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Abbreviations 

ACE   angiotensin converting enzyme  

ACE 2   angiotensin converting enzyme 2  

AM   adrenomedullin 

APJ   angiotensin-like putative receptor  

Ang II   angiotensin II 

AT1-R   angiotensin II type 1 receptor 

AP   action potential 

cAMP    cyclic adenosine monophosphate   

CGRP    calcitonin gene-related peptide  

CLR   calcitonin receptor-like receptor 

DT   developed tension 

EGFR   epidermal growth factor receptor 

ERK   extracellular signal-regulated kinase 

GPCR    G-protein coupled receptors  

MAPK   mitogen-activated protein kinase 

MEK   MAPK kinase 

p38-MAPK  p38 mitogen-activated protein kinase 

NCX    sarcolemmal Na+/Ca2+ exchanger  

NHE    Na+/H+ exchanger  

NHE-1    Na+/H+ exchanger isoform 1 

PAMP    proadrenomedullin N-terminal 20-peptide  

PKA    protein kinase A  

PKC    protein kinase C  
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PLB vs PLN  phospholamban  

RAS    renin-angiotensin system 

RAMPs   receptor-activity modifying proteins  

RyR    ryanodine receptors  

SR    sarcoplasmic reticulum  

SERCA    SR Ca2+ -ATPase  

TnC    troponin C  

TnI   troponin I 

TnT    troponin T  
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1. Introduction  

Heart failure is a serious condition, with a mortality rate greater than 50% 

over 5 years in severe cases. Since heart failure is a complex syndrome the 

therapeutic approaches are multiple, including general measures, pharmacological 

therapy, mechanical devices and surgical intervention (Hunt et al., 2005). The 

significant improvement of heart failure has been achieved by combination therapy 

with regard to morbidity and mortality rate however, the increasing numbers and 

daily doses of drugs bare the risk of potential drug interactions and more serious 

complications (Kappert et al., 2008). At present, the only cure for severe heart failure 

has a heart transplantation, which is limited by the small number of organs. Since 

heart failure is the fastest growing incidence  within cardiovascular disease and is 

associated with substantial economic costs it indicates an extensive research 

investigating novel therapeutic strategies (Cohn et al., 2000). 

The complex clinical syndrome of heart failure is characterised by circulatory 

congestion and progressive cardiac contractile dysfunction. This is accompanied by 

molecular alterations that cause remodeling of the heart, which is a self 

perpetuating pathological process, and a deterioration of failing heart (Cohn et al., 

2000). A deeper insight into the pathophysiologic mechanisms highlight the role of 

various neurohormonal mechanisms and the antagonism of this system have 

beneficial effect on progression of heart failure (Hunt et al., 2005). 

However, as the contractility of the heart is compromised, a desirable therapy 

would involve improvement of efficiency of the contraction-relaxation cycle, but for 

the time being no effective, safe, chronic positive inotropic and lusitropic therapy 

exists for the treatment of systolic and diastolic dysfunction in heart failure. 

Regulation of myocardial contractility by endogenous peptides is important in 

physiological and pathophysiological conditions and may be a crucial therapeutic 

target in the treatment of heart failure (Brutsaert, 2003). Potent positive inotropic 

agents apelin (Brutsaert, 2003; Szokodi et al., 2002) and andrenomedullin (Szokodi et 

al., 1996) act in autocrine/paracrine manner and have demonstrated 

cardioprotective effects (Hamid and Baxter, 2006; Jia et al., 2006; Kleinz and Baxter, 

2008). Although, numerous experimental data prove the efficacy of these peptides 

the underlying molecular mechanisms are only partially understood. 
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1.1. Regulation of Cardiac Contractile Function 

Contractility is defined as the intrinsic ability of the cardiac muscle fibre to 

contract at a given fibre length. The degree of contraction is influenced by different 

degrees of binding between myofilaments which depends on concentration of 

intracellular Ca2+ and the sensitivity of myofilaments to Ca2+. The contractile function 

of the heart is regulated by a number of intrinsic and extrinsic mechanisms.  Intrinsic 

mechanisms include the Frank-Starling mechanism and the force-frequency relation. 

Extrinsic mechanisms affecting cardiac function are the autonomic nervous system, 

hormones and regulatory peptides acting in autocrine/paracrine manner. The 

complex interplay between all these factors occurre continuously via both the 

haemodynamic state and respective feedback mechanisms, and also at the level of 

single cardiomyocytes (Bers, 2002; Opie, 1995). 

1.1.1. Excitation-Contraction Coupling 

The excitation-contraction coupling includes the events which follow the 

wave of excitation and lead to contraction. Initially, the wave of depolarization 

spreads rapidly along the myocardial sarcolemma, and also into the interior of the 

cells via the invaginations of the sarcolemma, the T-tubules, opening the voltage 

dependent L-type Ca2+ channels and triggering a Ca2+ influx (Hobai and Levi, 1999). 

Ca2+ is essential in cardiac electrical activity and is the direct activator of 

myofilaments, which cause contraction (Bers, 2002).  

1.1.2. Ion Fluxes During Cardiac Cycle 

The Ca2+ entering the cell through the L-type Ca2+ channels serves as a trigger 

to release Ca2+ from the sarcoplasmic reticulum (SR) through ryanodine receptors 

(RyR) (Fabiato and Fabiato, 1979). The amplified Ca2+ release promots free Ca2+ to 

bind  to a specific site in the N-terminal domain of troponin C (TnC), resulting in a 

conformational change of the TnC molecule (Robertson et al., 1982; Solaro and 

Rarick, 1998). Cardiac troponin is a complex protein made up of three subunits: TnC, 

troponin I (TnI) and troponin T (TnT). TnC acts as the Ca2+ binding subunit, TnI 

inhibits the actin-myosin reaction and shuttles between tight binding to actin and 

tight binding to Ca2+-TnC and TnT is the tropomyosin binding subunit. As a 

consequence of the Ca2+signaling process and the conformational change in TnC, TnI 

moves from its diastolic state (tightly bound to actin) to its systolic state (tightly 

bound to TnC) (Solaro and Rarick, 1998). The interaction between TnI and TnC is 

followed by moving of the tropomyosin molecule to allow the crossbridges to attach 
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and produce force (Opie, 1995). Heads of myosins protruding from the thick filament 

then react with thin-filament actins in a reaction cycle that is powered by ATP 

(Rayment et al., 1993). 

 

 

Figure 1. The figure shows the time course of an action potential, Ca
2+

 transient and 

contraction measured in rabbit ventricular myocytes at 37 °C (Bers, 2002). 

(Abbreviations see at page 7) 

 

For relaxation Ca2+ must be removed from cytosol which occurs through SR 

Ca2+ -ATPase (SERCA), sarcolemmal Na+/Ca2+ exchanger (NCX) in the largest 

proportion and the rest through the plasma membrane calmodulin-dependent 

calcium ATPase and mitocondrial Ca2+ uniporter (Bers et al., 1998; Rayment et al., 

1993). The major regulator of SR Ca2+ transport is phospholamban (PLB) the 

endogenous inhibitor of SERCA. Phosphorylation of PLB relieves this inhibition, 

allowing faster twitch relaxation and decline of Ca2+(Koss and Kranias, 1996) 

(Maclennan and Kranias, 2003). 

The Ca2+ cycling is affected in heart failure. It was shown that Ca2+ cycling is 

reduced by approximately 50 per cent in myocytes obtained from patients with end-

stage heart failure. The intracellular Ca2+ transient demonstrates a blunted rise with 

depolarization reflecting a slower delivery of Ca2+ to the contractile apparatus 

(causing slower activation) and a slower rate of fall during repolarization (causing 

slowed relaxation) (Beuckelmann et al., 1992; Rayment et al., 1993). In consequence 

of impaired Ca2+ cycling a lot of compensatory pathways are activated. For example 
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studies have shown overexpression of NCX, which allows   greater Ca2+ influx during 

the action potential but generate intracellular Na+ overload (Pieske et al., 2002). 

Another major regulator of intracellular homeostasis is the Na+/H+ exchanger 

(NHE), which is a membrane protein that regulates ion fluxes. NHE extrudes one 

intracellular proton in exchange for one extracellular sodium thereby regulating 

intracellular pH.  Intracellular acidosis is the primary stimulus for activation of NHE 

(Karmazyn et al., 1999). However, there are many pathways that may also lead to 

NHE activation. One of them is the α1-adrenergic receptor activation  through 

phosphorylation of protein kinase C (PKC) (Wallert and Frohlich, 1992) causing 

increase in intracellular pH and Na+ concentration . The alkalinization is mainly 

responsible for the increased myofilament Ca2+ sensitivity and the rise in Na+ 

concentration contributes to the increase in Ca2+ transient via NCX. The result is a 

positive inotropy with modest negative lusitropy. Other factors can also exhibit 

stimulatory effects via phosphorylation-dependent processes. These generally 

represent various autocrine and paracrine as well as hormonal factors such as 

endothelin-1, thrombin, carbachol and angiotensin II, which probably act through 

receptor-signal transduction processes. The activation of myocardial NHE plays an 

important role in ischaemia and early reperfusion. Moreover increased activity of 

NHE was demonstrated in heart failure and the inhibition of NHE attenuated the 

functional, morphological abnormalities of the failing heart (Avkiran and Haworth, 

2003). 

1.1.3. The Frank-Starling Mechanism 

The Frank-Starling mechanism is an important intrinsic regulatory mechanism 

of myocardial contractility. It was Frank who first described this observation, namely 

the greater the preload, the greater the force generated by frog cardiac muscle 

(Katz, 2002; Knowlton and Starling, 1912; Markwalder and Starling, 1914; Patterson 

et al., 1914).  

The response of myocardium to an increased sarcomere length is biphasic (Kentish, 

1999), which means a rapid increase in active force, followed by a further increase in 

force over several minutes (Parmley and Chuck, 1973). The underlying intracellular 

mechanism is still elusive. According to the most reliable theory stretching increases 

Ca2+ affinity of TnC, since no increase in intracellular Ca2+ level is measured. Contrary 

to this, the slow phase of the Frank-Starling mechanism is associated with an 

increase of intracellular Ca2+ level via NCX operating in a reverse mode (Cingolani et 

al., 1998) . The exact mechanism of the length-dependent changes in myofilament 
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Ca2+ sensitivity is still a matter of research interest. In recent years two theories have 

emerged; one of them claims that the length-dependent changes in lattice spacing 

determine changes in Ca2+ sensitivity.   The other theory suggests that there is a 

length-sensing element (titin) in sarcomere, which can modulate actin-myosin 

interactions independent of changes in lattic spacing (Fuchs and Martyn, 2005).  

1.1.4. The Force-Frequency Relationship 

The force-frequency relationship, also known as the Treppe phenomenon was 

described by Bowditch, who showed that increasing stimulation frequency in frog 

muscle caused increased contractile force (Bowditch, 1878). There is a positive 

correlation to force-frequency relationship in non failing myocardium until the heart 

rate reaches the 170/ min value which is an important adaptive mechanism during 

stress in man. However, in the failing myocardium frequency potentiation of 

contractile force is inverse. The force-frequency relationship is explained by 

increased transsarcolemmal Ca2+ influx consequently higher intracellular Ca2+ level 

during systole (Pieske et al., 1995).  
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1.2. Extrinsic Factors Regulating Contractile Function  

1.2.1. Adrenergic Regulation of Cardiac Contractility 

Excitation-contraction coupling is affected by several extra and intracellular 

molecules, which enable to influence contractile strength. The main and most widely 

studied regulatory pathway involves the sympathetic nervous system acting through 

G-protein coupled receptors (GPCR) whose primary function is to transduce 

extracellular stimuli into intracellular signals. The effectors of the sympathetic 

nervous system such as epinephrine and norepinephrine act on cardiac myocytes via 

both β- and α-adrenergic receptors. Cardiac β-adrenergic receptors are mostly the 

β1, and β2 subtype is 20 percent of the total amount of β-adrenergic receptor 

population (Bristow et al., 1986; Steinberg, 1999). The α-adrenergic activation is also 

able to modulate cardiac contractility but its importance is less. 

  GPCRs are associated with Gs, Gi or Gq subtypes of G-proteins. The Gs 

activation (dominantly activated through β1- and β2-adrenergic receptors) enhances 

activity of adenyl cyclise producing cyclic adenosine monophosphate (cAMP). cAMP 

subsequently activates the multisubstrate enzyme protein kinase A (PKA) whose 

main targets are L-type Ca2+ channels, PLN, and TnI in cardiac myocytes (Katz, 1990; 

Walsh and Van Patten, 1994). The phosphorylation of PLN and L-type Ca2+ channels 

result in increased intracellular Ca2+ level inducing positive inotropic effect. 

Moreover, the phosphorylation of TnI decreases the sensitivity of contractile 

apparatus to Ca2+ which means increased intrinsic rate of myofibrillar relaxation 

(positive lusitropy) and so contribute to the shortening of cardiac twitch during β-

adrenergic receptor activity (Layland et al., 2004).  

In contrast to Gs, the Gi (activated through β2) pathway is responsible for 

inhibition of adenylyl cylase. Gi coupling qualitatively and quantitatively modifies the 

outcome of Gs signaling. During acute receptor stimulation, the β2-adrenergic – Gi 

coupling mediates compartmentalization of the Gs-cAMP signaling thereby negating 

the positive inotropic and lusitropic effect of β2-adrenergic activation. During 

prolonged recetor stimulation, Gi coupling activates multiple Gs-independent 

signaling pathways resulting in cardiac protective effects (Zheng et al., 2005) α-

adrenergic receptors activate Gq subtype of G-proteins. The Gq pathway involves the 

activation of phospholipase C, hydrolysis of PIP2 to diacylglicerol/IP3 and activation of 

protein kinase C (PKC). PKC represents a large gene family with up to twelwe 

isoforms, which target through phosphorylation many endeffectors  in the heart, 

including L-type Ca2+ channels, and myofilament proteins, accounting for the positive 
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inotropic actions (Kang and Walker, 2006). PKC is also capable of activating NHE 

leading to intracellular alkalinization and increased sensitivity of myofilaments to 

Ca2+ (Karmazyn et al., 1999).  

The Gq activation pathway may play an important role in many 

pathophysiological conditions, too. PKC and further downstream kinases, such as 

extracellular-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinase 

(p38-MAPK) are also important to GPCR mediated regulation of hypertrophic growth 

and to cardioprotective mechanisms underlying ischemic preconditioning (Braz et al., 

2002; Ping et al., 1999).   

1.2.2. Autocrine/Paracrine Regulation 

Not only the humoral but the autocrine/paracrine regulation is an important 

mechanism to influence contractile function.  Autocrine signaling is a form of cell 

signaling in which the target cell is the same than the signal-releasing cell, while in 

case of paracrine signaling, the target cell is near to the signal-releasing cell.  These 

locally acting mediators may be endogenous peptides, which influence different 

organ functions. For example, coronary endothelium releases endothelin-1 in 

response to elevated coronary coronary flow and endothelin-1 acting on 

cardiomyocytes results in positive inotropy (Piuhola et al., 2003). Regulation of 

myocardial contractility by endogenous peptides is important in physiological and 

pathophysiological conditions and may be a crucial therapeutic target (Brutsaert, 

2003). Apelin, andrenomedullin are part of this system with an extensive biological 

effect. 
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1.3. Emerging Role of Apelin in the Regulation of the Cardiovascular System 

Apelin is a bioactive peptide expressed in a wide variety of tissues and exerts a broad 

range of biological activity. 

1.3.1. Characterization of the Apelin System 

The gene encoding angiotensin-like putative receptor (APJ) receptor is 

localised in humans on the long arm of chromosome 11 and it was identified by 

O’Dowd in 1993. APJ receptor called angiotensin receptor-like since it shares 

sequency identity in 54% of angiotensin II type 1 receptor (AT1-R) (O'Dowd et al., 

1993). However, angiotensin II (Ang II) is unable to activate the APJ receptor (Lee et 

al., 2000) (Tatemoto et al., 1998). Apelin was found in 1998 to be an endogenous 

ligand for the APJ receptor. Initially, apelin was isolated as a 36 amino acid peptide 

from bovine stomach homogenates, that activated Chinese hamster ovary cells 

expressing the APJ receptor (Tatemoto et al., 1998).  Further investigations clarified 

that apelin secreted as 77 aminoacid and it might function as a precursor with 

limited biological activity and required further proteolysis and post-translational 

modification to result in the biologically more active form, predominantly (Pyr1) 

apelin-13 followed by apelin 12 and 16 (Kleinz and Davenport, 2005; Hosoya et al., 

2000; Lee et al., 2000; Tatemoto et al., 1998).  Apelin and APJ receptor are widely 

expressed throughout the body and have functional effects in both the central 

nervous and the cardiovascular systems.  Apelin and APJ receptor are expressed in 

the heart (O'Carroll et al., 2000; Szokodi et al., 2002) and in human coronary artery 

endothelial and coronary smooth muscle cells (Kleinz and Davenport, 2005).  There 

appears to be a lower expression in cardiomyocytes, however, there remain 

detectable levels of apelin and APJ receptor in these cells. A large density of apelin 

and its receptor was found in endocardial endothelial cells and vascular endothelial 

cells in human large conduit vessels and small arteries and veins (Kleinz and 

Davenport, 2005; Kleinz et al., 2005).  

1.3.2. Biological Effects of Apelin  

The broad distribution of apelin and its receptor throughout the body provide 

clues about the physiological functions of this novel signal-transduction system. 

Roles have been established for the apelin-APJ system in regulation of eating and 

drinking behaviour, in stress activation and as novel adipokine, but its primary effect 

seems to be in modulating vascular tone and cardiac contractility. 

The distribution of apelin and its receptor in the hypothalamus, gastric 

mucosa and fat cells has led to the suggestion, that the apelin system plays a role in 

modulating eating behaviour, nevertheless data in the literature show controversy 
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(Sunter et al., 2003; Taheri et al., 2002; O'Shea et al., 2003).  Furthermore, the role of 

apelin in regulating fluid homeostasis is discussed. The central administration of 

apelin to rats was associated with a reduction (Reaux et al., 2001) as well as an 

increase in water consumption (Taheri et al., 2002). However, in APJ and apelin 

knock-out mice, water intake and urine electrolyte concentration were not different 

from wild type mice (Kuba et al., 2007).  

Apelin modulates the hypothalamic–pituitary-adrenal axis, which appears to 

play an important role in stress adaptation and in regulation of inflammation during 

septic shock through corticotrophin-relasing factor and vasopressin mediated 

pathway (Newson et al., 2009). 

Recently published data suggest that the peripherial administration of apelin 

does not affect food intake but decreases body weight in dose dependent manner 

due to direct action of apelin on white adipose tissue lipid metabolism (Higuchi et al., 

2007).  In a study of both human and mouse adipocytes and in mouse model of 

obesity apelin has been identified as a novel adipokin that is released from fat cells 

and is upregulated directly by insulin (Boucher et al., 2005). Other early studies 

revealed that apelin and leptin secreted by adipocytes have similar insulin–

regulatory properties, both agents have a negative feedback on insulin levels and 

action which is a novel adipoinsular axis (Heinonen et al., 2005). However, further 

investigations will determine their distinct roles in adipoinsular system. 

1.3.3. Vascular Effects of Apelin 

Apelin modulates the tone of blood vessels, which has the overall effect of 

lowering blood pressure without any change in heart rate (Lee et al., 2000). The 

apelin induced reduction in blood pressure is mediated through nitric-oxid 

dependent pathway (Tatemoto et al., 2001). Maguire et al. proved the endothelium-

dependent vasodilatator activity of apelin via prostanoid-dependent pathway and 

the removal of the endothelium revealed the direct vasoconstrictor effect of apelin 

in arteries and veins too (Maguire et al., 2009). Moreover, Charles and co-workers 

found a biphasic response in mean arterial pressure and cardiac output after 

intravenous administration of apelin-13. The initial fall of mean arterial pressure and 

cardiac output was followed by a subsequent rise and then a return to baseline over 

15 minutes (Charles et al., 2006). Furthermore, apelin may modulate central control 

of arterial pressure since intracerebroventricular injection of apelin-13 increases 

both arterial pressure and heart rate in conscious rats (Kagiyama et al., 2005). But in 

case of injection apelin 13 into the nucleus tractus  solitaries and rostral  
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ventromedullar medulla also reveals increases in arterial pressure (Seyedabadi et al., 

2002). Although the overall systemic effect of apelin appears to decrease mean 

arterial pressure, differences may exist among particular anatomical region. The 

pathophysiological significance of apelin induced vasodilatation is proved in different 

knockout animal models too, with the important finding that apelin provides 

compensatory vasorelaxation to counteract Ang II-mediated vasoconstriction (Ishida 

et al., 2004). 

1.3.4. Apelin and the Renin-Angiotensin System  

Apelin-APJ system has a high sequence homology to the AngII/AT1-R and both 

systems show significant similarity in tissue distribution and activation on the same 

biological processes suggesting a close relation to each others. Moreover, the 

recently described zinc metalloproteinase angiotensin converting enzyme 2 (ACE 2) 

is responsible for inactivating angiotensin I, II and apelin-36, apelin-13. ACE 2 is 

distributed mainly in cardiac and renal tissues and insensitive to the classical ACE 

inhibitors (Vickers et al., 2002; Burrell et al., 2004). 

Ishida et al provided further evidence to prove the interaction between 

apelin/APJ and AngII/AT1-R systems. APJ knock out mice were highly sensitive to low 

dose Ang II treatment in contrast to the wild-type mice suggesting that the lack of 

apelin signaling prevents a possible counter-regulatory effect of apelin to mediate 

the pressor effects of AngII. These findings were further supported by another 

experiment in which the blood pressures of APJ/AT1-R double knock out mice 

showed partial normalisation compared with AT1-R single knock out mice (Ishida et 

al., 2004).   

The relation between apelin/APJ and AngII/AT1-R was investigated by 

Iwanaga et al in experimental model of heart failure in rats. Beside decreased 

ejection fraction the apelin and APJ mRNA were markedly down-regulated and the 

treatment with angiotensin blocker resulted in clinical improvement and increased 

expression of apelin and APJ in rats with heart failure. These experimental data 

emphasize that the beneficial effect of modulating rennin-angiotensin system in 

heart failure may be, at least partially, due to the restoration of apelin signaling 

(Iwanaga et al., 2006). 

1.3.5. Apelin and Inoptropy 

Apelin has recently been found to be a potent inotropic agent in isolated rat 

heart preparations (Szokodi et al., 2002). Szokodi et al. found a dose-dependent 
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positive inotropic effect in vitro due to specific activation of its receptors in the 

heart, which was independent of the release of cathecholamines, other vasoactive 

peptides (endothelin, Ang II) or nitric oxide. They investigated the underlying 

intracellular mechanisms and suggested that activation of PLC and PKC were 

involved in the positive inotropic effect observed in the presence of apelin. On the 

other hand researchers have found contradictory results. Hosoya and Marsi 

suggested that the APJ receptor couples through inhibitory G-proteins, because 

pertussis toxin inhibits the actions of apelin (Hosoya et al., 2000; Masri et al., 2006). 

It has been demonstrated that the APJ receptor is localised at the T-tubules raising 

the possibility that tubular Ca2+ channels could be involved in the positive inotropic 

effect of apelin (Kleinz and Davenport, 2004).  This has not been supported by 

perforated patch-clamp experiments which have shown no evidence of modulation 

of Ca2+ flux through L-type Ca2+ channels following apelin administration (Szokodi et 

al., 2002).  Wang et al. reported a double effect of apelin on intracellular Ca2+ 

concentration such as systolic increase and diastolic decrease via PKC dependent 

mechanism.  Moreover they found that apelin enhanced the activity of NCX and 

SERCA but the underlying mechanism has still been unknown (Wang et al., 2008).    

While the positive inotropic effect of apelin in isolated heart preparations has 

been repeatedly demonstrated, its effect in vivo is more complicated. For instance, it 

has been observed that cardiac output does not increase following acute 

administration of apelin. However, it causes a reduction in left ventricular 

enddiastolic area and increases in left ventricular elastance. Therefore, the change in 

loading conditions after acute apelin administration together with changes in the 

visco-elastic properties of the ventricle may influence the net effect of apelin on 

cardiac output. Chronic administration of apelin (two-week continuous infusion) 

resulted in significant increase in the velocity of circumferential shortening and 

cardiac output. Importantly, these hearts have shown no evidence of left ventricular 

cellular hypertrophy, which is frequently seen after chronic administration of 

positive inotropic substances (Ashley et al., 2005). There are experimental evidences 

that apelin knock out mice develop severe impairment in cardiac contractility, which 

becomes evident at six months of age. These data indicate as well, that apelin is 

important mediator to maintan cardiovascular homeostasis (Kuba et al., 2007). 

Moreover, the results of Dai et al suggest that apelin exerts a more pronounced 

positive inotropic effect in failing myocardium compared to normal trabecular 

muscle (Dai et al., 2006). Furthermore, apelin was found to be a cardioprotective 

agent too. Jia and colleagues found, that apelin improved the function of the heart 
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which had previously been damaged by isoproterenol (Jia et al., 2006). In an other 

experiment Kleinz and co-workers observed a cardioprotective effect of apelin 

during ischemia reperfusion injury (Kleinz and Baxter, 2008; Jia et al., 2006). These 

complex effects of apelin may be important when it is considered as a therapeutic 

agent in heart failure. 

There are numerous experimental data suggesting the importance of the 

apelin-APJ system regulating myocardial contractility in vivo, the direct effects of 

apelin on cardiomyocyte contractility and the underlying intracellular signaling 

mechanisms are unknown. 

1.3.6. Role of the Apelin–APJ System in Heart Failure 

The apelin–APJ signaling pathway has also been identified recently as a 

potentially important mediator in the pathophysiology of chronic heart failure (Jia et 

al., 2006; Berry et al., 2004; Ashley et al., 2005). There is evidence that circulating 

plasma apelin levels are increase in patients in the early stage of heart failure 

compared with the healthy population, but in patients suffering from severe heart 

failure the plasma apelin levels are less than normal (Chen et al., 2003; Foldes et al., 

2003). This finding may suggest that the increase in circulating apelin may be a 

compensatory mechanism in the early stage of heart failure to improve cardiac 

contractility. This theory was proved by Iwanaga et al., who demonstrated that 

myocardial apelin and APJ mRNA level is initially preserved in compensated 

ventricular hypertrophy and only downregulated when animals developed heart 

failure(Iwanaga et al., 2006). Foldes and coworkers have assessed left ventricular 

apelin and APJ receptor mRNA levels by quantitative RT-PCR and they found that 

apelin mRNA levels were increased and the APJ receptor mRNA was downregulated 

in heart failure in idiopathic dilatative cardiomyopathy (Foldes et al., 2003). The 

patients with heart failure due to ischaemic heart disease did not show these 

phenomena, suggesting that the primary disease underlying heart failure may 

probably influence cardiac APJ expression. However, in patients with dilated 

cardiomyopathy APJ polymorphism was not found in greater frequency compared to 

normal healthy controls (Sarzani et al., 2007).  

While there is continuing debate regarding apelin and mechanisms of APJ 

downregulation in HF, important changes in the apelin-APJ receptor expression have 

been observed following left ventricle assist device insertion. Chen and colleagues 

have identified the APJ receptor as one of the most upregulated  genes following 

offloading with ventricle assist device (Chen et al., 2003).  
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These early studies suggest that the apelin APJ axis is an important biomarker 

of heart failure and its upregulation is favourable regarding left ventricular 

remodeling. Recently published data have revealed that this includes improvement 

in endothelial function and decrease in cardiac fibrosis mediated via apelin/APJ and 

Akt/eNOS pathways (Fukushima et al., 2010). The interactions of apelin-APJ system 

with other neurohormonal systems involved in the pathogenesis of heart failure are 

not yet fully understood, as much as the effects of these modifying therapies (ACE 

inhibitors, beta-blockers) on apelin concentration. 

1.3.7. Apelin and Arrhythmias   

Apelin has also been implicated in the pathophysiology of arrhythmias; Elinor 

et al. demonstrated that plasma apelin levels decrease in patients with lone atrial 

fibrillation (Ellinor et al., 2006).  In agreement with this, Kallergis et al. found that 

successfull cardioversion of long-lasting atrial fibrillation led to significant increase in 

plasma apelin levels (Kallergis et al., 2010). However the role of the APJ-apelin 

system in the regulation of electrophysiological parameters in the heart is still poorly 

understood. 
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1.4. The Role of Adrenomedullin in the Regulation of the Cardiovascular System  

In 1993  Kitamura et al. isolated a novel peptide called andrenomedullin (AM) 

and since that time several hundreds of papers have been published regarding the 

regulation of its secretion and the wide range of its actions (Kitamura et al., 1993a). 

Substantial evidences support the perception that AM is an important regulator of 

the cardiovascular system (Kitamura et al., 1993a; Hamid and Baxter, 2005; Szokodi 

and Ruskoaho, 2008). 

1.4.1. Characterization of the Adrenomedullin System 

Human AM consists of 52 amino acids with an intramolecular disulfide bridge 

forming a ring structure of six residues with an amidated tyrosine at C-terminus  

(Kitamura et al., 1993b). Due to moderate sequence homology with calcitonin, 

calcitonin gene-related peptide (CGRP) an amylin, AM has six substitutions and two 

deletions (Sakata et al., 1993). Human AM is synthesized as a 185-amino-acid 

precursor. The cleavage of 21-amino-acid signal peptide from N-terminus of this 

prepro-AM leads to formation of a 164-amino-acid prohormone (Kitamura et al., 

1993a; Kitamura et al., 1994). The prohormone is further cleaved to liberate a 20-

amino-acid proadrenomedullin N-terminal 20-peptide (PAMP), which has been found 

to elicit biological effects independent of those of AM (Kitamura et al., 1994). The 

remaining prohormone is finally cleaved between positions 93 and 94 as well as 148 

and 149, resulting in the formation of human AM (Kitamura et al., 1994). 

  Immunoreactive AM and AM mRNA were detected in numerous peripherial 

tissues (lung, heart, kidney, liver, intestine) as well as various regions of the central 

nervous system (Kitamura et al., 1994). The adrenal gland contains proportionally 

the largest quantity of AM, but substantial amounts were found in the cardiovascular 

system (Kitamura et al., 1994; Sakata et al., 1993). AM expression show close 

correlation with the degree of tissue vascularisation. Both endothelial cells and 

vascular smooth muscle cells synthesize and secret AM and it is  the major source of 

circulating AM in the plasma  (Sakata et al., 1993; Kitamura et al., 1993b; Kitamura et 

al., 1994).  AM is present in a variety of embryonic tissues, particularly in the heart 

and cardiac myocytes and even further nonmol/lyocytes were found to secret AM 

(Jougasaki et al., 1995).   Several factors may influence the secretion of AM such as 

inflammatory cytokines and vasoactive substances, mechanical stretching, hypoxia 

and oxidative stress (Chun et al., 1997; Yoshihara et al., 2002; Kawai et al., 2004; 

Nakamura et al., 2004) . 
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The characterisation of a specific AM receptor failed until in 1998 McLatchie 

et al described a family of receptor-activity modifying proteins (RAMPs) which are 

single transmembrane–domain proteins that are associated with the calcitonin 

receptor-like receptor (CLR) to direct its ligand binding specifity and affinity. 

Coexpression of RAMP1 with CLR results in a functional CGRP receptor, whereas 

association of CLR with RAMP2 or RAMP3 confers preferential AM binding 

(McLatchie et al., 1998). 

1.4.2. Biological Effects of Adrenomedullin 

As a consequence of a wide distribution of AM and its receptors, AM has a 

remarkable range of action, from potent vaso- and coronary dilatator effect  through 

regulating cellular growth and differentiation to modulating hormone secretion 

(Samson, 1999) (Szokodi and Ruskoaho, 2008). There are some non-cardiovascular 

effects of AM as well;    experimental data suggest that andrenomedullin inhibits 

ACTH release (Samson, 1999; Parkes and May, 1997) and aldosteron production 

(Yamaguchi et al., 1996). Several studies investigated the effect of AM on steroid 

secretion but the results were contradictory (Hinson et al., 2000). AM was found to 

be co-secreted with catecholamine in response to nicotine receptor stimulation; 

however, in vivo experiments did not support this data (Katoh et al., 1994; Masada 

et al., 1999). The renal effect of AM was studied widely. Evidence exist for a role of 

locally secreted AM in regulation of renal blood flow and tubular function but it is 

unlikely that circulating level of AM regulates renal function in physiological 

condition (Hinson et al., 2000). Furthermore, there are evidence to prove the role of 

AM in the pathophysiology of mesangial cell proliferation and matrix biology such as 

in protecting kidney glomeruli from inflammatory reactions (Chini et al., 1995; Chini 

et al., 1997). AM plays a role in glucose metabolism as well. AM attenuates and 

delays the insulin response to oral glucose challenge (Martinez et al., 1996). On other 

gastrointestinal effect of AM is to influence the gastrointestinal motor and secretory 

function. In the lung, AM inhibits bronchoconstriction induced by histamine or 

acetylcholine and additionally AM significantly prohibits alveolar macrophage release 

of neutrophil chemoattractants in response to lipopolysaccharide (Hinson et al., 

2000).   
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1.4.3. Vascular Effects of Adrenomedullin 

The most characteristic property of AM is an intensive and sustained 

hypotension in different species (Hinson et al., 2000; Chini et al., 1995; Chini et al., 

1997). Moreover AM results in dose-dependent decrease in blood pressure in 

pathological conditions such as hypertension and heart failure (Rademaker et al., 

1997; Shimokubo et al., 1996). The vasodilator effect of AM is mainly mediated 

through induction of NO release (Feng et al., 1994). In case of impaired NO 

production such as  hypoxic condition the vasodilatation is induced by 

prostaglandins (Yang et al., 1996), furthermore  AM also able to inhibit endothelin-1  

production, which may contribute to vasorelaxation (Kohno et al., 1995). AM may 

act as a physiological antagonist of endothelin-1 (Kinnunen et al., 2001).   

AM is indispensable for vascular morphogenesis during embryonic 

development and recent studies suggest that AM may be an important angiogenic 

factor in pathological conditions during adulthood (Nagaya et al., 2005; Ribatti et al., 

2007). Experimental data suggest that AM exerts its angiogenic effect through 

activation of Akt and ERK  independently of each other (Kim et al., 2003; Miyashita et 

al., 2003). On the other hand the effects of AM on proliferation of vascular smooth 

muscle cells are controversial. The migration of vascular smooth muscle cells into the 

intimal layer is the mechanism of intimal thickening consequently resulting in 

vascular remodeling. Some studies demonstrated antiproliferatory action (Kano et 

al., 1996) whereas later studies suggest that AM is a potent mitogenic factor in 

cultured rat vascular smooth muscle cells (Iwasaki et al., 1998). 

1.4.4. Adrenomedullin and Inotropy 

The effect of AM on myocardial contractility is controversial. 

Systemic administration of AM results in marked haemodynamic effect such as 

decreased peripheral resistance, consequently increased heart rate, cardiac output 

and stroke volume (He et al., 1995; Parkes and May, 1997). This finding rises the 

question whether AM has a direct effect on contractility? In isolated, perfused rat 

heart AM increased cardiac contractility and dilated coronary arteries (Szokodi et al., 

1996; Szokodi et al., 1998). AM has appeared to be among the most potent 

endogenous positive inoptropic substances since AM was active in the 

subnanomolar range infused into coronary arteries. Moreover, the AM–induced 

increase in developed tension was approximately 60% of the maximal inotropic 

response to the β-adrenergic agonist isoproterenol (Szokodi et al., 2002). In contrary 

to β-adrenergic agonist effect , AM increased the contraction force gradually with 
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mean time of 25-30 min to reach its maximum effect (Szokodi et al., 1998; Kinnunen 

et al., 2000). AM was reported to increase isometric tension in isolated rat papillary 

muscles (Ihara, 2000 Eu J Pharm), but other studies suggested a distinct effect of AM 

on cardiac contractility.  A dual inotropic effect was observed in isolated adult rat 

ventricular myocytes, AM produced an initial increase in cell shortening followed by 

a negative inotropic effect on prolonged incubation (Mittra et al., 2004; Mittra and 

Bourreau, 2006). Former studies demonstrated a negative inotropic effect of AM on 

isolated rabbit cardiomyocytes (Ikenouchi et al., 1997) and human ventricular 

myocytes (Mukherjee et al., 2002). Other studies failed to detect any effect of AM on 

cardiac contractility (Stangl et al., 2000; Saetrum et al., 2000). 

Number of studies suggesting that AM induce an increase in cAMP and this 

may be the major pathway of the signaling (Eguchi et al., 1994; Ishizaka et al., 1994; 

Shimekake et al., 1995; Chini et al., 1995; Sato et al., 1997), in spite of the evidence 

that AM enhances cardiac contractility via cAMP-independent mechanism (Szokodi 

et al., 1998). However, now it is clear that AM has direct effect on cardiac 

contractility, the underlying intracellular signaling mechanisms are still largely 

unknown.  
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2. Aims of the Study 

� To evaluate the direct effect of apelin on contractile function of isolated normal and 

failing ventricular cardiomyocytes   

 

� To characterize the intracellular signaling mechanism of apelin 

 

� To investigate the effects of apelin on electrophysiological properties of 

cardiomyocytes  

 

� To evaluate the intracellular signaling mechanism of the positive inotropic effect of 

adrenomedullin  
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3. Direct  Effects of Apelin on Cardiomyocyte Contractility and 

Electrophysiology 

3.1. Introduction  

Regulation of myocardial contractility by endogenous peptides is important in 

physiological and pathophysiological conditions and may be a crucial therapeutic 

target (Brutsaert, 2003). An autocrine or paracrine system which potentially 

regulates heart function is the recently discovered APJ receptor with its endogenous 

ligand apelin. Ex vivo studies using isolated perfused rat hearts have identified apelin 

as one of the most potent inotropic substances recognised so far (Szokodi et al., 

2002). Moreover, apelin was reported to increase left ventricular contractility in 
vivo 

following acute (Berry et al., 2004; Ashley et al., 2005) as well as chronic infusion in 

rodents (Ashley et al., 2005).  

The APJ receptor and apelin have been implicated in the pathophysiology of 

human heart failure by a number of studies which identify this system as an 

attractive target for therapy (Lee et al., 2006; Kleinz and Davenport, 2005). Plasma 

concentration of apelin has been shown to decrease in patients with congestive 

heart failure (Foldes et al., 2003; Chong et al., 2006; Chen et al., 2003) and long-term 

cardiac resynchronization therapy could restore plasma levels of the peptide (Francia 

et al., 2006). Moreover, it has been demonstrated that left ventricular unloading 

with mechanical ventricular support increases APJ mRNA levels in patients with heart 

failure (Chen et al., 2003). Apelin has also been implicated in the pathophysiology of 

arrhythmias. Ellinor et al. demonstrated that plasma apelin levels decreased in 

patients with lone atrial fibrillation (Ellinor et al., 2006). 

Despite recent advances in our understanding of the cardiovascular effects of 

the apelin-APJ system in vivo, the direct effects of apelin on cardiomyocyte 

contractility remains unknown. Therefore, the objective of the present study was to 

characterize the effects of apelin as well as the underlying signaling pathways, such 

as cytoplasmic [Ca2+] and pH regulation in vitro using isolated adult rat ventricular 

myocytes. Moreover, to test the potential pathophysiological significance of apelin, 

we assessed the effect of the peptide on contractility in cardiomyocytes isolated 

from rat hearts in which chronic heart failure had been induced by coronary artery 

ligation. Finally, we studied the cellular localization of APJ and the effects of apelin 

on intercellular communication in cultured monolayers of cardiomyocytes. 
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3.2. Materials and Methods  

3.2.1. Cell Isolation and Failing Heart Model 

All animal procedures were performed in accordance with the UK Animal 

(Scientific Procedures) Act 1986. Adult female Sprague Dawley rats, weighing 200 g 

(Harlan, UK) were used for this study. All animals were anaesthetized using 1-2% 

isoflurane in 100% oxygen for every procedure (excision of the heart, 

echocardiography, coronary artery ligation). 

Cardiomyocytes were isolated using standard enzymatic dissociation 

(Terracciano and MacLeod, 1997). Briefly, the heart was perfused on a Langendorff 

apparatus with oxygenated normal Tyrode solution at 37°C for 2 minutes. The heart 

was then perfused with low Ca2+ solution for 5 minutes, followed by a 9 minutes 

perfusion with solution containing collagenase/hyaluronidase (see solutions). After 

discarding both atria and the right ventricle, the left ventricle was cut into small 

pieces and shaken in collagenase/hyaluronidase solution for a further 5 minutes. 

Cardiomyocytes were dissociated using gentle trituration, filtered through a 300 μm 

mesh and re-suspended in enzyme solution at room temperature until use. 

Failing hearts were obtained 8 weeks after left coronary artery ligation. 

Briefly, the anaesthetized rats were intubated with a 16G plastic cannula and 

mechanically-ventilated (Harvard Apparatus, Kent, UK) at 2.5 ml tidal volume and 70 

breaths per minute. A left-sided thoracotomy at the fourth intercostal space 

followed by pericardiectomy provided access to the heart. The left coronary artery 

was identified and permanently ligated at the level of the left atrial appendage using 

a 6-0 suture to cause myocardial infarction and subsequent heart failure. The 

diagnosis of heart failure was based on ejection fraction measured by using a 

15 MHz probe on an Acuson Sequoia™ 256 system (Siemens Medical Systems, 

Germany). Transthoracic echocardiography was performed to obtain parasternal 

short-axis views at the mid-papillary muscle level. Ejection fraction was calculated 

from the systolic and diastolic 2-dimensional cross-sectional left ventricular areas, 

and ejection fraction less than 30% was taken as heart failure. Cardiomyocytes were 

isolated from the viable left ventricle of these hearts as above. 
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3.2.2. Measurement of Cardiomyocyte Contraction 

Isolated cardiomyocytes were superfused with Krebs solution at 37°C and 

field-stimulated at 1Hz in a bath on the stage of an Olympus inverted microscope.  

Cell images were acquired with a ×60 objective at 240 frames per second and the 

sarcomere pattern was digitalized and analysed using Ionwizard™ software (Ionoptix 

Corp, CA, USA). Sarcomere shortening was measured in real time using a fast Fourier 

transformation of the cardiomyocyte striation pattern into a frequency power 

spectrum, as described previously (Delbridge 1997 J.Mol.Cell. Card.) 

3.2.3. Intracellular [Ca
2+

] Measurements 

Intracellular [Ca2+] was monitored using two different [Ca2+]-sensitive 

fluorescence indicators. In initial experiments cardiomyocytes were loaded with 

indo-1 AM (Invitrogen, UK) and studied whilst being superfused with Krebs solution 

and field-stimulated, as above. Indo-1 excitation was at 385 nm, and fluorescence 

emissions at 405 nm and 485 nm were acquired. After subtracting background 

fluorescence levels, F405/485 was calculated and used as a measure of [Ca2+]i. 

F405/485 transients were analysed using Ionwizard™ software.   

In another series of experiments cardiomyocyte [Ca2+] was studied using fluo-

4 AM (Invitrogen, UK). [Ca2+]i was calculated from fluorescence using the equation: 

 

 

 

Where F is fluorescence, Fo is background fluorescence, kd = 1160 nm and [Ca2+]rest = 

100 nm as previously reported (Huser et al., 1998). 

For analysis of contractions and [Ca2+] transients, 10-15 events were averaged 

with reference to the field-stimulation signal. Peak amplitude and time-to-peak 

(Tpeak) were calculated from the field-stimulation signal baseline, and decay times 

(T50 and T90) were calculated from Tpeak. For the fluo-4 data the decay times (tau) 
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were calculated by fitting the data to a mono-exponential decay curve using 

pClamp™ software (Version 9.0. Axon Instruments, USA). 

3.2.4. Intracellular pH Measurements and Na
+
/H

+
 Exchanger Activity 

For measurement of intracellular pH (pHi) cardiomyocytes were loaded with 

10 µM 5-(and-6)-Carboxy-SNARF-1 AM (Invitrogen, UK) and superfused with Normal 

Tyrode solution at 37°C. Fluorescence excitation was at 480 nm. Data were 

expressed as the ratio of the emission wavelengths at 580 nm and 640 nm 

(F580/640).  

To monitor NHE activity, the NH4Cl pre-pulse method was used (Boyarsky et 

al., 1988). Briefly, the cells were perfused with normal Tyrode solution and two 5 

minute pulses of 15 mM NH4Cl were performed. Each pulse was followed by a 

recovery phase in normal Tyrode for 10 minutes, during which the pattern of 

recovery was recorded for analysis using pClamp™ software. The second NH4Cl pulse 

and subsequent recovery were performed either in normal Tyrode again (control) or 

in normal Tyrode containing apelin. The time constant (τ) of the monoexponential 

curve fitted on the acid extrusion phase was normalized to the τ following the first 

NH4Cl pulse.  The acid extrusion rate in these conditions was taken as an index of 

NHE activity. 

3.2.5. Immunocytochemistry 

Isolated cardiomyocytes were plated onto laminin-coated slides in culture 

medium. 10 μm thick cryosections of adult rat hearts were mounted onto polylysine 

coated slides. Isolated cardiomyocytes and cryosections were fixed with acetone at 

−20°C, washed with phosphate buffered saline, and incubated with primary 

antibodies (2 hours, room temperature). Two different antibodies raised against 

peptides from 2 separate regions of the receptor were used to confirm the labelling 

patterns observed, one to the C-terminal (rabbit anti-APJ Apelin receptor IgG, 

Phoenix Pharmaceuticals Inc., CA, US, dilution 1:100) and one to a cytoplasmic loop 

(rabbit anti-APJ, affinity purified antiserum, Neuromics, MS, US, dilution 1:1000).  

Slides were washed with PBS, incubated with anti-rabbit IgG conjugated to 

AlexaFlor596 (Invitrogen, UK) for 1 hour, washed again with phosphate buffered 
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saline and nuclei counterstained with DAPI (Invitrogen, UK) prior to mounting. 

Images were recorded using a Leica TCS SP confocal microscope. 

3.2.6. Cultured Neonatal Rat Cardiomyocytes 

Ventricles from 3 days old Sprague-Dawley rats were dissociated, cut into 

small pieces, resuspended in collagenase/pancreatine solution and shaken at 37oC (5 

cycles, 15-25 minutes each). Fetal bovine serum was added to the mixture to 

inactivate enzymes and cardiomyocytes were rinsed in Fetal bovine serum. 

Cardiomyocytes were then filtered and plated in complete medium (10% horse 

serum, 5% foetal calf serum (Sigma, UK)) in Petri dishes and incubated for 45 

minutes to enable fibroblasts to adhere and be removed. After assessing the viability 

using 0.4% trypan blue solution (Sigma, UK) neonatal cardiomyocytes were plated on 

multi-electrode array (MEA; Multi Channel Systems, Reutlingen, Germany) plates in 

1 ml neonatal rat medium at a density of 0.5 × 106 cells per plate, and cultured at 

37°C. Neonatal rat medium was replaced every 24 hours and cardiomyocytes were 

grown to form a confluent monolayer. 

3.2.7. Multi-electrode Array  

A multi-electrode array setup (Multi Channel Systems, Reutlingen, Germany) 

was used to monitor the origin and spread of electrical activity in confluent neonatal 

cardiomyocyte monolayers, as described previously (Meiry et al., 2001). 

Spontaneous electrical activity, conduction velocity and properties of the field 

potentials were recorded.  The raw data collected were filtered using a Savitzky-

Golay filter, and differentiated digitally to determine the local activation time at each 

electrode using the Matlab™ interface (v7.0.1, Mathworks Inc, Germany) and custom 

software created by U. Egert (MEA-Tools, version 2.8, University of Freiburg, 

Germany). An activation map/isochronal map was constructed by interpolating the 

local activation time values for the sites between the electrodes and extrapolating 

the local activation time values for the four corners of the MEA matrix and were 

plotted using the Matlab™ standard two-dimensional tools. 

The conduction velocity was calculated using the peripheral method, which 

utilizes the mean local activation time at each row of peripheral electrodes.  Using 

the assumption of an uniform conduction pattern, the local activation times for each 
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row were averaged.  The distance travelled along each external row is seven times 

the distance between two neighbouring electrodes, and using this information, the 

conduction velocity was calculated (Meiry et al., 2001). The length and shape of the 

field potential, a first derivative of the action potential, was analyzed by Clampfit™ 

software (Axon Instruments, USA).  

3.2.8. Solutions 

Normal Tyrode solution (in mmol/l): 

NaCl 140; KCl 6; glucose 10; MgCl2 1; CaCl2 1; N-2-hydroxyethylpiperazine-N'-2-

ethansulphonic acid (HEPES) 10; pH 7.4.  

Low [Ca
2+

] solution (in mmol/l): NaCl 120; KCl 5.4; CaCl2 0.045; MgSO4 5; Na+-

pyruvate 5; glucose 20; taurine 20; HEPES 10; nitrilotriacetic acid 5; pH 6.96.  

Enzyme solution (in mmol/l): 

NaCl 120; KCl 5.4; CaCl2 0.2; MgSO4 5; Na+-pyruvate 5; glucose 20; taurine 20; 

HEPES 10; pH 7.4.  

Collagenase/hyaluronidase solution: 

Enzyme solution with 1 mg/ml type-2 collagenase (280 u/mg, Worthington 

Biochemical, USA) and 0.6 mg/ml hyaluronidase (999 u/mg, Sigma, UK).  

Krebs solution (in mmol/l): 

NaCl 120; KCl  4.7; MgSO4·7H20 0.94; KH2PO4 1.22; NaHCO3 25, glucose 11.54.  

Neonatal rat medium (NRM): 

400 ml Dulbecco’s Modified Eagle’s Medium (DMEM, GIBCO, UK), 100 ml 199 

medium (HEPES modification), 60 ml 10% heat inactivated Horse Serum (Sigma), 

27.5 ml 5% heat inactivated Foetal Bovine Serum (FBS), 13.5 ml 1M HEPES, and 6 ml 

penicillin/streptomycin.  

Drugs 

The Apelin 16-isoform was used in these experiments (Phoenix Pharmaceuticals Inc., 

CA, US). 



32 
 

3.2.9. Statistical Analysis 

To assess statistical differences a one-way ANOVA with Tukey post hoc test or 

Bonferroni post hoc test analyses or paired t-tests were performed where 

appropriate. Results are expressed as mean ± standard error of the mean (n = 

number). P < 0.05 was interpreted as being statistically significant. 
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3.3 Results 

3.3.1. Cellular Localization of the APJ Receptor 

Confocal immunofluorescence microscopic imaging confirmed the presence 

of APJ receptor-like immunoreactivity in isolated adult ventricular myocytes and in 

heart tissue (Kleinz et al., 2005). APJ receptor-like immunoreactivity was detected in 

a transversal striated distribution associated with T-tubules (Fig. 2) and in the 

intercalated disc area (Fig. 2A, B, D and E). 

3.3.2. Effect of Apelin on Cardiomyocyte Contractility 

In isolated perfused rat hearts, apelin has been shown to induce maximal 

positive inotropic effect at concentrations of 1 nmol/l and 10 nmol/l (Szokodi et al., 

2002).  As shown in Figure 3, superfusion with 1 nmol/l and 10 nmol/l apelin 

increased sarcomere shortening of isolated adult ventricular myocytes, reaching a 

maximum after approximately 1 minute of superfusion (AP t1). This effect was 

transient, it lasted 1-2 minutes and sarcomere shortening returned and remained at 

control levels for the rest of apelin superfusion (AP t2) (Fig. 3). The maximal 

increases in sarcomere shortening in response to 1 nmol/l apelin (136±13 % (14), 

P<0.001) and 10 nmol/l apelin (138±14 % (14), P<0.05) at AP t1 are presented in 

Figure 3B. At the end of the experiments isoproterenol (30 nmol/l) application 

invariably induced a robust increase in sarcomere shortening (approximately 250 %) 

suggesting a maintained contractile reserve (Fig. 3). 

3.3.3. Effect of Apelin on Contractility in Failing Cardiomyocytes 

Subsequently, we studied the effect of apelin on sarcomere shortening in 

isolated cardiomyocytes from a rat model of chronic post-ischaemic heart failure. 

The sarcomere shortening of the failing myocytes in control conditions was 

significantly smaller compared to normal myocytes (Δ0.121±0.03 µm (24) p<0.001). 

As shown in Figure 3 C,D, apelin induced a transient increase in sarcomere 

shortening in failing cardiomyocytes (1 nmol/l apelin: 117±8.3% (12); 10 nmol/l 

apelin: 116±7.7% (12) p<0.05). Notably, the maximal responses to apelin in normal 

and failing cardiomyocytes did not differ significantly. 
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Figure 2. Confocal images showing the localization of the APJ receptor (green label) in 

isolated cardiac myocytes (A, B, C) and sections of heart tissue (D, E, F). Nuclei are shown in 

red. Two different antibodies gave the same labeling pattern of the T-tubules and at the 

intercalated disc, one to a C-terminal region (A, D), and the other to a cytoplasmic loop 

region (B, E). No labeling was observed in the secondary antibody controls (C, F). Bar 

markers A, B, C, = 25 µm, D, F,E = 50 µm.  
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Figure 3. Effect of apelin on sarcomere shortening of normal isolated cardiomyocyte. (3A) 

and failing isolated cardiomyocyte (3C) at the different time point; baseline, AP t1 (1 minute 

in apelin,) AP t2 (after 8 minutes in apelin) and iso 30 nmol/l of isoproterenol).  

Graph 3B shows a significant increase in sarcomere shortening of normal and graph 

3D of failing cardiomyocytes at both concentrations of apelin (1 nmol/l and 10 nmol/l l) after 

1 minute ( ** p>0.001, * p>0.05). Failing myocytes showed a similar behaviour to normal 

myocytes. No statistical difference could be detected at AP t2, nor in normal or failing 

cardiomyocytes.   
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3.3.4. Signaling Mechanisms of Apelin in Cardiomyocytes 

To investigate the mechanisms underlying the effect of apelin on contractility, 

cytoplasmic [Ca2+], the major intracellular mediator of contraction, was monitored 

using [Ca2+]-sensitive fluorescent indicators. Initially we performed experiments 

using the ratiometric indicator indo-1. No effect of apelin could be observed either 

on the amplitude or time course of [Ca2+] transients with both concentrations of 

apelin (1 nmol/l apelin: AP t1: 98.2±19 %, AP t2: 91.4±25 % (5) P>0.05; 10 nmol/l 

apelin: AP t1: 97.8±16%: AP t2: 89.6±28% (10) P>0.05). Isoproterenol, used as 

positive control, elicited a strong increase in [Ca2+] transient amplitude. To exclude 

the possibility that changes in cytoplasmic [Ca2+] were within the noise levels of indo-

1 acquisition, we repeated the experiments with fluo-4 AM, which had a better 

signal-to-noise ratio. The results from these experiments are described in figure 4. 

There was no difference in the amplitude of [Ca2+] transients upon application of 

apelin, it only increased in the presence of isoproterenol (Fig. 4A). There was no 

difference in the time course of the [Ca2+] transients (Fig. 4B and 4C; [Ca2+] transient 

amplitude in control %, 1 nmol/l apelin: AP t1: 93.79±2 % (15); 10 nmol/l apelin: AP 

t1: 94.47±3 %( 14)) after 1 or 8 minutes of apelin superfusion.  

To assess whether apelin affects intracellular pH and sarcolemmal NHE 

activity in isolated cadiomyocytes we monitored intracellular pH using the pH-

sensitive fluorescent indicator carboxy-SNARF-1 and we assessed the acid-extrusion 

ability of the NHE with the NH4Cl pre-pulse technique as previously described 

(Boyarsky Am J Physiol1998). Superfusion with 10 nmol/l apelin significantly 

decreased SNARF-1 fluorescence ratio suggesting an increase in the intracellular pH 

((control: 3.01±0.1 ratio units (11); 10 nmol/l apelin: 2.64±0.1 ratio units (11); 

p<0.01)) (Fig. 5A, 5B). As for contractility, this effect was transitory and SNARF-1 

fluorescence returned to control values after a few minutes. To assess the acid 

extrusion ability of NHE, 15 mM NH4Cl in NT solution was applied for 5 minutes 

followed by wash out with NT for 10 minutes. Once the SNARF-1 signal returned to 

baseline, 1 nmol/l or 10 nmol/l apelin was added to the superfusing solution and the 

NH4Cl prepulse was repeated (Fig. 5C). Apelin at both concentrations increased the 

speed of acid extrusion compared with control, suggesting an enhanced activity of 

NHE (Fig. 5D). 
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Figure 4. The effect of apelin on [Ca
2+] 

 transients measured by fluo-4 AM in normal 

cardiomyocytes (A). Apelin does not influence either the fluo-4 AM fluorescence 

amplitude (B) or the decay time (C). The nodrugl cells were superfused with normal 

Tyrode during the whole experiment even at the time point called isoproterenol  
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Figure 5. Changes in intracellular pH in the presence of 10 nmol/l apelin (A).  There 

was a significant increase in intracellular pH at both concentrations of apelin; the 

data are expressed in % of control values (B). A typical example of the change of NHE 

exchanger in normal cardiomyocytes superfused with 10 nmol/l apelin is shown in C. 

The acid-extrusion phase represents the activity of NHE exchanger and it was 

increased at both concentrations of apelin (D); the graph shows decay time as % of 

control (r.U=ratio unit)  
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3.3.5. Effect of Apelin on Intercellular Communication 

We subsequently assessed the electrophysiological properties of apelin in 

monolayers of cultured neonatal rat cardiomyocytes using multi electrode arrays. 

Recording of field potentials from spontaneously beating cultures revealed that 

apelin significantly increased conduction velocity (control: 18.34±1.4 cm/s; apelin: 

24.1±2.2 cm/s (5) (P<0.05), Fig. 6A) and decreased field potential duration (apelin 1 

nmol/l: 0.05±0.005 s (13); apelin 10 nmol/l: 0.048±0.005 s (15) P<0.05; Fig 6B). 

Isochronal maps showed reversible modifications in the patterns of activation (Fig. 

6C). Movies of the 3D reconstructed activation of the monolayer are available as a 

data supplement on the homepage to the original paper [Farkasfalvi et al.,BBRC, 357, 

889-895, 2007]. File Normal Tyrode_3D.avi shows a typical activation pattern under 

control conditions. Apelin changed the direction of activation in monolayer cultured 

cardiomyocytes (file apelin_3D.avi) and this effect was reversible upon wash out.  
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Figure 6. In cultured neonatal cardiomyocytes conduction velocity (CV)  increased (A) 

and field potential duration decreased with 10 nmol/l apelin (B). The isochronal map 

was constructed from local activation times (C); on the left the neonatal cultured 

cardiomyocytes were superfused with normal Tyrode and on the right with 1 

nmol/lol/l apelin. Apelin changed the direction of activation in monolayer cultured 

cardiomyocytes and this effect was reversible upon wash out.  
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3.4 . Conclusion  

APJ receptor-like immunoreactivity was detected in a transversely striated 

distribution associated with T-tubules as described previously and in the intercalated 

disc area, which is a novel finding.  

In isolated perfused heart model apelin increased sarcomere shortening of 

isolated adult ventricular myocytes, but it’s effect on isolated myocytes were 

transient and lasted 1-2 minutes, sarcomere shortening returned and remained at 

control levels for the rest of apelin superfusion. Apelin induced a transient increase 

in sarcomere shortening in failing cardiomyocytes too.  Notably, the maximal 

responses to apelin in normal and failing cardiomyocytes did not differ significantly. 

As the underlying signaling mechanism no changes in [Ca2+] transients were 

established but an increase in the intracellular pH and activity of NHE proved that 

apelin may increase the myofilament sensitivity to Ca 2+. 

This was the first attempt to establish the effect of apelin on 

electrophysiological properties. Apelin significantly increased conduction velocity 

and decreased field potential duration in spontaneously beating neonatal myocyte 

cultures and isochronal maps showed reversible modifications in the patterns of 

activation as well.  
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4. Adrenomedullin Regulates Cardiac Contractility via Extracellular Signal-

Regulated Protein Kinase-Dependent Mechanisms  

4.1. Introduction 

Mitogen-activated protein kinase (MAPK) superfamily represents an 

evolutionarily conserved signal transduction system that occupies a central position 

in the regulation of cell growth, proliferation, differentiation, apoptosis, and 

transformation in all eukaryotic cells (Widmann et al., 1999). Extracellular signal-

regulated kinases ERK1 and ERK2 (commonly referred to as ERK1/2) are members of 

the MAPK family. ERK1/2 signaling cascade is initiated in cardiac myocytes by 

activation of GPCRs, receptor tyrosine kinases, and by stress stimuli (Bueno and 

Molkentin, 2002; Wang, 2007). Accumulating data suggest that activation of the 

ERK1/2 signaling constitutes an essential adaptive mechanism int he myocardium, 

wherby it promotes cardiac myocyte survival in response to number of pathologic 

insults including ischemia-reperfusion injury (Lips et al., 2004) and long-term 

pressure overload  (Purcell et al., 2007). Although the ERK1/2 pathway has been 

implicated in various pathological conditions, its exact physiological role in the heart 

is not yet understood.  

AM with its cognate GPCR is widely expressed in the cardiovascular system 

and is emerging as an important regulator of cardiovascular homeostasis. AM, as an 

autocrine/paracrine factor, may protect the heart from pathological stress, e.g., AM 

inhibits maladaptive ventricular remodeling via reducing cardiomyocyte 

hypertrophy, apoptosis, and fibrosis (Ishimitsu et al., 2006). Moreover, AM is among 

the most  potent stimulators of cardiac contractility. Although it has been 

demonstrated that the peptide acts independently of the classical adenylylcyclase-

cAMP- PKA pathway (Szokodi et al., 1996; Szokodi et al., 1998), the precise 

underlying signaling mechanisms are not known. Previous studies have shown that 

AM increases ERK1/2 phosphorylation in various cell types including vascular smooth 

muscle cells (Iwasaki et al., 1998) and endothelial cells (Kim et al., 2003). In the 

present study, we tested wheather ERK1/2 signaling is activated by AM in the heart, 

and if so, whether it is involved in the inotropic response to AM. 
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4.2. Materials and Methods  

4.2.1. Materials 

Drugs used were AM (Phoenix Europe GmbH, Karlsruhe, Germany); AG1478 

and U0126 (Merck Chemicals Ltd., Nottingham, UK); zoniporide (generously supplied 

by Dr Ross Tracey, Pfizer Global Research and Development, Groton, Conn). AM was 

dissolved in distilled water; AG1478, U0126, and zoniporide were dissolved in 

dimethyl sulfoxide. The final concentration of each solvent was <0.003%. The 

addition of an appropriate concentration of each solvent caused no significant 

change in haemodynamic variables. 

4.2.2. Isolated Perfused Rat Heart Preparation 

 All protocols were reviewed and approved by the Animal Use and Care 

Committee of the University of Oulu and University of Pecs. Male 7-week-old 

Sprague-Dawley rats from the Center for Experimental Animals at the University of 

Oulu were used. Rats were decapitated and hearts were quickly removed and 

arranged for retrograde perfusion by the Langendorff technique as described 

previously (Szokodi et al., 1998; Szokodi et al., 2002; Szokodi et al., 2008; Kinnunen 

et al., 2000). The hearts were perfused with a modified Krebs-Henseleit bicarbonate 

buffer (see chapter 3.2.8.), pH 7.40, equilibrated with 95% O2-5% CO2 at 37°C. Hearts 

were perfused at a constant flow rate of 5.5 mL/min with a peristaltic pump 

(Minipuls 3, model 312). Heart rate was maintained constant (302±1 beats/min) by 

atrial pacing using a Grass stimulator (model S88, 11 V, 0.5 ms). Contractile force 

(apicobasal displacement) was obtained by connecting a force displacement 

transducer (Grass Instruments, FT03) to the apex of the heart at an initial preload 

stretch of 2 g. Perfusion pressure reflecting coronary vascular resistance was 

measured by a pressure transducer (model MP-15, Micron Instruments, Los Angeles, 

Calif) situated on a side arm of the aortic cannula. 

4.2.3. Experimental Design 

A 40-minute equilibration period and a 5-minute control period were 

followed by addition of various drugs to the perfusate for 30 minutes. The 

concentrations of U0126 (1.5 μmol/L), AG1478 (1 μmol/L), and zoniporide (1 μmol/L) 

were selected because these concentrations have been demonstrated to suppress 

ERK1/2 (Tenhunen et al., 2004; Szokodi et al., 2008), epidermal growth factor 

receptor (EGFR) tyrosine kinase activity (Thomas et al., 2002) (Szokodi et al., 2008) 
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and inhibit Na+/H+ exchanger 1 (NHE1) (Knight et al., 2001; Szokodi et al., 2002; 

Szokodi et al., 2008), respectively. In the final stage of the experiments, the left 

ventricles were frozen in liquid nitrogen and stored at –80 oC until assayed. 

4.2.4. Immunoblot Analysis 

Westernblotting was performed as described previously (Szokodi et al., 

1998). Left ventricular tissue was homogenized in lysis buffer containing of 20 

mmol/L Tris, (pH 7.5), 10 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L EGTA, 

supplemented with 1 mmol/L β-glycerophosphate, 2 mmol/L dithiothreitol (DTT), 1 

mmol/L Na3VO4, 10 μg/mL leupeptin, 10 μg/mL aprotinin, 2 μg/mL pepstatin, 2 

mmol/L benzamidine, 1 mmol/L phenylmethylsulfonyl fluoride (PMSF) and 20 

mmol/L NaF. Total protein samples (30 μg) were loaded onto SDS-PAGE and 

transferred to nitrocellulose membranes. The membranes were blocked in 5% 

nonfat milk and incubated with indicated primary antibody overnight. Protein levels 

were detected using enhanced chemiluminescence. For a second staining, the 

membranes were stripped for 30 minutes at 60 °C in stripping buffer (62.5 mmol/L 

Tris (pH 6.8), 2% SDS, and 100 mmol/L β-mercaptoethanol). The antibodies used 

were anti-phospho-ERK1/2 and anti-ERK1/2 (Cell Signaling Technology Inc., Hitchin, 

Hertfordshire, UK). 

4.2.5. Statistical Analysis 

Results are presented as mean±SEM. Two-way repeated-measures ANOVA was used 

to evaluate the statistical significance of differences among groups for cardiac 

contractility. When significant differences were detected for the treatment-by-time 

interactions, a Bonferroni post hoc test was used for specific comparisons. All other 

parameters were analyzed with 1-way ANOVA followed by Bonferroni post hoc test. 

Differences were considered statistically significant at the level of P<0.05. 
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4.3. Results 

4.3.1. Extracellular Signal-Regulated Kinase1/2 and Adrenomedullin-Induced 

Positive Inotropic Effect 

 To define the role of ERK1/2 in the cardiac effects of AM, we determined the 

impact of AM stimulation on the activation of these kinases. Western analysis 

revealed that infusion of AM (1 nmol/l) for 30 minutes significantly increased left 

ventricular phospho-ERK1/2 levels (Figure 7A) in the rat heart preparation. To 

examine whether activation of ERK1/2 contributes to the positive inotropic action of 

AM, we assessed the effect of U0126, which is a potent specific inhibitor of MEK1/2, 

the upstream regulator of ERK (Tenhunen et al., 2004; Szokodi et al., 2008). 

Administration of U0126 (1.5 μmol/l) markedly reduced the levels of phospho-

ERK1/2 both in the control and AM-stimulated hearts (Figure 7A). Infusing U0126 in 

combination with AM, the AM-induced inotropic effect decreased significantly, the 

maximal reduction being 40% (P<0.01; Figure 7B). Infusion of U0126 alone had no 

effect on contractile force (P=NS, Figure 7B). 
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Figure 7. ERK1/2 signaling is required for AM-mediated increase in contractility. A, 

Western blot analysis for ERK1/2 phosphorylation in left ventricular tissue samples. In 

isolated rat hearts, infusion of AM (1 nmol/l) for 30 minutes increased phospho-

ERK1/2 levels and U0126 (1.5 μmol/l), a MEK1/2 inhibitor, abolished AM-induced 

ERK1/2 phosphorylation. B, U0126 significantly attenuated AM-enhanced 

contractility. DT indicates developed tension. Results are expressed as a percent 

change versus baseline values. Data were analyzed by 2-way repeated-measures 

ANOVA followed by multiple comparisons with the Bonferroni post hoc test and are 

reported as mean±SEM (n=4-6 for each group). *P<0.01 and †P<0.001 vs control and 

U0126; ‡P<0.01 vs AM. 

  

  



47 
 

4.3.2. Upstream Activators of Extracellular Signal-Regulated Kinase1/2: Role of 

Epidermal Growth Factor Receptors 

 In cultured rat ventricular myocytes, agonist-stimulated ERK1/2 

phosphorylation can occur via transactivation of EGFR (Thomas et al., 2002). To 

define the importance of EGFRs in ERK1/2 activation in the adult rat heart, we used a 

specific EGFR tyrosine kinase inhibitor AG1478 (Szokodi et al., 2008; Thomas et al., 

2002). AG1478 (1 μmol/L) significantly reduced AM-induced increase in phospho-

ERK1/2 levels (Figure 8A). Moreover, in the presence of AG1478 the inotropic 

response to AM was significantly suppressed, the maximal reduction being 45% 

(P<0.001; Figure 8B). Infusion of AG1478 alone had no effect on developed tension 

(P=NS, Figure 8B). 

 

4.3.3. Downstream Targets of Extracellular Signal-Regulated Kinase1/2: Role of 

Na
+
/H

+
 Exchanger  

The ERK1/2 pathway has been identified as the main regulator of NHE-1 

phosphorylation in cardiac myocytes (Moor and Fliegel, 1999). To assess the 

contribution of NHE-1 to the effect of AM, we used zoniporide, a potent and 

selective inhibitor of NHE-1 (Knight et al., 2001; Szokodi et al., 2002; Szokodi et al., 

2008). Infusion of zoniporide (1 μmol/L) alone had no effect on contractile force 

(P=NS; Figure 9). When given together with AM, zoniporide significantly attenuated 

the AM-induced positive inotropic effect, the maximal reduction being 46% 

(P<0.001; Figure 9).  
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Figure 8. EGFR transactivation contributes to AM-mediated increase in contractility. 

A, Western blot analysis shows that AG1478 (1 μmol/l), an EGFR tyrosine kinase 

inhibitor, reduced AM-induced increases in ERK1/2 phosphorylation. B, AG1478 

reduced AM-induced increase in contractility. Data are mean±SEM (n=4-6 for each 

group). *P<0.01 and †P<0.001 vs control and AG1478; ‡P<0.001 vs AM. 
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Figure 9. NHE1 is involved in the inotropic response to AM. Zoniporide (1 μmol/l), a 

NHE1 inhibitor, attenuated AM-induced increase in contractility. Data are mean±SEM 

(n=4-6 for each group). *P<0.01 and †P<0.001 vs control and Zoniporide; ‡P<0.001 vs 

AM. 

 

4.4. Conclusion 

Our data are the first to demonstrate that AM increases cardiac contractility 

via activation of ERK1/2 in the intact adult rat heart. Moreover, our results show that 

EGFR acts as the upstream regulator and NHE-1 as the downstream effector of 

ERK1/2 in AM signaling. Identification of novel signaling pathways that promote 

cardiomyocyte survival while improving contractile function may offer an attractive 

approach of treating patients with heart failure. Therefore, further studies are 

required to test the hypothesis that activation of MEK1/2–ERK1/2 signaling, 

possessing such beneficial effects, can eventually rescue the failing heart. 
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5. Discussion 

5.1. Direct Effect of Apelin on Cardiomyocyte Contractility and Electrophysiological 

Properties 

The cellular mechanisms underlying the ex vivo (Szokodi et al., 2002) and in 

vivo effects of apelin on left ventricular function (Berry et al., 2004; Ashley et al., 

2005) required further investigation. The present study provides the first direct 

evidence for a positive inotropic effect of apelin in adult ventricular myocytes. Our 

results suggest that the positive inotropic effect of apelin is due to stimulation of the 

sarcolemmal NHE, leading to intracellular alkalinization and, possibly, increased 

myofilament sensitivity to Ca2+. In contrast to previous studies in intact hearts 

(Szokodi et al., 2002; Berry et al., 2004; Ashley et al., 2005) where apelin induced a 

sustained increase in contractility, our investigation highlights the fact that apelin 

induced a transient increase in contractility in cardiomyocytes, suggesting that 

additional mechanisms are present in the whole tissue. Furthermore, our data define 

a previously unrecognized role of apelin in the regulation of cardiac conduction as 

apelin increases conduction velocity in monolayers of cultured neonatal rat 

cardiomyocytes. 

5.1.1. Apelin and Cardiomyocyte Contractility 

Apelin induced a transient increase in sarcomere shortening in adult rat 

cardiomyocytes, which was not accompanied by changes in cytoplasmic Ca2+ 

transients. Charo et al. confirmed our findings in apelin-APJ double knock out mice 

model(Charo et al., 2009). Since the NHE has been indicated as a target for apelin 

(Hosoya et al., 2000) and changes in intracellular pH strongly shift the [Ca2+]-

contractility curve in cardiac tissue (Kohmoto et al., 1990), we investigated the 

effects of apelin on intracellular pH and on NHE activity. We found that apelin 

increased pH and NHE activity in cardiomyocytes. Moreover, confocal 

immunofluorescence microscopic imaging showed that APJ is localized in the 

intercalated disc regions, which accommodate NHE as well (Snabaitis et al., 2006). 

Taking previous studies into consideration demonstrating that the apelin-induced 

increase in contractility was significantly attenuated by a specific inhibitor of NHE in 

isolated perfused rat hearts (Szokodi et al., 2002), the present data indicate that 

intracellular alkalinization with subsequent sensitization of cardiac myofilaments to 

[Ca2+] can be involved in the inotropic effect of apelin. 
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Dai et al showed that at higher concentrations of apelin right ventricular 

failing trabeculae increased the developed tension compared with non-failing 

trabeculae (Dai et al., 2006). They proposed that apelin had a predominant role in 

regulating cardiac contractility in the failing myocardium. We investigated the 

hypothesis that the increased apelin-induced inotropy in heart failure is brought 

about by augmented effects on cardiac myocytes. However, in our study, despite a 

transient increase in sarcomere shortening, there was no additional effect of apelin 

on failing compared with normal cardiomyocytes. 

Numerous studies have demonstrated the effect of exogenous apelin in the 

regulation of contractility, but only the recently published data reveal the 

importance of the endogenous apelin-APJ pathway. Apelin and APJ knock out mice 

were examined. Under basal condition both of them manifested modest decrements 

in contractile function while with exercise stress both mutant lines demonstrated 

consistent and striking decrease in exercise capacity (Charo et al., 2009).    

An intriguing finding of this study is the lack of a sustained effect of apelin on 

cell contractility. This is in obvious contrast with previous observations in intact 

hearts, where apelin possessed a slowly developing but sustained inotropic response 

(Szokodi et al., 2002; Berry et al., 2004; Ashley et al., 2005). In isolated isovolumic rat 

hearts apelin enhanced preload-induced increase in dP/dtmax only at higher levels of 

left ventricular end-diastolic pressure, suggesting that the peptide augments cardiac 

contractility along the upper part of the ascending limb of the Starling relation 

(Szokodi et al., 2002). If mechanical load is crucial in determining the effects of 

apelin, isolated unloaded cardiomyocytes would have a limited inotropic response 

upon application of apelin. Another explanation may be the increased sodium 

current due to the apelin infusion. Chamberland et al. demonstrated that apelin 

increases cardiac sodium current whithin 5 minutes of perfusion and reached steady 

state at 20 minutes (Chamberland et al., 2010). Thus; these results may suggest that 

increased NHE activity and enhanced cardiac sodium current underlie the positive 

inotropic response to apelin.  
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Figure 10. Putative signaling mechanisms of apelin in the heart. Stimulation of APJ by 

apelin evokes phosphorylation of PKC leading to activation of NHE, NCX and Na
+
 

channels. The positive inotropic effect of apelin is the result of sensitization of cardiac 

myofilaments to Ca
2+

 due to intracellular alkalosis and increased Ca
2+

 influx through 

the NCX operating in reverse mode (Chamberland et al., 2010; Szokodi et al., 2002). 

5.1.2. Apelin and Electrical Conduction 

Our results demonstrate that apelin caused an increase in the frequency of 

spontaneous activation, conduction velocity and a decrease of the field potential 

duration in monolayers of cultured neonatal cardiomyocytes. The underlying 

mechanism, explained by Chamberland et al in2009, is due to the increase in cardiac 

sodium current by apelin, which accelerates the initial depolarization of ventricular 

action potential resulting in increased excitability of cardiac cells (Chamberland et 

al., 2010). The localization of APJ receptor in the intercalated disc region, the cellular 

structure involved in the electric coupling between cardiomyocytes, further supports 

the hypothesis that apelin may play an important role in intercellular 

communication. The effects of apelin on electrophysiological properties of cardiac 

tissue may explain the changes in APJ-apelin system observed in chronic arrhythmias 

and after cardiac resynchronization therapy (Ellinor et al., 2006). The specific role of 

apelin in regulating cardiac electrophysiology needs to be investigated further. 
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5.1.3. Summary  

 We have provided the first evidence that apelin has direct effects on the 

propagation of action potential and contractility in normal cardiomyocytes. The 

latter, however, possibly mediated by action on the NHE, is transitory and apelin 

may require other mediators and/or mechanical loading to exert its lasting inotropic 

action. 
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5.2 The Role of Adrenomedullin in the Regulation of Cardiac Contractility  

Considerable evidence suggests that AM acts an autocrine or paracrine factor 

in regulating cardiac contractility. AM has been considered to be among the most 

potent endogenous positive inotropic agent, however the literature data are 

controversial and the underlying intracellular signaling mechanisms are still 

discussed.  

5.2.1. Signaling Mechanism of Adrenomedullin 

 Experimental data suggests that activation of the adenylyl cyclase-cAMP 

system, which is one of the major pathways for regulation of cardiac contractility, 

may also mediate the cardiac effect of AM.  High doses of AM augmented cardiac 

contractility in association with increased cAMP formation and inhibition of PKA 

could abolish the positive inotropic effect of the peptide in rat papillary muscles 

(Ihara et al., 2000). However, other experimental data indicate that cAMP is not the 

major second messenger of the inotropic effect of AM at physiologically more 

relevant concentrations. First, AM failed to to increase left ventricular cAMP content 

in perfused rat hearts. Second, PKA inhibition did not reduce the positive inotropic 

effect of AM. Finally, the response to AM could not be enhanced in the presence of 

phosphodiesterase inhibitor. In contrast of the cAMP mediated pathway the 

importance of PKC activation in the positive inotropic effect of AM was mentioned 

by Szokodi et al. (Szokodi et al., 1998). Activated PKC can phosphorylate a wide 

spectrum of cellular proteins, including L-type Ca2+ channel resulting in increased 

Ca2+ influx.  Taken together the literature data, the signaling pathway of positive 

inotropic effect of AM is only partially understood and it indicates further research 

to find alternative signaling mechanisms.   

5.2.2. Alternative Intracellular Signal Transduction Pathways  

Growing body of evidence suggest that activation of the MEK1/2–ERK1/2 

pathway protects the heart from various pathological insults. ERK1/2 signaling has 

been reported to afford cardioprotection in vivo against ischemia–reperfusion injury 

by reducing myocyte apoptosis (Lips et al., 2004). Recently, the requirement of 

ERK1/2 signaling in stress adaptation has been directly addressed using Erk1
-/- and 

Erk2
+/- mice, as well as transgenic mice with inducible expression of an ERK1/2–

inactivating phosphatase in the heart (dual-specificity phosphatase 6). Although the 

hypertrophic response is not affected in these models after long-term pressure 

overload, mice with selective ablation of cardiac ERK1/2 signaling show greater 
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propensity towards heart failure through increased myocyte apoptosis (Purcell et al., 

2007). Moreover, genetic deletion of type 5 adenylyl cyclase results in the 

upregulation of the MEK1/2–ERK1/2 pathway, which in turn protects the heart from 

aging-induced cardiomyopathy in terms of preservation of left ventricular function 

and resistance to myocyte apoptosis (Yan et al., 2007). Though systolic function is 

clearly affected in these transgenic models, it has only been established recently that 

ERK1/2 can directly modulate cardiac contractility. Our recent studies have provided 

evidence for the functional importance of ERK1/2 signaling in the acute regulation of 

cardiac contractility by showing that endothelin-1 increases contractile force via the 

ERK1/2  pathway (Szokodi et al., 1998). In the present study, the GPCR agonist AM 

produced a significant increase in LV phospho-ERK1/2 levels, and pharmacological 

inhibition of ERK1/2 activation markedly attenuated the AM–induced increase in 

contractile force in the intact rat heart. Previously we have demonstrated that the 

positive inotropic response to AM is independent of the adenylyl cyclase–cAMP–PKA 

pathway (Szokodi et al., 1998), and our current data indicate that ERK1/2 signaling 

serves as a key mediator of the inotropic effect of AM. While prolonged stimulation 

of the adenylyl cyclase–cAMP–PKA cascade leads to serious adverse cardiac effects, 

activation of the MEK1/2–ERK1/2 pathway may enhance both cardiac contractility 

and overall stress resistance of the myocardium. 

Transactivation of EGFR has been established as a major mechanism for GPCR 

agonists to activate ERK1/2 (Thomas et al., 2002). Stimulation of GPCRs induces 

metalloproteinase-mediated ectodomain shedding of membrane-anchored 

proheparin-binding EGF. Soluble heparin-binding EGF then binds to and activates 

EGFR, triggering MEK1/2–ERK1/2 phosphorylation (Wetzker and Bohmer, 2003). 

Notably, pharmacological inhibition of EGFR by erlotinib provokes dilated 

cardiomyopathy with reduced cardiac function in the face of chronic β-adrenergic 

stimulation (Noma et al., 2007). Recently, we have found that transactivation of 

EGFR is a critical step for endothelin-1 to enhance cardiac contractility via the 

MEK1/2–ERK1/2 cascade (Szokodi et al., 2008). In line with these observations, 

inhibition of EGFR transactivation by the specific EGFR tyrosine kinase inhibitor 

AG1478 was accompanied by significant attenuation of AM–induced increase in 

phospho-ERK1/2 levels as well as the inotropic response to AM. Thus, the present 

data highlight the importance of EGFR in the regulation of myocardial contractility 

acting as an upstream signaling molecule modulating MEK1/2–ERK1/2 cascade.  

Activated ERK1/2 can phosphorylate various cellular proteins including the 

sarcolemmal NHE1 (Moor and Fliegel, 1999). In the present study, zoniporide, a 
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highly selective inhibitor of NHE1, attenuated the inotropic response to AM 

suggesting that NHE-1 may serve as a downstream effector of ERK1/2 signaling. 

Stimulation of NHE1 can lead to intracellular alkalinization and sensitization of 

cardiac myofilaments to intracellular Ca2+. On the other hand, NHE-1-mediated 

accumulation of intracellular Na+ can indirectly promote a rise in intracellular levels 

of Ca2+ via reverse mode NCX exchanger (Kentish, 1999). The finding that ≈50% of 

the AM–induced positive inotropic effect remained unaffected after inhibition of the 

EGFR–ERK1/2–NHE-1 pathway indicates the existence of additional signaling 

mechanisms such as PKC (Szokodi et al., 1998) or phosphoinositide 3-kinase (Kim et 

al., 2003). 

 

 

 

Figure 11. Putative signaling mechanisms activated by adrenomedullin. ERK1/2 

signaling serves as a key mediator of the inotropic effect of AM. EGFR acts as the 

upstream regulator and NHE-1 as the downstream effector of ERK1/2 in AM 

signaling. 

  



57 
 

5.2.3. Summary 

Our data are the first to demonstrate that AM increases cardiac contractility 

via activation of ERK1/2 in the intact adult rat heart. Moreover, our results show that 

EGFR acts as the upstream regulator and NHE-1 as the downstream effector of 

ERK1/2 in AM signaling. Identification of novel signaling pathways that promote 

cardiomyocyte survival while improving contractile function may offer an attractive 

approach of treating patients with heart failure. On the other hand, MEK1/2–ERK1/2 

signaling is activated in most human tumors, and clinical trials of specific MEK1/2 

inhibitors are underway (Sebolt-Leopold and Herrera, 2004). Our results raise the 

possibility that cancer therapies that target the MEK1/2–ERK1/2 pathway might 

cause adverse cardiac side effects. 
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6. Novel Findings 

• Apelin increases sarcomere shortening transiently in normal and failing isolated adult 

ventricular myocytes.  

 

• Apelin has no effect on the amplitude or time course of [Ca2+] transients. 

 

• Apelin increases myofilament sensitivity to Ca2+ due to the stimulation of 

sarcolemmal NHE. 

 

• APJ receptor is localised in the intercalated disc region. 

 

• Apelin influences the electrophysiological properties in monolayer of cultured 

neonatal rat cardiomyocytes. 

 

• AM increases cardiac contractility via activation of ERK1/2 in the intact adult rat 

heart. 

 

• EGFR acts as the upstream regulator and NHE1 as the downstream effector of 

ERK1/2 in AM signaling. 
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