for premature pregnancy termination is impaired in comparison with those from healthy 

pregnant women 40. Lymphocytes from the former patients are unable to bind a sufficient 

amount of progesterone, therefore no PIBF is released, thus arachidonic acid metabolism 

proceeds normally and results in high IL-12 production and consequently higher cytotoxic 

activity. This concept is supported by clinical observations of Varga et al. 197 which revealed a 

beneficial effect of low dose aspirin treatment of recurrent aborters, selected on the basis of 

repeatedly high NK activity and reduced PIBF producing capacity of their lymphocytes. 

Aspirin treatment reduced NK activity and resulted in an 82 % success rate in contrast to the 

untreated group, where the success rate was 44 %.  

On the basis of these findings we suggest the following mechanism: progesterone binding of 

the lymphocytes is followed by the release of PIBF that affects arachidonic acid release. The 

subsequent block of prostaglandin synthesis reduces IL-12 production and result in a lowered 

NK activity which favors a normal pregnancy outcome.      
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IV. THESES 

 

1. The lack of PIBF effect results in pregnancy termination in mice. 

 Neutralisation of endogenous PIBF activity results in pregnancy loss in mice. Both 

progesterone receptor block (with RU486 ) and anti-PIBF treatment induced an increased rate 

of resorptions, and in the former case pregnancy loss was due to the inability of spleen cells to 

produce PIBF. 

 

2.  The lack of PIBF effect results in increased NK and NC activity in mice.  

Both anti-PIBF and RU 486 treatments resulted in increased NK activity of the spleen cells. 

There was a positive relationship between NK activity and the rate of resorptions.  

 
3. The anti-abortive effect of PIBF is mediated via controlling NK activity in mice. 

Anti-PIBF treated mice showed a significantly increased resorption rate and reduced number 

of implantation sites. Mice simultaneously treated with anti-PIBF and anti-NK1.1 (PK136), 

anti-NC 1.1 (1C4) or anti-Ly-6c (2B6F2) did not show significantly altered resorption rates 

and the mean numbers of implantation sites were also comparable to untreated controls.  

 

4. In vivo inhibition of progesterone-dependent immunomodulation results in altered 

cytokine production in mice. 

Anti-PIBF treatment resulted in an increased percentage of IFN-γ positive spleen cells, and 

decreased splenic IL-10 production. There is a positive relationship between NK activity and 

the percentage of IFN-γ positive spleen cells. In animals with a high resorption rate the rate of 

splenic IFN-γ expression was significantly higher than in those with a low resorption rates. 

Splenic IL-10 production, on the other hand, was inversely related to resorption rates.  

 

5. Cytokines produced by the NK cells are responsible for the high resorption rates in anti-

PIBF treated mice. 

Neutralization of NK and NC activity in anti-PIBF treated mice corrected not only resorption 

rates but also cytokine values, suggesting that NK cells are not simply targets of cytokines, but 

these cells are producers of the cytokines themselves.   

 
6. Lipopolysaccharide stimulates IL-12 production by increasing prostaglandin synthesis in 

human pregnancy lymphocytes. 
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Lipopolysaccharide treatment of pregnant lymphocytes significantly increased the percentage 

of IL-12-positive cells compared with the control cells. Inhibiton of arachidonic acid release 

(by blocking of the phospholipase A2 enzyme) or prostaglandin synthesis (by blocking of the 

cyclooxygenase enzyme) counteracted the effect of lipopolysaccharide on IL-12 production. 

The inhibitory effect of quinacrine or indomethacin on lipopolysaccharide induced IL-12 

production was concentration dependent.  

 

7. PIBF inhibits IL-12 production via an action on arachidonic acid metabolism.    

Neutralization of endogenously produced progesterone-induced blocking factor by anti-PIBF 

antibody increased IL-12 production. Simultaneous treatment with the phospholipase A2 

inhibitor quinacrine or the cyclooxygenase inhibitor indomethacin could reduce the 

stimulating effect of anti-PIBF on IL-12 production.  

 

 

CONCLUSIONS  

 

In pregnancy chronic alloantigeneic stimulation due to the presence of the fetus activates 

decidual γ/δ T cells. These activated γ/δ T cells express progesterone receptor. In the presence 

of progesterone, progesterone receptor positive lymphocytes produce a 34 kDa protein, named 

the progesterone-induced blocking factor (PIBF). PIBF appears on the lymphocytes of healthy 

pregnant women, but not on those from pathological pregnancies. The percentage of positive 

cells is significantly lower among PBL of women showing clinical symptoms of treatened 

preterm deliveries. NK activity of PBL is inversely correlated to PIBF positivity of the 

lymphocytes. Thus, PIBF determines the relationship between pregnancy termination and 

increased NK activity. The mechanism through which PIBF influences NK activity is 

manifested via multiple systems.  

• PIBF interferes with arachidonic acid metabolism. Via inhibiting the release of 

arachidonic acid, PIBF reduces the rate of prostaglandin production, which has a major 

role in the initiation of labor. The effect of PIBF on NK activity is mediated by cytokines. 

In anti-PIBF treated pregnancy lymphocytes we observed a significantly increased IL-12 

production, which was corrected by quinacrine or indomethacin. These data suggest, that 

the phospholipase A2 and cyclooxygenase pathway is involved in the action of PIBF on 

IL-12 production, and in return on its suppressive effect on NK activity.  
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• PIBF alters the Th1/Th2 balance by stimulating the secretion of Th2-type cytokines (ec. 

IL-3, IL-4, IL-10) as well. This altered cytokine ratio contributes to decreased cell-

mediated responses and increased antibody production. Besides influencing the rate of 

antibody synthesis, PIBF acts on the quality of antibody production.  

• In the presence of PIBF, B cells produce hypermannosylated ( asymmetric) antibodies. 

These antibodies although bind the antigen with the same specificity as conventional 

conterparts, these Ig molecules are generally unable to activate effector functions and thus 

might play a role in the protection of the fetus.  

• Recent data revealed that PIBF blocks NK activity by inhibiting degranulation and 

perforin release of CD56+ lymphocytes, therefore it cannot be excluded, that low NK 

activity of decidual NK cells is due to the high presence of PIBF in the decidua. 

In conclusion via these multiple systems PIBF reduce NK cytotoxic activity that favours a 

normal pregnancy outcome.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.  2. The role of PIBF in normal pregnancy 
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V. MATERIALS AND METHODS USED IN THIS STUDY 

 

1. Separation of peripheral blood lymphocytes 

 

Heparinized venous blood was obtained from healthy pregnant women between the 16th and 

26th week of gestation. Peripheral blood mononuclear cells (PBMC) were separated on Ficoll-

plaque gradient (Pharmacia, Uppsala, Sweden) and washed in Roswell Park Memorial 

Institute (RPMI) 1640 medium (GibcoBRL, Life Technologies, Paisley, Scotland). 

Lymphocytes were resuspended in RPMI 1640 containing 10 % fetal calf serum (GibcoBRL, 

Life Technologies, Paisley, Scotland ) and adjusted to a cell count of 1x106/ml. 

 

2. Treatment of peripheral blood lymphocytes 

 

Lipopolysaccharide ( prepared from second phase Shigella sonnei in this Institute ) was 

diluted µg/ml in RPMI 1640 medium. Indomethacin ( Sigma Chemical Co., St. Louis , MO ) 

was dissolved in ethanol and further diluted in RPMI medium from 0.01 µg/ml up to 5 µg/ml 

concentrations. Stock solutions were always freshly prepared before the incubations. PIBF 

specific polyclonal antibody was prepared in this laboratory as described earlier (17) and used 

at a concentration of 400 µg/ml. One million lymphocytes were incubated for 3 h at 37 C0, 5 

% CO2 with the following : a, medium ( RPMI medium plus 10 % fetal calf serum); b, 

medium containing 10 µg/ml  LPS;  c-f,  medium containing LPS and 0.01µγ/ml, 0.1 µg/ml, 1 

µg/ml and 5 µg/ml indomethacin; g, medium containing 400µg/ml anti-PIBF; h, medium 

containing anti-PIBF and 5 µg/ml indomethacin; i, medium containing 5 µg/ml indomethacin; 

j, 400µg/ml preimmune rabbit polyclonal IgG antibody was used as control. 

At the end of the incubation the cells were washed twice in RPMI 1640 medium and 

centrifuged on glass microscope slides. 

 

3. Immuncytochemistry 

 

Human peripheral blood mononuclear cells or mouse spleen cells  were washed twice in 

RPMI 1640 medium and centrifuged on glass microscope slides. The slides were dried at 

room temperature, the cells were fixed for 5 min. in ice cold acetone and washed in tris 

buffered saline (TBS). All incubations were carried out at room temperature in humid 
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chamber. After blocking endogenous peroxidase activity with 1 % H2O2 the cells were further 

incubated in TBS containing 1 % bovine serum albumin (BSA, Sigma Chemical Co., St. Lois, 

MO ) for blocking nonspecific protein binding. The following  Ab-s were used as primary 

antibodies: mouse anti-human IL-12 Mab ( purchased from R&D Systems, Abingdon, Oxon, 

UK ), anti-mouse IL-10- and IFN-g Mab (both from Endogen, Cambridge, MA), rabbit anti-

mouse anti-PIBF IgG. Anti-human and anti-mouse IgG1 ab and IgG from nonimmunized 

rabbits gave the isotype controls. The monoclonal antibodies were diluted 1 : 50 in TBS 

supplemented with 0.5 % BSA. Anti-PIBF was added at 10 µg/ml. The cells were incubated 

for 1 h at room temperature in a humidified atmosphere. Secondary antibodies (horseradish 

peroxidase-labeled-anti-mouse-, anti-goat- and anti-rabbit IgG) purchased from Dako 

(Denmark),  were applied at dilution of 1 :100 or 1:200 for an additional 30 or 45 minutes. For 

the detection of cytokines the reaction was developed by diaminobenzidine (Sigma Chemical 

Co., St. Lois, MO) followed by silver intensification. Anti-PIBF positive cells were visualized 

by aminoethylcarbasol. The nuclei were counterstained with haematoxylin and the slides were 

mounted with gelatin-glycerol. The slides were read in a blinded fashion and the percentage of 

positive cells was determined after at least 500 lymphocytes were counted in the microscope 

at high power magnification.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Figure of  a IL-12 positive lymphocyte 

 

 

4. Determination of cytokines by ELISA 
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Spleen cells from treated and untreated pregnant Balb/c mice were washed and, the cell count 

was adjusted to 1x106/ml. The cells were activated with 1 µg/ml ConA (Sigma Chemical Co., 

St. Lois, MO) for 48 hr. After 48 hr the supernatants were collected and tested for IL-10. For 

IL-10 determination we used a Biotrak (Amersham. Little Chalfont, UK) kit. The assay was 

preformed following the steps suggested by the manufacturer.  

 

5. Production of human and murine PIBF 

 

Lymphocytes from healthy blood donors or spleen cells of 10-week-old Balb/c mice (Lati, 

Godollo, Hungary) were adjusted to a cell count of 1x106/ml in RPMI supplemented with 10 

% fetal calf serum (Gibco, Grand Island, NY) and were stimulated by 1 µg/ml of ConA 

(Sigma Chemical Co., St. Lois, MO) for 48 hr at 370C in CO2 incubator. The cell number was 

then adjusted to 10x106/ml and the cells were further incubated with 20 µg/ml of progesterone 

for 16 hr. At the end of the incubation period supernatants were collected. Progesterone was 

removed by dialysis. The supernatants were then 2000-fold concentrated on Amicon filters 

and used as the source of the human or murine PIBF. 

 

6. Production of PIBF-specific IgG 

 

The PIBF containing supernatants were subjected to SDS-PAGE on 12 % polyacrylamide 

gels. The separated bands were blotted to nitrocellulose filters, the 34-kDa band was cut out, 

dissolved in DMSO, and injected into rabbits weighting 4 kg each, together with complete 

Freund’s adjuvant. Boosters with incomplete Freund’s adjuvant were given at two weekly 

intervals. IgG was purified on protein A columns. The PIBF-specific antibody content was 

tested by ELISA.  

 

 

7. Treatment of pregnant mice by RU486, anti-PIBF, anti-NK and anti-NC antibodies 

 

Fourteen-week-old Balb/c mice (LATI, Godollo, Hungary) were kept under standard 

conditions (4 animals per cage). Female mice were caged overnight with the males and 

checked for the presence of vaginal plugs the following morning. The day on which the plug 
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was observed is considered to be Day 0.5 of pregnancy. Pregnancy was later verified by 

scoring corpora lutea. Various treatments were administered on Day 8.5 of pregnancy. 

  

a. Females were injected intraperitoneally with 0,3 mg/kg RU 486 or with 0.5 

mg of rabbit anti-PIBF IgG. Mice treated with the same amount of normal rabbit 

serum or untreated mice of similar gestational age were used as controls. 

b. A group of anti-PIBF-treated mice was at the same time injected with 

monoclonal antibodies to cells mediating natural killer (NK), natural cytotoxic 

(NC), or natural T cell (NT) activity. The monoclonal antibodies were:  

1.  PK136 (anti-NK-1.1) recognizes a 76- to 80 kDa type II integral membrane 

C-type lectin protein encoded by a member of the mouse NKR-PI gene family 
198,199. 

2.  1C4 (anti-NC-1.1) which recognizes a 45-kDa surface receptor and blocks 

spleenic natural cytotoxic (NC) activity approximately 70% both in vitro and in 

vivo 200,201.  

3.   2B6-F2 (anti-Ly-6c) identifies a subpopulation of murine Ly-6c+ NK1.1+ 

natural T (NT) cells 202,203. In the presence of complement 2B6-F2 reduces 

splenic NK activity by approximately 50% in Balb/c mice.  

The monoclonal 2B6-F2 antibody (kind gift from the laboratory of Smart YC (University of 

Newcastle, N.S.W., Australia) and PK136 antibody (obtained from American Tissue Type 

Collection, USA ) were used as serum-free supernatants and administered at a dose of 50 

µg/mouse, whereas 1C4 (kind gift from the laboratory of Smart YC YC (University of 

Newcastle, N.S.W., Australia) was affinity-purified IgG and administered at a dose of 25 

µg/mouse.  

The animals were sacrificed on Day 10.5 and their uteri were inspected. The ratio of 

living versus resorbed embryos was determined. Spleens were removed under aseptic 

conditions, cell suspension was prepared, and cytotoxic activity was determined in a 16-hr test 

against human embryonic fibroblast targets. NK activity was also tested using the 4- hr single-

cell cytotoxicity assay against YAC targets. Smears were prepared and the expression of 

PIBF, IL-10 and IFN-γ on the lymphocytes was determined by immuncytochemistry.      
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8. Cytotoxic assays 

 

1.   16-hr Cytotoxicity Assay 

Human embryonic fibroblast derived from 10- to 12-week embryos were used as 

targets. Cells were seeded on 96-well Nuclon tissue culture plates at a density of 5000 

target cells/well in 0.2 ml of RPMI-1640 medium supplemented with 10% fetal calf 

serum (GibcoBRL, Life Technologies, Paisley, Scotland). The target cells were 

allowed to attach by overnight incubation. The following day the medium was replaced 

by 0.2 ml of lymphocyte suspension containing 5x105 lymphocytes. After 16 hr of 

incubation, the plates were washed with PBS three times in order to remove 

lymphocytes and damaged target cells. This was followed by addition of alkaline 

phosphatase substrate (Sigma tablets No. 104.) in diethanolamine buffer at a 

concentration of 1 mg/ml. The plates were incubated for 10 min at 370C in the dark 

and the resulting yellow reaction product was quantified photometrically at 405 nm. 

The percentage reduction in enzyme activity relative to the target cell control was 

considered as a measure of cytotoxicity. 

 

2.   4-hr Single Cell Cytotoxicty Assay for NK activity 

We used the assay originally described by Grimm and Bonavida 204. Briefly, 100 µl of 

lymphocytes and the same amount of YAC target cells  (2 x 106 cells/ml each) were 

centrifuged at 500 rpm for 5 min and incubated at 37o C, in 5% CO2 for 10 min. The 

pellets were then resuspended and 200 ul of 1% agarose (Serva, Heidelberg, Germany) 

in RPMI-1640 medium (GibcoBRL, Life Technologies, Paisley, Scotland) was added  

to the mixture. One hundred µl of this suspension was spread over microscope glass 

slides previously coated with 1% agar. Target cells alone were used to detect 

spontaneous lysis. The gel was allowed to solidify and submerged in RPMI-1640  

medium. The slides were incubated for 4 hr at 37o C in 5% CO2. Then the gels were 

stained  with 0.5% Trypan blue for 1 min. After 2 min washes with phosphate buffered 

saline, the gels were fixed in 2% formaldehyde for 5 min and desalted in distilled 

water. The slides were read using a light microscope with x 400 magnification. The 

proportion of lymphocytes  bound  to the target cells was expressed  as a percentage of 

total lymphocyte population by counting 100 lymphocytes. Results are expressed as a 
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percentage of target binding cells. Dead  conjugates were scored as a percentage of the 

total number of conjugates by counting 50 conjugates  and results are expressed as a 

percentage of dead conjugates (cytotoxic binding cells). The percentage  of NK cell 

activity  was calculated according to the formula  NK%= (target binding cells% x 

cytotoxic binding cells %)/100. All results for cytotoxic target binding cell % were 

corrected for the proportion of target cells that died spontaneously in control plates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.   Methods used in the murine experiments 

 

 

 

9. Statistics 
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 The two tailed Student t test and the χ2 test as well as one-way analysis of variance with the 

Bonferroni correction were used for statistical evaluation of the data. Mean +/- SEM are 

indicated in the table and figures. Differences were considered significant if P value was equal 

or less than 0.05.  
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