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1. INTRODUCTION 

 

1.1 Background 

 

Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their 

respective roles in resorbing and forming bone. Bone remodeling is a spatially 

coordinated lifelong process whereby old bone is removed by osteoclasts and replaced 

by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in 

many pathologic states, which leads to a loss of bone mass with each remodeling 

cycle. This resorption process could be generalized net loss (e.g: osteoporosis) or 

focal destruction (e.g.: RA joint destruction or periprosthetic osteolysis). Bone 

resorption is dependent on a cytokine known as RANKL (receptor activator of 

nuclear factor kappa B ligand), a TNF (tumor necrosis factor) family member that is 

essential for osteoclast formation, activity and survival in normal and pathologic 

states of bone remodeling. The catabolic effects of RANKL are prevented by OPG 

(osteoprotegerin), a TNF receptor family member that binds RANKL and thereby 

prevents activation of its single cognate receptor called RANK. Osteoclast activity is 

likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies 

in numerous animal models of bone disease show that RANKL inhibition leads to 

marked suppression of bone resorption and increases in cortical and cancellous bone 

volume, density and strength. RANKL inhibitors also prevent focal bone loss that 

occurs in animal models of rheumatoid arthritis.  

Pathologic bone resorption around endoprosthesises is a major issue in 

orthopedic surgery due to the formation of an agressive inflammatory granulomatous 

tissue, caused by particulate wear debris, that leads to the loosening of total joint 

arthroplasties. Rheumatoid arthritis also results focal bone erosions where the 

inflammatory process targets the articular cartilage, the bone at the joint margins, as 

well as periarticular and subchondral bone, and originated from the inflamed 

synovium. The characteristics of the inflamed tissue around the destructive bone 

resorbing zone shows several similarities between the two different pathologies. The 

dominant cell type at the sites of invasion into the adjacent bone is synovial fibroblast 

and in both tissues similar pro- and anti-infalmmatory cytokines can be detected. 

During the infalmmatory process the thickness of the synovial like tissue is increasing 
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according to the influx and proliferation of inflammatory cells as well as the increased 

proliferation and survival of resident cells, although the terminal layer of the tissue 

matrix predominantly contains 10-15 cell layers of fibroblast like cells. The inflamed 

tissue also shows an increased neoangiogenesis, facilitating the influx of 

inflammatory cells. Overall the pathological processes of osteoclastogenesis, 

dysregulated bone formation, granulomatosus tissue formation and neovascularization 

are simultaneous and overlapping events that cannot be separeted. However T cells 

and other inflammatory cells are rarely seen at the site of bone resorption, either in 

RA, in corresponding animal models, or in periprosthetic osteolysis; rather fibroblast-

like and macrophage-like cells with osteoclasts, and less frequently osteoblasts 

occupy the resorbed areas of bone. In this thesis we were focusing on the role of 

synovial fibroblasts in this mandatory process of pathologic bone resorption which 

leads to prosthesis looseneing and rheumatoid joint destruction. 

 

1.2. Bone resorption 

 

 Bone resorption is a mandatory process involved in both physiological and 

pathological turnover of bone tissue, which means localized degradation of fully 

mineralized bone matrix, including removal of both inorganic and organic matrix 

components. At the moment the only cell known to be capable of doing this is 

osteoclast. Some other phagocytic cells, such as macrophages, have been suggested to 

resorb bone, but so far they have only been shown to scratch the surface of bone 

matrix, not to dissolve deep resorption lacunas as osteoclasts do1. This feature gives 

osteoclasts a major role in modeling and remodeling of bone both in physiological 

and pathological conditions, such as rheumatoid arthritis or periprosthetic osteolysis. 

Each bone remodeling cycle leads to a local loss of bone due to a deficiency in the 

amount of new bone formed by decreased osteoblast activity relative to old bone 

removed by increased activity of osteoclasts2,3.  Researchers in the field of bone 

biology have, for a long time, sought to understand the mechanisms responsible for 

the ‘crosstalk’ between osteoblasts and osteoclasts. A major step towards answering 

this question was provided by the discovery of the RANK-RANKL-OPG pathway in 

the late nineties, and its critical involvement in the cellular regulation of bone 

remodeling4. 

  Cytokine-mediated RANK/RANKL/osteoprotegerin (OPG) regulation, 
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pathologic bone resorption in RA (Figure 1.), and RANKL expression on different 

cell types such as activated T-cells, macrophages, and osteoblasts have been 

extensively studied, but we have much less information about the involvement of 

synovial fibroblasts in the bone remodelling process, although fibroblasts are the 

dominant cell type in the rheumatoid synovium and the periprosthetic interfacial 

membrane (IFM). These facts led us to investigate synovial fibroblasts via their 

involvement in pathologic bone resorption.  

 

 

 
 

 
Figure 1. Mechanisms of bone destruction in arthritis. In rheumatoid arthritis, 
inflammatory synovium invades and destroys bone, a process which is mediated by 
osteoclasts. Cells in the synovium include synovial macrophages and fibroblasts in 
addition to infiltrating CD4+ T cells. Interleukin-17 (IL-17)-secreting T helper cells 
(TH17 cells) are the only osteoclastogenic TH-cell subset (THOc cells) characterized thus 
far. TH17 cells do not produce interferon-γ (IFN-γ), which suppresses RANKL signaling, 
but do secrete relatively large amounts of IL-17, which induces RANKL on synovial 
fibroblasts. IL-17 also stimulates local inflammation and activates synovial macrophages 
to secrete pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6. These cytokines 
activate osteoclastogenesis by either directly acting on osteoclast precursor cells or 
inducing RANKL on synovial fibroblasts. TH17 cells also express RANKL on the cell 
membrane, which partly contributes to the enhanced osteoclastogenesis (the dotted line) 
(Schematic figure is adapted from Nakashima et al. J Clin Immunol (2009) 29:555–567) 
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1.3. Osteoclasts, osteoclastogenesis 

  

 Osteoclasts are the only cells that are known to be capable of resorbing bone 

(Figure 2). Activated multinucleated osteoclasts are derived from mononuclear 

precursor cells of the monocyte-macrophage lineage5. Mononuclear monocyte-

macrophage precursor cells have been identified in various tissues, but bone marrow 

monocyte-macrophage precursor cells are thought to give rise to most osteoclasts. 

Osteoclast formation, activation, and resorption are regulated by the ratio of receptor 

activator of NF-κB ligand (RANKL) to osteoprotegerin (OPG; Figure 1), IL-1 and IL-

6, macrophage colony stimulating factor (M-CSF), parathyroid hormone, 1,25-

dihydroxyvitamin D, and calcitonin5,6. Resorbing osteoclasts secrete hydrogen ions 

via H+-ATPase proton pumps and chloride channels in their cell membranes into the 

resorbing compartment to lower the pH within the bone-resorbing compartment to as 

low as 4.5, which helps mobilize bone mineral7. Resorbing osteoclasts secrete 

tartrate-resistant acid phosphatase, cathepsin K, matrix metalloproteinase 9, and 

gelatinase from cytoplasmic lysosomes8 to digest the organic matrix, resulting in 

formation of saucer-shaped Howship’s lacunae on the surface of trabecular bone 

(Figure 2) and Haversian canals in cortical bone.  

 

 

 
 

 
 
 
 
 
Figure 2. Multinucleated osteoclasts resorb bone 
to form resorption pits known as Howship’s 
lacunae. (Schematic figure is adapted from Clarke 
B et al. Clin. J. Am. Soc. Nephrol. 2008 Nov;3 
Suppl 3:S131-9) 

 
 
 

 

 The resorption phase is completed by mononuclear cells after the 

multinucleated osteoclasts undergo apoptosis9,10. RANKL and macrophage CSF (M-

CSF) are two cytokines that are critical for osteoclast formation. Both RANKL and 

M-CSF are produced mainly by marrow stromal cells and osteoblasts in membrane-

bound and soluble forms, and osteoclastogenesis requires the presence of stromal 
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cells and osteoblasts in bone marrow11. RANKL belongs to the TNF superfamily and 

is critical for osteoclast formation. M-CSF is required for the proliferation, survival, 

and differentiation of osteoclast precursors, as well as osteoclast survival and cy- 

toskeletal rearrangement required for bone resorption (Figure 3).  

 
 
 

 
Figure 3. Regulation of osteoclastogenesis by receptor activator of NF-κB ligand (RANKL) 
and osteoprotegerin (OPG): Colony-stimulating factor-1 (CSF-1) normally stimulates 
osteoclast recruitment. Two forms of RANKL are produced by osteoblasts and osteoblast 
precursors to stimulate osteoclast recruitment and activation. The membrane-bound form 
directly interacts with membrane-bound RANK molecules on adjacent osteoclast precursors. 
The soluble form is released from osteoblasts or osteoblast precursors to diffuse through the 
intercellular space and interact with membrane-bound RANK molecules on nearby osteoclast 
precursors. OPG acts as a decoy receptor to prevent RANKL or sRANKL from interacting 
with RANK. The ratio between RANKL and OPG produced by osteoblasts and osteoblast 
precursors controls RANKL-stimulated osteoclastogenesis. (Schematic figure is adapted 
from Bart Clarke et al. Clin J Am Soc Nephrol 3: S131–S139, 2008) 

 
 
 

 OPG is a membrane-bound and secreted protein that binds RANKL with high 

affinity to inhibit its action at the RANK receptor12. Bone resorption depends on 

osteoclast secretion of hydrogen ions and cathepsin K enzyme. H+ ions acidify the 

resorption compartment beneath osteoclasts to dissolve the mineral component of 

bone matrix, whereas cathepsin K digests the proteinaceous matrix, which is mostly 

composed of type I collagen5. Osteoclasts bind to bone matrix via integrin receptors 

in the osteoclast membrane linking to bone matrix peptides. The β1 family of integrin 

receptors in osteoclasts binds to collagen, fibronectin, and laminin, but the main 

integrin receptor facilitating bone resorption is the αvβ3 integrin, which binds to 
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osteopontin and bone sialoprotein13. 

 Binding of osteoclasts to bone matrix causes them to become polarized, with the 

bone resorbing surface developing a ruffled border that forms when acidified vesicles 

that contain matrix metalloproteinases and cathepsin K are transported via micro- 

tubules to fuse with the membrane. The ruffled border secretes H+ ions via H+-

ATPase and chloride channels and causes exocytosis of cathepsin K and other 

enzymes in the acidified vesicles14. Upon contact with bone matrix, the fibrillar actin 

cytoskeleton of the osteoclast organizes into an actin ring, which promotes formation 

of the sealing zone around the periphery of osteoclast attachment to the matrix. The 

sealing zone surrounds and isolates the acidified resorption compartment from the 

surrounding bone surface15. Disruption of either the ruffled border or actin ring blocks 

bone resorption. Actively resorbing osteoclasts form podosomes, which attach to bone 

matrix, rather than focal adhesions as formed by most cells. Podosomes are composed 

of an actin core surrounded by αvβ3 integrins and associated cytoskeletal proteins. 

 

1.4 Angiogenesis and hypervascularization in inflamed tissues 

 

 Other crucial process in rheumatoid arthritis and periprosthetic osteolysis is 

angiogenesis which has been always associated with inflammation and pathologic 

granulomatousos tissue development. In both pathologies the inflamed tissues are 

hypervascularized, which requires angiogenesis and neovascularization. Angiogenesis 

is the formation of new capillaries from pre-existing vessels. A number of soluble and 

cell-bound factors may stimulate neovascularization16. The perpetuation of 

angiogenesis involving numerous soluble and cell surface-bound mediators has been 

associated with inflammation. These angiogenic mediators, among others, include 

growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-

inducible factors (HIFs), as well as pro-inflammatory cytokines, various chemokines, 

cell adhesion molecules, proteases and others17,18. A perpetuation of angiogenesis 

leading to enhanced endothelial surface and perpatuated leucocyte ingress into 

inflamed tissues has been described in Rheumatoid arthritis (RA), as well as other 

types of arthritis, connective tissue disorders and aseptic loosening of THA19,20. Thus, 

increased angiogenesis and defective vasculogenesis have important clinical 

relevance for RA and periprosthetic osteolysis. In our angiogenesis study we were 
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focusing on angiogenic factors expressed by IFM fibroblasts compared to RA 

synovial fibroblasts. 

 Overall, the pathological processes of osteoclastogenesis, dysregulated bone 

formation, granulomatosus tissue formation and neovascularization are simultaneous 

and overlapping events that cannot be separeted.  

 

1.5 Rheumatoid arthritis and its experimental animal models 

 

Rheumatoid arthritis is a common chronic inflammatory polyarthritis of 

worldwide distribution, with a female predominance. Although the cause of RA 

remains unknown, numbers of evidences are suggestive of an autoimmune etiology. 

Cell-mediated immune response and autoantibodies to cartilage proteoglycans 21 

and/or collagen type II 22-24 have been detected in RA. These autoimmune reactions to 

cartilage components are, most likely, a consequence of secondary immune response 

raised against fragments of macromolecules released by local inflammatory 

processes. A putative figure of human RA summarizes the hypothetical immune 

mechanisms involved in this disease (Fig.4).  

Experimental animal models of inflammatory arthritis (e.g., adjuvant arthritis, 

various forms of antigen-induced arthritis, collagen-induced arthritis and 

proteoglycan-induced arthritis) have provided important advances in understanding 

possible mechanisms for human disease and in developing therapeutic agents for 

treatment in human pathology. The most frequently studied animal models are those 

induced in rats or mice25. Short descriptions of the relevant models of RA are 

included:  

 

1.5.1. Antigen-induced arthritis (AIA) 

 

AIA is based upon an immune response against a foreign antigen to which the 

animals are sensitized prior to induction of arthritis. Inflammation is induced by local 

injection of the antigen into the knee joint of the immunized animals26. The severity 

of local inflammation and subsequent cartilage damage depend on the level of 

sensitization against the foreign antigen rather that the type of antigen or animal 

strain27,28. The inflammation is characterized by T-cell infiltration, synovial cell 

proliferation and loss of aggrecan due to the activation of various matrix metallo 
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proteinases (MMPs). These MMPs include stromelysin and aggrecanase, which 

generate neoepitopes with known sequences of aggrecan (-VDIPEN and –NITEGE). 

This unique condition allows us to detect early cartilage damage by detecting these 

neoepitops using specific antibodies29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 
Figure 4. Immunopathogenesis of rheumatoid arthritis (Schematic figure is adapted with 
minor modifications from Cotran-Kumar-Collins: Pathologic basis of diseases 6th ed.W.B. 
Saunders Co. 1998.) 
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1.5.2. Collagen-induced arthritis (CIA) 

 

Collagen-induced arthritis can be elicited in susceptible strains of rats30, 

mice31 or in monkeys32 by immunization with native type II collagen in complete or 

incomplete Freund’s adjuvant. CIA is induced in susceptible DBA/1 strain of mice by 

native heterologous type II collagen31. In early stages of CIA, fibrin deposition occurs 

and anti-collagen antibodies bind to the joint cartilage and activate complement 

pathways. Erosive polyarthritis typically develops 10-14 days after the primary 

immunization or a week after a booster injection given intraperitoneally in FCA on 

day 21. Autoreactive T cells, as well as B cells, which produce antibodies to type II 

collagen, play critical roles in disease progression.  

 

1.5.3. Proteoglycan-induced arthritis (PGIA) 

 

Immunization of susceptible mouse strains (BALB/c, C3H/HeJCr) with 

human cartilage proteoglycan induces progressive polyarthritis33-35. The disease 

develops in all female BALB/c mice when human fetal or newborn proteoglycans are 

injected intraperitoneally in complete Freund’s adjuvant34. Although fetal human and 

calf proteoglycans have many biochemical and immunological similarities, calf 

proteoglycans treated and administered the same way does not produce arthritis in 

BALB/c mice33,34,36. Thus one may postulate that the arthritogenic structures are 

present in particular portions of the core protein. 

 This mouse model shows many similarities to human rheumatoid arthritis and 

ankylosing spondylitis as indicated by clinical assessments, such as radiographic 

analysis and scintigraphic bone scans, and by histopathological studies of diarthrodial 

joints and spine tissue33. During early phases perivascular concentration of 

mononuclear cells occurs, followed by strong proliferation of synovial macrophages 

and fibroblasts. The arthritis starts as a polyarticular synovitis in bilateral, small 

peripheral joints and becomes progressive with extensive erosion of cartilage and 

bone within the joint. The initial, clinical symptoms of joint inflammation (swelling 

and redness) appear after the third or fourth intraperitoneal injection of antigen.  

Antibodies against immunizing proteoglycan (human) appear during the 

second/third week of immunization34. T-cell response to proteoglycan is detectable 

approximately 5-7 weeks after the start of immunization and along the course of the 
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disease the humoral and cellular immune responses slowly decline as the disease 

becomes chronic and less active34. The development of arthritis in genetically 

susceptible mice is based upon cross reactive immune responses between the 

immunizing fetal human and mouse self-PGs33,34,37. T cells and autoantibodies react 

with both native and degraded PGs of mouse cartilage and cross-react with the 

immunizing human fetal proteoglycan37,38. 

 When aggrecans were compared from ten different species the chondroitin-

sulfate depleted aggrecans from fetal or newborn human and canine cartilages were 

the only ones able to induce cross-reactive T-cell response to mouse proteoglycan and 

subsequently arthritis34,39.  

The important role of GAG side chains (keratan- and chondroitin-sulfate) has 

recently been discovered. Keratan sulfate side chains can mask dominant arthritogenic 

T-cell epitopes and their presence may inhibit either antigen presentation or 

recognition. In contrast, the depletion of the chondroitin sulfate side chains of 

cartilage aggrecan increases the immunogenicity of the molecule by generating a 

number of clustered chondroitin sulfate stubs that provoke strong B-cell response and 

induce professional antigen presenting cells38. 

 While the antibody level and T-cell response to mouse aggrecan highly 

correlate with the onset of arthritis, proteoglycan-immunized37 non-arthritic animals 

may also express humoral and cellular immune response against self antigen (mouse 

aggrecan).  T-cell response is linked to MHC (H-2d in BALB/c and H-2k in C3H 

mice), but DBA/2 or NZB mice with the same haplotype (H-2d) are resistant to 

PGIA34,40. Furthermore, F1 hybrids (CDF1) of BALB/c and DBA/2 parents (both 

carry H-2d) are also resistant to PGIA, and the susceptibility returns to 8-28% in F2 

hybrids36,40. Further genome-wide screening is being performed at present to identify 

arthritis-associated quantitative trait loci in PGIA.  

 T cells, especially Th cells seem to be critical for arthritis induction41,42 and 

are divided into two major groups based upon the cytokine secretion profile: Th1 and 

Th2. Th1 cells secrete interleukin (IL)-2, interferon (IFN)-γ and tumor necrosis 

(TNF)-β, while Th2 cells produce IL-4, IL-5, IL-10 and IL-1343,44. Th1-type cytokines 

dominate in the flare up of inflammation in arthritis, thus the Th1 response is 

considered as pro-inflammatory, whereas the activation of Th2 subset seems to be 

anti-inflammatory45-47. While the pathological function of immunoglobulin isotypes in 

arthritis is unclear, Th1 cells and Th1-type cytokines control IgG2a and Th2 cytokines 



 15 

the IgG1 production48,49. A critical balance between Th1 and Th2 responses may 

control the progression and/or severity of arthritis, as CIA is associated with Th1 

dominance and IgG2a isotype switch50,51. 

 

1.6 Pathomechanism of bone resorption in RA 

 

 Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease 

characterized by articular cartilage destruction and massive bone resorption. Synovial 

fibroblasts (RASFs) in RA are one of the dominant cell types in the terminal layer of 

the hyperplastic rheumatoid synovium and at the sites of invasion into the adjacent 

cartilage and bone. In normal individuals, the synovial lining at the border to the joint 

cavity consists of 1–3 cell layers, predominantly containing SFs and macrophages. In 

RA, the lining thickness increases to 10–15 cell layers4,52,53. In addition to the 

increased thickness of the synovial lining, the influx and proliferation of 

inflammatory cells as well as the increased proliferation and survival of resident cells 

contributes to synovial hyperplasia. The synovium shows an increased 

neoangiogenesis within the hyperplastic tissue, facilitating the influx of inflammatory 

cells16. Synovial hyperplasia also contributes to the attachment of the synovium to the 

adjacent cartilage and bone53-55. The hyperplastic tissue overgrows the underlying 

cartilage surface and invades into the bone, leading to joint destruction and extensive 

bone resorption, which is a major problem in RA. A central cell type of cartilage 

invasion is the SF, which actively contributes to matrix degradation. A main feature 

of the RA is the highly osteodestructive process, which leads to three forms of bone 

loss: i) focal bone loss at the joint margins and in underlying subchondral bone 

(periarticular osteopenia); ii) localized resorption at the site of synovial attachment to 

bone (erosions); and iii) generalized osteoporosis involving the axial and appendicular 

skeleton. Of particular interest is the local bone erosion because this radiographic 

manifestation reflects underlying disease activity, is a key outcome measure, and is 

associated with an unfavorable prognosis.  

 Although T cells in RA joints express RANKL56,57, and these RANKL-positive 

T cells may come in contact with osteoclast precursors58, their direct in vivo 

osteoclastogenic potential is probably limited. In contrast, T cells in RA joints have a 

high capacity to produce proinflammatory cytokines that stimulate the expression of 

RANKL by fibroblast-like synoviocytes (FLS), which may have direct contact with 
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osteoclast progenitor (macrophage-like) cells. Therefore, T cell-produced cytokines 

may have an even more important role in osteoclastogenesis than RANKL expression 

by T cells in the RA joint52,59. However, it is not known how the combination of T 

cell-derived cytokines can control osteoclast differentiation and how T cells 

contribute to the extreme bone loss that characterizes the chronic phase of RA. These 

questions are particularly important for understanding the complexity of RA-

associated joint destruction: activated T cells secrete the proinflammatory cytokines 

tumor necrosis factor α (TNFα), interleukin-1β (IL-1 β), and IL-17, which may 

induce osteoclastogenesis and osteoclast activation and simultaneously produce 

antiosteoclastogenic factors such as interferon-γ (IFN γ), IL-4, and IL-10. 

 IFN γ strongly inhibits osteoclastogenesis, even at minute concentrations, 

through ubiquitin/proteosome-mediated degradation of TNF receptor (TNFR)-

associated factor 6 55,60,61. However, although IFN γ is abundantly present during the 

acute phase of RA, this cytokine is barely detectable in the synovium or synovial fluid 

in chronic disease 62,63. Thus, Th1 cells, which can inhibit osteoclastogenesis through 

IFN γ production, are probably not involved in bone loss. Cytokines that induce Th1 

differentiation, such as IL-12 and IL-18, are also inhibitory to 

osteoclastogenesis61,64,65. An antiosteoclastogenic effect of IL-4 66,67 and IL-10 68, 2 

classic Th2-type cytokines present in RA synovium, has also been described. IL-17, a 

proinflammatory cytokine produced by activated Th17 T cells, acts on osteoblasts69 

and fibroblasts54,70. Therefore, T cells act directly or through the cytokines they 

produce, which may have either a harmful or a protective effect in different disease 

conditions4,52,71. 

 Cytokine-mediated RANK/RANKL/osteoprotegerin (OPG) regulation, 

pathologic bone resorption in RA, and RANKL expression on synovial fibroblasts 

have been extensively studied, generating a large body of information about the 

possible involvement of activated T cells and synovial fibroblasts in 

osteoclastogenesis in vitro and in vivo via their RANKL expression (for review, see 

refs.52 and4,71,72. In vivo experiments using mice deficient in RANKL58, OPG73, and a 

few other factors e.g., NF-κB-/-, TNFα-/-, TNFR-/-, IL-4-/-, IFNγ-/- have clearly 

documented the critical role of these mediators in bone homeostasis in vivo. 

However, T cells are rarely seen at the site of bone resorption, either in RA or in 

corresponding animal models; rather fibroblast-like and macrophage-like cells with 
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osteoclasts, and less frequently osteoblasts, occupy the resorbed areas of bone. 

 To gain more insight into the mechanisms of the pathologic bone resorption that 

takes place in arthritic joints, and to understand how synovial fibroblasts in a 

cytokine-rich environment are involved in this process, we performed in vitro and in 

vivo experiments using human and mouse synovial fibroblasts and different cytokine 

milieus. We compared in vitro expression of osteoclastogenic factors in normal versus 

RA synovial fibroblasts, then repeated experiments using fibroblasts from normal and 

arthritic mouse knee joints. Finally, utilizing our extensive experience with a mouse 

model of arthritis (proteoglycan [PG]-induced arthritis; PGIA), we applied in vitro 

conditions in vivo, when the antiinflammatory and antiosteoclastogenic cytokines 

IFNγ and IL-4 and the osteoclastogenic cytokine IL-17 were absent, in naive and 

arthritic gene-deficient animals. 

 

1.7. Potential role of SFs in aseptic prosthesis loosening 

 

 Aseptic loosening of joint implants is a disabling condition that can affect 

patients several years after joint replacement surgery. Total joint replacement for end-

stage joint diseases such as osteoarthritis and rheumatoid arthritis is a remarkably 

successful surgical procedure. Unfortunately, wear debris, from prosthetic 

components, remains the major factor limiting the survival of joint implants. 

Periprosthetic osteolysis, due to the formation of an aggressive granulomatous tissue 

at the bone/cement or bone/ prosthesis interface74-77, is the major clinical problem that 

leads to the loosening of total joint arthroplasties. Particulate wear debris are 

continuously generated, phagocytozed, and particulate phagocytosis activates cells of 

this granulomatous pseudomembrane-like interfacial membrane (IFM). These 

activated cells then proliferate and/or produce inflammatory mediators, which affect 

the function of eventually all cell types in either an autocrine or paracrine manner76,78-

80.  

  Like in the rheumatoid synovium the fibroblast (IFFb) is the dominant cell type 

in the periprosthetic granulomatous tissue, the interfacial membrane (IFM).  

Macrophages are the key players in this irresistible process76,81-83, but other cell types, 

such as activated fibroblasts77,84-86, or osteoblast with acquired dysfunction in type I 
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collagen synthesis79,87 are significant contributors to the unbalanced bone remodeling 

leading to periprosthetic osteolysis and loosing of prosthetic compounds. 

 We have isolated synovial tissues from normal, rheumatoid and osteoarthritic 

joints, and compared their gene expression profiles and cytokine/chemokine 

expressions with those derived from IFM87. Moreover, fibroblasts from all of these 

tissues were isolated and tested in response to conditioned media (CM) harvested 

from explant cultures of normal and pathological tissues, and a select group of 

inflammatory mediators. The most dominant compounds measured in CM of IFM 

(CM-IFM) were tumor necrosis factor-α (TNFα), monocyte/macrophage 

chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), IL-6, IL-8 and vascular 

endothelial growth factor (VEGF). The most prominent upregulated genes, and 

secreted proteins by fibroblasts in response to stimulation were matrix 

metalloproteinase-1, MCP-1, IL-1β, IL-6, IL-8, cycloxygenases (Cox-1 and Cox-2), 

leukemia inhibitory factor-1 (LIF-1), transforming growth factor β-1 (TGF-β1) and 

TGFβ receptor-I. In addition, IFM fibroblasts expressed RANKL (receptor of 

activated nuclear factor-kappa B ligand) and OPG (osteoprotegerin) in response to 

CM-, TNFα-, or IL-1β-stimulation. Moreover, particulate titanium (used as a 

“prototype” particulate wear debris) stimulated fibroblasts to express RANKL and 

these RANKL+ fibroblasts co-cultured with bone marrow cells induced 

osteoclastogenesis87. 

Many components listed above, however, have strong effects on tissue 

remodeling which, in turn, require angiogenesis and neovascularization. Indeed, the 

most granulomatous areas of the IFM, especially those resembling rheumatoid 

synovial tissue, are hypervascularized74,77,82,83. Overall, the pathological processes of 

osteoclastogenesis, unbalanced bone formation and granulomatous tissue formation 

occur simultaneously, and overlapping events might not be separated.  
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2. AIMS AND HYPOTHESIS 

 

 To gain more insight into the mechanisms of pathologic bone resorption and 

angiogenesis that takes place in arthritic joints and between the prosthesis/bone 

inetrface, and to understand how synovial fibroblasts in a cytokine-rich environment 

are involved in these processes, we aimed to prove the following hypotheses.  

 

» During subsequent joint destruction and prosthesis loosening synovial fibroblasts 

are actively contribute to bone resorption, and neovascularization by expressing a 

wide array of osteoclastogenic and angiogenic factors. These compaunds play an 

important role in the detrimental processes of rheumatoid arthritis and periprosthetic 

osteolysis. 

 

 To reach our goals, we performed the following experimental studies: 

 

 Study I. To determine whether proinflammatory cytokine treatment or the complete 

absence of select cytokines modulates the expression of major osteoclastogenic 

factors (RANKL and OPG) in synovial fibroblasts 

 

•   We performed in vitro and in vivo experiments using human and mouse 

synovial fibroblasts and different cytokine milieus. We compared in vitro 

expression of RANKL and OPG in normal versus RA and IFM synovial 

fibroblasts from human origin 

•   Then the same experiments were repeated using fibroblasts from normal and 

arthritic mouse knee joints. 

•   Finally, utilizing our extensive experience with a mouse model of arthritis 

(proteoglycan [PG]-induced arthritis; PGIA), we applied in vitro conditions in 

vivo, when the antiinflammatory and antiosteoclastogenic cytokines IFN γ and 

IL-4 and the osteoclastogenic cytokine IL-17 were absent, in naive and 

arthritic gene-deficient animals. 
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Study II. To examine the role of synovial fibroblasts and fibroblast derived-growth 

factors is periprosthetic angiogenesis 

 

•  The purpose of the second study was to determine whether synovial fibroblast 

plays a key role in angiogenesis within the periprosthetic tissues. 

•  We evaluated this by measuring major angiogenic factors produced by synovial 

fibroblasts (IFFb and RASF) in response to particulate wear debris and 

proinflammatory cytokines. 

 

3. MATERIALS AND METHODS 

 

3.1. Common materials and methods in both osteoclastogenesis and angiogenesis 

studies (Study I. and II.) 

 

3.1.1. Chemicals and cytokines 

 

        All chemicals, unless otherwise indicated, were purchased from Sigma (St. 

Louis, MO) or Fisher Scientific (Chicago, IL). Human and mouse recombinant 

proteins for fibroblast treatments such as TNFα, IL-1β, IFNγ, IL-17, and IL-4 were 

purchased from R&D Systems (Minneapolis, MN) or Sigma. Commercially pure, 

endotoxin-free small-sized titanium (Ti) particles (<3 µm; Johnson Matthey, Danvers, 

MA) were characterized earlier14 and used in this study. Based upon the size 

distribution, a 0.075% Ti suspension (volume/volume: v/v) contained approximately 

6x107 particles/ml. 

 

3.1.2 Human synovial tissue samples  

 

The collection of human samples from joint replacement and revision 

surgeries, and the use of bone marrow aspirates, were approved by the Institutional 

Review Board; and samples were collected in consent with the patient. Response to 

bioactive compounds released by cells of the interface membrane, synovial samples 

from normal joints (negative control), rheumatoid joints and from the interface 

membrane (IFM) were collected and tested in preliminary and comparative 
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experiments in both osteoclastogenic and angiogenic studies. Normal synovial tissue 

samples were collected from the knee and ankle joints of 5 organ donors (age range 

28-62 years) within 3-6 hr after death due to cardiovascular insufficiency or traffic 

accident. Additional “normal” synovial tissue samples were obtained from patients 

with femoral neck fractures with no evidence of synovial reaction and/or cartilage 

damage on histologic or radiographic analysis. Finally, a total of 12 normal synovial 

tissue samples were used for gene expression and cytokine assays. Synovial tissue 

from the knee joints of 8 patients with rheumatoid arthritis (RA) (mean age 60.2 

years, range 47–63 years) who underwent primary TJA surgery was collected. 

Periprosthetic interface membranes from loosened joint replacements (23 hip and 9 

knee replacements) with osteolysis were obtained from patients during revision 

surgery, which took place an average of 10.1 years after the primary TJA. This group 

of patients consisted of 18 men and 14 women, with a mean age of 62.2 years (range 

34–91 years). In addition to focal or diffuse osteolysis, the major reasons for revision 

surgery were pain, limited range of motion, and instability. The types of prosthesis 

and surgical procedure varied, as did the source of the tissue (from revision surgeries 

of hip or knee TJAs) and the original diagnosis that led to joint abnormalities and TJA 

(RA or osteoarthritis [OA]). 

 

3.1.3 Fibroblast isolation,  and human synovial cultures 

 

Fibroblasts were isolated from both fresh tissues and 7-day-old explant 

cultures of synovial tissues to compare the yield and viability of fibroblasts from the 

corresponding tissue samples. Fibroblasts were isolated by pronase and collagenase 

digestions. Dissociated cells were washed with PBS and plated in Ø10cm petri dishes 

(Beckton Dickinson, Franklin Lakes, NJ) in DMEM/10% FBS. Non-adherent cells 

were discarded the next morning by washing, and adhered cells (mostly fibroblasts) 

were cultured in DMEM/10% FBS. The yield of fibroblasts varied from sample to 

sample, but approximately the same number of viable cells (85-95%, determined by 

trypan blue exclusion test) were isolated from the fresh tissue and 7-day-old explant 

cultures.  

Medium from fibroblast cultures was changed twice a week. Confluent 

monolayer fibroblast cultures were passaged at least five times and then passaged at 

~0.7 x 106 cell density per Ø10cm petri dish for experiments. The fibroblast 
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phenotype of isolated cells was confirmed by flow cytometry analysis (FACSCalibur, 

CellQuest software program, Beckton Dickinson) using anti-CD90 (Thy-1) 

monoclonal antibody (mAb) (BD Pharmingen/ Bioscience, San Diego, CA) and by 

immunohistochemistry in 8-well chamber slides (Nalgene) using fluorochrome-

labeled mAb 5B5 to F-subunit of propyl-4-hydroxylase (Dako Corporation, 

Carpenteria, CA). Thus, these cells were considered to be synovial (normal, 

interfacial memrane or rheumatoid) fibroblasts (i.e., FLS). 

Freshly isolated fibroblasts from interface membranes contained particles, 

whereas the number of particles diminished during subsequent passages. After three-

four passages the presence of particles was rare, and we could not detect macrophages 

or cells of the monocyte/macrophage lineage (CD11b+ cells)(BD Pharmingen) with 

flow cytometry; 99-100% of the cells were CD90+ fibroblasts. To mimic the in vivo 

condition and to determine whether fibroblasts could indeed phagocytose particulate 

wear debris in vitro, fibroblasts isolated from the IFM were treated with Ti particles 

(0.075%, v/v) and passaged into a chamber slide the next day. In vitro cultured 

fibroblasts phagocytosed a substantial number of Ti particles.  

 

3.1.4 Statistical analysis 

 

Descriptive statistics were used to determine group means and standard error 

of the mean. The Pillai's trace criterion was used to detect multivariate significance. 

Subsequently, Mann Whitney U-test was performed to compare the results of 

experimental groups. The level of significance was set at p<0.05. All statistical 

analyses were performed using computer-based statistical software (SPSS/PC+ v 15 

SPSS Inc, Chicago, IL).  

 

3.2. Methods for human and mouse osteoclastogenesis study (Study I)  

 

3.2.1. Mice, immunization, and mouse synovial fibroblast cultures. 

 

All animal protocols were reviewed and approved by the Institutional Animal 

Care and Use Committee of Rush University Medical Center. Adult BALB/c mice 

were purchased from the National Cancer Institute (Frederick, MD). IL-4-/- and IFNγ-/- 
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ice on a BALB/c background were purchased from The Jackson Laboratory (Bar 

Harbor, ME), and IL-17-/- mice, also on a BALB/c background, were provided by Dr. 

Y. Iwakura (University of Tokyo)88. For initiation of PGIA, wild-type and gene-

deficient mice were injected 2-3 times intraperitoneally with 100 g of human 

cartilage PG (aggrecan) in dimethyldioctadecylammonium bromide adjuvant at 3-

week intervals, as previously described89. Severe arthritis developed 7-10 days after 

the second PG injection in all IL-4-/- mice90 and in many of the wild-type89 and        

IL-17-/- BALB/c mice. Nonarthritic wild-type and IL-17-/- mice received a third 

injection, as did the IFN -/- mice, in which a relatively mild arthritis developed only 

after the third PG injection91. Arthritis ultimately developed in all wild-type and gene-

deficient mice, and the degree of inflammation was assessed visually, as previously 

described89. The knee joints of age-matched naive (nonimmunized) and PG-

immunized wild-type and gene-deficient mice were used for synovial fibroblast 

isolation, as previously described for human cultures92. Fibroblasts were used for 

experiments after 4-5 passages, when the cultures showed >98% synovial fibroblast 

phenotype, as described for human FLS. For histologic assessment, the hind paws 

were fixed in formalin, decalcified, and embedded in paraffin. Front and hind paws 

(for which the time of arthritis onset and the inflammation score were recorded) were 

harvested, homogenized in phosphate buffered saline, and extracted for 24 hours at 

4°C. 

3.2.2.  Treatment of synovial fibroblasts with cytokines.  

Confluent cultures of fibroblasts ( 1.2-1.5 × 106 cells in a 100-mm petri dish, 

or 0.6-0.8 × 104 cells/well in a 24-well plate) were subjected to serum deprivation in 

Dulbecco's modified Eagle's medium containing 0.5% fetal bovine serum, for 24 

hours. This medium was replaced with fresh medium containing the appropriate 

cytokine concentration (determined in preliminary experiments for both human and 

mouse naive and arthritic fibroblast cultures). The in vitro responses of human and 

mouse FLS to cytokines were pretested using TNFα (1.25-10 ng/ml), IL-1β(0.2-5 

ng/ml), IL-4 (2-10 ng/ml), IFNγ (1-15 ng/ml), and IL-17 (25-100 ng/ml) in dose-

response and time-curve experiments. In the final experiments (which are described in 

this report), 5 ng/ml of TNFα, 1 ng/ml of IL-1β, and 25 ng/ml IL-17 were used alone 

or in combination with 5 ng/ml of IL-4 or 5 ng/ml of IFN-γ. 
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3.2.3. RNA extraction, complementary DNA (cDNA) synthesis, and real-time 

quantitative polymerase chain reaction (qRT-PCR). 

 

Total RNA was extracted from human and mouse synovial fibroblasts with 

TRIzol reagent (Invitrogen, Carlsbad, CA), following the manufacturer's protocol. 

The RNA was quantified with a RiboGreen Quantitation Kit (Molecular Probes, 

Eugene, OR), and the quality of RNA was determined by formamide agarose gel 

electrophoresis. Real-time quantitative PCR analyses of RANKL, OPG, and GAPDH 

were performed on fibroblast-derived reverse-transcribed RNA using the TaqMan 

Gene Expression Assay (Applied Biosystems, Foster City, CA). Serial dilutions 

ranging from 1:1 to 1:8 of cDNA were amplified using GeneAmp Fast PCR Master 

Mix (Applied Biosystems). The housekeeping gene GAPDH was used as a reference 

in each sample. The relative expression of target messenger RNA (mRNA) was 

calculated from the target threshold cycle (Ct) values and GAPDH Ct values, using the 

standard formula, as described previously87. 

 

3.2.4. RANKL, OPG protein, and cytokine enzyme-linked immunosorbent assays 

(ELISAs). 

 

Conditioned media of human and mouse fibroblast cultures and of mouse sera 

and paw extracts were analyzed for soluble RANKL (sRANKL), OPG, TNFα, IL-1β, 

IL-6, IL-17, IL-4, and IFNγ using DuoSet ELISA Development kits (R&D Systems) 

according to the manufacturer's instructions. After several commercially available 

ELISA kits were tested for specificity and sensitivity, human sRANKL ELISA kits 

were purchased from BioVision (Mountain View, CA). The RANKL, OPG, and 

cytokine concentrations (ng) in conditioned media were normalized to 1 million 

fibroblasts, and ng/ml in serum, or ng/mg protein in mouse paw extracts. We also 

determined the complex form of sRANKL/OPG using cross-capture ELISA systems. 

For example, if anti-OPG capture antibody was coated, the OPG-RANKL complex, 

i.e., OPG-bound sRANKL, was detected with anti-RANKL detection antibody and 

vice versa. Overall, although only 8-10% of OPG was in complex, approximately half 

the amount of sRANKL was bound to OPG. 
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3.3. Methods for human angiogenesis study (Study II.) 

 

3.3.1. Explant cultures and conditioned media (CM) 

 

Tissue samples in sterile containers of DMEM and 150 µg/ml gentamicin 

were transported from the operating room to the laboratory within 5-20 min after 

removal. Samples were minced (2-4 mm3 in volume) in serum-free DMEM, washed, 

and representative tissue samples were distributed for explant cultures, RNA and 

fibroblast isolation, and histologic examination. Approximately 0.5g wet synovial or 

interface membrane tissue was cultured in 2.5 ml DMEM containing 5% endotoxin-

free fetal bovine serum (FBS, HyClone, Logan, UT), antibiotic/antimycotic solution, 

which was supplemented with 50 µg/ml gentamicin. Tissue samples were distributed 

in 12-well plates, and 90% of the medium was replaced daily for a total of seven days. 

Media which were harvested every 24 hours were centrifuged at 2500g for 10 min, 

and aliquots were reserved for cytokine assays, and stored at –20OC until the explant 

culture system was completed. DMEM containing 5% FBS without tissue samples 

(medium control) was also incubated for 24 hours at 37OC, harvested, centrifuged, and 

stored in the same manner as all other conditioned media. Eventually the same patient 

population, tissues, explant and fibroblast cultures and were used as described in 

details for RANKL/OPG expression and in vitro osteoclastogenic studies86.  

 

3.3.2. Detection of specific protein products by enzyme-linked immunosorbent assay 

(ELISA)  

 

All CM were harvested from explant cultures of synovial tissues and IFMs, 

and treated and untreated fibroblasts for 6 to 96 hr, were analyzed by ELISA.  CM 

were harvested, centrifuged, and aliquots stored at –700C.  TNF-α, IL-1β, MCP-1, IL-

6, IL-8, TGFβ1 and VEGF were determined by using capture ELISAs from R&D 

Systems (Minneapolis, MN).  
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3.3.3. Fibroblast isolation, culture conditions, treatments and selection of CM 

 

Fibroblasts were isolated from synovial tissues of normal joints and IFMs as 

described84-86,93. Medium from fibroblast cultures was changed twice a week and 

passaged at ~0.7x106 cell density per 10-cm Petri-dish for experiments. Although 

cells of the monocyte/macrophage lineage (CD11b+ cells) could not be detected after 

three-four passages with flow cytometry, and over 95% of cultured cells were CD90+ 

(both antibodies from BD Pharmingen/Bioscience, San Diego, CA), confluent 

monolayer fibroblast cultures only after 6-7 passages were used for in vitro 

experiments 86. Confluent fibroblast cultures in DMEM containing 5% FBS were 

pretreated with various inhibitors (described later), Ti particles and/or CM-IFM, or 

various cytokines and growth factors. Reference material was a 5% FBS-containing 

DMEM (medium control; pre-incubated at 37° for 48 hr) without cytokines and 

growth factors, and synovial fibroblasts isolated form normal knee joints. Culture 

media were collected from all particle/cytokine-stimulated and non-stimulated 

fibroblast cultures at various time points (from 0 hr to 72 hr).   

 Prior to the experiments of fibroblast stimulation, CM-IFM were individually 

pretested for cytokine production using a normal synovial fibroblast cell line in 48 hr 

cultures87. The major selection criteria were that the CM-IFM contained the highest 

and comparable amounts of proinflammatory cytokines and chemokines, and induced 

approximately the same amounts of IL-6, VEGF and IL-1β. Based upon the response 

(cytokine production) of this normal synovial fibroblast cell line, a total of 16 CM 

from 21 explant cultures of IFMs (Fig. 1B) were selected and pooled in four groups, 

each containing 2-5 CM-IFMs87. This was necessary to have a sufficient volume of 

CM-IFM to test their effect on at least two, usually 3-4, independent IFM fibroblast 

cell lines (with and without Ti particles), and the results are summarized in this and a 

previous study87. To answer the question  of whether the source of donor tissue (IFM) 

may affect fibroblast response, each pool of the CM-IFM was prepared so that the 

IFMs were derived from patients who underwent TJA either due to rheumatoid 

arthritis (1 group) or osteoarthritis (3 groups), and the primary TJA was performed 6-

9 years prior to the revision surgery.  The pooled, undiluted CM-IFM contained 20-25 

ng/ml TNF-α, 6.5-8.0 pg/ml IL-β, 12-18 ng/ml IL-6, 28-40 ng/ml IL-8, 20-25 ng/ml 

VEGF, 35-60 ng/ml MCP-1, 0.9-1.2 pg/ml TGFβ and 8-16 ng/ml a-FGF. Technically, 

there were no significant differences among the effects of these four CM-IFM pools 
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tested on either normal synovial or IFM fibroblasts, and cumulative results are shown. 

 Fibroblasts were also pretreated with various compounds, and the inhibitory 

concentrations were determined in preliminary experiments. Actinomycin D (2 

µg/ml) was used to block transcriptional events, cyclohexamide (10 µg/ml) to inhibit 

protein translation and synthesis, brefeldin A (1 µg/ml) to inhibit the transport of 

freshly synthetized proteins from the endoplasmic reticulum to Golgi complex, 

monensin (2µg/ml) to block the release of newly sunthetized proteins from Golgi, and 

cytochalasin D (0.5 µg/ml) to destabilize the cytoskeleton, thus inhibiting 

phagocytosis. Fibroblasts were pretereated with these compounds for 6 hr in control 

media (DMEM with 10% FBS), and then replaced fresh DMEM or CM-IFM with or 

without Ti particles, also containing the original concentration of the inhibitor.  

 

3.3.4. RNA isolation and RNase protection assay (RPA) 

 

Fresh tissue samples (~0.2-0.4 g), and those cultured for 7 days (Fig. 1B) were 

homogenized with a polytron homogenizer (KRI Works, Cincinnati, OH) on ice. RNA 

was extracted with TRIzol (Invitrogen, Carlsbad, CA) as described86,87. TRIzol was 

also used to isolate total RNA from cultured fibroblasts before and after treatments. 

RPA was performed on 8 µg of RNA using the Riboquant Multiprobe RNase 

Protection Assay System (BD Pharmingen) according to the manufacturer’s 

directions. After preselecting which commercially available cytokine, chemokine, and 

growth factor templates87 can be used, a total of five (three shown on Fig.1) additional 

custom-made RPA templates were purchased from BD Pharmingen/Bioscience.  The 

custom-made template #65120 was designated to determine a set of angiogenic 

factors such as RANTES, IP-10, COX-1, COX-2, bFGF, FGF-R, IL-8, Angioprotein-

1, VEGF and c-myc. [Abbreviations are listed in Figure legend 1.] Template #65238 

represented probes for IL-12, GM-CSF-Rα, aFGF, IL-6Rα, M-CSF, IL-6, LIF, TIMP-

1 and TIMP-2. The #65184 template was designed to quantify the expression levels of 

human TNF-α, IL-1RI, IL-4, MMP-1, IFN-γ. Custom-made templates included 

housekeeping genes L32 and glyceraldehyde-6-phosphate dehydrogenase (GAPDH), 

and templates 65120 and 65184 (but also having IL-4 and IFN- γ ) were also used in 

other experiments87. We found a high correlation (88-96%) between the amount of 

ribosomal RNA and the message levels of both housekeeping genes L32 or GAPDH; 

thus the expression of each gene was calculated (normalized) for both housekeeping 
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genes, and the mean values of L32 and GAPDH were used for normalization.  

 

3.3.5. Detection of VEGF isoforms by Western blot hybridization 

 

To detect soluble isoforms of VEGF94, the most potent angiogenic factor 

produced by Ti- and/or CM-IFM-treated fibroblasts, the harvested tissue culture 

media were loaded on a 10% sodium duodecyl sulfate (SDS)-polyacrylamide gel 

(PAGE) under reducing conditions. To detect non-secreted, and/or membrane-bound 

VEGF, treated and untreated cells were lysed in an ice-cold lysis buffer (50 mM Tris-

HCl [pH 8.0], 150 mM NaCl, 0.1% SDS, and 1% NP-40) containing protease 

inhibitors (1 mM phenylmethylsulfonyl fluoride and 1 unit/ml aprotinin), phosphatase 

inhibitors (50 mM NaH2PO4, 10 mM Na-pyrophosphate, 50 mM KF, and 1 mM 

Na3VO4), and 0.1% NaN3
 for 1 h at 4°C. Cell lysates were cleared by centrifugation 

and 15 µg of protein per lane was separated by 10% SDS-PAGE in reducing 

conditions. Proteins were electrophoretically transferred onto nitrocellulose 

membranes (BioRad, Hercules CA), membranes were blocked with 1% fat-free milk, 

stained with mAb (clone 70513 from R&D Systems) or rabbit polyclonal antibody 

(Santa Cruz Biotechnology, San Diego, CA) to VEGF. Recombinant human VEGF 

(Santa Cruz) was used as a positive control, and   enhanced chemiluminesence 

(Amersham) to detect immune reactions. 
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4. RESULTS 

 

4.1.  Examination of RANKL and OPG expression and regulation by human 

synovial fibroblasts (Study I.) 

 

4.1.1. RANKL and OPG expression by normal and rheumatoid human synovial 

fibroblasts in response to proinflammatory cytokines 

 

 Several studies have demonstrated that human synovial fibroblasts express 

RANKL on the cell surface and secrete both RANKL and OPG into medium in 

response to the proinflammatory cytokines TNFα, IL-1β, and IL-174,53,71,95,96. 

However, the condition and source of fibroblasts or FLS were variable in different 

studies, which might have complicated the interpretation of results. Therefore, we 

first conducted a systemic determination of dose-dependent and time-dependent 

RANKL and OPG expression using 2 independent normal human synovial fibroblast 

populations and 3 rheumatoid synovial fibroblast populations. The expression of 

RANKL and OPG genes was quantified by real-time quantitative PCR, and protein 

concentrations were determined by ELISA in the cultured media of the same cultures 

(Figure 5). In dose-response experiments, the TNFα effect reached a plateau at a 

concentration of 5 ng/ml, and the IL-1β effect reached a plateau at a concentration of 

1 ng/ml (Figure 5) These cytokine concentrations were then used in time-course 

experiments (Figure 5, lower panel of each quadrant). Concentrations of other 

cytokines were tested in the same manner, and, as described in materials and methods, 

5 ng/ml of IL-4, 5 ng/ml of IFNγ, and 25 ng/ml of IL-17 were used in all subsequent 

experiments employing human synovial fibroblasts (Figure 6). Fibroblasts from RA 

synovium consistently expressed more RANKL and OPG than fibroblasts from 

normal synovium in response to the same dose of either TNF  or IL-1  (Figure 6). 

By 72 hours, the expression of RANKL and OPG was at least 2-4-fold higher in RA 

synovial fibroblasts than in normal synovial fibroblasts in the same experimental 

condition (Figure 6), but the sRANKL:OPG ratios were the same in untreated and 

cytokine-treated cells (Table 1).  
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Figure 5. Effect of tumor necrosis factor α(TNFα) and interleukin-1β (IL-1β) on the expression of 
RANKL and osteoprotegerin (OPG) mRNA and protein by human synovial fibroblasts (fibroblast-
like synoviocytes [FLS]). Normal (N) FLS and rheumatoid arthritis (RA) FLS after 5-6 passages 
were treated with different doses of proinflammatory cytokines for 48 hours. Concentrations that 
achieved a „maximum” effect (5 ng/ml of TNFα or 1 ng/ml of IL-1β) were then used in time-
course experiments. Gene expression was normalized to GAPDH and expressed as the fold 
increase relative to the GAPDH level measured in unstimulated (0 hour) control samples. Secreted 
proteins were measured by enzyme-linked immunosorbent assay in conditioned media at the given 
dose and time point, at which time the fibroblasts were trypsinized and counted. Values are the 
mean and SEM results from at least 3 independent experiments (n 8-12) involving 2 normal FLS 
and 3 RA FLS cell lines in duplicate wells. 
 *= P < 0.05; **= P < 0.01, versus normal FLS.  
sRANKL = soluble RANKL. 
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Figure 6. Single and combined effects of proinflammatory and antiinflammatory cytokines on 
sRANKL (A) and OPG (B) protein expression by human RA FLS. Culture media were collected 
after 48-hour treatment, and levels of sRANKL and OPG were measured by capture enzyme-
linked immunosorbent assay. Treatment combinations and concentrations of different cytokines 
are shown below the columns. Both sRANKL and OPG levels were significantly higher (at least P 
< 0.05) in RA fibroblast (FLS) cultures than those in conditioned media of normal synovial 
fibroblasts treated with either TNFα or IL-1β (with or without IL-4 or interferon-γ [IFN γ]). 
Neither sRANKL nor OPG showed differences (or differences could not be detected) in untreated, 
IL-4-treated, or IFN γ -treated normal and RA synovial fibroblast cultures. Values are the mean 
and SEM results from duplicate wells in 2 independent experiments using 2 normal (n = 8) and 3 
RA (n = 12) synovial fibroblast lines. *= P < 0.05. See Figure 5 for other definitions. 
 
 
 
 
 

4.1.2. Suppression of RANKL and OPG expression by IL-4 and IFNγ in cytokine-

activated normal and RA synovial fibroblasts 

 
 

Th1 (IFNγ), Th2 (IL-4), and Th17 (IL-17) T cell-produced cytokines are 

critical mediators of bone metabolism in inflamed synovium. Although IFNγ and IL-4 

are considered to be antiosteoclastogenic, IL-17 promotes osteoclast differentiation 

and activation4,66,69,72,97-99. As summarized in Figure 6A (only ELISA results are 

shown), both IL-4 and IFNγ significantly suppressed TNFα- and IL-1β-induced 

sRANKL levels. Thus, both cytokines might indeed exert antiosteoclastogenic effects 

via the suppression of TNFα- and IL-1β-induced RANKL expression by fibroblasts. 



 32 

IL-4 alone induced OPG secretion, and this effect was synergistic to the TNFα and 

IL-1β effects (Figure 6B). IFNγ alone did not affect OPG expression but significantly 

suppressed the OPG levels in both TNFα- and IL-1β-stimulated human fibroblast 

cultures (Figure 6B).  

In conclusion, Th2-type IL-4 exhibited a strong antiosteoclastogenic effect on 

both types of synovial fibroblasts by suppressing TNFα- and IL-1β-induced sRANKL 

while simultaneously increasing OPG secretion, whereas IFNγ antagonized TNFα- 

and IL-1β-induced OPG secretion. Although combined treatment with TNFα plus IL-

4 or IL-1β plus IL-4 significantly reduced the RANKL: OPG ratios (a critical factor 

for osteoclastogenesis), the sRANKL:OPG ratios remained the same after treatment 

with TNFα plus IFNγ or IL-1β plus IFNγ (Table 1). IL-17 alone induced both 

sRANKL and OPG expression, but both factors were significantly lower in IL-17-

stimulated cultures than in those treated with either TNFα or IL-1β (Figure 6), and 

only additive effects could be detected with combination treatments (Table 1). 

Although the secreted amounts of sRANKL and OPG (normalized to 1 million cells) 

were consistently significantly higher in RA FLS cultures, the sRANKL:OPG ratios 

in RA and normal FLS cultures were comparable when the same cytokine 

concentrations were used (Table 1).  
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Table 1. Soluble RANKL (sRANKL) and OPG expression and the sRANKL:OPG 

ratio in response to cytokine treatment* 
 

Treatment sRANKL OPG sRANKL:OPG ratio 
 

Normal SFs    
   No treatment 0.06 ± 0.06 12.58 ± 1.82 0.005 ± 0.005 
   TNFα 7.58 ± 1 06 50 37 ± 11.03 0.150 ± 0.047† 
   IL-1β 5.09 ±  .60 58.21 ± 7.36 0.087 ± 0.014† 
   IL-4 0.30 ± 0.18 50.90 ± 5.52 0.006 ± 0.004 
   IFNγ 0.12 ± 0.07 11.86 ± 4.53 0.010 ± 0.010 
   IL-17 1.97 ± 0.44 31.48 ± 7.41 0.062 ± 0.016† 
   TNFα + IL-4 2.26 ± 0.50 168.6 ± 15.38 0.013 ± 0.004†† 
   TNFα + IFNγ 3.03 ± 0.54 21.34 ± 2.99 0.142 ± 0.038 
   TNFα + IL-17 11.5 ± 1.69 89.14 ± 8.09 0.129 ± 0.047 
   IL-1 β + IL-4 2.98 ± 0.48 167.11 ± 25.76 0.018 ± 0.005§ 
   IL-1 β + IFNγ 2.55 ± 0.25 52.75 ± 9.0  0.048 ± 0.011§ 
   IL-1 β + IL-17 10.1 ± 1.21 109.6 ± 19.11 0.092 ± 0.021 
RA SFs    
   No treatment 0.17 ± 0.14 20.89 ± 3.52 0.008 ± 0.008 
   TNFα 12.73 ± 1.82 87.74 ± 6.05 0.145 ± 0.012† 
   IL-1 β 10.84 ± 1.64 101.8 ± 5.43 0.107 ± 0.008† 
   IL-4 0.51 ± 0.50 60. 2 ± 7 32 0.008 ± 0.010 
   IFNγ 0.37 ± 0.14 18.14 ± 4.29 0.020 ± 0.011ś 
   IL-17 3.35 ± 1.09 36.67 ± 6.58 0.091 ± 0.015† 
   TNFα + IL-4 5.14 ± 0.89 275.9 ± 32.53 0.019 ± 0.005†† 
   TNFα + IFNγ 5.86 ± 1.04 38.23 ± 5.52 0.153 ± 0.042 
   TNFα + IL-17 16. 6 ± 2 35 121.55 ± 53.64 0.134 ± 0.036# 
   IL-1 β + IL-4 3.73 ± 1.02 295.96 ± 22.52 0.013 ± 0.004§ 
   IL-1 β + IFNγ 6.22 ± 0.36 95.80 ± 11.62 0.065 ± 0.010§ 
   IL-1 β + IL-17 15.89 ± 3.93 150.4 ± 44.49 0.106 ± 0.012 

 

 
Values are the mean SD results from 9 samples. Soluble RANKL and osteoprotegerin (OPG) 
concentrations (ng/million cells) were measured in unstimulated or cytokine-stimulated 
conditioned media at 48 hours. Significant differences between cytokine treatments are shown 
in Figure 6.  
SFs = synovial fibroblasts; IFNγ = interferon-γ; RA = rheumatoid arthritis. 
  † P < 0.01 versus no treatment. 
  †† P < 0.01 versus tumor necrosis factor α (TNFα) only. 
  § P < 0.01 versus interleukin-1 β (IL-1 β) only. 
  ś P < 0.05 versus no treatment                                                                                  
  # P < 0.05 versus IL-1 β only. 
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4.2 Examination of RANKL and OPG expression and regulation by mouse 

synovial fibroblasts (Study I.) 

 

4.2.1. RANKL and OPG expression by wild-type mouse synovial fibroblasts from 

normal and arthritic joints 

 

To test whether proinflammatory cytokine-controlled RANKL and OPG 

regulation is similar in human and murine systems, we used mouse synovial 

fibroblasts (also after 4-5 passages) isolated from normal (naive) and arthritic (PGIA) 

knee joints of wild-type and gene-deficient (IFNγ-/- and IL-4-/-) BALB/c mice. As 

shown for human cells (Figure 5), mouse synovial fibroblasts from arthritic joints 

expressed approximately twice as much sRANKL and 3-4 times as much OPG in 

response to either TNFα, IL-1β, or IL-17 than fibroblasts from normal mouse knee 

joints (Figures 7A and B; compare wild-type naive with wild-type PGIA). In contrast 

to human synovial fibroblasts, mouse synovial fibroblasts secreted significantly more 

sRANKL (P < 0.001) and less OPG (P < 0.05) in response to IL-1β treatment 

compared with TNFα treatment (Figures 7A and B). Thus, IL-1β seems to be a more 

osteoclastogenic cytokine than TNFα in the mouse system (Figures 7A and B). 

Among the cytokines tested, IL-17 alone had a minor effect on RANKL and OPG 

expression (at either the gene or the protein level) in both naive and arthritic wild-type 

BALB/c fibroblasts, but no additive effects on RANKL or OPG secretion were 

detected with combination treatments (TNFα plus IL-17 or IL-1β plus IL-17) 

(Figures 7A and B). Therefore, IL-17 appeared to have no additive effect on sRANKL 

or OPG expression in arthritic wild-type animals (see wild-type columns in Figure 

7B), indicating a limited role of IL-17 on RANKL/OPG balance in pathologic 

conditions.  

 

4.2.2. Cytokine-mediated RANKL and OPG expression in synovial fibroblasts 

from gene-deficient mice.  

The overall trend of sRANKL and OPG expression in synovial fibroblasts 

isolated from naive and arthritic knee joints of gene-deficient animals was the same as 

that described for wild-type (BALB/c) fibroblasts (Figures 7A and B). Exogenous IL-
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4 and IFNγ were able to completely counteract the gene deficiency, significantly (P < 

0.001) suppressing both TNFα- and IL-1β-induced sRANKL secretion, especially in 

fibroblast cultures derived from arthritic mouse joints (Figure 7B). Compared with 

IFNγ, IL-4 had a more potent effect in increasing OPG levels in both TNFα- and IL-

1β-stimulated fibroblast cultures. The major difference was that fibroblasts from 

gene-deficient mice (either IL-4-/- or IFNγ-/-) produced 2-4 times more RANKL and 3-

5 times less OPG than those from wild-type naive or arthritic mice in the same 

experimental conditions (Figure 7; compare wild-type and gene-deficient mice). 

Clearly, the sRANKL:OPG ratios were dramatically increased, as much as 1-2 orders 

of magnitude, in IL-4- or IFNγ gene-deficient mice. IL-17 had a synergistic effect on 

sRANKL expression, when used in combination with either TNFα or IL-1β, and 

suppressed or completely blocked OPG secretion by gene-deficient fibroblasts 

(Figures 7A and B). 

4.2.3. RANKL and OPG regulation in wild-type and gene-deficient arthritic mice.  

 

The highly coordinated expression of sRANKL and OPG, as reflected by a 

constant RANKL:OPG ratio in both normal and arthritic synovial fibroblast cultures 

(either treated or untreated) was completely abrogated in gene-deficient synovial 

fibroblasts, especially in those exposed to treatment with a combination of 

proinflammatory cytokines (Figures 7A and B), indicating additional regulatory 

mechanisms that may exist in vivo. Because RA and its corresponding animal models 

are all considered to be autoimmune diseases in which the Th1/Th2-type cytokine 

balance is skewed toward Th1 dominance90,91, wild-type as well as IL-4-/-, IL-17-/-, 

and IFNγ-/- mice were immunized with cartilage PG for arthritis induction. 

Neither cytokines nor sRANKL were detected in sera from naive 

(nonimmunized) mice, and IFNγ, IL-4, and IL-17 were absent in sera obtained from 

corresponding gene-deficient mice (Figures 8A-F). Levels of all measured serum 

cytokines (TNFα, IL-1β, IL-6, IL-4, IFNγ, and IL-17) were high in wild-type mice 

with PGIA but were decreased (by >50%) in IL-4-/- mice (Figures 8A-F), and all 

cytokine levels were very low, or not detectable, in PG-immunized IFNγ-/- mice. The 

serum level of IL-17 was barely detectable in arthritic wild-type mice (Figure 8F). 
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Figure 7. Soluble RANKL and OPG levels measured in synovial fibroblast cultures in 
response to different treatments. Fibroblasts were isolated from naive and arthritic knee 
joints of wild-type (WT) and gene-deficient mice. Columns and colors represent the 
expression levels of sRANKL and OPG in wild-type, interferon-γ (IFN γ)-, and IL-4-
deficient mice without arthritis (A) or with proteoglycan-induced arthritis (PGIA) (B). 
Single and combination treatments are shown between the sRANKL and OPG panels. The 
color ranges represent the expression levels, where white indicates no expression at all. 
KO=knockout (see Figure 9 for other definitions).      
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Figure 8. A-F, Serum levels of various 
cytokines, soluble RANKL (sRANKL), 
and osteoprotegerin (OPG) in naive and 
proteoglycan (PG)-immunized wild-type 
(WT) and gene-deficient BALB/c mice. 
Age-matched wild-type, interferon-γ 
(IFN γ)-deficient, and interleukin-4 (IL-4)-
deficient BALB/c mice were immunized 
with cartilage PG or were not immunized 
(naive). Mice were scored for arthritis as 
previously described ([26]) and killed 14 
days after the third PG injection. Sera were 
collected for cytokine assays (n = 12-16), 
knee joints were harvested for fibroblast 
isolation, and paws were collected for 
histologic assessment and/or tissue 
extraction (for measuring cytokines, 
sRANKL, and OPG) (see inset in Figure 
9A). Serum sRANKL and OPG levels were 
measured in both free and complex forms. 
The cross-capture enzyme-linked 
immunosorbent assays (ELISAs) detected 
more sRANKL (up to 150% more) and 
OPG (up to 8-10% more) than 
conventional capture ELISAs (compare 
with results shown in Figure 7). Serum 
cytokine levels were beneath detectable 
levels in naive mice but frequently were 
very high in arthritic mice. G and H, 
Levels of significance between naive and 
arthritic mice. Solid lines show significant 
differences between the sRANKL/OPG 
complex, and broken lines indicate 
significant differences between serum 
levels of free  sRANKL and OPG. Note 
the differences between the scales used in 
G and H. = P < 0.01. TNF α = tumor 
necrosis factor α; PGIA = PG-induced 
arthritis. 
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Serum levels of sRANKL (both free  and in complex with OPG) were 

particularly high in IL-4-/- mice and exceeded the serum sRANKL levels measured in 

wild-type arthritic (Figure 8G) or IL-17-/- BALB/c mice (data not shown). In contrast 

to sRANKL (Figure 8G), serum OPG levels were slightly, almost uniformly, elevated 

in wild-type and all gene-deficient mice with arthritis (Figure 8H) as compared with 

naive mice. OPG levels in arthritic wild-type BALB/c mice were comparable with 

those in nonimmunized (naive) IL-4-/- mice, whereas OPG concentrations were lower 

in IFNγ-/- naive and arthritic mice when compared with those in wild-type mice 

(Figure 8H). In sum, although serum levels of RANKL were high in all PG-

immunized mice (Figure 8G), and sufficient amounts of OPG were present, only 

limited amounts of sRANKL were neutralized  with OPG, except in IL-4-/- mice 

(Figures 8G and H). This phenomenon was clearly seen in paw extracts, where the 

RANKL:OPG ratio was the highest in IL-4-/- mice (see inset in Figure 9A). 

A more severe arthritis developed in IL-4-/- BALB/c mice, with a significantly 

earlier onset accompanied by massive bone erosions (Figures 9D and Dd). A milder 

form of arthritis developed in IFNγ-/- mice, even after the third PG injection (Figure 

9C), compared with the severity of PGIA in IL-17-deficient BALB/c mice (Figure 

9E). 

Although in vivo conditions may differ substantially from in vitro fibroblast 

cultures, the prominent osteoclast formation adjacent to FLS, particularly in wild-

type, IL-4-/-, and IL-17-/- mice (Figures 9Bb, Dd, and Ee), suggests a critical role of 

fibroblast-derived (either membrane-bound or soluble) RANKL in promoting 

osteoclastogenesis under inflammatory conditions. 
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Figure 9. Histologic sections of tarsometatarsal joints from wild-type (WT) and gene-
deficient arthritic BALB/c mice, with or without proteoglycan-induced arthritis (PGIA). A, 
Paws from naive (nonimmunized) mice (either WT or gene deficient) exhibited no 
histopathologic abnormalities. No cytokines, RANKL, or osteoprotegerin (OPG) was detected 
in paw extracts from the corresponding framed areas (results not shown). B-E, Representative 
sections from wild-type and gene-deficient (knockout [KO]) mice with proteoglycan-induced 
arthritis. Higher-magnification views of boxed areas in B, C, D, and E are shown in Bb, Cc, 
Dd, and Ee, respectively. The most extensive bone resorption was seen in WT (B) and 
interleukin-4 (IL-4)-deficient (D) mice (double black arrows). Numerous osteoclasts 
(multinucleated cells, as indicated by the white arrows) cover  the resorbed bone surface, 
and resorption pits are clearly seen in adjacent cortical bone. Tissue destruction and bone 
resorption were highly comparable in each arthritic mouse, even though the RANKL:OPG 
ratios were dramatically different in gene-deficient mice (inset in A; values are the mean and 
SEM results from 4 paws of 5-8 mice). (Hematoxylin and eosin-stained; original 
magnification × 10 in A-E; × 40 in Bb,      
Cc, Dd, and Ee.) IFN γ = interferon-γ. 
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4.3 Examination of angiogenic factors expressed by human synovial fibroblasts 

(Study II.) 

4.3.1. Steady-state mRNA levels in IFM and synovial tissues and selection of 

“angiogenic” factors 

 

In the first set of experiments, synovial tissue samples from normal and 

rheumatoid joints were analyzed and their gene expression levels and corresponding 

cytokine/chemokine secretions were compared to those measured in periprosthetic 

(IFM) soft tissues87. For this purpose, we used commercially available Riboquant 

Multiprobe RPA templates (hCK3, hCK4, hCK26, hCR4, hCR5, hCR6 and hAngio-

1). After the pre-screening of upregulated genes on different RPA templates, three 

custom-made templates were designed (Fig. 10) to measure altered gene expressions 

in both fresh and explant culture tissues (Fig. 11), and then in fibroblast cultures (Fig. 

12). In addition to TNFα, IL-1β, IL-6, IL-8, VEGF and MCP-1, also measured in an 

earlier study87, four more compounds were quantified in both normal synovial tissues 

and synovial samples from rheumatoid joints or IFM tissues (Fig. 11A). As 

summarized in Figure 11 and in an earlier experiment86,87, normal synovial tissues 

expressed significantly less message for any cytokines, chemokines and growth 

factors than those measured in either rheumatoid synovial tissue or IFM. The gene-

specific mRNA expression continuously increased up to day 7 (at the end of explant 

cultures), when the message levels for all measured genes were approximately 2-10-

fold higher (Fig. 11B) than in fresh samples (Fig. 11A). This was reflected by 

secreted cytokines and growth factors (data not shown). 
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Figure 10. The effect of titanium (Ti) particles and conditioned media (CM) of 
interfacial membranes (CM-IFM) on gene expression by  fibroblasts isolated from the 
IFM. Three custommade templates show representative RPAs using radiolabeled cRNA 
probes from untreated,  Ti- and/or CM-treated fibroblasts of IFMafter 48 h treatment. 
32P-labeled transcripts of known size were generated by in vitro transcription  from 
RNA templates and were used as size markers. Template 65120 [also used in 
reference15] contained: RANTES, a CXC chemokine  regulated upon activation 
normally T-cell expressed and secreted; IP-10/CXCL-10 CXC chemokine; Cox-1/2 
cyclooxygenase 1 and 2; bFGF basic fibroblast growth factor (FGF-2); FGF-R FGF 
receptor; Ang-1 angiopoietin 1; VEGF vascular endothelial growth factor; c- 
mycĽoncogene. Template 65238: IL-12p40 Interleukin-12p40 subunit, GMCSF-Ra 
granulocyte-macrophage colony-stimulatory factor  receptor-alpha; aFGF acid 
fibroblast growth factor (FGF-1); IL-6Ra interleukin-6 receptor- alpha; M-CSF 
macrophage colony-stimulatory factor;LIF leukemia inhibitory factor-1; TIMP-1 and 
TIMP-2 tissue inhibitor of metalloproteinases-1 and -2. Template 65184-b: TNFa  
tumor necrosis factor-a; IL-1RI IL-1 receptor-I; IL-1a and IL-1b; MMP-1 matrix 
metalloproteinase-1 (collagenase);MCP- 1 monocyte  chemoattractant protein-1; TGF-
b1 transforming growth factor-b1; TGF-bRIĽTGF-b receptor-I. Dashes indicate the 
corresponding gene’s  position [occasionally two or three transcripts (e.g., VEGF or IL-
8) can be seen], whereas the intensities of bands show the level of mRNA  expression. 
Because there were some but nonconsistent differences (<15% variance) betweenL32 
andGAPDH (glyceraldehyde-6-phosphate-dehydrogenase) housekeeping genes, all gene 
expressions were normalized to both L32 and GAPDH, and then the mean values of the 
two  independent normalization processes were used, and then data are shown in all 
subsequent figures. Treatments are indicated underneath the  templates. Representative 
panels of over 12–15 hybridization experiments are shown.  
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4.3.2. Fibroblasts produce angiogenic factors in response to Ti particles, cytokines, 

chemokines and growth factors 

  

We have shown that fibroblasts phagocytozed particles either in vivo or in 

vitro87, and responded to Ti, inflammatory cytokines, and CM-IFM stimulation (Fig. 

12). The response was measured at both transcriptional and translational levels. 

Therefore, we were interested in (i) how the Ti- and/or CM-induced gene expressions 

correlate, (ii) what is the level, and time frame, of Ti- and CM-induced gene 

expressions, and (iii) which genes coding for the most relevant angiogenic factors 

and/or bone resorbing agents are significantly affected by either Ti or CM stimulation. 

To answer these questions, IFM-fibroblasts were untreated (i.e., cultured in medium 

control), or treated with CM-IFM without or with 0.075% (v/v) Ti particles for 

different time periods. The gene expression levels of a select group of 

angiogenic/osteoclastogenic factors by normal synovial and IFM-fibroblasts treated 

with Ti particles or CM-IFM, or both, were compared in a time-dependent manner 

(Fig. 12). Both types of fibroblasts (normal synovial and IFM) exhibited very similar 

compound- and time-dependent responses for each gene measured, although the IFM 

fibroblast response was significantly more extensive than those measured in normal 

synovial fibroblasts (Fig. 12). Although Ti particles in a “plane” DMEM with 5% 

FBS (medium control) induced a smaller but still significant gene expression, the co-

treatment of fibroblasts (either normal or IFM) especially with CM-IFM and Ti 

dramatically upregulated the expression of all genes studied (Fig. 12, upper segments 

of each panel). Among the genes differentially expressed in CM-IFM-treated versus 

untreated cultures, MCP-1 and IL-6, IL-8, b-FGF, a-FGF, TGFβ1, VEGF, Cox-1 and 

Cox-2 expressions were the most prominent, and were even higher in the combination 

of CM-IFM plus Ti treatments  (Fig. 10; last lane on each template shows fibroblast 

response to this combined treatment). In general, the co-treatment had an additive 

effect upon VEGF, b-FGF and TGFβ gene expression, which was synergistic for IL-8 

and Cox-2. Ti alone had no effect on Cox-1 expression in fibroblasts, whereas the 

CM-IFM induced significant Cox-1 gene expression after 48-hr stimulation. In 

contrast, both Ti and CM-IFM had an initial, however significant suppressive effect 

upon Cox-2 gene expression, which then turned to be especially high by 72 hr (Fig. 

12). 
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 Individual cytokines, chemokines and growth factors (IL-6, MCP-1, IL-8), 

except TNFα and IL-1β, either alone or in combination with Ti particles, had no or 

only a marginal, effect upon Cox-1, Cox-2, TGFβ, b-FGF, IL-8 and VEGF gene 

expressions (data not shown). However, when these cytokines/growth factors were 

combined in a cytokine “cocktail” (positive control)87, their effect on gene expression 

was dramatic and highly comparable with those of CM-IFM (Fig. 12). In general, for 

selected fibroblast activation markers (Fig. 10), the highest gene expression was 

achieved between 48- and 72-hr treatments (Fig. 12), whereas the highest amounts of 

secreted proteins were measured in 72-96 hr culture media87 (data not shown). 

 

 

 

 
 

 

 

 

Figure 11. Steady-state mRNA levels 
measured in fresh normal (NSy) and 
rheumatoid (RASy) synovial tissues and 
interfacial membranes (IFM) (A), and then 
after 7-day culture period (B). mRNA levels 
were measured by RNase protection assay 
(RPA) normalized to expression of L32 and 
GAPDH housekeeping genes in the same  
sample. Numbers (n) of samples are 
indicated. The expression levels of Cox-1, 
Cox-2, and basic-FGF were  highly 
comparable in the three different types of 
tissues, but the TGF-b, IL-8, and VEGF were 
significantly  higher for RASy and IFM 
compared to NSy in both fresh tissues and 
explant cultures. Because there were no 
significant differences in gene expressions 
between RASy and IFM tissues, and the 
fibroblast ‘‘activationmarkers’’  (such as IL-
6, VEGF, and IL-1b protein contents) were 
highly comparable, CM-IFM were used in 
subsequent  experiments on two independent 
IFM fibroblast lines. Gene expression data 
for IL-8 and VEGF are combined  with those 
obtained in a previous study.15 Values are 
shown as mean SEM.   
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Figure 12. Time-dependent mRNA expression coding for VEGF, TGF-b, 
basic-FGF (FGF-2), IL-8, Cox-1, and Cox-2 in normal synovial and 
IFMfibroblasts cultured for 12–72 h in normalDMEMwith 5% FBS 
(reference  medium) exposed to Ti particles (0.075%, v/v) and/or CM-IFM-
treated samples. Gene expression levels in  normal synovial fibroblasts were 
consistently lower (open symbols) than  IFM fibroblasts (closed symbols), 
and the maximum effect was achieved at 72 h experiments in Ti plus CM-
IFM treatment (except for TGF-b). Note, different scales are used for Ti 
versus CM-IFMor CM-IFM/Ti treatments. The mean SEM values are also  
indicated by the level of significant differences compared to the 12-h values: 
*p<0.05, **p<0.01, and ***p<0.001. 
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4.3.3. Transcriptional regulation of “angiogenic” factors in fibroblasts in response to 

stimulation with Ti and/or CM-IFM 

 

As mentioned above, all fibroblasts (from normal or rheumatoid synovial 

tissue, or from IFM) responded similarly to single (Ti or CM-IFM) or combination 

treatments. To understand the mechanisms of how and at what level fibroblast 

activation is affected by either particles, CM, or combination treatments, we used 

inhibitors to block transcriptional (actinomycin D) or translational (cycloheximide) 

events, or inhibit intracellular protein transport or phagocytosis via cytoskeleton 

disorganization. As shown on Figure 13 for IL-6, a prominent cytokine of fibroblast 

activation, and for VEGF, the most prominent pro-angiogenic factor, the effect of 

CM-IFM was blocked at transcriptional level (p<0.001). Whenever the IL-6 and 

VEGF was not secreted (e.g., brefeldin A or monensin-treatments, data not shown), a 

negative feed-back pathway suppressed the IL-6- and VEGF-specific mRNA 

expression as well (p<0.01). Other cytokines, chemokines or growth factors exhibited 

diverse profiles, whereas most of them were regulated at transcriptional, and only 

marginally at translational levels (data not shown). The block of intracellular protein 

transport or secretion did not affect the transcriptional events (data not shown). Only 

the TGFβ expression was significantly upregulated in monensin-treated fibroblast 

cultures, when the TGFβ secretion to culture medium was inhibited (data not shown). 

Technically, the Ti effect for each measured cytokine, chemokine or growth factor 

was completely blocked by cytochalasin D, whereas other inhibitory compounds had 

minor effect upon gene or protein expression in Ti-stimulated fibroblast cultures. In 

conclusion, treatments of fibroblast with either CM-IFM and/or Ti particles affected 

the most upstream events, and the expression of fibroblast activation markers were 

controlled at transcriptional levels.  
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4.3.4. Transcriptional regulation of VEGF in fibroblasts in response to stimulation 

with Ti and/or CM-IFM 

 

In a more extended experiment, the expression and secretion of VEGF 

including the three isoforms were studied using IFM fibroblasts. As expected and 

summarized on Figure 10, the gene expression level of VEGF was time dependent, 

and CM-IFM with or without Ti particles had the highest response (Fig. 14A). Most 

of the VEGF protein expressed in response to CM-IFM was the 55kDa (189 amino 

acid-long) isoform, but it could be retrieved only in cell lysates, i.e., it was cell 

surface-, most likely heparan sulphate-bound. In contrast, the 23 kDa (165 amino 

Figure 13. The effect of transcriptional, 
translational, and protein transportation 
inhibitors on VEGF and IL-6 production 
by IFM fibroblasts treated with CM-IFM 
without or with Ti particles, or left 
untreated.  
Serum deprived (0.5% FBS in DMEM) 
semiconfluent IFM fibroblasts were 
pretreated with 2 mg/ml actinomycin D, 
10 mg/ml cycloheximide, 1 mg/ml 
brefeldin A, 2 mg/ml monensin, or 0.5 
mg/ml cytochalasinDfor 6 h. Medium 
was then replaced with normal DMEM 
with 5% FBS (preincubated at 37C for 
24 h) or with CM-IFM with or without 
0.075% (v/v) Ti particles, plus the 
inhibitor in the concentration listed 
above. Gene expression was measured 
48 h later. Columns summarize the 
mean_SEM of three to six independent 
measurements (*p<0.05 and **p<0.01). 
RPA panels underneath the columns 
show representative hybridization 
experiments 
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acid-long) and 18 kDa (121 amino acid long) VEGF isoforms were well detected in 

the medium. Ti particles had significant effect on the secretion of the 23 kDa VEGF 

isoform, but eventually no effect was detected for the 18 kDa and 55 kDa isoforms 

(Fig. 14B). Gene and protein expression profiles of VEGF in reposnse to various 

treatments are summarized on figures 14C and 14D.  

 

 

Figure 14. Gene expression profile and secretion 
of VEGF by IFM fibroblasts in response to 
various treatments. Panel (A) shows the fold-
increase of VEGF expression after 12- and 24-h 
treatments with Ti and/or CM-IFM. Panel (B) has 
representative Western blots showing the three 
protein isoforms. The 55 kDa (VEGF189 
isoform) was present in a membrane-bound form 
and could be detected only in cell lysates, 
whereas the 18 (VEGF121) and 23 kDa 
(VEGF165, the most dominant and most potent 
angiogenic isoform detected as a homodimer) 
splice variants were secreted and measured in 72-
h CM of IFM fibroblasts. Treatments are 
indicated underneath the  Western panels. Panel 
(C) summarizes the gene expression measured by 
RPA (48-h), and panel (D) the secreted  amounts 
of VEGF measured by ELISA in the same media. 
Based upon the Western blot results, these  
measurements represent only the 18- and 23-kDa 
isoforms. Treatments are indicated underneath the 
columns, and levels of significant differences 
(mean SEM) are shown: *p<0.05 and **p<0.01 
(nĽ 3–5 samples). 
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5. DISCUSSION 

 

5.1. Synovial fibroblasts producing osteoclastogenic factors by a cytokine 

controlled manner (Study I.) 

 

In this study, we have shown that synovial fibroblasts of either human or 

mouse origin are substantial sources of sRANKL and OPG, and that the production of 

these mediators is regulated by various cytokines such as TNFα, IL-1β, IL-17, IL-4, 

and IFNγ. Importantly, proinflammatory cytokine effects were found to be highly 

comparable in synovial fibroblasts of different origin (human and mouse, normal 

versus arthritic). Proinflammatory cytokines (TNFα, IL-1 β, and IL-17) consistently 

increased RANKL mRNA and protein expression in both human and mouse synovial 

fibroblasts, eventually producing the same levels as those measured in human primary 

osteoblast and mouse spleen T cell cultures (our workgroup’s unpublished 

observations). However, this cytokine-induced sRANKL expression correlated 

closely with elevated OPG expression. These findings suggest that RANKL 

production is mostly cytokine regulated and not cell-specific, although different cell 

types respond differently to cytokine stimulation. In contrast to the large number of 

factors that are involved in osteoclastogenesis100,101, the bone-protective or bone-

resorptive antagonist repertoire of various cytokines and growth factors is 

limited4,52,71,99. In this study, we tested IL-4 and IFNγ to confirm their ability to inhibit 

osteoclastogenesis and to gain an understanding of how these cytokines affect 

RANKL/OPG production both in vitro by cytokine-stimulated human synovial 

fibroblasts and in gene-deficient mice during the progression of inflammatory joint 

destruction.  

The binding of RANKL (either soluble or as a cell surface receptor) to RANK 

expressed on the surface of osteoclast precursor cells is probably the most important 

event in the induction of osteoclastogenesis58, which can be monitored in in vitro 

osteoclastogenesis assays in the presence of various proinflammatory cytokines100,101. 

The decoy receptor OPG competes with RANK-RANKL binding by blocking their 

interaction102-104. Therefore, the RANKL:OPG ratio appears to be a critical parameter 

in osteoclastogenesis, controlling bone homeostasis in both normal and pathologic 

conditions4,52,71,99. Although the majority of RANKL is probably expressed as a cell-
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surface receptor in several activated cell types4,105,106, significant amounts of 

circulating sRANKL (either as a splice variant without transmembrane domain or as a 

shed form) and OPG are detectable in the circulation97,105. At least one of the splice 

variants of sRANKL, possibly more in the mouse system 

(http://www.ensembl.org/Mus_musculus/geneview), is inactive due to the lack of a 

binding site to OPG as described in the human system107; thus, such variants can be 

measured as free sRANKL (Figure 8G). 

Based on the results of cross-capture ELISAs (Figures 8G and H), one of the 

antiosteoclastogenic effects of IL-4 may be explained by the fact that IL-4 does not 

only suppress RANKL production, but probably a lesser amount of sRANKL can 

bind to OPG. Although this amount of sRANKL that cannot bind to OPG may be 

very small relative to the cell surface-bound RANKL87, a correct conclusion can be 

made only using in vitro osteoclastogenesis assays86,100,101, in which known amounts 

of free sRANKL and sRANKL/OPG complex are tested. Two of the 3 isoforms of 

sRANKL appear to be biologically as active as the membrane-bound form97,105,108 

thus, the sRANKL:OPG ratio may be as relevant a marker of osteoclastogenesis as 

either membrane-bound RANKL or circulating OPG alone105. The expression levels 

of RANK, RANKL, and OPG are under the control of various cytokines, but a portion 

of serum sRANKL and OPG may also be nonskeletal in origin4,56,98,106. Therefore, the 

serum levels of sRANKL and OPG may not necessarily reflect cytokine activities in 

the bone microenvironment, whereas circulating sRANKL and OPG may 

significantly affect osteoclastogenesis in vivo109. 

In an inflammatory environment such as that in RA joints, T lymphocytes, 

macrophages, and fibroblasts are activated and produce numerous cytokines, which in 

turn further activate surrounding cells in either a paracrine or an autocrine manner. 

Osteoclast progenitor cells express RANK, whereas the major sources of RANKL 

(and OPG) are activated T lymphocytes, osteoblasts, and fibroblasts. Therefore, 

additional studies are necessary (and are in progress) to detect the biologic activities 

of free, fibroblast-expressed, and OPG-bound sRANKL in in vitro osteoclastogenesis 

assays (Glant T, et al: unpublished observations). However, in these in vitro assays, 

whenever we measure the sRANKL:OPG ratio (as shown in Figure 9A), special care 

and selection of antibodies are necessary to detect the RANKL/OPG interaction site, 
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which should not block the antibody-binding sites (epitopes) of any of the 2 

components. 

Both fibroblast-like and macrophage-like cells populate the inflamed RA 

synovium, especially during the chronic phase of disease, and these cells occupy the 

space adjacent to the resorbed bone. Moreover, these cells appear to be in contact 

with each other and frequently are in contact with osteoclasts (Figures 9Bb and Db). 

Previous studies have shown that IL-4 selectively inhibits TNF signaling, 

acting directly on both osteoclast precursor cells and mature osteoclasts, and 

reversibly inhibits osteoclastogenesis through the inhibition of NF-κB and JNK 

activation in a STAT-6-dependent manner67,110. IL-4 inhibits RANKL expression by 

synovial fibroblasts and simultaneously increases OPG secretion98. A dramatic shift in 

the RANKL:OPG ratio can directly affect the differentiation of osteoclast progenitor 

cells and also inhibits the expression of T cell surface-associated molecules111. In this 

study, we observed that IL-4, alone or in combination with other proinflammatory 

cytokines, suppressed RANKL production and simultaneously increased OPG 

expression by fibroblasts. To further confirm this novel observation, we used gene-

deficient mouse synovial fibroblasts and observed that RANKL gene expression was 

highly up-regulated in the absence of IL-4, while OPG production was reduced 

(Figure 7). Thus, the overall RANKL:OPG ratio became significantly elevated as 

compared with that in wild-type cells. This elevation was also demonstrated in 

inflamed joint (paw) extracts from wild-type versus gene-deficient mice with PGIA. 

This may well explain why we observed unusually aggressive bone resorption in IL-

4-deficient mice (Figure 9D), supporting the hypothesis that IL-4 is one of the most 

potent antiosteoclastogenic factors involved in local bone resorption66.  

Although IFNγ also suppressed proinflammatory cytokine-induced RANKL 

gene and protein expression, this Th1-type cytokine did not affect, or may even have 

reduced, OPG secretion in the presence of proinflammatory cytokines (Figure 6). 

These results, at both the gene and protein levels, were consistent in several 

independent experiments using normal and RA human synovial fibroblast cultures 

and IFNγ-/- mice with PGIA90. Therefore, these findings, at least in in vitro conditions, 

appear to contradict the concept that IFNγ has a strong antiosteoclastogenic effect. 
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Conclusion of osteoclastogenesis study:  

In conclusion, although different proinflammatory cytokines seemingly 

demonstrate strong osteoclastogenic effects via the up-regulation of RANKL, these 

effects are counteracted by elevated expression of OPG, and most of the released 

sRANKL is in complex with OPG (Figure 8G). However, the osteoclastogenesis-

promoting effects of TNFα and IL-1β and the similar, but slightly less prominent, 

effect of IL-17 are highly regulated by the antiinflammatory cytokine IL-4, more 

extensively than by IFNγ or any other cytokines tested to date. Although these 

experiments with fibroblasts require additional in vitro and in vivo studies that focus 

on cytokine/fibroblast-mediated aspects of osteoclastogenesis, our observations 

suggest that, indeed, activated RANKL-expressing fibroblasts are capable of inducing 

osteoclast formation in vitro86,87,112. In conclusion, it appears that synovial fibroblasts 

are highly activated cells in the inflamed synovium, and that their cytokine-rich 

milieu raises the possibility of robust RANKL/OPG production in vivo. The 

expression of RANKL and OPG is highly regulated by proinflammatory and 

antiinflammatory cytokines, indicating that synovial fibroblasts may play a substantial 

role in the initiation and maintenance of bone resorption in inflamed joints. 

5.2. Synovial fibroblast plays an important role in angiogenesis and 

neovascularization (Study II.) 

  

In the first experimental setup of this part of our second study, we have 

collected synovial tissues from normal, rheumatoid and osteoarthritic joints, and 

pseudo-(interfacial) membranes of osteolytic lesions to measure the gene expression 

profiles in fresh tissues and explant cultures, inflammatory cytokines and growth 

factors in culture media (CM), and the fibroblast responses to various cytokines, 

chemokines and growth factors detected in CM of explant cultures87. A number of 

cytokines/growth factors with or without Ti wear debris upregulated various factors, 

including RANKL, OPG, and a group of (pro)angiogenic factors. Although the 

macrophage/monocyte activation is probably the most prominent event in the 

periprosthetic environment76,77,82,83,93,113, fibroblasts with high proliferative rate114,115 

comprises approximately 30% of the total cell number of the IFM76,82,116. Fibroblasts 

can also phagocytose particles both in vivo and in vitro87, produce and respond to a 
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number of inflammatory mediators and growth factors84,86,87,115-118, and last but not 

least, these cells express RANKL in response to Ti phagocytosis, TNFα or IL-1β 

stimulation, which level of RANKL expression seems to be sufficient to induce 

osteoclastogenesis86,87,119. The periprosthetic granulomatous soft tissue (IFM) exhibits 

a heterogeneous histopathological feature, in which highly vascularized areas with 

dens cellularity, especially adjacent to the osteolytic lesion, alternate with fibrotic and 

pseudocapsule-like tissue structures74,77,82,83,113,120. In both cases, the angiogenesis is 

critical and initiated by cytokines, hypoxia and pro-angiogenic factors to supply 

necessary nutrition conditions. Thus, the maintenance and nutrition of this 

heterogeneous but highly dynamic tissue of macrophages, fibroblasts and foreign 

body giant cells of the periprosthetic milieu requires sufficient blood supply, thus the 

angiogenesis and neovascularization initiated by a cocktail of growth factors and pro-

angiogenic cytokines are crucial to prevent tissue necrosis. On the other hand, these 

angiogenic factor may act as activators of increased bone resorption. Angiogenesis 

plays a central role in the pathogenesis of a number of pathological processes, such as 

in tumor growth, eye diseases, wound healing and chronic inflammatory diseases 

(e.g., psoriasis or rheumatoid arthritis)16,121,122. Eventually, the periprosthetic 

microenvironment is very similar to the rheumatoid synovium “supplemented” with 

an even more drastic local environmental factor: the periprosthetic space is 

continuously launched with newly generated, non-degradable particulate wear debris. 

In turn, cells of this periprosthetic soft tissue, especially in the osteolytic areas, are 

constantly activated, which maintain an irresistible and irreversible process. 

We have shown the overexpression of several angiogenic and osteoclastogenic 

factors by human IFM fibroblasts (VEGF, MCP-1, M-CSF, IL-8, Cox-1, Cox-2, a-

FGF, b-FGF, LIF-1, RANKL and OPG) in response to particulate wear debris and/or 

cytokine (CM-IFM) stimulation.  Cells of this periprosthetic soft tissue, including 

fibroblasts, are under strong activation pressure due to the continuously generated 

particulate wear debris, which maintains a chronic state of inflammation113,114,117,123. 

Fibroblasts are actively involved in this detrimental process in that (i) they are 

continuously stimulated by both prosthetic wear debris and cytokines/growth factors 

produced by activated macrophages, osteoblasts, and fibroblast (self)-secreted 

products, (ii) they suppress osteoblast functions, and (iii) they directly or indirectly 

contribute to osteoclast activation84,86,87,93,118,119,124.  
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To gain insight into the complex mechanisms taking place in the periprosthetic 

space, and to understand how these fibroblasts are involved in the formation of IFM 

and osteolysis, we and others have used fibroblasts from different sources (synovial 

tissues of normal and pathological joints, and from IFMs) and tested their 

responsiveness under different conditions86,87,93,116. In this study, we compared the 

responsiveness of human fibroblasts of different origins to Ti particles and CM 

harvested from IFMs. While fibroblasts from normal synovial tissues could be 

stimulated less effectively than those isolated from IFM using the same CM-IFM 

(Fig. 10), CM from normal synovial tissues had no or minimal effect upon fibroblasts 

isolated from either normal or pathological tissues (unpublished data). Thus, while the 

in vitro responsiveness of fibroblasts derived from either a normal or inflammatory 

milieu were highly comparable after a few passages, cells of the IFM (or rheumatoid 

synovium, data not shown) produced significantly more bioreactive compounds in 

vitro than those obtained from normal synovial tissues.  

 To mimic in vivo conditions of the periprosthetic pathological bone resorption 

as closely as possible, we stimulated IFM fibroblasts with Ti particles and/or CM 

from IFMs.  In order to reproduce the in vivo conditions, particles of approximately 

the same size distribution as the wear debris present in periprosthetic tissues78,125-127 

were used to simulate fibroblasts. In general, fibroblasts from IFMs associated with 

various degrees of osteolysis responded very similarly after 6-8 passages, but the 

variability in cytokine/chemokine concentrations in collected CM had a more diverse 

effect upon fibroblast activation. Therefore, we selected a model system in which we 

could compare activation events of several fibroblast lines using CM from a number 

of IFMs with high levels of TNF-α, IL-1β, IL-6, IL-8, MCP-1, FGFs and VEGF, 

factors which are involved in both angiogenesis and osteoclastogenesis.  

We found that MCP-1 was as good a marker of fibroblast activation as IL-6 87, 

and both secreted compounds (MCP-1 and IL-6) have an effect on osteoclast 

activation, although this effect is indirect4. While fibroblasts express both TNFRp55 

and TNFRp75 4,95, and respond to TNF-α stimulation (Fig. 14C-D), neither synovial 

nor IFM fibroblasts produce TNF-α in response to Ti particle or CM-IFM 

stimulation87. Reciprocally, while fibroblasts produce large amounts of VEGF in 

response to various stimuli (Fig. 14D), they do not respond to VEGF stimulation due 

to the lack of VEGF receptors Flt-1 and KDR/Flk-194,128. Exogenous TNF-α 

significantly upregulated IL-1β, IL-6, M-CSF, MCP-1 and RANKL 87, and VEGF 
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(Fig. 14C-D). Thus, fibroblasts, via their TNFRp55, might be involved in both 

RANKL-dependent osteoclastogenesis129, and via their TNFα, IL-1 and growth factor 

receptors in the neovascularization of the IFM.  

Among the fibroblast activation markers induced by either TNF-α, IL-1β, 

particulate Ti or CM-IFM the expression of membrane-bound 55 kDa VEGF isoform 

together with soluble forms (23 kDa and lesser amounts of 18 kDa) of VEGF 

isoforms (all potent pro-angiogenic factors) (Fig. 14) were also detected. In addition, 

activated fibroblasts secreted Cox-2, LIF-1, IL-8, TGFβ1, a-FGF and b-FGF, all 

involved in both angiogenesis and osteoclastogenesis4,130-132. Therefore, many of the 

angiogenic and osteoclastogenic factors detected in the IFM82,83,118,133,134 might derive 

from activated fibroblasts (Figs.10 and 12). These fibroblasts and macrophages are 

present and adjacent to osteoclasts77, and because activated fibroblasts secrete 

RANKL, VEGF and M-CSF, it may well be that the fibroblast is a key cell-type 

moderating simultaneously both angiogenesis and osteoclastogenesis in the 

periprosthetic space.   

 

Conclusion of angiogenesis study: 

 

Taken together, macrophage and fibroblast activations are “natural” processes 

in the IFM, and the effect of fibroblast activation upon angiogenesis and 

osteoclastogenesis may be as potent and critical as macrophage activation. In 

addition, activated fibroblasts produce large amounts of bone-resorbing 

metalloproteinases accompanied by reduced secretion of tissue-specific 

metalloproteinase inhibitor84, which together with a fibroblast-induced suppression of 

osteoblast function79, suggests a significant role for fibroblasts and fibroblast-derived 

factors in the development of periprosthetic osteolysis. 
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6. NOVEL FINDINGS: 

 

» Expression of osteoclastogenic factors by human and mouse synovial 

fibroblasts (Study I.) 

 

•   In our first experimental study we demonstrated that synovial fibroblasts of 

either human or mouse origin are substantial sources of sRANKL and OPG 

•   The expression of sRANKL and OPG by synovial fibroblasts is highly 

regulated by proinflammatory and antiinflammatory cytokines 

•    sRANKL production is mostly cytokine regulated and not cell-specific 

•    The expression of sRANKL is closly correlated with elevated OPG expression 

•    We observed that IL-4, alone or in combination with other proinflammatory 

cytokines, suppressed RANKL production and simultaneously increased OPG 

expression by fibroblasts. To further confirm this novel observation, we used 

gene-deficient mouse synovial fibroblasts and observed that RANKL gene 

expression was highly up-regulated in the absence of IL-4, while OPG 

production was reduced. Thus, the overall RANKL:OPG ratio became 

significantly elevated as compared with that in wild-type cells. This elevation 

was also demonstrated in inflamed joint (paw) extracts from wild-type versus 

gene-deficient mice with PGIA. This may well explain why we observed 

unusually aggressive bone resorption in IL-4-deficient mice, supporting the 

hypothesis that IL-4 is one of the most potent antiosteoclastogenic factors 

involved in local bone resorption. 

• We contradicted the concept that IFN-γ has a strong antiosteoclastogenic effect 

because IFN-γ also suppressed proinflammatory cytokine-induced RANKL 

gene and protein expression, but this Th1-type cytokine did not affect, or may 

even have reduced, OPG secretion in the presence of proinflammatory 

cytokines. 
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»  Expression of angiogenic factors by human synovial fibroblasts (Study II.) 

 

•   In our second experimental study we have shown the overexpression of several 

angiogenic and osteoclastogenic factors by human IFM fibroblasts (VEGF, 

MCP-1, M-CSF, IL-8, Cox-1, Cox-2, a-FGF, b-FGF, LIF-1, RANKL and 

OPG) in response to particulate wear debris and/or cytokine (CM-IFM) 

stimulation 

•   Cells of the IFM or rheumatoid synovium produced significantly more 

bioreactive compounds in vitro than those obtained from normal synovial 

tissues. 

•    Reciprocally, while fibroblasts produce large amounts of VEGF in response to 

various stimuli, they do not respond to VEGF stimulation due to the lack of 

VEGF receptors Flt-1 and KDR/Flk-1 

•    We found that MCP-1 was as good a marker of fibroblast activation as IL-6, 

and both secreted compounds (MCP-1 and IL-6) have an effect on osteoclast 

activation, although this effect is indirect. 

•    Fibroblasts, via their TNFRp55, might be involved in both RANKL-

dependent osteoclastogenesis,41 and via their TNFα, IL-1 and growth factor 

receptors in the neovascularization of the IFM. 

•   Therefore, many of the angiogenic and osteoclastogenic factors detected in the 

IFM might derive from activated fibroblasts. These fibroblasts and 

macrophages are present and adjacent to osteoclasts, and because activated 

fibroblasts secrete RANKL, VEGF and M-CSF, it may well be that the 

fibroblast is a key cell-type moderating simultaneously both angiogenesis and 

osteoclastogenesis in the periprosthetic space. 
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