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Frequent abbreviations used in the thesis

BMI: body mass index

BF: body fat

MS: metabolic syndrome

SNP: single nucleotide polymorphisms

UCP2: uncoupling protein 2

GIIS: glucose induced insulin secretion

LCPUFA: long chain polyunsaturated fatty acid

n-6 LCPUFAs

linoleic acid (C18:2n-6, LA)

gamma-linolenic acid (C18:3n-6, GLA)

eicosadienoic acid (C20:2n-6)

dihomo-gamma-linolenic acid (C20:3n-6, DHGLA)

arachidonic acid (C20:4n-6, AA)

n-3 LCPUFAs

alpha-linolenic acid (C18:3n-3, ALA)

eicosapentaenoic acid (C20:5n-3, EPA)

docosapentaenoic acid (C22:5n-3)

docosahexaenoic acid (C22:6n-3, DHA)
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Introduction

Epidemiology of obesity

Obesity has become an epidemic in many parts of the world, according to numerous

studies conducted in adults and in the much limited data collected from young people

(1-3). From the 1970 to the end of the 1990s, the prevalence of overweight or obesity

in school-age children doubled or tripled in several large countries (4). In Hungary,

the prevalence of obesity increased from 12% to 16% between 1980’ and 1990’s

among schoolchildren (5). Although the increasing trend seems to be uniform in all

countries, North America, Europe and parts of the Western Pacific have the highest

prevalence of overweight among children (approximately 20-30%) (4).

By 2010, about one in every ten children in the European region is predicted to be

obese (4).

Definition of obesity

In recent years, body mass index (BMI) has been increasingly accepted as a valid

indirect measure of adipose tissue in both children and adolescents for survey

purposes (3). Currently a group of researchers developed an internationally acceptable

definition of child overweight and obesity, specifying the measurement, the reference

population, and the age and sex specific cut offs (6). In this method the percentile

levels corresponding to a BMI of 25 kg/m2 (overweight) and 30 kg/m2 (obese) at age

18 were identified and projected backwards into childhood using a large (n=97 876)

sample of youth from 6 countries (Britain, US, Holland, Singapore, Hong Kong,

Brazil).

Etiology of obesity

Obesity results from the interaction of environmental factors (inappropriate eating

behaviours and/or reduction in physical activity) and hereditary factors. This has

been shown by numerous epidemiological studies carried out in large and different

populations (7). Obesity has a very heterogeneous phenotypic expression and the

molecular mechanisms involved in its development are more than diverse.
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a.) Role of genetic factors in the etiology of obesity

According to several studies, 30 to 80% of weight variation might be determined by

genetic factors. Today, the contribution of genetic factors to obesity can be

summarized as below:

• Monogenic obesity: single mutations contribute to the development of obesity.

These forms of obesity are rare, very severe and generally start in childhood (8). To

date, nearly 200 cases of human obesity have been associated with a single gene

mutation (9;10). These cases, which obey Mendelian genetics, are characterized by

extremely severe phenotypes that present themselves in childhood and are often

associated with additional behavioural, developmental, and endocrine disorders (11).

• Syndromic obesity:  There  are  between  20  and  30  Mendelian  disorders  in  which

patients are clinically obese, yet are additionally distinguished by mental retardation,

dysmorphic features, and organ-specific developmental abnormalities (10;11). Such

cases are referred to as syndromic obesity. These syndromes arise from discrete

genetic defects or chromosomal abnormalities, and can be either autosomal or X-

linked disorders. The most common disorders known are Prader-Willi syndrome

(PWS), Bardet-Biedl syndrome (BBS), and Alström syndrome.

• Polygenic obesity: several genetic variants interact with an ‘at-risk’ environment in

common obesities. Here each susceptibility gene, taken individually, would only

have a slight effect on weight. The cumulative contribution of these genes would

become significant when there is an interaction with environmental factors

predisposing to their phenotypic expression (overeating, reduction in physical

activity, hormonal changes, and socio-economic factors).

There  are  two  main  approaches  to  identify  DNA-based  markers  associated  with

quantitative traits.

The genome-wide association study is a hypothesis-generating approach that

examines the whole genome to identify the approximate location of new genes for a

disease or trait of interest. Although this approach has proven to be successful for

mendelian disorders and for rare diseases with large genetic effects, its success in
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common  diseases  and  continuous  traits  such  as  obesity  and  BMI  has  been  limited

(12).

In the candidate gene approach genes that are thought to be involved in the

pathogenesis of different traits, based on data derived from animal models, cellular

systems, are identified. Genetic variants at these loci are then tested for association at

the population level.

The number of genetic association studies has grown exponentially over the past 15

years, which was paralleled by a vast increase in the number of candidate genes.

The CD36 gene is one of the promising candidate gene for obesity. CD36 is an 88

kDa  membrane  protein  expressed  at  the  surface  of  a  wide  variety  of  cell  types

including adipocytes, skeletal muscle cells, and monocytes/macrophages (13). It

belongs  to  the  class  of  B  scavenger  receptor  and  shows  high  affinity  toward  lipid-

based ligands such as modified low density lipoprotein and long chain

polyunsaturated fatty acids (LCPUFA) and apoptic cell membranes (13;14).

Gene invalidation and overexpression experiments indicate that CD36 plays a role in

energy metabolism, fat storage and adipocyte differentiation in mice (15;16).

Muscle-specific CD36 overexpression enhances fatty acid oxidation, decreases

plasma fatty acid (FFA), glucose and insulin levels and lowers body weight (15). In

contrast, CD36 invalidation is associated with high plasma FFA and triglycerides,

low fasting glucose levels and less weight gain on a high fat diet (17). In humans,

CD36 is also related to metabolic disorders. Firstly, CD36 deficiency (type 1) is

associated with features of metabolic syndrome (18;19). Secondly, CD36 expression

in adipocytes is positively correlated to body fat (20) and its expression is reduced

after a period of weight loss (21). Finally, several single nucleotide polymorphisms

(SNPs) in CD36 gene  have  been  associated  with  metabolic  disorders  related  to

excess fat depots (22-26), and a (TG)-repeat in intron 3 has been linked to elevated

BMI in Korean patients with coronary heart disease (CHD) (27).

These studies have assessed the association between CD36 SNPs and metabolic

disorders in adults (22;24;26). However, whether CD36 SNPs influence body fat  in

adolescents has not been reported in population studies. Genetic association studies
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in young people are important in that the influence of behavioural and exogenous

factors are less marked than in adults, leaving a larger share to the SNPs to affect the

phenotype. Therefore, the aim of the present study was to assess the relationship

between CD36 genetic variability and obesity and body fat accumulation in

adolescents.

An other well known and promising candidate gene for obesity is the uncoupling

protein 2 (UCP2) gene. The human UCP2 gene is mapped to chromosome 11q13, it

contains 8 exons and spans 8 kb (Figure 1).

Figure 1. The human UCP2 gene.

UCP2 gene is widely expressed in human tissues, including white adipose tissue,

endocrine pancreas, skeletal muscle and liver (28). The effect of UCP2 on obesity

can be due to its suspected function in energy metabolism. UCP2 might enhance the

proton leak, induce respiratory uncoupling, thereby releasing the energy stored

within the proton motive force as heat, and resulting in a decrease in ATP synthesis

(29). Furthermore, it has been shown to effect carbohydrate and lipid metabolism. In

pancreatic β-cells, increased expression or activity of UCP2 may contribute to

impairing insulin secretion by reducing the ATP-ADP ratio. The mechanism(s) by

which UCPs may enhance lipid catabolism is still unknown, but could rely on their

ability to transport fatty acid anions outside of the mitochondrial matrix. (30).

The variant A allele of the common -866G/A polymorphism in the promoter

region of the human UCP2 gene enhances its transcriptional activity. The

enhancement results in increased UCP2 mRNA levels in human fat cells;

consequently, this polymorphism is associated with a reduced risk of obesity but an

increased risk of type 2 diabetes (31;32). Recently, an association between obesity,

disorders of lipid and carbohydrate metabolism and the G-allele of the -866G/A

polymorphism in the promoter region of UCP2 gene was reported (33).
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In the present study, we investigated the fatty acid composition of plasma lipids

and the association of n-6 LCPUFAs to glucose induced insulin secretion (GIIS)

evaluated by standard oral glucose tolerance test (OGTT) in obese children stratified

according to the -866 G/A polymorphism of UCP2.

b.) Role of long chain polyunsaturated fatty acids in the etiology of obesity

Several environmental factors affect the obesity phenomenon significantly. Evidence

has accumulated showing that early nutrition programs later obesity risk. The

mechanisms involved are poorly understood, beside the role of several nutrients,

LCPUFAs may also play a significant role.

LCPUFAs are fatty acids with a minimum chain length of 18 carbons containing at

least 2 double bonds. LCPUFAs are classified into 1 of 2 families: n-3 and n-6

(Figure 2).

Figure 2. The metabolism of n-3 and n-6 fatty acids.
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The n-3 and n-6 nomenclature refers to the location of the first unsaturated carbon

from the methyl (‘n’) terminus of the fatty acid. The first double bond is located at

carbon 3 for n-3 fatty acids and at carbon 6 for n-6 fatty acids. Alpha-linolenic acid

(ALA, C18:3n-3) and linoleic acid (LA, C18:2n-6) are the parent compounds for the

n-3 and n-6 series of LCPUFAs, respectively. Because humans lack the ability to

insert a double bond prior to carbon 9 in the fatty acid chain, ALA and LA cannot be

synthesized endogenously and are therefore dietary essential fatty acids.

The role of LCPUFA in obesity development is supported by several facts. First,

both in rodents and humans, LCPUFA (especially arachidonic acid [AA, C20:4n-6])

enhances the formation of adipocytes. When compared to control adipogenic

conditions,  a  brief  exposure  of  preadipocytes  to  LCPUFAs  appears  sufficient  to

trigger in vitro both hyperplasia and hypertrophy (34). Secondly, LCPUFA is known

to influence gene expression of lipolytic and glycolytic enzymes (35) and proteins

regulating energy metabolism and thermogenesis (for example PPARγ and UCP2),

leading to changes in metabolism, growth, and cell differentiation. Third, a recent

study showed that overweight and symptoms of metabolic syndrome can be

programmed in the adult animal by modulating essential LCPUFA in the perinatal

period (36). Fourth, human studies also provide evidence that obesity per se is

associated with a disturbed n-6/n-3 LCPUFA balance in the maternal diet during

pregnancy, lactation, and early childhood (37). Finally, different LCPUFA

composition of obese patients compared to normal weight controls were reported in

studies (38;39). Previously we found significantly higher percentage contributions of

the n-6 long-chain polyunsaturated fatty acids, gamma-linolenic acid (GLA, C18:3n-

6), dihomo-gamma-linolenic acid (DHGLA, C20:3n-6), and AA, to the fatty acid

composition of plasma lipid classes in obese children than in nonobese controls (38).

Beside the potential role in obesity development, LCPUFAs have several other

important functions as well. The availability of LCPUFAs and especially the supply

of docosahexaenoic acid (DHA, C22:6n-3) appears to modify the development of

visual and cognitive functions during early life (40-44). The LCPUFA content of the

diet influences membrane structure and function, and also effects the production of

second messengers, such as eicosanoids that influence many cell-associated
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functions (45). During gestation and infancy, the supply of preformed LCPUFA can

influence neural functions (45).

Essential fatty acids can not be synthesised by humans and must be supplied

through placental transport to the fetus and with human milk or milk substitute

formulae to the infant. Human milk supplies not only the essential fatty acids linoleic

and alpha-linolenic acids, but also their LCPUFA metabolites (40;46). It provides

considerable amounts of LCPUFAs, and is considered to provide optimal form of

nutrition for young infants (46-49). During gestation, major amounts of DHA and

other  LCPUFAs  are  transferred  to  the  developing  fetus  for  optimal  growth  and

development by an active and selective transport (50;51). Tissue values of AA and

DHA increases steadily with increasing gestational age (52); LCPUFAs accumulate

in the fetus, especially during the last trimester of pregnancy (40;47;53).

Lipid content and fatty acid composition of human milk is reportedly influenced

by a variety of variables such as genetic background of the lactating woman,

maternal nutritional status, maternal dietary intakes immediately before and during

gestation, the number of previously breastfed infants and the stage of lactation

(40;47;52). It has also been debated whether fatty acid composition of human milk

differs after preterm as compared to full-term delivery (54-58). In our previous study

percentage contributions of arachidonic and docosahexaenoic acids as well as those

of the intermediary metabolites of essential fatty acid metabolism were all

significantly higher in early human milk samples of mothers giving birth to very low

birth weight preterm as compared with full-term infants (58).

Preterm infants represent a small (about 5% to 10%, depending on several

genetic and socioeconomical factors), but highly vulnerable subgroup of infants.

Optimal nutrition of preterm infants, including the prevention of obesity, is of

obvious importance from the point of view of the health of the community. However,

solid information of the composition of human milk of mothers of preterm infants is

a  prerequiste  of  the  optimisation  of  the  composition  of  formulae  to  be  used  in  the

nutrition of premature babies. In this study we systematically reviewed the published

information on fatty acid composition of human milk in mothers of preterm as

compared to those of full-term infants.
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Metabolic consequences of obesity

As the prevalence of childhood obesity increases, its health implications are

becoming more evident. Obesity is associated with significant health problems in the

pediatric age group and is an important early risk factor for much of adult morbidity

and mortality. Many of the metabolic and cardiovascular complications of obesity

are already present during childhood. In fact, there are few organ systems that

obesity does not affect (59).

According to the latest estimates of Lobstein et al. over 27 000 obese children in the

European Union have type 2 diabetes (most of it unrecognised and hence untreated),

and over 400 000 have impared glucose tolerance (60).

Over a million obese children are likely to have a range of cardiovascular disease

indicators, with an estimated 1.1 million suffering hypertension (61). Nawrot and

colleagues (62) report that systolic blood pressure increases by 0.8 mmHg per 1

kg/m2 increase in BMI in 15 to 19 year old males and by and 1.2 mmHg per 1 kg/m2

increase in BMI in 15 to 19 year old females. In the Bogalusa Heart Study youth with

BMI values >75th percentile were 8.5 times more likely to become hypertensive as

adults than were their lean counterparts (63).

Obese children and adolescents have consistently been observed to have a more

unfavourable lipid and lipoprotein profile than children and adolescents with a

normal body weight (61). 52% of obese children 8 to 12 years old were found to

have elevated total cholesterol concentrations compared with a prevalence of 16% in

non-obese children (64). There is increasing evidence that atherosclerosis begins in

childhood (65;66); however, the rate of progression is directly related to plasma

lipoprotein concentrations (67). In the Bogalusa Heart Study, autopsy studies of

children showed a clear relationship between the number and severity of risk factors,

principally obesity, with atherosclerosis in both the aorta and coronary arteries (68).

Overweight and obesity in youth plays a central role in the metabolic syndrome

(MS) - defined as a clustering of insulin resistance/hyperinsulinemia, dyslipidemia

and hypertension. A recent publication estimated the prevalence of MS in Europe on

the basis of data obtained from a literature search and extrapolated them to the 25

member states (60). Most of the studies used for the calculation of weighted average

prevalence were performed on USA children (n=6) and only one was European (69).
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Concerning the definition of MS in children and adolescents no consensus has

been reached yet, although the clustering of metabolic risk factors was described in

children long before the term “metabolic syndrome” emerged (70-72). The adult

definitions of MS (World Health Organization [WHO] (73), European Group for the

Study of Insulin Resistance [EGIR] (74), National Cholesterol Education Program

Adult Treatment Panel III [NCEP] (75), International Diabetes Federation [IDF]

(76),  American  Heart  Association  (77))  varying  in  terms  of  the  criteria  and  cut  off

points and do not apply to children because of the age- and sex- dependent changes

in  several  of  the  components  of  the  MS.  In  the  majority  of  the  studies  on  MS

performed in children and adolescents, the authors adapted the criteria from the adult

definitions with widely varying risk factor cut-offs. The main differences concerning

the definitions are the techniques used to estimate adiposity BMI or waist

circumference) and the variables for evaluating glucose metabolism (fasting glucose,

fasting insulin, hyperinsulinemia/insulin resistance, IGT or known type 2 diabetes).

Recently,  the  IDF proposed  its  own pediatric  definition  of  MS (78),  which  follows

the adult IDF definition, and the cut-off points are identical to those used for adults,

despite the more favorable distribution of lipid profiles and blood pressure normally

found  in  childhood  (79).  The  aim  of  the  present  study  was  to  review  the  data

concerning the prevalence of metabolic syndrome in European children and

adolescents, and to determine and compare the prevalence of MS among overweight

and obese children and adolescents in five European countries using four MS

definitions.

The presence of multiple metabolic disorders persists from childhood into

adulthood 25%–60% of the time (70;80). The alarming increases in obesity in

developing  countries  has  led  the  World  Health  Organization  to  estimate  that

cardiovascular disease CVD will rise from number 5 to number 1, the leading killer

in the entire world after another decade (2;81).

For  all  these  reasons,  CVD  is  and  will  remain  the  leading  killer  in  the  most

developed countries. Thus, the long-term consequences of childhood obesity could

cause our current generation of children to become the first in the history to have a

decreased life expectancy than their parents (82;83).
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Aims of the study

1. Association among single nucleotide polymorphisms at CD36 locus and

obesity in European adolescents

a.) To explore the relationship between polymorphisms in the CD36 gene and obesity

in a case-control study of adolescents.

b.) To validate our findings on anthropometric markers of obesity in an independent

cross sectional study of European adolescents.

2. Association of n-6 long-chain polyunsaturated fatty acids to -866G/A

genotypes of the human uncoupling protein 2 gene in obese children

a.) To examine the effect of −866 G/A polymorphism of UCP2 on the fatty acid

composition of plasma lipids in obese children.

b.) To investigate the association of n-6 long-chain polyunsaturated fatty acids

(LCPUFAs) with glucose-induced insulin secretion (GIIS) in obese children

stratified according to the −866 G/A polymorphism of UCP2.

3. Systematic review of fatty acid composition of human milk from mothers of

preterm compared to full-term infants

To systematically review the published information on fatty acid composition of

human milk in mothers of preterm as compared to those of full-term infants.

4. Prevalence of metabolic syndrome in European obese children

a.) To review the data concerning the prevalence of metabolic syndrome in European

children and adolescents.

b.) To determine and compare the prevalence of MS among overweight and obese

children and adolescents in five European countries using four MS definitions.
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1. Association among single nucleotide polymorphisms at CD36

locus and obesity in European adolescents European adolescents

Patients and methods

The Pécs Case-control study of adolescent obesity. The study population consist of

307  obese  adolescents  referred  to  the  outpatient  clinic  of  the  Department  of

Pediatrics  University  of  Pécs  (Pécs,  Hungary)  for  obesity  and  339 healthy normal

weight adolescents recruited via general schools of Pécs aged between 14-17 years.

Obesity was defined as a BMI over the value given by Cole et al. (84), corresponding

to 30 kg/m2 at the age of 18 years. None of the subjects had chronic diseases, was

taking  drugs  or  was  dieting.  Blood  samples  for DNA extraction was collected in

EDTA K3 tubes. Genomic DNA was extracted from peripheral blood leukocytes

according to standard procedures.

HELENA cross-sectional study (HELENA-CSS) (validation setting). Recruitment

and phenotyping of the participating adolescents in the HELENA study ("Healthy

Lifestyle in Europe by Nutrition in Adolescence", www.helenastudy.com) have been

described previously (85). Briefly, a total of 3865 adolescents were recruited

between 2006 and 2007. Data were collected in 10 centres from 9 European

countries (86). Subjects were randomly selected according to a proportional cluster

sampling methodology taking into account geographical repartition in each city,

private/public school ratio, and number of classes by school. One third of the classes

were randomly selected for blood collection, resulting in a total of 1155 blood

samples for the subsequent clinical biochemistry assays and genetic analyses.

Anthropometry. Skinfold thicknessess were measured at 6 sites: bicipital, tricipital,

sub-scapular, suprailiac, thigh and calf using a Holtain Caliper. Reliability of

skinfolds thickness measurements were adequate for epidemiological surveys (87).

The percentage of body fat (BF%) was estimated from skinfold measurements

according to the equations of Parizkova et al (88). The BMI was calculated.

http://www.helenastudy.com/
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Blood analysis. Blood for DNA extraction was collected in EDTA K3 tubes, stored

at the Analytical Laboratory at the University of Bonn and then sent to the Genomic

Analysis Laboratory at the Institut Pasteur de Lille (IPL) in France (89). DNA was

extracted from white blood cells with the Puregene kit (QIAGEN, Courtaboeuf,

France) and stored at -20°C.

In both the Pécs Case-control study and the HELENA-CSS data were collected on a

detailed case report form according to standardised procedures. In each centre,

trained nurses and physicians carried out complete physical examinations including

weight, height and blood pressure.

For both studies, the protocol was approved by the ethics committee of each

recruiting centre (90). A written, informed consent was obtained from each

adolescent and both of his/her parents or legal representatives. Participation in the

studies was voluntary.

Gene selection and genotyping. With the criterion used in our SNP selection

procedure (a minor allele frequency (MAF) above 0.1 and tag SNPs with an r2 value

above 0.8), the HapMap database (2007 release) describes 5 haplotype blocks and 2

independent SNPs that span the whole gene. In the present study, we selected 1 SNP

from each of the five haplotype blocks (block 1: rs1527479, block 2: rs3211816,

block 3: rs3211867, block 4: rs3211883 and block 5: rs3211931) and the two

independent SNPs (rs3211908 and rs1527483). We also selected 3 other SNPs

(rs1984112, rs1761667 and rs1049673) from the literature (24) in order to cover the

whole range of gene variability (Figure 3). Altogether, subjects were genotyped on

an Illumina system, 1 SNP (rs1761667) using the VeraCode technology and the 9

other SNPs using GoldenGate technology.
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Figure 3. The CD36 gene and the selected single nucleotide polymorphisms.

Statistical methods. Statistical analyses were performed with SAS software (SAS

Institute Inc., Cary, NC, USA). Departure from the Hardy–Weinberg equilibrium

within the study groups was tested using a χ2 test. Inter-locus linkage disequilibrium

was tested using a log-likelihood-ratio test (91) and expressed in terms of a

normalised difference D’=D/Dmax or D/Dmin (92). Allele frequencies were

estimated  by  gene-counting.  In  the  Pecs  case-control  study,  multivariate  logistic

regression was used to calculate the odds ratio of obesity for different allele

exposures, using different genetic models. Adjustment variables were age and

gender. The General Linear Model (GLM) was used to compare mean values of

anthropometric markers among genotypes in the cross sectional study. Adjustment

variables were age, gender and centre. Dominant and recessive models were tested.

For the case-control study the statistical significance threshold was set to p ≤ 0.007

after Bonferroni correction and to p ≤ 0.05 for the HELENA-CSS. Haplotype

analyses were based on a maximum likelihood model (93) linked to the SEM

algorithm (94) and performed using Thesias software developed by INSERM unit

U525, Paris, France (http://ecgene.net/genecanvas).

Results

Table 1 shows the clinical characteristics of the subjects from the case-control and

the cross-sectional studies. The mean age years (SD) of the obese and normal weight

adolescents of the case-control study was 15.0 (1.1) and 14.6 (1.1) respectively, and

14.8 (1.4) years for the adolescents of the cross-sectional study. There were more

girls among the normal weight controls and in the cross-sectional study than in the

group of obese adolescents. As expected obese adolescents had significantly higher

http://ecgene.net/genecanvas
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BMI and BF% compared to normal weight adolescents of the case-control study (all

p<0.001).

Table 1. Characteristics of the subjects

Normal weight Obese

n 339 307 1155

Boys/girls 164/175 165/142 552/603

Age (years) 15.0 (1.1) 14.6 (1.1) 14.8 (1.4)

Weight (kg) 56.4 (8.9) 91.4 (18.6) 58.3 (13.0)

Height (cm) 168.4 (8.7) 166.8 (8.8) 165.0 (9.6)

BMI (kg/m2) 20.1 (2.5) 32.7 (5.5) 21.3 (3.7)

BF (%) 25.1 (6.4) 39.4 (6.0) 26.5 (6.9)

Systolic BP (mmHg) 118.6 (13.5) 127.6 (11.0) 118.2 (13.8)

Diastolic BP (mmHg) 66.6 (8.6) 72.4 (8.4) 67.3 (9.8)

Obesity case-control study HELENA cross-
sectional study

BMI: body mass index, BF: body fat, BP: blood pressure

DNA samples were genotyped for the 10 selected CD36 SNPs  (Figure  3). The

genotyping success rate varied between 97.1 and 100%. In each study, all the

observed SNP frequencies obeyed the Hardy–Weinberg equilibrium. The linkage

disequilibrium pattern for the SNPs was assessed in the HELENA-CSS using both

the D’ and r2 values (Figure 4). The 3 SNPs selected from literature data (rs1984112,

rs1761667 and rs1049673) were in strong linkage disequilibrium with three

haplotype blocks described by the HapMap database (rs1761667 with rs1527479

(block 1) [D’ = 0.98, r2 = 0.93], rs1984112 with rs3211816 (block 2) [D’ = 0.97, r2 =

0.89], and rs1049673 with rs3211931 (block 5) [D’ = 1, r2 = 0.98]). Thus, further

analyses were performed with the 7 following SNPs: rs1527479, rs3211816,

rs3211867, rs3211883, rs3211908, rs3211931 and rs1527483.



18

rs1984112

66 rs1761667

63 93 rs1527479

89 61 65 rs3211816

4 7 8 4 rs3211867

5 10 11 5 67 rs3211883

3 5 4 2 61 43 rs3211908

27 40 41 28 1 3 5 rs3211931

2 3 3 1 41 29 63 8 rs1527483

28 40 41 28 1 2 5 98 8 rs1049673

D' > 90
90> D' >70
70> D' >60
60> D' >40

Figure 4. The linkage disequilibrium pattern (D’ and r2) across the investigated
SNPs of the CD36 gene. Color is D’, values are r2.

Table 2 shows the genotype distribution of the 7 SNPs in obese and normal weight

subjects, the age- and gender- adjusted odds ratio (OR) and the 95% confidence

interval (95%CI) for obesity from the case-control study. In a dominant model, 4

SNPs were associated with a higher risk of obesity (rs3211867: OR [95%CI]= 1.96

[1.26-3.04], p=0.003; rs3211883: OR=1.73 [1.16-2.59], p=0.007; rs3211908:

OR=2.42 [1.47-4.01], p=0.0005 and rs1527483: OR=1.95 [1.25-3.05], p=0.003).

After Bonferroni correction (significance: p≤0.007), the rs3211867, rs3211883,

rs3211908 and rs1527483 SNPs were still significantly associated with a greater risk

of obesity.
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Table 2. Genotype distribution of the investigated SNPs in obese and control subjects of the Pécs case-control study

11 12 22 11 12 22

rs1527479 98 (0.29) 174 (0.52) 66 (0.19) 64 (0.21) 155 (0.51) 86 (0.28) 0,01 1,42 [1.06-2.10] 0,09

rs3211816 134 (0.40) 162 (0.48) 40 (0.12) 111 (0.36) 152 (0.50) 43 (0.14) 0,55 1,13 [0.82-1.57] 0,44

rs3211867 299 (0.882) 40 (0.118) 0 244 (0.797) 60 (0.196) 2 (0.007) 0,004 1,96 [1.26-3.04] 0,003

rs3211883 284 (0.840) 53 (0.157) 1 (0.003) 233 (0.764) 68 (0.223) 4 (0.013) 0,03 1,73 [1.16-2.59] 0,007

rs3211908 311 (0.917) 28 (0.083) 0 255 (0.831) 49 (0.160) 3 (0.009) 0,0009 2,42 [1.47-4.01] 0,0005

rs3211931 108 (0.32) 163 (0.48) 66 (0.20) 84 (0.27) 149 (0.49) 74 (0.24) 0,26 1,26 [0.89-1.78] 0,19

rs1527483 299 (0.885) 39 (0.115) 0 248 (0.808) 55 (0.179) 4 (0.013) 0,004 1,95 [1.25-3.05] 0,003

[95% CI] p**
Normal weight Obese

p* OR

Data are n (freq). Frequent allele :1 ; Minor allele: 2. p* value is for chisquare test. ORs and p** values are for dominant model. p values are
adjusted for age and gender
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Table 3 shows the BF% and BMI as a function of the CD36 genotypes in the cross-

sectional study. Multivariate analyses (adjusted for age, gender and centre) revealed

that  the  mean  BMI  and  BF%  were  significantly  higher  in  carriers  of  at  least  one

minor allele with rs3211867 (BMI: p=0.03, BF%: p=0.02), rs3211883 (BMI: p=0.03,

BF%: p=0.05), rs3211908 (BMI: p=0.04, BF%: p=0.02) and rs1527483 (BMI:

p=0.05, BF%: p=0.04) compared with individuals who were homozygous for the

frequent allele. These associations were not modified by further adjustment for

pubertal status (data not shown).

Haplotype analyses using the 7 SNPs (order: rs1527479, rs3211816, rs3211867,

rs3211883, rs3211908, rs3211931 and rs1527483) were performed to assess the

relationship with obesity in the case-control study and the association with BMI and

BF% in the HELENA-CSS. Nine haplotypes had an estimated frequency of over 1%

(Table 4/a, 4/b). Compared with the most common haplotype (GGCTGGG;

estimated frequency: 0.44), 1 haplotype: AGAAAAA (estimated frequency: 0.05,

minor  alleles  underlined)  was  significantly  associated  with  a  higher  risk  of  obesity

(OR: 2.28 for obesity; p=0.0008). This haplotype was also associated with a higher

BF% (p=0.03) and BMI (p=0.04) in the cross-sectional study.
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Table 3. Genotype  distribution  and  mean  values  of  body  mass  index

and body fat percentage according to the SNPs in the HELENA-CSS

11 12 22 p dominant

rs1527479 GG (n=326) GA (n=557) AA (n=261)

BMI 21.0 (3.5) 21.3 (3.9) 21.6 (3.7) 0,30

BF% 26.2 (6.8) 26.4 (7.1) 26.9 (6.6) 0,28

rs3211816 GG (n=449) GA (n=503) AA (n=161)

BMI 21.2 (3.6) 21.4 (3.8) 21.4 (3.7) 0,72

BF% 26.5 (6.6) 26.3 (7.2) 26.8 (6.6) 0,38

rs3211867 CC (n=999)

BMI 21.2 (3.7) 0,03

BF% 26.4 (6.9) 0,02

rs3211883 TT (n=945)

BMI 21.2 (3.7) 0,03

BF% 26.4 (6.9) 0,05

rs3211908 GG (n=1041)

BMI 21.3 (3.7) 0,04

BF% 26.4 (6.9) 0,02

rs3211931 GG (n=339) GA (n=575) AA (n=230)

BMI 21.0 (3.4) 21.4 (3.7) 21.6 (4.2) 0,19

BF% 26.2 (6.7) 26.5 (7.2) 26.9 (6.9) 0,58

rs1527483 GG (n=1002)

BMI 21.3 (3.7) 0,05

BF% 26.4 (6.9) 0,04

21.8 (3.8)

21.7 (3.6)

21.7 (3.8)

CA (n=139) + AA (n=6)

27.3 (6.8)

TA (n=189) + AA (n=10)

26.8 (6.8)

27.1 (6.9)

21.7 (4.0)

GA (n=101) + AA (n=2)

27.4 (6.8)

GA (n=138) + AA (n=4)

Data are means (SD). Frequent allele :1 ;  Minor allele:  2.  BMI: body
mass index, BF: body fat. P values are adjusted on age, center and
gender.
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Table 4/a. Haplotype frequencies, OR and 95% CI in the case-control study

Haplotype Frequency OR 95% CI p

GGCTGGG 0,44 reference

AACTGAG 0,29 0,98 0.77-1.26 0,52

AACTGGG 0,07 1,58 1.01-2.48 0,13

GGCTGAG 0,05 0,93 0.55-1.58 0,82

AGAAAAA 0,05 2,28 1.33-3.92 0,0008

AGCAGAG 0,02 1,18 0.50-2.77 0,37

AGAAGGG 0,01 1,66 0.56-4.87 0,34

GGCTGAA 0,01 0,69 0.22-2.15 0,69

AGCTGAG 0,01 0,75 0.23-2.41 0,58

Table 4/b. Haplotype frequencies, delta values of mean BF% and delta values

of mean BMI in the HELENA-CSS

Haplotype Frequency delta BF % p delta BMI p

GGCTGGG 0,45 reference reference

AACTGAG 0,28 0,25 0,44 0,08 0,62

AACTGGG 0,07 0,22 0,70 0,12 0,69

GGCTGAG 0,06 0,38 0,54 0,22 0,49

AGAAAAA 0,04 1,5 0,03 0,76 0,04

AGCAGAG 0,02 0,08 0,92 0,02 0,93

AGAAGGG 0,02 -0,14 0,92 0,09 0,87

GGCTGAA 0,01 0,11 0,96 -0,15 0,82

AGCTGAG 0,01 1,42 0,33 0,5 0,51

Only haplotypes with a frequency above 1% are presented. Order of the SNPs
used for the analysis: rs1527479, rs3211816, rs3211867, rs3211883, rs3211908,
rs3211931, rs1527483. Minor alleles for each SNP are underlined. Delta BF
refers to the mean percentage of BF difference between the common haplotype
(GGCTGGG) and other haplotypes.
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Discussion

The results of the present study showed that rs3211908 was consistently associated

to a higher risk of obesity in the case-control study and excess adiposity in the cross-

sectional study. Further analyses identified a haplotype carrying the minor allele of

rs3211908 that was linked with obesity and a higher body fat percentage in

adolescents. These findings suggest that CD36 gene  variability  is  associated  to  the

risk of fat accumulation in adolescents.

The rs3211867, rs3211883 and rs1527483 SNPs were also related to the risk of

obesity and the BF% although the associations were weaker. The later SNPs were in

partial linkage disequilibrium with rs3211908 (0.43< r2 <0.64), suggesting that these

associations reflect a single signal. This hypothesis was further supported by the

haplotype analysis which showed that only one haplotype carrying the rs3211908

variant was associated with obesity and BF%. All other haplotypes were not

consistently linked to excess body fat suggesting that the culprit variant is the minor

allele of rs3211908. Finally, the remaining SNPs (rs1527479, rs3211816 and

rs3211931) were not linked to an excess fat deposition phenotype.

Rs3211908 is located 100 bp down-stream the donor site of exon 7, that

codes the amino acids corresponding to the interaction region with the LCPUFAs

(95). The Genomatix MatInspector software (www.genomatix.de), a functional

analysis tool, indicated that the T allele of rs3211908 abolishes a predicted

glucocorticoid receptor binding site (responsive element) which may affect CD36

gene expression. Alternatively, rs3211908 SNP could be in linkage disequilibrium

with a yet undetected functional SNP located elsewhere in the CD36 gene.

Several hypotheses might explain the link between CD36 genetic variability

and body fat depot. Firstly, CD36 is a cell membrane transporter of LCPUFA in a

wide variety of metabolically active tissues, including heart, muscle and adipocytes

(96). A defect in CD36 function could decrease the rate of fatty acids oxidation in

muscles and thus increase the availability of fatty acids for storage in adipocytes

(97;98). Secondly, cell co-culture experiments have shown that activated

macrophages secrete various factors that inhibit the formation of mature adipocytes

(99). A dysregulation of CD36 in macrophages embedded in the adipose tissue could

alter the signalling pathway that retrocontrol adipocyte expansion (99). Thirdly,

trough the provision of LCPUFA and oxidised low density lipoprotein cholesterol,

http://www.genomatix.de/
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CD36 plays a key role in the activation of peroxisome proliferator-activated receptor

gamma (PPAR-γ) (100;101), a nuclear receptor responsible of adipocyte

differentiation and adipogenesis (102). Thus an alteration of CD36 may impact

PPAR-γ mediated adipocyte differentiation (103).

This study has several strengths and limitations. The analyses were carried

out in 2 independent samples of European adolescents reducing the likelihood of

spurious findings. The study was performed in adolescents, thus providing an

advantage to discover unknown associations. One concerns is the limited number of

SNPs used to tag CD36 gene  due  to  the  selection  of  tag  SNPs  with  a  minor  allele

frequency >0.10, which does not allow the identification of rare alleles with possible

stronger influences.
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2. Association of n-6 long-chain polyunsaturated fatty acids to -

866G/A genotypes of the human uncoupling protein 2 gene in obese

children

Patients and methods

The investigations were carried out in 80 obese children (age: 13.0 [2.7] (8.1 – 17.0)

years, body mass index: 41.7 [4.4] (27.3 – 49.7) kg/m2, body fat: 39.1 [4.2] (31.6 –

56.1) %, mean [SD] (min. – max.)) referred to the Outpatient Clinic for Obesity of

the Department of Paediatrics, University of Pécs, (Pécs, Hungary) because of their

overweight. None of the subjects had any chronic disease, they did not receive any

drug treatment, and none of them were dieting. We considered children as obese if

their body weight exceeded the normal weight for height by more than 20%, and if

body fat content was higher than 25% in boys and 30% in girls.

The study was carried out in accordance with the Declaration of Helsinki II

and  with  approval  of  the  ethics  committee  of  the  University  of  Pécs.  Informed

parental consent was obtained for each child before enrolment into the study. All

participants remained anonymous throughout the survey.

Anthropometric measurements were carried out by the same investigator.

Body height and weight were measured in the survey unit with approved medical

care instruments, and body mass index was computed as weight (kilograms) divided

by squared height (meters squared). The waist and hip circumferences were

measured with the subject in the supine position. Body fat was estimated according

to Parizkova and Roth (104) from five skinfold thicknesses measured on the left side

of  the  body  three  consecutive  times  with  the  help  of  a  Holtain  caliper.  Lean  body

mass was calculated by subtracting body fat from actual body weight. Relative body

weight was calculated as the ratio between the actual body weight and the ideal body

weight for age, gender and height (105).

Blood samples were taken after an overnight fast. Plasma glucose

concentrations were determined by the glucose oxidase method. Plasma insulin

concentrations were measured with commercially available radioimmunoassay kits

(Isotope Institute of the Hungarian Academy of Sciences, Budapest, Hungary). With

this method, the cutoff value for insulin was 18.7 μU/ml (95th percentile value of 100
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healthy children). The OGTT consisted of oral administration of glucose (1.75 g/kg

body weight, maximum 75 g) followed by plasma glucose and insulin determinations

at 30, 60, 90, 120, and 180 min. The test results were evaluated according to the

recommendation of the American Diabetes Association (106). Triacylglycerol and

cholesterol were determined with an enzymatic kit (Boehringer Mannheim,

Mannheim, Germany). High-density lipoprotein cholesterol was measured by the

precipitation method of Steele et al (107).

Genomic DNA was extracted from peripheral blood leukocytes according to

standard procedures. The -866 G/A polymorphism in the promoter region of the

human  UCP2  gene  was  investigated  with  polymerase  chain  reaction  (PCR)  and

subsequent diagnostic restriction fragment length polymorphism analyses (RFLP)

with the restriction enzyme Bsh1236I which either cut (-866 G-allele) or did not cut

(-866 A-allele) the 201 basepair (bp) PCR amplicon. The primers used were: forward

primer 5’-TGACTGAACGTCTTTGGGACT-3’ and reverse-primer 5’-

GATGAGAAAAGCCGTCAGGA-3’. PCR was performed by initial denaturation at

94°C for 3 min, 36 cycles at 94°C for 30 s, 57°C for 30s, 72°C for 30s, and a final

extension at 72°C for 4 min. The samples were then run on a 3.0% agarose gel,

stained with ethidium bromide and analysed under ultraviolet light.

Venous blood samples for lipid analysis were taken from the antecubital vein

into tubes containing 2 mg/ml EDTA as anticoagulant. The plasma was removed

within 30 min and stored at –80 °C until analysis. All samples were thawed only

once.

Fatty acids were analysed by high-resolution capillary gas-liquid

chromatography using a Finnigan 9001 gas chromatograph (Finnigan/Tremetrics

Inc., Austin, TX, USA) with split injection (ratio: 1 to 25), automatic sampler

(A200SE, CTC Analytic, Switzerland) and flame-ionisation detector with a DB-23

cyanopropyl  column  of  40m  length  (J  &W  Scientific,  Folsom,  CA,  USA).  The

analytical procedure is described in detail elsewhere (108). Peak identification was

verified by comparison with authentic standards. Fatty acid results were expressed as

percentages (weight by weight) of fatty acids detected with a chain length between

12 and 24 carbon atoms.

Statistical analysis Results  were  evaluated  with  SPSS  for  Windows,  Release  11.5

(SPSS  Inc.,  Chicago,  IL,  USA).  All  data  except  fatty  acids  are  presented  as  mean
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(SD) and were evaluated by analysis of variance followed by the least significant

difference comparison test to compare mean values of subgroups. The fatty acid data

are presented as median and range from the first to the third quartile values, because

skewed distributions were found in several parameters, especially in fatty acids

present at low concentrations. Fatty acids were analysed by the Kruskal-Wallis

nonparametric analysis of variance followed by Mann-Whitney’s twosided rank test

to compare median values of subgroups. Results were regarded as statistically

significant at p<0.05. Nonparametric Spearman’s correlation analysis was performed

in order to determine the relationship between plasma fatty acids and plasma insulin

concentrations during OGTT. Because more than one correlation was calculated, we

performed Bonferroni corrections to have a more conservative estimate of the p

value.
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Results

The clinical features of the study subjects are shown in Table  5. There was no

significant difference among the groups in anthropometric indices of obesity, in the

concentrations of plasma lipid classes, or in fasting plasma glucose and insulin

concentrations (Table 5).

Table 5. Main clinical characteristics of 80 obese children stratified according
to the -866 G/A polymorphism in the promoter region of the uncoupling
protein 2 (UCP2)

-866G/G -866G/A -866A/A
(n = 34) (n = 34) (n = 12)

Sex (male:female) 22:12 16:18 5:07

Age (yr) 12.8 (2.7) 12.6 (2.9) 13.8 (2.7)

Weight (kg) 79.2 (21.7) 75.6 (23.0) 73.8 (21.4)

Height (cm) 159 (16) 157 (12) 154 (9)

BMI (kg/m2) 30.7 (4.2) 29.8 (4.9) 30.6 (6.2)

LBM (kg) 48.0 (12.4) 45.7 (13.1) 43.7 (8.6)

RBW (%) 167.7 (20.0) 164.8 (21.7) 173.2 (26.3)

BF (%) 38.9 (4.5) 39.1 (3.5) 39.3 (5.7)

Waist/hip ratio 0.85 (0.05) 0.85 (0.09) 0.86 (0.06)

HDL-cholesterol (mmol/L) 1.16 (0.35) 1.33 (0.46) 1.28 (0.50)

Total cholesterol (mmol/L) 4.19 (0.74) 4.23 (0.61) 4.42 (0.93)

Triglyceride (mmol/L) 1.39 (0.56) 1.32 (0.42) 1.78 (1.29)

Fasting plasma glucose (mmol/L) 4.3 (0.77) 4.1 (1.78) 3.96 (0.71)

Fasting plasma insulin (µU/mL) 26.86 (13.61) 24.77 (10.84) 23.08 (12.28)

UCP2 genotype:

Data  are  mean  (SD).  BMI,  body  mass  index;  LBM,  lean  body  mass;  RBW,
relative body weight; BF, body fat content; HDL-cholesterol, high-density
lipoprotein cholesterol

In plasma phospholipids (Table  6)  and  sterol  esters  (Table  7), there were no

significant differences in the values of 33 individual fatty acids including 8 saturated,

10 cis-monounsaturated, 3 trans-isomeric, 8 n-6 polyunsaturated and 4 n-3

polyunsaturated fatty acids. In contrast, values of eicosadienoic acid (C20:2n-6) were

significantly lower in plasma phospholipids in children with the -866A/A genotype
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than in the other two groups. Values of dihomo-γ-linolenic acid (DHGLA, C20:3n-6)

were significantly lower in children with the -866A/A than in those with the -866G/A

genotype in plasma phospholipids (Table 6) and were significantly lower in children

with the -866 A/A genotype than in the other two groups in plasma sterol esters

(Table 7).

In the phospholipid fraction, C20:3n-6 values in children with the -866G/G

genotype showed significant positive correlations with plasma insulin concentrations

at 60 minutes of the OGTT (Table 8). No such correlation was seen in children with

-866A/A and -866G/A genotype. In plasma sterol esters, C20:3n-6 values showed

significant positive correlation with plasma insulin concentrations at 60 minutes of

the OGTT in children with the -866G/G and -866G/A, but not in those with the -

866A/A genotype (Table 8). Significant inverse correlations were seen at 0, 30 and

60 minutes of the OGTT between C20:4n-6 and insulin values in children with the -

866A/A genotype (Table 8). No such negative correlation was seen in the other two

groups.

Figure 5 shows the correlation between insulin area under the curve during OGTT

and the values of C20:4n-6 in sterol ester lipids. Significant inverse correlation was

seen in children with the -866A/A genotype between C20:4n-6 and the insulin area

under the curve, whereas no such correlation was observed in the other groups.
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Table 6. Fatty  acid  composition  of  plasma phospholipids in 80 obese
children stratified according to genotype in the promoter of the uncoupling
protein 2 (UCP2)

-866G/G -866G/A -866A/A
(n = 34) (n = 34) (n = 12)

Saturated fatty acids
C14:0 0.37 (0.14) 0.37 (0.12) 0.32 (0.08)
C16:0 28.22 (1.86) 27.88 (2.29) 27.20 (2.38)
C18:0 16.13 (1.77) 17.24 (1.76) 16.72 (2.14)
Total 48.24 (3.34) 49.07 (1.69) 48.18 (2.17)
Trans fatty acids
C16:1n-7 0.12 (0.03) 0.13 (0.03) 0.14 (0.30)
C18:1n-9/7 0.19 (0.11) 0.19 (0.13) 0.17 (0.17)
Total 0.40 (0.12) 0.38 (0.16) 0.38 (0.24)
Monounsaturated fatty acids
C16:1n-7 0.49 (0.19) 0.47 (0.15) 0.44 (0.11)
C18:1n-7 1.17 (0.26) 1.22 (0.24) 1.21 (0.11)
C18:1n-9 7.23 (1.65) 7.08 (1.07) 6.76 (1.55)

12.19 (2.21) 12.51 (1.62) 11.75 (1.71)

C18:2n-6 18.50 (3.47) 18.26 (2.62) 19.10 (2.89)
C18:3n-6 0.07 (0.05) 0.06 (0.04) 0.07 (0.04)
C20:2n-6 0.51 (0.17)a 0.50 (0.10)b 0.41 (0.11)ab

C20:3n-6 3.53 (0.84) 3.56 (1.01) a 3.01 (0.42) a

C20:4n-6 11.34 (2.54) 10.79 (2.74) 11.40 (1.49)
C22:4n-6 0.56 (0.15) 0.54 (0.09) 0.55 (0.17)
C22:5n-6 0.45 (0.15) 0.46 (0.18) 0.49 (0.19)
Σ n-6 LCPUFAc 16.44 (2.60) 16.04 (2.88) 16.50 (2.77)

34.98 (4.17) 34.55 (2.46) 35.53 (2.30)

C18:3n3 0.07 (0.07) 0.06 (0.03) 0.07 (0.07)
C20:3n3 0.03 (0.02) 0.03 (0.01) 0.02 (0.02)
C20:5n-3 0.24 (0.27) 0.23 (0.11) 0.24 (0.08)
C22:5n-3 0.42 (0.27) 0.40 (0.10) 0.39 (0.14)
C22:6n-3 2.56 (0.77) 2.53 (0.93) 2.67 (0.80)
Σ n-3 LCPUFAd 3.37 (1.02) 2.97 (0.95) 3.42 (1.20)
Σ n-3 PUFA  3.46 (1.03) 3.03 (1.00) 3.49 (1.24)

Σ n-6 PUFA
N-3 Polyunsaturated fatty acids

UCP2 genotype:

Total
N-6 Polyunsaturated fatty acids

Data are percentage of weight per weight expressed as median (interqartile
ranges); a,  b p<0.05 between groups. cTotal N-6 long-chain polyunsaturated
fatty acids (LCPUFA) denotes (C20:2n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6). dTotal
N-3 LCPUFA denotes (C20:5n-3 + C22:5n-3 + C22:6n-3).
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Table 7. Fatty acid composition of plasma sterol esters in 80 obese children
stratified according to genotype in the promoter of the uncoupling protein 2
(UCP2)

-866G/G -866G/A -866A/A
(n = 34) (n = 34) (n = 12)

Saturated fatty acids
C14:0 0.67 (0.28) 0.71 (0.25) 0.80 (0.44)
C16:0 10.85 (1.60) 11.00 (1.19) 11.32 (1.46)
C18:0 1.19 (0.30) 1.28 (0.43) 1.37 (0.22)
Total 13.33 (1.63) 13.55 (1.79) 14.42 (1.88)
Trans fatty acids
C16:1n-7 0.53 (0.10) 0.54 (0.19) 0.59 (0.38)
C18:1n-9/7 0.05 (0.06) 0.08 (0.09) 0.06 (0.03)
Total 0.66 (0.22) 0.66 (0.24) 0.71 (0.44)
Monounsaturated fatty acids
C16:1n-7 2.90 (1.53) 2.98 (1.12) 3.00 (1.57)
C18:1n-7 1.08 (0.31) 1.12 (0.20) 1.07 (0.13)
C18:1n-9 16.58 (2.63) 15.69 (4.03) 13.99 (1.88)

20.68 (3.84) 20.31 (3.84) 18.40 (3.39)

C18:2n-6 53.75 (5.93) 52.83 (6.38) 53.85 (4.73)
C18:3n-6 0.87 (0.51) 0.81 (0.38) 0.86 (0.44)
C20:2n-6 0.12 (0.05) 0.14 (0.05) 0.11 (0.02)
C20:3n-6 0.94 (0.25) a 0.92 (0.23) b 0.73 (0.22) ab

C20:4n-6 8.28 (3.12) 8.14 (2.90) 7.78 (1.38)
C22:4n-6 0.06 (0.07) 0.04 (0.04) 0.05 (0.12)
C22:5n-6 0.05 (0.05) 0.05 (0.03) 0.04 (0.04)
Σ n-6 LCPUFAc 9.62 (2.88) 9.34 (2.99) 8.87 (1.83)

63.90 (4.49) 64.18 (6.30) 64.90 (3.72)

C18:3n3 0.28 (0.11) 0.25 (0.10) 0.27 (0.17)
C20:3n3 0.90 (0.02) 0.92 (0.23) 0.73 (0.22)
C20:5n-3 0.23 (0.15) 0.21 (0.10) 0.24 (0.16)
C22:5n-3 0.01 (0.01) 0.01 (0.02) 0.01 (0.01)
C22:6n-3 0.46 (0.13) 0.45 (0.26) 0.44 (0.11)
Σ n-3 LCPUFAd 0.72 (0.23) 0.70 (0.30) 0.66 (0.28)
Σ n-3 PUFA 1.06 (0.39) 0.96 (0.32) 0.99 (0.36)

Σ n-6 PUFA
N-3 Polyunsaturated fatty acids

UCP2 genotype:

Total
N-6 Polyunsaturated fatty acids

Data are percentage of weight per weight expressed as median (interqartile
ranges); a,  b p<0.05 between groups. cTotal N-6 long-chain polyunsaturated
fatty acids (LCPUFA) denotes (C20:2n-6 + C20:4n-6 + C22:4n-6 + C22:5n-6). dTotal
N-3 LCPUFA denotes (C20:5n-3 + C22:5n-3 + C22:6n-3).
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Table 8. Spearman rank correlation coefficients between arachidonic (C20:4n-6) and
dihomo-γ-linolenic (C20:3n-6) acid values in plasma phospholipids and sterol esters,
on the one hand, and plasma insulin concentrations measured during standard oral
glucose tolerance test, on the other hand, in 80 obese childrenstratified according to
the −866 G/A polymorphism in the promoter of the uncoupling protein 2 (UCP2)

-866G/G -866A/G -866A/A -866G/G -866A/G -866A/A
Phospholopids
Insulin 0' 0.19   0.39   0.52  0.17   0.06  -0.12
Insulin 30' 0.43   0.07   0.04 -0.06   0.28   0.07
Insulin 60' 0.53*   0.47   0.32  0.17   0.40  -0.11
Insulin 90' 0.39   0.40  -0.1 -0.08   0.28   0.18
Insulin 120' 0.44   0.23  -0.12  0.09   0.15   0.1
Insulin 180' 0.15   0.1  -0.07  0.16   0.01  -0.07
Sterol esters
Insulin 0' -0.06 0.39   0.2  0.01  -0.06  -0.80*
Insulin 30'  0.31 0.03   0.32 -0.27   0.37  -0.75*
Insulin 60'  0.51* 0.48*   0.42 -0.08   0.43  -0.75*
Insulin 90'  0.22 0.26   0.28 -0.33   0.17  -0.68
Insulin 120'  0.34 0.29   0.15 -0.07   0.19  -0.44
Insulin 180'  0.09 0.12  -0.35 -0.03   0.07  -0.59

C20:3n-6 C20:4n-6

 UCP2 genotype:

*p<0.008; value calculated by using Bonferroni correction.
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Figure 5. Linear correlation between insulin area under the curve during oral glucose
tolerance test and the values of arachidonic acid in sterol ester lipids in 80 obese
children stratified according to the UCP2 -866 G/A genotype.
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Discussion

In the present study we observed significant differences in the values of important n-

6 LCPUFAs according to -866G/A genotypes of the human uncoupling protein 2

gene in obese children. Furthermore, by correlating the fatty acid levels with the

insulin response and the values calculated for insulin area under the curve during

OGTT we observed considerable differences in relations to -866 polymorphism of

the UCP2.

These differences cannot be explained by different degree of obesity or age.

The negative correlation between 20:4n-6 values and insulin concentrations in the -

866 A/A genotype group might be of special interest, because this group showed

significant reduction in the values of the intermediate precursors of 20:4n-6

synthesis, 20:2n-6 and 20:3n-6. The A allele variant of the -866 G/A polymorphism

is reportedly related to enhanced risk to develop diabetes mellitus (31;32). One of the

potential mechanisms of the relation of altered availability of 20:4n-6 to insulin

sensitivity might be the role of 20:4n-6 as a precursor of various eicosanoids.

Data obtained in this observational study can not answer the question whether

altered availability of C20:4n-6 leads to changes of GIIS, or vice verse. While

decreased UCP2 message might result in diminished energy expenditure and

development of obesity, this very same mechanism would increase insulin secretion

and thus, protect against type 2 diabetes mellitus (109). The association between the

availability of n-6 polyunsaturated fatty acids and GIIS may open further opportunity

to the dietary amelioration of metabolic consequences of obesity. The data obtained

in the present study may provide some general messages for research on fatty acids

in obesity as well. Controversial results seen in previous investigations on LCPUFAs

in apparently similar groups of obese subjects may, at least in part, originate from the

different genetic background including UCP2 polymorphism (38;39).
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3. Systematic review of fatty acid composition of human milk from

mothers of preterm compared to full-term infants

Context

Fatty acid composition of human milk serves as guidance for the composition of

infant formulae. The aim of the study was to systematically review data on the fatty

acid composition of human milk of mothers of preterm compared to full-term infants.

Methods

We performed an electronic literature search in English (Medline

(www.pubmed.com)  and  Medscape  (www.medscape.com))  and  German

(SpringerLink (www.springerlink.com)) databases from their start dates to

November 2005 onwards. The searching expressions were as follows: human milk or

breast milk, combined with essential fatty acid or long-chain polyunsaturated fatty

acid or arachidonic acid or docosahexanoic acid. We also checked the list of

references in the publications identified. We attempted to reveal unpublished

evidence by consulting abstract books of relevant scientific meetings and by

contacting experts working in this field.

Fatty  acid  composition  of  preterm  or  full-term  human  milk  was  reported  in

several  studies,  whereas  data  obtained  in  direct  comparison  of  the  fatty  acid

composition of preterm and full-term human milk within the same study were

published only in five reports. Each of these studies were longitudinal studies and

investigated human milk from apparently healthy mothers who had delivered preterm

or full-term infants. Both pregnancies and deliveries were normal in all these studies.

The gestational ages of preterm infants were between 25 and 36 weeks, whereas

those of full-term infants were over 37 weeks. There was no history of any disease of

the offspring. All the women in the study of Genzel-Borovicezény et al., Luukkainen

et al. and Kovács et al. were apparently on omnivorous diet. No information was

given about the dietary background of mothers in the study of Bitman et al. and

Rueda et al.

There were some methodological differences in the studies reviewed here. The

sample collections were at different time points of lactation (for details see results).

Storage  temperature  of  the  milk  samples  was  either  -20°C  or  -70°C  or  -80°C.  For

http://www.pubmed.com/
http://www.medscape.com/
http://www.springerlink.com)/
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fatty acid analysis, lipids were extracted either with chloroform-methanol or using a

mixture of benzene-methanol-acetylchloride. Fatty acid methylesters were

determined by capillary gas liquid chromatography in all studies except the classical

study of Bitman et al (54), who used packed column gas liquid chromatography

being the predominant method at the time. Results of the fatty acid composition were

expressed as weight percentages of all fatty acids and were presented as means and

SD (57), means and SE (54), median and IQR (56;58) or means and 95% confidence

intervals (55). For a better comparability, we calculated all data into the form of

means and SD from the published data or the original data bases of the two studies

where medians and interquartile ranges were published (56;58). For arachidonic acid

(AA) and docosahexanoic acid (DHA) values, i.e. the principal LCPUFAs of human

milk we also calculated the difference of means between preterm and full-term milk

and the 95% confidence intervals (CIs) of the difference of means by using the

following formulae:

PSD = )2/()1()1[( 21222111 -+-+- NNssNssN xx

SED = PSD x )]/1()/1[( 21 NN +

95% CI = (X1-X2) ± t* x SED

(Abbrevations: PSD = Pooled SD, N1 = number of subjects in group one (in our

study: preterm), s1 =  standard  deviation  of  group  one,  N2 =  number  of  subjects  in

group two (in our study: full-term), s2 = standard deviation of group two; SED =

Standard Error of the Difference, X1 = mean of group one, X2 = mean of group two,

t* = value of t-distribution at the given confidence level with degree of freedom = N1

+ N2 -2.)

Results

Fatty acid compositions of preterm and full-term human milk investigated in 18

comparisons published in 5 studies are shown in Tables 9, 10 and 11.

Preterm breast milk showed higher contents of the saturated fatty acids myristic

acid (C14:0) at two different time points in the study of Kovács et al (58) and in the

study of Genzel-Boroviczény et al (56), palmitic acid (C16:0) values at one time

point  in  the  study  of  Kovács  et  al  (58)  and  stearic  acid  (C18:0)  values  at  one  time

point in the study of Luukkainen et al (55) (Table 9). The cis monounsaturated fatty
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acid oleic acid (C18:1n-9) was higher in preterm milk at two different time points in

the study of Kovács et al (58) and at three different times in the study of Rueda et al

(57) (Table 9). Values of the principal n-6 polyunsaturated fatty acids, linoleic acid

(C18:2n-6, LA), GLA and AA values were reported in all studies, whereas DHGLA

values were reported only in four studies. Data on the principal n-3 polyunsaturated

fatty acids, docosapentaenoic acid (C22:5n-3) and docosahexaenoic acid (C22:6n-3,

DHA) were reported in all studies, whereas eicosapentaenoic acid (C20:5n-3, EPA)

values were reported only in four and alpha-linolenic acid (C18:3n-3, ALA) values in

3 studies.

Values of LA, ALA and EPA did not differ between preterm and full-term

human milk in any of the five studies. In contrast, GLA values were significantly

higher in colostrum of mothers giving birth to preterm infants than in those

delivering at term in the study of Kovács et al (58). Values of the principal n-3

LCPUFA DHA were significantly higher in preterm breast milk at 1, 4, 7, 14 and 21

days,  and  of  the  n-6  LCPUFA AA at  all  time points  except  day  14  in  the  study  of

Kovács et al (58), whereas both fatty acids were found at higher levels only at days

28-35 by Luukkainen et al (55) (Tables 10 and 11). Values of the major intermediary

metabolite of the synthesis of AA, DHGLA were found to be significantly higher in

milk samples obtained from mothers of preterm than in those collected from mothers

of full-term infants in the study of Kovács et al (58), and values of C22:5n-3

(intermediary metabolite of the synthesis of DHA) were significantly higher in

preterm breast milk in the study of Kovács et al (58) at 7 and 21 days, and in the

study of Luukkainen et al (55) at 12 and 26 weeks (Table 10 and 11).

The differences of the means and the 95% confidence intervals (CIs) of the

difference for DHA and AA values measured in milk samples obtained from mothers

of preterm and full-term infants in the five studies are shown in Figure 6 and Figure

7, respectively. The difference of mean DHA values (preterm vs term) were

significantly different from zero in 3 studies (55;56;58), covering 3 different time

points. In the study of Kovács et al (58) AA value difference were positive at 3

different  time  points  of  lactation;  whereas  the  data  of  Rueda  et  al  (57)  showed

negative 95% CIs for AA values at 2 different time points of lactation.
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Figure 6. The differences of the means and the 95% confidence intervals (CIs) of the
difference for arachidonic acid values measured in milk samples obtained from
mothers of preterm and full-term infants in five studies. Each horizontal line
represents one statistical comparison. The middle symbol on the horizontal line
depicts mean value, whereas the lateral symbols show 95% CIs. Symbols: ®: Bitman
et al (Bitman): preterm (upper line) and very preterm (lower line) at day 42 ¢:
Luukainen et al (Luukainen): at days: 1-7, 8-14, 15-21, 22-27, 28-35 (top down) �:
Genzel-Boroviczeny et al (Genzel-Boroviczeny): at days: 5, 10, 20 and 30 (top
down) ®: Rueda et al (16) at days: 1-5, 6-15 and 16-35 (top down) ¢: Kovács et al
(Kovacs) at days: 1, 4, 7, 14 and 21 (top down)

Figure 7. The differences of the means and the 95% confidence intervals of the
difference for docosahexaenoic acid values measured in milk samples obtained from
mothers of preterm and full-term infants in five studies. For further details of legend
see Figure 6.
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Table 9. Major saturated and cis monounsaturated fatty acids in preterm and full-term human milk

Data are in weight percent presented as means (SD). * p< 0.05, ** p< 0.001, VPT denotes very preterm and PT denotes preterm.
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Table 10. Major n-3 polyunsaturated fatty acids in preterm and full-term human milk

n.d. denotes not determined. For symbols, abbrevations and number of samples analysed see Table 1.
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Table 11. Major n-6 polyunsaturated fatty acids in preterm and full-term human milk

n.d. denotes not determined. For other symbols, abbrevations and number of samples analysed see Table 1.
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Discussion

In the present review, we identified 3 independent studies (55;57;58) covering 3

different  time points  of  lactation  were  the  95% CIs  of  the  significant  difference  of

mean DHA values (preterm minus full-term) were entirely in the positive range, i.e.

the percentage contribution of DHA is higher in preterm than full-term milk. In

contrast, data for AA were rather controversial: in the study of Kovács et al (58) the

95% CIs for AA values were entirely in the positive range at 3 different time points

of  lactation,  whereas  in  the  study  of  Rueda  et  al  (57)  the  95%  CIs  for  AA  values

were entirely in the negative range at 2 different time points of lactation, i.e. both

significantly higher and lower AA levels were reported in preterm compared to full-

term human milk.

The LCPUFA content of human milk is closely related to maternal LCPUFA

body stores (110-112). Mothers of premature infants transfer less LCPUFAs to the

fetus during a shorter pregnancy, and also the volume of human milk consumed by

their infants tends to be much smaller particularly during the first weeks after birth

(56), which would lead to higher maternal LCPUFA stores and thus may explain

higher LCPUFA values in preterm than in full-term human milk (58). Due to the

shorter period and lesser extent of intrauterine LCPUFA accumulation, preterm

infants should have higher postnatal LCPUFA requirements than full-term infants. It

is tempting to speculate whether there may be other adaptive or regulative

mechanism to indicate higher LCPUFA contents in preterm milk in response to

higher physiological needs of preterm infants, but the occurrence of a significant

survival rate of small preterm infants is a very new phenomenon relative to the time

scale of human evolution and hence it appears unlikely that such mechanisms

specific to preterm birth would have developed.

Nonetheless,  higher  DHA  values  in  preterm  than  in  full-term  human  milk

indicate a likely benefit of utilising own mother’s milk for feeding preterm infants.

Moreover, these data should lead to a reconsideration of the DHA levels in formulae

for preterm infants, which currently tend to mimic DHA levels of full-term human

milk and thus tend to differ from the fatty acid composition of human milk of

mothers giving birth to preterm infants.
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4. Prevalence of metabolic syndrome in European obese children

Context

The rapid rising prevalence of childhood obesity is related to increased risk of

obesity-related diseases during adulthood. The aim of the present study was to

review the data concerning the prevalence of metabolic syndrome (MS) in European

children and adolescents (Part a) and to determine and compare the prevalence of MS

among overweight and obese children, and adolescents in five European countries

using four MS definitions (Part b).

a.) Review of the data concerning the prevalence of metabolic syndrome in

European children and adolescents

Methods

We performed an electronic literature search in (Medline (www.pubmed.com) and

Medscape (www.medscape.com)) databases from their  start  dates to February 2008

onwards. The searching expressions were as follows: metabolic syndrome,

cardiovascular syndrome, children, adolescents. We also checked the list of

references in the publications identified.

Results

In Table 12, we summarize the studies on the prevalence of MS in children and

adolescents performed in Europe combined with our own, recent results. Only few

studies investigated the prevalence of MS in European countries as a primary goal.

The studies were performed in Middle and South part of Europe (Spain, Italy,

France,  Germany,  and  Hungary),  and  only  one  in  the  North  (UK).  Except  of  two

studies (113;114), the investigations were performed only on overweight and obese

children and adolescents with a small number of subjects included. The used

definitions were either based on the adult definitions from WHO or NCEP, modified

with children specific cut-offs, or previously published definitions used to define MS

in children. A big variance in the prevalence of MS (8.5% to 50%) can be observed

among the studies; however, the results are not comparable since the used definitions

were different.

http://www.medscape.com)/
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A  low  degree  of  overlap  among  the  different  MS  definitions  is  pointed  out  in  two

studies (Reinehr et al (114), and for our results see part b), where more definitions

were used.

Table 12. The prevalence of metabolic syndrome in childhood and adolescence in
studies performed in Europe
Study Study population Definition Prevalence (%)

Csábi et al.
(Hungary; 2000)

8-18-y old, 180 obese and 239
control

WHO*
obese: 8.9

Viner et al.
(UK; 2005)

2-18-y old, 103 obese WHO* 33

Invitti et al.
(Italy; 2006)

6-16-y old, 588 obese WHO* 23,3

Druet et al.
(France 2006)

308 obese and overweight NCEP* 15,9

López-Capapé et al.
(Spain; 2006)

4-18-y old, 429 obese and
overweight

Cook
18,0

Bueno et al.
(Spain; 2006)

Age: 10.8 (2.3) mean (SD),
103 obese

Cook
29,9

de Ferranti
50

Sartorio et al.
(Italy 2007)

8-18-y old, 439 obese Weiss
n.d.

EPS: 29.9 ♂, 19.2 ♀

LPS: 52.1 ♂, 28.9 ♀
Italian Society for Pediatrics n.d.

Reiner (23)
(Germany 2007)

9.5-13.3-y old, n=1205
overweight and obese; 84
normal weight

Cook

21

De Ferranti 39
Viner 18
Weiss 29
EGIR 8
WHO 6
NCEP 13
IDF 14

4.5-18.2-y old, 1241 obese and
overweight

De Ferranti
35,7

WHO* 31,4

NCEP* 20,3

IDF for children 16,4

Cook

Our results (part b)
(Hungary, France, Italy,
Greece, Poland)

WHO, World Health Organisation; NCEP, National Cholesterol Education Program;
EGIR, European Group for the Study of Insulin Resistance; IDF, International
Diabetes Federation. * modified with children specific cut off values, EPS: early-mid
pubertal stage, LPS: late pubertal stage, n.d.: data not shown.
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b.) To determine and compare the prevalence of MS among overweight and

obese children and adolescents in five European countries using four MS

definitions

Materials and Methods

The investigations were carried out in 1241 overweight children and adolescents

from five European countries (Hungary: n=449, France: n=283, Italy: n=274,

Greece: n=145 and Poland: n=90), referred for clinical evaluation because of their

overweight  to  the  Department  of  Pediatrics,  University  of  Pécs,  Hungary;  Saint

Vincent de Paul Hospital, AP-HP, Paris and CTP, Margency, France; Department of

Pediatrics, University of Rome „Sapienza”, Italy; Department of Endocrinology, „P.

& A. Kyriakou” Children’s Hospital, Athens, Greece; Department of Pediatric

Endocrinology & Diabetes, Medical University of Silesia, Katowice, Poland.

None of the subjects had chronic disease, secondary obesity, received drug treatment

or were on restricted diet. We considered children as obese if their body mass index

exceeded the value of Cole et al. (6) corresponding to 25 at the age of 18 years. The

clinical characteristics of patients in the five different countries are shown in Table

13. Anthropometric measurements were performed according to harmonized

methods as described by Lohman et al. (115). Body mass index was computed as

weight (kilogram) divided by squared height (m2). Blood glucose, serum insulin and

lipid levels were determined from blood samples taken after an overnight fast.

Plasma glucose concentrations were determined by the glucose oxidase or

hexokinase method. Triglyceride and cholesterol concentrations were measured with

an enzymatic kit and HDL-C using a corresponding non precipitating method.

Plasma insulin concentrations were measured with commercially available

radioimmunoassay or chemiluminescence method. A comparison test was performed

between the two methods. The correlation between the results was calculated: y =

0.99x, with r = 0.95. Homeostasis model assessment for insulin resistance (HOMA-

IR) was calculated with the following formula: (fasting insulin x fasting

glucose)/22.5. Blood pressure (BP) was measured after 5 min rest, while sitting to

the nearest 2 mmHg, using a standard mercury-gravity manometer with proper cuff

size in each subject three times. The average of three measurements obtained on

different days was used in the analysis (116).
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Table 13. Clinical and biological characteristics of obese children according to nationality. Data are expressed as mean (SD).

Whole group Polish Greek Italian French Hungarian
(n = 1241) (n = 90) (n = 145) (n = 274) (n = 283) (n = 449)

Boys/Girls 560/681 39/51 74/71 135/139 91/192 221/228 < 0.001

Age (years) 12.9 (2.5) 12.9 (3.3) 11.3 (2.5) 12.1 (1.6) 14.5 (1.6) 12.9 (2.7) < 0.001*

Weight (kg) 80.53 (24.1) 78.7 (24.5) 70.4 (20.9) 63.9 (13.9) 102.4 (19.9) 80.5 (21.7) < 0.001**

Height (cm) 158.2 (12.8) 158.4 (16.0) 151.3 (14.6) 153.6 (9.4) 164.5 (8.4) 159.4 (13.5) < 0.001**

Waist cc (cm) 91.9 (12.9) 93.9 (12.7) 95.3 (13.1) 83.9 (10.6) 102.1 (11.3) 89.2 (10.4) < 0.001**

BMI (kg/m2) 31.5 (6.1) 30.8 (4.9) 30.1 (4.9) 26.8 (3.6) 37.7 (5.9) 31.1 (4.8) < 0.001**

Triglyceride (mmol/l) 1.2 (0.9) 1.2 (0.6) 1.3 (0.3) 1.1 (0.6) 1.0 (0.5) 1.5 (1.22) < 0.001***

HDL-cholesterol (mmol/l) 1.2 (0.3) 1.4 (0.3) 1.3 (0.3) 1.3 (0.3) 1.2 (0.4) 1.18 (0.30) < 0.001***

Glucose (mmol/l) 4.8 (0.6) 4.9 (0.4) 5.2 (0.5) 4.9 (0.5) 4.5 (0.5) 4.8 (0.8) < 0.001***

Insulin (μU/ml) 23.0 (15.7) 14.3 (7.9) 19.4 (13.9) 20.7 (11.8) 18.1 (12.8) 30.2 (17.9) < 0.001***

SBP (mmHg) 120.6 (13.4) 111.3 (13.4) 121.9 (12.5) 115.9 (11.3) 119.7 (14.8) 125.4 (11.9) < 0.001***

DBP (mmHg) 70.9 (10.5) 72.4 (9.5) 62.9 (10.9) 76.9 (9.6) 67.5 (10.1) 71.8 (8.8) < 0.001***

p

BMI, body mass index; HDL-cholesterol, high-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic
blood pressure. p values: comparison among countries, * adjusted for nationality and gender, ** adjusted for nationality, age and
gender; *** adjusted for nationality, age, gender and BMI.
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Statistical analysis

Results were evaluated with SPSS for Windows, Release 11.5 (SPSS Inc., Chicago,

IL,  USA).  All  data  are  presented  as  mean  (SD).  The  clinical  features  of  obese

children stratified according to nationality were compared with analysis of variance

followed by post-hoc LSD test. Because the age and BMI differed significantly

between groups we adjusted the biochemical parameters and blood pressures for

nationality, age, gender and BMI, and compared the adjusted parameters with LSD

test. Results were regarded as statistically significant at p<0.05.

Definition of Metabolic Syndrome

Children were classified as displaying MS according to four different definitions.

Two definitions  were  child-specific  (Ferranti  et  al.  (79),  and  International  Diabetes

Federation (78)) while the other two (World Health Organisation (73) and National

Cholesterol Education Program Adult Treatment Panel III (75)) adult-specific.

In the case of WHO criteria we omitted microalbuminuria because measurements

were available only for a subset of children and we replaced waist-hip ratio with

waist circumference since sex and age specific reference values were not available

for waist-hip ratio. The highest quartile for insulin was 15 μU/ml (the highest 25%

value of 100 healthy adolescents). The WHO definition was applied only in 1201

children because of missing plasma insulin values in 40 children. Age and gender

specific reference values were used in all definitions for the diagnosis of high blood

pressure and increased waist circumference (116;117).

Results

Table 13 shows the clinical features of obese children according to nationality after

adjustment for nationality, age gender and BMI. Triglyceride and insulin levels and

the systolic blood pressure were highest in Hungarian, while fasting plasma glucose

in Greek, and diastolic blood pressure in Italian children were the highest as

compared to children from other countries.

The prevalence of MS in the investigated cohort was 35.7%, 31.4%, 20.3%, and

16.4% according to the Ferranti, WHO, NCEP and IDF definitions, respectively

(Figure 8).
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Figure 8. The prevalence of metabolic syndrome in the investigated cohort. WHO,
World Health Organisation; NCEP, National Cholesterol Education Program; EGIR,
European  Group  for  the  Study  of  Insulin  Resistance;  IDF,  International  Diabetes
Federation

The prevalence of MS was not different between genders. The prevalence of risk

factors according to the different definitions is shown in Table 14.

The prevalence of increased waist circumference was high (71.4%). Due to

different cut off values the occurrence of low HDL levels varied according to

definitions. We found, as expected, the highest prevalence of elevated triglyceride

levels according to Ferranti et al. and of elevated fasting plasma glucose according to

the  definition  of  IDF  because  of  the  lower  cut  off  values  applied  for  these  risk

factors.

The clustering of risk factors in the investigated cohort is shown in Table 14. Only

6.3-8.8% of obese adolescents were free from any risk factor, and the clustering of

three or more risk factors was very high (20.3-35.7%) (depending on the type of

definition).
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Table 14. Prevalence  and  clustering  of  risk  factors  according  to  the  criteria  of
Ferranti et al., WHO, NCEP and IDF

Ferranti et al WHO NCEP IDF

Increased waist circumference 71.4% 71.4% 71.4% 71.4%

High fasting plasma glucose 2.3% 2.3% 2.3% 8.6%

High fasting plasma insulin* 64.7%

High triglyceride 42.8% 15.1% 15.1% 15.1%

Low HDL-cholesterol 48.5% 13.0% 46.4% 27.6%

High blood pressure 38.1% 38.1% 38.1% 38.1%

No risk factor 6.3 % 6.5 % 8.8 % 11.3 %

1 risk factor 25.1 % 26.2 % 32.2 % 37.9 %

2 risk factors 32.9 % 34.7 % 38.7 % 33.5 %

3 or more risk factors 35.7 % 32.6 % 20.4 % 17.3 %

NCEP, National Cholesterol Education Program; WHO, World Health Organisation;
IDF, International Diabetes Federation, HDL-cholesterol: high-density lipoprotein
cholesterol * in n = 1201 investigated subjects.

We calculated the number of children who had MS by all four, three, two, one and

none  of  the  definitions  (Figure  9). It is worth mentioning that 12.2% (n=147) of

children had MS and 55.8% (n=670) were free of MS according to all four

definitions.

Figure 9. Frequency of metabolic syndrome if one, two, three or four definitions are
applied.
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The prevalence of MS was significantly influenced by the degree of obesity,

characterised by BMI or waist circumference (Table 15), but not by age.

Table 15. Effect  of  age,  BMI  and  waist  cc  on  the
prevalence  of  MS  according  to  all  four  definition  (n  =
1201).

<Q1 <Q3 >=Q3

age 49 (15.8%) 133 (14.8%) 43 (14.1%)

BMI 18 (5.9%)a 110 (12.2%)b 66 (22.2%)

waist cc 22 (7.9%)a 112 (12.1%)b 64 (23.4%)

Q1: quartile1, Q3: quartile3; a, b p < 0.001 compared to >Q3

Discussion

The results showed the high prevalence of MS ranging from 16.4% to 35.7% in

overweight and obese children referred to outpatient clinics. The prevalence of MS

was highly dependent on the definition used. The accordance among the definitions

was small, only 12.2% of investigated subjects had MS according to all 4 definitions.

The observed prevalence of MS in our study is in agreement with earlier reports

investigating the prevalence of childhood MS (79;113;114;118-123). However, the

results of these studies are not comparable since the definitions they used for the

childhood MS were different.

The disparity between different definitions is related to the different cut off

values and pooling strategies of MS criteria. The highest prevalence of MS (35.7%)

was found according to the definition of Ferranti et al. (79) using the lowest cut off

values for triglyceride and the highest for HDL-cholesterol levels. The WHO (73)

was the only definition including fasting insulin as a criterion. The high prevalence

of hyperinsulinemia (64.7%) explains why WHO definition identified more children

with MS than the IDF and NCEP.

Our results demonstrated that only 6.3-11.3% of overweight and obese children

were free from any risk factors, and 17.3-35.7% had already more than 3 risk factors,

underlining the fact that clustering of risk factors starts in childhood. The prevalence

of high waist circumference was 71%, showing that the majority of children had
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central obesity and consequent insulin resistance (64.7% hyperinsulinemic). The

prevalence of high blood pressure was also frequent – mounting to 38% in the

cohort.

There was a significant difference in the biological characteristics of children

according to nationality, even if we adjusted the values for nationality, age, gender

and BMI. These differences can be attributed to different referral rules. Different

dietary and lifestyle habits can also contribute to the difference in the MS prevalence

between the 5 cohorts.

In the present cohort, the prevalence of MS increased with the increasing degree

of obesity (BMI and waist circumference) in accordance with previous studies (69).

There are certain limitations of the present study. Our cohort is not a population-

based sample and might not even reflect the European obese children’s population.

However, it represents a large proportion of European obese children referred to

obesity  centres.  Further  weakness  of  our  study  is  that  the  different  biochemical

parameters were not determined in one laboratory, however the methodology was the

same in all  five centres.  Though the comparability of the two methods used for the

determination  of  insulin  was  high,  the  variability  between  kits  still  has  to  be

considered. Finally, the effect of pubertal development on prevalence of MS could

not be analysed since data on pubertal stage were not available.
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New findings of the study

1. The results of the present study on the common single nucleotide polymorphism at

CD36 locus showed that rs3211908 was consistently associated with obesity and

BF% in adolescents. The rs3211867, rs3211883 and rs1527483 were also related to

obesity  risk  and  BF%  but  the  associations  were  weaker.  The  later  SNPs  are  in

linkage disequilibrium with rs3211908 (0.43< r2 <0.64) suggesting that these

associations reflect a single signal. In contrast, rs1527479, rs3211816 and rs3211931

were not linked to excess fat depot phenotype. Further analyses identified a

haplotype with the minor allele of rs3211908 (frequency 4%) that is linked to

increased risk of obesity in the case-control study and excess adiposity in the cross-

sectional study suggesting that rs3211908 is responsible for the excess risk among

other SNPs. Collectively, these findings suggest that CD36 gene variability may

contribute to the risk of body fat accumulation in adolescents.

2. In the present study we observed significant differences in the values of important

n-6 LCPUFAs according to -866G/A genotypes of the human uncoupling protein 2

gene in obese children. Furthermore, by correlating the fatty acid levels with the

insulin response and the values calculated for insulin area under the curve during

OGTT we observed considerable differences in relations to -866 polymorphism of

the UCP2.

3. In the present review, we identified 3 independent studies covering 3 different

time points of lactation were the 95% CIs of the significant difference of mean DHA

values (preterm minus full-term) were entirely in the positive range, i.e. the

percentage contribution of DHA is higher in preterm than full-term milk. This

finding supports the concept that fomuale for preterm infants should be

supplemeneted with DHA. Moreover, the significantly higher contribution of DHA

to the fatty acid composition of preterm than to that of full-term human milk

questions the present practice to use the fatty acid composition of full-term human

milk as model for the DHA content of formulae for preterm infants.

4. The results showed the high prevalence of MS ranging from 16.4% to 35.7% in

overweight and obese children referred to outpatient clinics. The prevalence of MS



53

was highly dependent on the definition used. The accordance among the definitions

was small, only 12.2% of investigated subjects had MS according to all 4 definitions.

Our results demonstrated that only 6.3-11.3% of overweight and obese children were

free from any risk factors, and 17.3-35.7% had already more than 3 risk factors,

underlining the fact that clustering of risk factors starts in childhood.
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Clinical consequencies of the study

1. Because the CD36 receptor is theoretically considered to play an important role in

determining the susceptibility to the development of obesity, genetic characterisation

of subgroups with actually increased risk of obesity may contribute to our better

understanding of the link between receptor and clinical outcome.

2. The association between the availability of n-6 polyunsaturated fatty acids and

glucose induced insulin secretion may open further opportunity to the dietary

amelioration of metabolic consequences of obesity. The data obtained in the present

study may provide some general messages for research on fatty acids in obesity as

well. Controversial results seen in previous investigations on LCPUFAs in

apparently similar groups of obese subjects may, at least in part, originate from the

different genetic background including UCP2 polymorphism.

3. Higher DHA values in preterm than in full-term human milk indicate a likely

benefit of utilising own mother’s milk for feeding preterm infants. Moreover, these

data should lead to a reconsideration of the DHA levels in formulae for preterm

infants, which currently tend to mimic DHA levels of full-term human milk and thus

tend to differ from the fatty acid composition of human milk of mothers giving birth

to preterm infants.

4. The prevalence of metabolic syndrome is high in European overweight and obese

children referred to obesity centres, whatever definition is used. Overweight and

obese children, especially those with high waist circumference, have to be screened

for MS. An unified childhood-specific definition of MS is needed in order to gain

comparable study results and to avoid the possibility of different diagnosis of the

same individual depending on the country he/she lives in and on the criteria used.
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