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Part I. The Basic Estimates

1 Introduction

During the last twenty years there have been many attempts to extend to
weakly coupled cooperative elliptic systems of second order the theory of
scalar elliptic equations in non-divergence form. This work is a contribution
to this study. We establish counterparts, for cooperative fully nonlinear ellip-
tic systems, of the fundamental Alexandrov-Bakelman-Pucci and Harnack-
Krylov-Safonov estimates for scalar linear equations (see for example [GT]).

We study the system





F1(D
2u1, Du1, u1, . . . , un, x) = f1(x)

F2(D
2u2, Du2, u1, . . . , un, x) = f2(x)

. . .
Fn(D2un, Dun, u1, . . . , un, x) = fn(x)

(1)

in a bounded domain Ω ⊂ R
N ; n,N ≥ 1. Here Fi are uniformly elliptic fully

nonlinear operators.
We obtain the following two results (see Section 3 for precise statements).

First, we prove an Alexandrov-Bakelman-Pucci (ABP) type inequality, which
has the form

sup
x∈Ω

max
1≤i≤n

ui(x) ≤ sup
x∈∂Ω

max
1≤i≤n

ui(x) + C‖max
1≤i≤n

fi(x)‖LN (Ω),

provided (u1, . . . , un) is a subsolution of (1) and (1) is coercive in an appro-
priate sense. Second, we obtain a Harnack inequality which states that any
nonnegative solution of (1) satisfies

sup
x∈B

max
1≤i≤n

ui(x) ≤ Φ

(
inf
x∈B

min
1≤i≤n

ui(x) , ‖max
1≤i≤n

fi(x)‖LN (Ω)

)
,

where B is a ball included in Ω and Φ(·, ·) is a continuous function such that
Φ(0, 0) = 0.

For such a general system to satisfy ABP and Harnack estimates there
are two unavoidable structural assumptions one is obliged to make. First,
the coupling in the system appears only in the zero order terms, that is,
the i-th equation in (1) involves only derivatives of ui. This property is
usually referred to as weak coupling. Second, the system is cooperative
(quasi-monotone) in the sense that Fi is non-decreasing in uj, for i 6= j. In
general, if any of these properties is not satisfied then the system does not
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satisfy even the maximum principle (see the counterexamples at the end of
Section 3).

Harnack estimates have been essential in many areas of PDE’s, such as
existence and regularity of solutions of nonlinear elliptic equations, Liouville
type theorems, qualitative properties of solutions. In particular, they have
been the core of the theory of strong (i.e. W 2,N

loc ) solutions of scalar equations
in non-divergence form, developed by Krylov and Safonov in the late 70’s
(see [Kr]). This theory is the counterpart of the classical De-Giorgi–Nash–
Moser regularity theory for divergence form equations (see for instance [GT]).
A general regularity result for nonlinear equations in divergence form was
obtained by Serrin in [Se].

Ever since DeGiorgi’s counterexample (see [dG] and [Gi]) it has been
known that general systems in divergence form do not enjoy the same regu-
larity properties as scalar equations. Consequently, a great amount of work
has been devoted to determining under what restrictions systems in diver-
gence form do behave like scalar equations, as far as regularity is concerned.
A basically optimal regularity result for diagonal type systems in divergence
form was obtained by Hildebrandt and Widman in [HW]. For a thorough
account on the regularity theory for elliptic systems in divergence form we
refer to Giaquinta’s book [Gi].

On the other hand, relatively little is known about elliptic estimates for
systems in non-divergence form (there have been only partial results for linear
systems with regular coefficients, see the discussion after Corollary 8.1). We
give here an appropriate framework in which such estimates can be obtained.
Our results are complete in the sense that they reduce to those of Krylov
and Safonov when n = 1 (scalar case). This paper is the first in a program
aimed at establishing a satisfactory elliptic theory for systems of type (1).

The leading idea of our work is to use the properties of viscosity solutions
of partial differential equations. The viscosity solutions theory developed
very rapidly during the last twenty years (we quote some of the fundamental
works on the subject in Section 4). Viscosity solutions offer a number of
advantages and provide a convenient framework for studying fully nonlinear
equations. In addition, recent developments – the so-called LN -viscosity
solutions – permit to treat equations with discontinuous coefficients ; in this
setting strong solutions are a subclass of the class of LN -viscosity solutions.

In recent years elliptic estimates were obtained for viscosity solutions of
fully nonlinear scalar equations. It turns out that viscosity solutions are an
appropriate framework for studying systems too. The first to use viscosity
solutions in the general setting of systems that we consider were Ishii and
Koike ([IK]), who obtained existence and uniqueness results for viscosity so-
lutions of cooperative elliptic systems through a Perron-type argument. Our
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approach contains a new idea, which consists in relating system (1) to a set
of scalar fully nonlinear elliptic equations and then using the Alexandrov-
Bakelman-Pucci and Harnack estimates for viscosity solutions of such equa-
tions.

Although cooperative elliptic systems share many properties with scalar
equations, it would definitely be wrong to think that these systems boil down
to scalar equations. For example, even basic concepts in the framework of
scalar equations, such as coercivity, do not admit clear (or unique) equivalents
for systems. We give various conditions under which a cooperative system
satisfies the maximum principle, together with counterexamples (Sections 3
and 10).

Our results are new even in the particular case of a linear system. Because
of the importance of this case we have devoted to it a whole part of the article
in which we restate our results in a more precise manner (Section 8). For
example, we give a detailed description of the way the coupling in the system
reflects into the Harnack estimate.

Further, in the linear setting we are able to give a complete answer to
the coercivity issue we mentioned above. Specifically, in section 14, we ob-
tain a necessary and sufficient condition for the maximum principle to hold
for a linear system (this question has been open for some time in the non-
divergence case). This is done in terms of a properly defined first eigenvalue
of the system. Actually, it was not known before whether a general coop-
erative system admits a first eigenvalue with properties similar to those of
the first eigenvalue of a scalar operator (except for a partial and somewhat
different result by Hess).

An application of our results are ABP and Harnack estimates for higher
order equations such as

∆nu = f.

Estimates for polyharmonic functions (f ≡ 0) are a very classical problem.
Even though their study dates back to the nineteenth century, such estimates
were obtained much later, and they depend on the polyharmonicity of the
function. A Harnack estimate was available neither for more general higher
order equations, nor for equations with a right-hand side. See Section 15 for
a discussion and results.

2 Examples

We give here a selection of problems, taken from different fields, which lead
to weakly coupled cooperative elliptic systems of type (1).
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Switched diffusion processes (probability theory). Let λt ∈ {1, . . . , n}
be a discrete valued Markov process and let Xt be a diffusion process such
that

dXt = bλtdt + σλtdWt,

where Wt is a standard n-dimensional Wiener process, independent of λt.
Suppose pij ≥ 0 is the probability of transition from state i to state j of λt.
Then

ui(x) = E
(x,i)

[
φλτ(Ω)

(
Xτ(Ω)

)]
, i = 1, . . . , n,

is a solution of the linear system




Liui +
∑

j 6=i

pijuj = 0 in Ω

ui = φi on ∂Ω, i = 1, . . . , n,

where

Liw =
1

2
tr

(
σi

(
σi

)t
D2w

)
+ bi.Dw,

and τ(Ω) is the first exit time of Xt from Ω. See [CZ2] for a more detailed
description of the problem.

Jumping volatility models (mathematical finance). In this well-known
extension of the Black-Scholes pricing model the underlying asset follows the
stochastic differential equation

dSt = rSt dt + σλtSt dWt,

under the risk-neutral probability. Here r denotes the risk-free rate, σ is the
volatility of the asset (σ can take n different values) and λt ∈ {1, . . . , n} is a
discrete-valued Markov process, independent of the standard one-dimensional
brownian motion Wt. If we denote the price of an European call option with
maturity T and strike K by C(t, St, λt), then the function

Ci(t, S) = C(t, S, i), (t, S) ∈ [0, T ] × R
+,

is shown to satisfy the system




∂Ci

∂t
+

(σi)
2

2
S2∂2Ci

∂S2
+ rS

∂Ci

∂S
− rCi +

1

ρ

∑

j 6=i

pij(Cj − Ci) = 0

Ci(T, S) = (S − K)+,

where pij is as above and ρ is the characteristic time of λt. For details on
this model, see [Bl], [BP], and [LL].
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Remark. Strictly speaking, the above system falls out of the scope of our
work, since it is parabolic (or degenerate elliptic). We consider it as a moti-
vation for an extension of our work to parabolic systems. We do not doubt
such an extension is possible.

Mathematical biology. A number of models in population dynamics lead
to elliptic and parabolic systems which can be transformed into cooperative
systems of type (1). A simple example is the system





∆u + u(a − bu − cv) = 0

∆v + v(d − eu − fv) = 0
in Ω.

We refer to the abundant literature on this topic, for example [Mu].

Switching games (stochastic games and control theory). A typical
example is the system





max {Liui − fi,−ui + Miu} = 0 in Ω, i = 1, . . . , n

ui = 0 on ∂Ω, i = 1, . . . , n,

where Li are uniformly elliptic linear operators, u = (u1, . . . , un), and

Miu(x) = max
j 6=i

{−kij + uj(x)} , for some kij ∈ R.

This problem arises when considering a system whose state processes are of
Ito type and who can be switched into n different regimes. The problem is
then to choose an appropriate switching so as to minimise the resulting cost.
See [LB] for details on this problem.

Other problems from stochastic games theory lead to the more general
system

min{max{Gi(D
2ui, Dui, ui, x),−ui + Mi(u, x)},−ui + Ni(u, x)} = 0,

i = 1, . . . , n, where

Mi(u, x) = max
j 6=i

{uj + gij(x)} , Ni(u, x) = min
j 6=i

{uj + hij(x)} ,

with gij, hij ∈ C(Ω). See [IK] and the references therein.
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3 Main Results

We study the system





Fi(D
2ui, Dui, u1, . . . , un, x) = fi(x)

i = 1, . . . , n,

defined in a bounded domain Ω ⊂ R
N ; n,N ≥ 1.

The elliptic operators F1, . . . , Fn, defined on SN(R)×R
N ×R

n×Ω (SN(R)
denotes the space of real symmetric N ×N matrices) are supposed to satisfy
the following set of assumptions. First, we assume that there exist constants
α0 ∈ (0, 1), γ ≥ 0 and measurable functions ci, gi : R

n ×Ω → R, i = 1, . . . , n,
such that

(H0) ci(u, x), gi(u, x) are globally Lipschitz continuous in u ∈ R
n, uniformly

in x ∈ Ω\N for some Lebesgue null set N ⊂ Ω, with Lipschitz constant
ν (in the sense that the l1-norms of ∇uci and ∇ugi are bounded by ν) ;

(H1) Fi(M, p, u, x) ≤ sup
A∈A

tr(AM) + γ|p| + ci(u, x), i = 1, . . . , n ;

(H2) Fi(M, p, u, x) ≥ inf
A∈A

tr(AM) − γ|p| + gi(u, x), i = 1, . . . , n,

for all (M, p, u) ∈ SN(R) × R
N × R

n and a.e. x ∈ Ω, where A denotes the
set of all symmetric matrices whose eigenvalues lie in the interval [α0, α

−1
0 ].

Elliptic estimates have been established for scalar equations which satisfy the
above hypotheses (see Section 4). Without restricting the generality we can
suppose that ci(0, x) = gi(0, x) = 0, for a.e. x ∈ Ω and all i.

We assume that system (1) is cooperative (or quasi-monotone), in the
following sense : for any u, v ∈ R

n such that u ≥ v component-wise and any
j ∈ {1, . . . , n} for which uj = vj, we have

(H3) cj(u, x) ≥ cj(v, x) and gj(u, x) ≥ gj(v, x) for a.e. x ∈ Ω.

We study LN−viscosity solutions of (1), that is, vector functions

u = (u1, . . . , un) ∈ C(Ω, Rn)

satisfying (1) in a sense that we make precise in Section 4 (see Definition 4.2).
In particular, any strong solution of (1) (that is, any u ∈ W 2,N

loc (Ω, Rn), sat-
isfying (1) pointwise a.e. in Ω) is a LN−viscosity solution ; see Section 4,
Proposition 4.2. We make the convention that, throughout the paper, all dif-
ferential equations and inequations are assumed to hold in the (LN−)viscosity
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sense, unless otherwise stated. Besides, all relations between vectors are un-
derstood to hold component-wise.

We use the following notations

v ∨ w(x) = max{v(x), w(x)}, v ∧ w(x) = min{v(x), w(x)},
v+(x) = max{v(x), 0}, v−(x) = max{−v(x), 0},

for any two functions v and w.
We suppose that the right-hand side of (1) satisfies

(H4) fi ∈ LN(Ω), i = 1, . . . , n,

and set f = f1 ∨ . . . ∨ fn.
Our first result is an Alexandrov-Bakelman-Pucci (ABP) type estimate.

To our knowledge, this is the first estimate of this kind for systems of type (1)

Theorem 3.1 (ABP estimate) We assume (H0), (H1), (H3) and (H4).
Let u ∈ C(Ω, Rn) satisfy





Fi(D
2ui, Dui, u1, . . . , un, x) ≥ −fi(x) in Ω

i = 1, . . . , n,
(2)

In addition, we assume that either

(H5) for all i = 1, . . . , n

n∑

j=1

∂ci

∂uj

(u, x) ≤ 0 a.e. in R
n × Ω (3)

or

(H6) if we set

mij = sup
(u,x)∈Rn×Ω

ess
∂ci

∂uj

(u, x)

(mij ≤ ν < ∞) then the matrix M = (mij)
n
i,j=1 is negative semi-

definite, that is, (Mξ, ξ) ≤ 0 for all ξ ∈ R
n.

Then the following ABP inequality holds

sup
Ω

(u1 ∨ . . . ∨ un) ≤ C

(
sup
∂Ω

(u+
1 ∨ . . . ∨ u+

n ) + ‖f+‖LN (Ω)

)
. (4)

The constant C depends only on N,α0, γ, ν, and diam Ω.
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Under (H5) we can weaken (H0), namely we can suppose that ci are
only locally Lipschitz in u. Furthermore, under (H5) the following stronger
conclusion holds true

sup
Ω

u1 ∨ · · · ∨ un ≤ sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + CABP||f+||LN (Ω), (5)

where CABP depends only on N, α0, γ, and diam Ω.

Theorem 3.1bis (ABP estimate) We assume (H0), (H2), (H3), (H4) and
either (H5) or (H6), with ci replaced by gi. Let u satisfy





Fi(D
2ui, Dui, u1, . . . , un, x) ≤ fi(x) in Ω

i = 1, . . . , n.

Then

− inf
Ω

(u1 ∧ . . . ∧ un) ≤ C

(
sup
∂Ω

(u−
1 ∨ . . . ∨ u−

n ) + ‖f+‖LN (Ω)

)
, (6)

where C depends only on N,α0, γ, ν, and diam Ω.
Under (H5) we can suppose that gi are only locally Lipschitz in u. Fur-

thermore, under (H5) the following stronger conclusion holds true

− inf
Ω

(u1 ∧ . . . ∧ un) ≤ sup
∂Ω

(u−
1 ∨ . . . ∨ u−

n ) + CABP‖f+‖LN (Ω). (7)

where CABP depends only on N, α0, γ, and diam Ω.

Remark 1. In the particular case f ≡ 0 Theorem 3.1 and Theorem 3.1bis

yield a maximum principle for the nonlinear system (1).

Remark 2. Neither of hypotheses (H5) and (H6) contains the other, as the
following example shows. Take the following two couples of functions (with
n = 2, u = (u1, u2))





c
(1)
1 (u, x) = a(x)−1(−u1 + u2)

c
(1)
2 (u, x) = a(x)(u1 − u2),





c
(2)
1 (u, x) = −2u1 + 3arctan u2

c
(2)
2 (u, x) = arctan u1 − 2u2,

where a(x) is a continuous function from Ω onto

[
1

2
, 2

]
. Then the first couple

satisfies (H5) but not (H6), while the second couple satisfies (H6) but not
(H5).
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Note that both (H5) and (H6) are hypotheses on the matrix

C(u, x) =

(
∂ci

∂uj

(u, x)

)n

i,j=1

.

A natural way to unify and extend these two hypotheses would be to suppose
that the matrix C(u, x) itself is negative semi-definite, for almost every (u, x).
Indeed, one can see, under (H3), that this condition is implied by either
of (H5) and (H6), see Lemma 10.1. However, it turns out that the ABP
inequality (and even the maximum principle) fails if we make this assumption
only. See Section 10 for a counterexample.

Further, we establish a Harnack inequality for non-negative solutions of
system (1).

The form of the Harnack inequality depends very much on the way the
system relates the functions u1, . . . , un to each other. Here, for simplicity,
we shall suppose that system (1) links all functions u1, . . . , un in a strong
sense, or, more precisely, that system (1) is fully coupled. We give a suitable
nonlinear meaning to this notion. Note that the assumption of full coupling
can be removed and the result can be made much more precise - nevertheless,
to avoid heavy notations here, we state these more general results in the
simplified framework of linear systems (see Section 8).

Fix indices k, l ∈ {1, . . . , n} such that k 6= l and let ωkl be a non-null
measurable subset of Ω. We define the function

ϕkl(t) = inf
x∈ωkl

ess gk(tel, x), for t ≥ 0, (8)

where el ∈ R
n is the vector with l-th coordinate equal to one and all other

coordinates equal to zero. For simplicity of notation we shall not write explic-
itly the dependence of ϕkl on ωkl. One can check that (H0) implies that ϕkl

is globally Lipschitz continuous on [0, +∞). Note that ϕkl is non-decreasing,
because of (H3), and ϕkl(0) = 0.

The following definition provides a nonlinear version of the commonly
used notion of full coupling.

Definition 3.1 We call system (1) fully coupled in Ω, provided for any non-
empty sets I, J ⊂ {1, . . . , n} such that I∩J = ∅ and I∪J = {1, . . . , n}, there
exist i0 ∈ I and j0 ∈ J for which one can find a set ωi0j0 ⊂ Ω with positive
Lebesgue measure such that ϕi0j0(t) does not vanish for t 6= 0. Under (H3)
this means that

ϕi0j0(t) > 0 for all t > 0.
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In some sense, a system is fully coupled if it cannot be split into two
subsystems, one of which does not depend on the other. Note that any
scalar equation is a fully coupled system.

Theorem 3.2 (Harnack inequality) Suppose (H0) through (H4) hold and
let u ≥ 0 be a solution of (1) in a ball B3R ⊂ Ω. Suppose, in addition,
that system (1) is fully coupled in BR. Then there exists a non-negative
continuous function Φ : R

2
+ → R+, with Φ(0, 0) = 0, depending only on

{R2ϕij}, N, n, α0, γR, νR2, such that

sup
BR

u1 ∨ . . . ∨ un ≤ Φ

(
inf
BR

u1 ∧ . . . ∧ un, R‖f‖LN (B3R)

)
. (9)

Remark 1. An explicit expression of Φ is given in the proof of Theorem 3.2.
Roughly speaking, Φ(t, 0) is a composition of the inverse functions of the
functions ϕkl(t). For example, if ϕkl(t) ≥ ctα for some α > 0 and all indices

k 6= l, then Φ(t, 0) ≤ Ctα
−n(n−1)

.
Remark 2. In the particular case of a linear system Φ(t, s) = C1t + C2s
(see Section 8, Theorem 8.2 and Corollary 8.1).

In the course of the proof of the Harnack estimate we obtain two estimates
of independent interest, for subsolutions and supersolutions of system (1).
These have well-known counterparts in the scalar case too.

We set, for any p > 0,

|u|p,R =


 1

meas(BR)

∫

BR

|u|p



1/p

.

Proposition 3.1 (local maximum principle) Suppose (H0),(H1),(H3),
and (H4) hold. Let u ∈ C(B3R, Rn) be a solution of





Fi(D
2ui, Dui, u1, . . . , un, x) ≥ −fi(x)

i = 1, . . . , n,
(10)

in B3R. Then for all p > 0 we have

sup
BR

u1 ∨ . . . ∨ un ≤ C
(
|u+

1 ∨ . . . ∨ u+
n |p,2R + R||f+||LN (B2R)

)
,

where C = C(N, α0, p, γR, νR2).
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Proposition 3.2 (weak Harnack inequality) Suppose (H0),(H2),(H3),
and (H4) hold. Assume (1) is fully coupled and let u ∈ C(B3R, Rn) be a
non-negative solution of





Fi(D
2ui, Dui, u1, . . . , un, x) ≤ fi(x)

i = 1, . . . , n,
(11)

in B3R. Then there exists a number p = p(N,n, α0, γR, νR2) > 0 such that

|u1 ∨ . . . ∨ un|p,2R ≤ Φ

(
inf
BR

u1 ∧ . . . ∧ un, R‖f‖LN (B3R)

)
, (12)

where Φ is as in Theorem 3.2.

Counterexample 1. All our results fail for general non-cooperative systems.
Simple examples are provided by the systems





∆u − v = 0

∆v = 0,





∆u − v = 0

∆v − u ≤ 0,
in B1 ⊂ R

N . (13)

The first system satisfies all hypotheses of Theorem 3.1 except for (H3). By
taking u = 1−|x|2, v = −2N , we see that Theorem 3.1 (with f ≡ 0) is false for
this system since u = 0, v ≤ 0 on ∂B1 but u 6≤ 0 in B1. A counterexample
for the weak Harnack inequality (Proposition 3.2) is obtained by setting
u = |x|2, v = 2N in the second system, since inf

B1

u ∧ v = 0 but u, v 6≡ 0.

Counterexample 2. There is no hope to obtain maximum principles for
general systems in non-divergence form with coupling in the first-order terms.
For example, consider the system of inequalities





∆u + vx − αu ≤ 0

∆v + ux − αv ≤ 0
in Ω = (−1, 1) ⊂ R, (14)

where α > 1 is arbitrary. The functions

u(x) =





0 in (−1, 0)

1

4α
x(x − 1) in (0, 1),

v(x) =





2 in (−1, 0)

2 − x in (0, 1),

satisfy (14) and u = 0, v ≥ 0 on ∂Ω. However u 6≥ 0 in Ω. Note that the
elliptic operators Fi in (14) can be arbitrarily coercive in ui, when α >> 1,
yet this does not help.
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Counterexample 3. This example shows that even systems of equalities
do not necessarily satisfy the maximum principle if they are coupled in the
first order terms.

The functions

u(x, y) = x2 + y2 − 1, v(x, y) = −1

3
x3 − 4y + 5

solve the system




∆u + vy = 0

∆v + ux = 0
in B1 ⊂ R

2,

and u = 0, v > 0 on ∂B1. However u 6≥ 0 in B1.

Sections 4 to 7 are devoted to the proofs of Theorems 3.1 and 3.2.

4 Definition and properties of viscosity solu-

tions

In this section we describe the class of viscosity solutions to which our results
apply. The concept of viscosity solution has found many applications in
PDE’s (see for example the fundamental work [CIL]).

Basic tools in the proof of our results are the ABP estimate and the
Harnack inequality for viscosity solutions of fully nonlinear scalar elliptic
equations, obtained by Wang in [Wa], Caffarelli, Crandall, Kocan and Swiech
in [CCKS]. We shall state, for the reader’s convenience, the results from these
papers that we need. We refer to the book by Caffarelli and Cabre [CC] for
results on C-viscosity solutions of fully nonlinear elliptic equations.

Consider a measurable function G : SN(R)×R
N ×R×Ω → R, such that

G(·, ·, ·, x) is locally uniformly continuous, uniformly for x ∈ Ω \ N , where
N is a Lebesgue null set. Take a measurable function f and a continuous
function w, defined in Ω. We consider the scalar equation

G(D2w, Dw, w, x) = f in Ω, (15)

provided G is uniformly elliptic, that is, there exists β0 > 0 such that

β0|M ′| ≤ G(M + M ′, P, w, x) − G(M, P,w, x) ≤ β−1
0 |M ′|,

for any matrix M ∈ SN(R), any positive definite matrix M ′ ∈ SN(R), any
P ∈ R

N , w ∈ R and a.e. x ∈ Ω. We denote by AT the transposed matrix
of A, and set |A| =

√
tr(AT A), for any A ∈ MN(R).

We recall the definition of a LN -viscosity solution of a scalar equation.
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Definition 4.1 (scalar equations ; [Wa],[CCKS]) We say that the fun-
ction w ∈ C(Ω) is a (LN -)viscosity subsolution (supersolution) of (15), pro-
vided for any ε > 0, any open subset O ⊂ Ω, and any ϕ ∈ W 2,N(O) (we call
ϕ a test function), such that

G(D2ϕ(x), Dϕ(x), w(x), x) ≤ f(x) − ε
(G(D2ϕ(x), Dϕ(x), w(x), x) ≥ f(x) + ε) a.e. in O,

the function w−ϕ cannot achieve a local maximum (minimum) equal to zero
in O. In this case we say that the function w satisfies the inequation

G(D2w, Dw,w, x) ≥ (≤)f

in the (LN -)viscosity sense in Ω.
We say that w is a solution of (15) if w is at the same time a subsolution

and a supersolution of (15).

Remark. This definition is equivalent to Definition 2.1 in [CCKS], setting
p = N there. It is easy to see, under our hypotheses on G, that the class
of viscosity solutions the above definition introduces is included in the class
considered by Wang in [Wa].

Next, we recall the definition of the Pucci extremal operators

M+(M) = α−1
0

∑

ei>0

ei + α0

∑

ei<0

ei, M−(M) = α0

∑

ei>0

ei + α−1
0

∑

ei<0

ei,

for M ∈ SN(R), where e1, . . . , eN denote the eigenvalues of M . Then (see
[CC])

M+(M) = sup
A∈A

tr(AM) , M−(M) = inf
A∈A

tr(AM), (16)

where A denotes the set of all symmetric matrices whose eigenvalues lie in
the interval [α0, α

−1
0 ]. To relate our notations to those of [CCKS] one has to

note that M+ = −P− and M− = −P+, with P+,P− defined in [CCKS]. It
is not difficult to check that (see [CC])

−M+(−M) = M−(M) , M+(ηM) = ηM+(M) (17)

and

M+(M) + M−(N) ≤ M+(M + N) ≤ M+(M) + M+(N),
M−(M) + M−(N) ≤ M−(M + N) ≤ M+(M) + M−(N),

(18)

for every two symmetric matrices M,N , and every η ≥ 0.
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We define the extremal operators

L+(D2w, Dw) = M+(D2w) + γ|Dw|,

L−(D2w, Dw) = M−(D2u) − γ|Dw|
(19)

(γ is defined in (H1) and (H2), | · | denotes the Euclidean norm in R
N). Note

that
L+(D2w,Dw) = −L−(−D2w,−Dw). (20)

Definition 4.2 (systems) We call the vector u ∈ C(Ω, Rn) a subsolution
of (1) provided the equation

L+(D2ui, Dui) ≥ −ci(u, x) + fi(x) (21)

is satisfied in the viscosity sense for each i ∈ {1, . . . , n}, in terms of Defini-
tion 4.1. Equivalently, we say that u satisfies the system

Fi(D
2ui, Dui, u, x) ≥ fi(x), i = 1, . . . , n.

Respectively, u ∈ C(Ω, Rn) is called a supersolution of (1) provided the equa-
tion

L−(D2ui, Dui) ≤ −gi(u, x) + fi(x) (22)

is satisfied in the viscosity sense for each i ∈ {1, . . . , n}, in terms of Defini-
tion 4.1. Equivalently, we say that u satisfies the system

Fi(D
2ui, Dui, u, x) ≤ fi(x), i = 1, . . . , n.

A solution of (1) is a vector u ∈ C(Ω, Rn) which is both a subsolution and
a supersolution of (1).

The rest of this section contains a list of results on viscosity solutions of
scalar equations. We shall need these in the sequel.

Proposition 4.1 The maximum of two viscosity subsolutions of a scalar
equation is a viscosity subsolution. The minimum of two viscosity supersolu-
tions of a scalar equation is a viscosity supersolution.

Proof. This is very well-known and obvious, from Definition 4.1.

Proposition 4.2 Let f ∈ LN(Ω) and let L be a scalar extremal operator,
as in (19). Suppose that w ∈ W 2,N

loc (Ω) is such that L(D2w,Dw) ≥ (≤)f
a.e. in Ω. Then L(D2w, Dw) ≥ (≤)f in the viscosity sense. Conversely, if
w ∈ W 2,N

loc (Ω) satisfies L(D2w, Dw) ≥ (≤)f in the viscosity sense in Ω then
L(D2w,Dw) ≥ (≤)f a.e. in Ω.
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Proof. This follows from Lemma 2.5 and Corollary 3.7 in [CCKS].

The following lemma contains several easy, but important properties of
L+ and L−.

Lemma 4.1 (a) Let f ∈ LN(Ω). Suppose Lk, k = 1, . . . , n, are linear uni-
formly elliptic second-order operators without zero-order terms, with elliptic-
ity constant α0 and all their coefficients bounded by γ. Then Lkw ≤ f , for
some k, (resp. ≥) implies

L−(D2w, Dw) ≤ f (resp. L+(D2w, Dw) ≥ f).

Conversely, L+(D2w,Dw) ≤ f implies Lkw ≤ f , and L−(D2w, Dw) ≥ f
implies Lkw ≥ f , for all k = 1, . . . , n. This is the reason for which L+ and
L− are called extremal.

(b) Let w ∈ W 2,N
loc (Ω). There exist scalar linear uniformly elliptic second

order operators L+
0 , L−

0 (depending on w) with bounded measurable coeffi-
cients, such that

L+(D2w, Dw) = L+
0 w, L−(D2w, Dw) = L−

0 w.

Furthermore, α0 is an ellipticity constant for the operators L+
0 , L−

0 , and γ is
an upper bound for the L∞-norms of their first order coefficients.

Proof. Part (a) is a direct consequence of (16) and Definition 4.1. Part
(b) follows from the fact that the supremum and the infimum in (16) are
attained (since A is compact). For instance, we take

L+
0 w(x) = tr

(
A+

0 (x)D2w(x)
)

+~b(x).Dw(x),

where x −→ A+
0 (x) is a measurable selection of elements of A at which

sup
A∈A

tr
(
AD2w(x)

)

is attained, and

~b(x) =





γ
Dw(x)

|Dw(x)| , if Dw(x) 6= 0

0 , if Dw(x) = 0.

We shall use the following Alexandrov-Bakelman-Pucci inequality for fully
nonlinear scalar equations.
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Proposition 4.3 Let w ∈ C(Ω) and f ∈ LN(Ω) satisfy the scalar inequality

−L+(D2w, Dw) ≤ f in Ω ∩ {w > 0}.

Then
sup

Ω
w ≤ sup

∂Ω
w+ + C∗‖f+‖LN (Γ+).

Here Γ+ denotes the upper contact set of w, defined by

Γ+ = {x ∈ Ω | w(x) = w(x)}, (23)

where w is the concave envelope of w, i.e.

w = inf{w̃ | w̃ ≥ w and w̃ is concave }, (24)

and the constant C∗ depends only on N,α0, γ and diam Ω.

The first to prove an ABP type result for viscosity solutions of nonlinear
equations was Caffarelli in his fundamental work [Caf]. In the case f ∈ L∞

Proposition 4.3 is due to Wang (see Theorem 3.14 and Lemma 3.19 in [Wa]).
In its full generality, this proposition was proved in [CCKS] (Proposition 3.3
in [CCKS]).

We shall also make use of the following weak Harnack inequality for scalar
equations (see Corollary 4.14 in [Wa], and Section 4.6 in [Wa] for more general
equations). Another general result for parabolic equations was stated in
[CKS], pages 2022-2025.

Proposition 4.4 Let w ∈ C(Ω) be a non-negative solution of the scalar
inequality

L−(D2w,Dw) − cw ≤ f in B2 ⊂ Ω,

where c ∈ L∞(B2), with 0 ≤ c(x) ≤ ν a.e. in B2, and f ∈ LN(B2). Then
there exists p = p(N,α0, γ, ν) > 0 such that

|w|p,1 ≤ C#

(
inf
B1

w + ‖f‖LN (B2)

)
,

where C# = C#(N, α0, γ, ν). In particular, if f ≡ 0 then either w is strictly
positive or w ≡ 0 (strong maximum principle).

Remark. In fact, this proposition was proved in [Wa] in the particular case
f ∈ L∞, but extension to LN is straightforward, since the proof in [Wa] relies
only on the ABP inequality, which holds true for right-hand sides in LN (see
Proposition 4.3 above).

The following existence result for extremal operators will be useful in the
sequel.
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Proposition 4.5 Let c, f ∈ L∞(B2), and 0 ≤ c ≤ ν a.e. in B2. Then there
exists a unique solution w ∈ W 2,N

loc (B2) ∩ C(B2) of the following problem





−L−(D2w,Dw) + cw = f a.e. in B2

w = 0 on ∂B2

(25)

Moreover, w ∈ W 2,p
loc (B2) for all p < ∞, and one has the interior estimate

‖w‖W 2,p(B1) ≤ C
(
‖w‖L∞(B2) + ‖f‖LN (B2)

)
, (26)

where C = C(N, α0, γ, ν, p).

Proof. When c ≡ 0 this result was proved in [CCKS] (Corollary 3.10 in
that paper). Exactly the same proof works for c ≥ 0, since the authors use
Theorem 17.17 in [GT] and the ABP estimate, which both hold when c ≥ 0.

Finally, we prove two lemmas concerning sums and products of viscosity
solutions and test functions.

Lemma 4.2 Suppose the linear operator

L0 =
N∑

i,j=1

aij(x)
∂2

∂xi∂xj

+
N∑

i=1

bi(x)
∂

∂xi

(27)

is uniformly elliptic in Ω, and suppose L0 has bounded measurable coeffi-
cients. Let f, g ∈ LN(Ω).

(a) Let w ∈ C(Ω) and ψ ∈ W 2,N
loc (Ω) satisfy L0w ≥ f in Ω and L0ψ ≥ g

a.e. in Ω. Then
L0(w + ψ) ≥ f + g in Ω. (28)

(b) Let w ∈ C(Ω) satisfy L0w ≥ f in Ω and ψ ∈ W 2,p
loc (Ω)∩C(Ω), p > N,

be strictly positive in Ω. Define w̃ =
w

ψ
and f̃ =

f

ψ
. Then we have

L̃w̃ ≥ f̃ in Ω,

where L̃ is defined by

L̃ = L0 + 2
N∑

i,j=1

aij(x)
∂iψ(x)

ψ(x)

∂

∂xj

+
L0ψ(x)

ψ(x)
.
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Proof. Suppose (28) does not hold. Then, by Definition 4.1, we can find an
open set O ⊂ Ω (we can assume O ⊂⊂ Ω) , ε > 0, x0 ∈ O and a function
ϕ ∈ W 2,N(O) such that

L0ϕ ≤ f + g − ε
≤ f + L0ψ − ε a.e. in O,

(29)

ϕ ≥ w+ψ in O and ϕ(x0) = w(x0)+ψ(x0). Since ψ ∈ W 2,N(O), the function
ϕ−ψ is a test function for the equation L0w ≥ f . However, L0(ϕ−ψ) ≤ f−ε
is a contradiction with this equation.

Next, suppose (b) is false. Then we can find an open set O ⊂⊂ Ω , ε > 0,
x0 ∈ O, ϕ ∈ W 2,N(O) such that ϕ ≥ w̃ in O, ϕ(x0) = w̃(x0), and

L̃ϕ ≤ f̃ − ε a.e. in O. (30)

A simple computation transforms (30) into

L0(ϕψ) ≤ f − εψ
≤ f − ε1 a.e. in O,

(31)

where ε1 = ε min
O

ψ > 0. Since ϕψ ∈ W 2,N(O) (W 2,N is an algebra), ϕψ ≥ w

in O, ϕψ(x0) = w(x0), we obtain a contradiction with L0w ≥ f .

Lemma 4.3 Let w ∈ C(Ω) satisfy L+(D2w, Dw) ≥ f in Ω and suppose

ψ ∈ W 2,p
loc (Ω) ∩ C(Ω), p > N, is strictly positive in Ω. Then w =

w

ψ
satisfies

the inequation

M+(D2w)+

(
γ + 2α−1

0

√
N
|Dψ|

ψ

)
|Dw|+

(M+(D2ψ) + γ|Dψ|
ψ

)
w ≥ f

ψ
.

Proof. Suppose first w ∈ W 2,N
loc (Ω) so that L+(D2w,Dw) ≥ f is satisfied

a.e. in Ω. We have

Dw = ψDw + wDψ, D2w = ψD2w + 2Dψ ⊗ Dw + wD2ψ. (32)

It is understood here and in the sequel that ⊗ denotes the symmetric tensor

product, i.e. if X, Y ∈ R
N then X ⊗ Y =

1

2
(xiyj + xjyi)i,j. By putting (32)

into L+(D2w,Dw) ≥ f and by using (18) we obtain the statement of the
lemma. Note that tr(A(X⊗Y )) ≤ |A||X⊗Y | ≤

√
Nα−1

0 |X||Y |, where A is a
matrix whose eigenvalues lie in [α0, α

−1
0 ], and |A| :=

√
tr(AT A). If u is only

continuous we proceed as in the proof of part (b) of the previous lemma.

Remark. In the same way we can prove that L−(D2w,Dw) ≤ f implies

M−(D2w)−
(

γ + 2α−1
0

√
N
|Dψ|

ψ

)
|Dw|+

(M−(D2ψ) − γ|Dψ|
ψ

)
w ≤ f

ψ
.
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5 Proof of the ABP Estimate

This section is concerned with the proof of Theorem 3.1. Recall that u
satisfies the system

−L+(D2ui, Dui) − ci(u, x) ≤ fi(x), i = 1, . . . , n.

The first lemma permits us to linearize the zero-order terms in this sys-
tem.

Lemma 5.1 Suppose c = (c1, . . . , cn) : R
n × Ω → R

n satisfies (H0), (H3)
and either (H5) or (H6). Then there exists M ∈ L∞(Rn × Ω,Mn(R)), with
M = (mij), such that

c(u, x) = M(u, x)u (33)

satisfying
mij(u, x) ≥ 0 ∀ i 6= j, i, j ∈ {1, . . . , n}, (34)

for all u ∈ R
n and a.e. x ∈ Ω. In addition,

n∑

j=1

mij(u, x) ≤ 0, ∀ i ∈ {1, . . . , n}, (35)

in case (H5), or

mij(u, x) ≤ mij, ∀ i, j ∈ {1, . . . , n}, (36)

in case (H6) holds.

Proof. Because of (H0) the function h(s, u, x) = ∇uc(su, x) belongs to
L1((0, 1) × BR × Ω), for any BR ⊂ R

n, R < ∞ (even if c is only locally
Lipschitz un u). By Fubini’s theorem the function

M(u, x) =

∫ 1

0

∇uc(su, x)ds (37)

is measurable on R
n × Ω. By (H0) M ∈ L∞(Rn × Ω,Mn(R)). Further, M

clearly satisfies (33), (34), (35), and (36) for a.e. (u, x).
Now for a.e. x ∈ Ω the matrix M(u, x) is well defined for all u ∈ R

n \Zx

with all the desired properties, where Zx ⊂ R
n is a set of n-dimensional

measure zero. It remains to define M on Zx. To this aim, for any u ∈ Zx

we take uk ∈ R
n \ Zx such that uk → u and observe that the sequence

M(uk, x) is bounded in Mn(R). We can thus define M(u, x) as (any) limit
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of a subsequence of M(uk, x), and observe that properties (33), (34), (35),
and (36) are still satisfied at the limit.

This completes the proof of Lemma 5.1.

We infer from (H1), (2) and Lemma 5.1 that

M+(D2ui) + γ|Dui| +
n∑

j=1

mij(u(x), x)uj ≥ −f+
i , (38)

for i = 1, · · · , n. We set mij(x) = mij(u(x), x).
We claim that the same inequality is satisfied by the positive parts of the

functions ui.

Claim 5.1 We have

M+(D2u+
i ) + γ|Du+

i | +
n∑

j=1

mij(x)u+
j ≥ −f+

i . (39)

Proof. By (34) mijuj ≤ miju
+
j , for i 6= j. Hence both v = ui and v = 0

satisfy the inequality

M+(D2v) + γ|Dv| + mii(x)v ≥ −f+
i −

n∑

j 6=i

mij(x)u+
j .

Hence, by Proposition 4.1, u+
i = max(ui, 0) satisfies the same inequation.

We are now ready to prove the ABP inequality in case (H5) is satisfied.
By the previous considerations we can restrict ourselves to a system of type
(39), with mij satisfying (34) and (35). The basic idea of the proof is to show
that the function

v(x) = u+
1 ∨ · · · ∨ u+

n (x) (40)

satisfies a scalar elliptic inequation, and then apply the scalar ABP estimate
to v.

Lemma 5.2 Under (H5) we have

−L+(D2v, Dv) ≤ f+
1 ∨ · · · ∨ f+

n in Ω. (41)

Proof. Suppose for contradiction that there are an open set O ⊂⊂ Ω, a
point x0 ∈ O, ε > 0, and a function ϕ ∈ W 2,N(O) such that v ≤ ϕ in O,
v(x0) = ϕ(x0), and

−L+(D2ϕ,Dϕ) ≥ f+
1 ∨ · · · ∨ f+

n + ε > 0 a.e. in O. (42)
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We have to show that (42) is impossible. Fix k ∈ {1, . . . , n} such that
u+

k (x0) = v(x0). Then

ϕ ≥ u+
k ≥ 0 in O and ϕ(x0) = u+

k (x0). (43)

We distinguish two cases. First, if ϕ(x0) = 0, we see that ϕ attains a local
minimum at x0. Then we apply the scalar strong maximum principle (see
Proposition 4.4) to (42) and obtain ϕ ≡ 0 in O. This contradicts (42).

Second, if ϕ(x0) > 0, we have, by (34), (35), (42) and (H0)

−L+(D2ϕ,Dϕ) ≥
(

n∑

j=1

mkj

)
u+

k + f+
k + ε (44)

≥
n∑

j=1

mkju
+
j + f+

k +
ε

2
a.e. in O1, (45)

where O1 ⊂ O is an open neighbourhood of x0 in which

uk > 0 and uk ≥ u+
j − ε/2ν, (46)

for all j ∈ {1, . . . , n} (O1 exists, since uk(x0) = u1 ∨ . . . ∨ un(x0) > 0).
By (39) uk is a (viscosity) solution of

−L+(D2u+
k , Du+

k ) ≤
n∑

j=1

mkju
+
j + f+

k ,

which is a contradiction with (43) and (45). Lemma 5.2 is proved.

Now we can apply Proposition 4.3 to (41). We obtain

sup
Ω

v ≤ sup
∂Ω

v + C∗||f+
1 ∨ · · · ∨ f+

n ||LN (Ω),

which gives part (b) of Theorem 3.1.
Remark. If the functions ci are supposed to be only locally Lipschitz the
above proof remains the same, if we replace ν in (46) by the essential supre-
mum of all

∑
j |mij(x)| in a neighbourhood of x0.

We are going to show that if our system satisfies assumption (H6) then we
can introduce a change of functions so that the transformed system satisfies
(H5). So let us assume (H6) , which says mij(x) ≤ mij for a.e. x, where
M = (mij) is a negative semi-definite matrix. First we perturb the system
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in order to make the zero order matrix negative definite. To this purpose,

we set ui =
u+

i

ψ
, where ψ is the solution of





M+(D2ψ) + γ|Dψ| = −1 in Ω̃

ψ = 0 on ∂Ω̃

ψ ∈ W 2,p
loc (Ω̃) ∩ C(Ω̃) ∀p ∈ (1, +∞)

(47)

(this problem is solvable, see Proposition 4.5 and (20)), where Ω̃ is such that

Ω ⊂⊂ Ω̃. By the scalar maximum principle ψ > 0 in Ω̃. By using the scalar
ABP inequality, Lemma 4.1, and a theorem by Krylov which we state later
(Theorem 7.1 on page 33), one can see that C ≥ ψ ≥ c > 0 in Ω, where C
and c are constants which depend only on N,α0, γ, and diam(Ω).

By (H6), (39) and Lemma 4.3 u satisfies the system of inequations

M+(D2ui)+

(
γ + 2α−1

0

√
N
‖Dψ‖∞
infΩ ψ

)
|Dui|+

∑

j

(mij−εδij)uj ≥ −f+
i

ψ
, (48)

where

ε = −M+(D2ψ) + γ|Dψ|
supΩ ψ

=
1

supΩ ψ
> 0.

Set Mε = εI −M (Mε is positive definite), and let ξ ∈ R
n be the solution

of the linear system
Mεξ = (1, . . . , 1). (49)

We claim that assumptions (H3) and (H6) imply ξi > 0 for all i. In order to
prove this we suppose first that Mε is symmetric. It is well-known that (H6)
implies that all principal minors of Mε are positive. We are going to use an
algebraic lemma from [FM1] (Lemma 2.2 in that paper), the statement of
which we give for readers’ convenience.

Lemma 5.3 (de Figueiredo-Mitidieri) Let M = (mij) ∈ Mn(R) be a
matrix such that mij ≤ 0 for i 6= j, and det

(
(mij)

k
i,j=1

)
> 0, for every

k ∈ {1, . . . , n}. Then
(−1)i+jdetM ij > 0,

where M ij is the submatrix of M obtained by dropping its i-th line and j-th
column.
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It follows from this lemma that (−1)i+jdet(M ij
ε ) > 0. By Cramer’s rule

ξi = det(M−1
ε )

n∑

j=1

(−1)i+jdet(M ij
ε ) > 0.

If Mε is not symmetric we use the following elementary algebraic lemma.

Lemma 5.4 If A is a positive definite matrix then

det(A) ≥ det

(
A + AT

2

)
> 0.

Lemma 5.4 implies that all principal minors of Mε are positive, even if Mε is
not symmetric. For completeness, we give a proof of lemma 5.4 at the end
of this section.

We can now finish the proof of the ABP estimate. We set ui = ξiũi. These
transformed functions clearly satisfy

M+(D2ũi) + γ′|Dũi| +
1

ξi

∑

j

d̃ijũj ≥ −f̃+
i , (50)

where

d̃ij = (mij − εδij)ξj , f̃+
i =

f+
i

ξi infΩ ψ
, (51)

γ′ =

(
2α−1

0

√
N
‖Dψ‖∞
infΩ ψ

+ γ

)
. (52)

By (49), the zero-order matrix in (50) satisfies

1

ξi

n∑

j=1

d̃ij = − 1

ξi

< 0 (53)

for all i, i.e. assumption (H5). Therefore we can apply to (50) the ABP

inequality we already proved. Since ũi =
u+

i

ξiψ
we get

sup
Ω

(u1 ∨ . . . ∨ un) ≤ supi,x ξiψ(x)

infi,x ξiψ(x)

(
sup
∂Ω

(u+
1 ∨ . . . ∨ u+

n ) + C‖f+‖LN (Ω)

)
.

Theorem 3.1 is proved.
We obtain the result in Theorem 3.1bis by setting v = −u in Theorem 3.1,

by using (H2), and by noting that g̃i(u, x) = −gi(−u, x) has the same prop-
erties as gi (namely, satisfies (H0) and (H3)).

Proof of Lemma 5.4. The lemma follows from the following more general
fact.
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Claim 5.2 Let B ∈ Mn(R) be a positive definite symmetric matrix and let
R ∈ Mn(R) be a skew-symmetric matrix (RT = −R). Then

det(B + xR) =

[n
2 ]∑

k=0

akx
2k,

where ak ≥ 0 if k ≥ 1, and a0 = det(B) > 0.

Lemma 5.4 follows by taking B =
A + AT

2
, R =

A − AT

2
, and x = 1 in the

claim (note that A and B are matrices of the same quadratic form).
Proof of the Claim. First we note that for any skew-symmetric matrix D
the characteristic polynomial of D can be written in the following form

det(λI − D) = λp(λ2 + β1) . . . (λ2 + βm), (54)

where βi > 0, i = 1, . . . , m, p + 2m = n. Indeed, if µ ∈ C and v ∈ C
n are

such that Rv = µv, the equality (Rv, v) = (v, RT v) implies µ = −µ.
Next, we write

det(B + xR) = det(B).xn.det(B−1R +
1

x
I)

= det(B).xn.(−1)ndet(λI − SR), (55)

where λ = −1

x
and S = B−1 is a positive definite symmetric matrix. We set

D = S
1
2 RS

1
2 . Then D is a skew-symmetric matrix, and the eigenvalues of

D and SR, counted with their multiplicities, are the same (if v ∈ C
n is an

eigenvector of SR corresponding to the eigenvalue µ and w solves S
1
2 w = v,

then w ∈ C
n is an eigenvector of D corresponding to the same eigenvalue).

Equalities (54) and (55) then yield

det(B + xR) = det(B)(β1x
2 + 1) . . . (βmx2 + 1),

which gives the desired result.

6 Proof of the Local Maximum Principle

This section is devoted to the proof of Proposition 3.1. From now on, we
suppose that R = 1 and B1 is centered at y0 = 0, the general case being

obtained by means of the coordinate transformation x −→ x − y0

R
.
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First, we claim that the function u+
k satisfies the inequation

−L+(D2u+
k , Du+

k ) ≤ ν u+
1 ∨ . . . ∨ u+

n + f+ in B3 (56)

(in the viscosity sense), for all k = 1, . . . , n. Recall that f = f1 ∨ . . . ∨ fn.

Proof of (56). Set v = u+
1 ∨ . . . ∨ u+

n . Suppose (56) is false. Then, by
Definition 4.1, there exist an open set O ⊂⊂ B3, x0 ∈ O, ϕ ∈ W 2,N(O), and
a real number ε > 0 such that v ≤ ϕ in O, v(x0) = ϕ(x0) and

−L+(D2ϕ,Dϕ) ≥ νv + f+ + ε a.e. in O. (57)

Observe that the hypotheses of Proposition 3.1 imply, by Lemma 5.1,

−L+(D2uk, Duk) ≤
∑

j 6=k

mkj(x)u+
j (x) + mkk(x)(u+

k − u−
k )

≤ νv + m−
kk(x)u−

k + f+ in Ω,

(58)

for all k = 1, . . . , n. We then proceed as in the proof of the ABP estimate,
Lemma 5.2. If v(x0) = ϕ(x0) > 0, we take k such that v(x0) = uk(x0) and
obtain a contradiction with (57) and (58) in some open set O1 ⊂ O, where
uk > 0 (so that m−

kku
−
k ≡ 0 in O1). If ϕ(x0) = 0, ϕ attains a local minimum

at x0 and we obtain a contradiction with the strong maximum principle, as
in the proof of Lemma 5.2.

Using the fact that the maximum of subsolutions is a subsolution (Propo-
sition 4.1), we obtain from (56)

−L+(D2v,Dv) ≤ νv + f+ in B3 (59)

in the viscosity sense. In order to obtain the conclusion of Proposition 3.1 we
use Proposition 4.3, combined with the localization argument in the proof
of Theorem 9.20 in [GT]. We are going to show that this argument can be
adapted to our situation. Since it relies on a cut-off procedure and point-
wise estimates, for the differential relations to make sense we shall use a
regularized version of v, namely its sup-convolution, defined by

vε(x) = sup
y∈B5/2

{
v(y) − 1

2ε
|x − y|2

}
. (60)

Let us suppose first that f is continuous in B3. We recall the following
well-known properties of the sup-convolution, see [Je] and [JLS].

Lemma 6.1 (1) vε ∈ C0,1(B5/2) ;
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(2) vε → v uniformly in B2 ;

(3) vε is twice differentiable a.e. in B2 ;

(4) As a consequence of (59), vε satisfies

−L+(D2vε, Dvε) ≤ νṽε + f̃+
ε a.e.in B2, (61)

where

ṽε(x) = sup
|x−y|<δ(ε)

vε(y), f̃+
ε (x) = sup

|x−y|<δ(ε)

f+(y), (62)

with δ(ε) = 2
(
ε||v||L∞(B5/2)

)1/2

.

We then set wε = ηεvε, where

ηε(x) = (2 − δ(ε))−2β((2 − δ(ε))2 − |x|2)β,

for some β ≥ 2. For simplicity of notation, we write η instead of ηε.
By (16), (17), (18) and (61), we have

−L+(D2wε, Dwε) ≤ −M+(ηD2vε) − 2M−(Dη ⊗ Dvε)

−M−(vεD
2η) − γ |ηDvε + vεDη|

≤ η
(
−M+(D2vε) − γ|Dvε|

)

+2M+((−Dη) ⊗ Dvε) + M+(−vεD
2η) + γvε|Dη|

≤ νηṽε+f̃+
ε +2α−1

0

√
N

(
|Dη||Dvε|+|D2η|vε

)
+ γvε|Dη|

a.e. in B2−δ(ε) (see also the proof of Lemma 4.3). Let us denote by H the
right-hand side in the last inequality. By using Proposition 4.3 we obtain

sup
B2−δ(ε)

wε ≤ C∗‖H‖LN (Γ+
ε ), (63)

where Γ+
ε is the upper contact set of wε, see Proposition 4.3. By a concavity

argument we get, as in the proof of Theorem 9.20 in [GT],

|Dvε| ≤ C(β)η− 1
β vε

on Γ+
ε . Since

|Dη| ≤ Cη1− 1
β , |D2η| ≤ Cη1− 2

β ,

we see that
H ≤ ηνṽε + C

(
η− 2

β wε + f+
ε

)
(64)
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a.e. on Γ+
ε .

Here and in the sequel C denotes a constant which depends on the ap-
propriate quantities and may vary from line to line.

Then we follow the lines of the proof of Theorem 9.20 in [GT] (in partic-
ular the last three inequalities in this proof) to infer from (63) and (64)

sup
B2−δ(ε)

wε ≤ C
(
||ηṽε||LN (B2) + ||vε||Lp(B2) + ||f̃+

ε ||LN (B2)

)
, (65)

where C does not depend on ε. By interpolation this implies

sup
B2−δ(ε)

ηvε −
1

2
sup
B2

ηṽε ≤ C
(
||ṽε||Lp(B2) + ||vε||Lp(B2) + ||f̃+

ε ||LN (B2)

)
. (66)

Note that, by (2) in Lemma 6.1 ṽε → v uniformly on B2.
By letting ε → 0 we obtain the desired result.
Finally we have to remove the continuity assumption on f . This can be

done through a (standard) approximation argument. We take a solution of
the problem





−L−(D2ψj, Dψj) = f j − f+ in B2

ψj = 0 on ∂B2

ψj ∈ W 2,N
loc (Ω) ∩ C(B2)

(67)

(see Proposition 4.5), where f j ∈ C∞(B2), f j → f+ in LN(B2).
Set vj = v + ψj. The scalar ABP inequality (Proposition 4.3), applied to

(67), implies ψj → 0 uniformly in B2. Then by (18)

L+(D2v,Dv) ≤ L+(D2vj, Dvj) − L−(D2ψj, Dψj)
= L+(D2vj, Dvj) + f j − f+.

(68)

Note that this is valid in the viscosity sense since ψj has the regularity of a
test function (ψj ∈ W 2,N

loc (Ω)). Now, by (59)

−L+(D2vj, Dvj) ≤ νv + f j

= νvj + f j,
(69)

where f j = f j + ν(v − vj). Note that f j ∈ C(B2) and f j → f+ in LN(B2).
Applying the result we already proved (f j is continuous) to (69) with vj

instead of v and sending j → ∞ in the final inequality concludes the proof.
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7 Proof of the Harnack Inequality

In this section we prove the Harnack and the weak Harnack inequalities
(that is, Theorem 3.2 and Proposition 3.2) in the case when system (1) is
fully coupled. We recall that we have taken R = 1.

We shall use the following equivalent definition of full coupling by a chain
(see for instance [CZ2]).

Lemma 7.1 The system (1) is fully coupled in Ω if and only if for any
k, l ∈ {1, . . . , n}, with k 6= l, we can find a sequence of indices {ij}r

j=0, such
that ij 6= ij+1 for all j = 0, . . . , r − 1, i0 = k, ir = l, and sets with positive
Lebesgue measure ωijij+1

⊂ Ω such that

ϕijij+1
(t) > 0 for all t > 0 (70)

(recall that ϕkl are defined in (8)).

For each couple i, j ∈ {1, . . . , n}, i 6= j, we define the function

ϕ̃ij(t) =
(
κijϕij(t) − C∗‖f‖LN (B3)

)+
, (71)

where κij = κij (N, n, α0, γ, ν, meas(ωij)) are positive constants (to be defined
later) and C∗ = C∗(N, α0, γ, ν) is the constant from the scalar ABP inequality
(Proposition 4.3).

We set
ϕ̃(t) = inf

k 6=l
ϕ̃ki1 o ϕ̃i1i2 o . . . o ϕ̃ir−1l(t), (72)

where for each (k, l), k 6= l, the chain {ij}r
j=0 is chosen as in Lemma 7.1

above. Note that ϕ̃ is a Lipschitz continuous non-decreasing function of t,
with ϕ̃(0) = 0 in case f ≡ 0.

The following lemma plays a crucial role. It relates the values of the
infimums of the functions ui.

Lemma 7.2 Under the hypotheses of Theorem 3.2, suppose the indices k
and l are such that k 6= l and there exists a set ωkl ⊂ B1 with meas(ωkl) > 0,
such that ϕkl(t) > 0 for all t > 0. Then

inf
B1

uk ≥ ϕ̃kl(inf
B2

ul). (73)

Therefore, for all k 6= l,
inf
B1

uk ≥ ϕ̃(inf
B2

ul). (74)
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Proof. If inf
B2

ul = 0 there is nothing to prove. So suppose inf
B2

ul > 0. By

assumption (H2) we have

L−(D2uk, Duk) + gk(u, x) ≤ fk. (75)

By using the cooperativity assumption (H3) we get

L−(D2uk, Duk) + gk(ukek + ulel, x) ≤ fk, (76)

where ei is the ith vector in the canonical basis of R
n. By the assumed

(uniform in x) Lipschitz continuity of gk, together with the cooperativity
assumption (H3), (76) yields

L−(D2uk, Duk) + gk(inf
B2

ul el, x) − νuk ≤ fk, (77)

(recall ν is a Lipschitz constant for gk).
We are going to estimate uk from below by the solution of the following

problem (see Proposition 4.5)




L−(D2w,Dw) − νw = −gk(inf
B2

ul el, x) in B2

w ∈ W 2,p
loc (B2) ∩ C(B2), ∀p ∈ (1, +∞)

w = 0 on ∂B2.

(78)

Note that gk(0, x) = 0 and gk(·, x) ∈ C0,1 imply gk(u, x) ∈ L∞(Ω) for u fixed.
We are going to infer from (77) and (78) an elliptic inequality for the

function uk − w. We use the following (essentially known) lemma.

Lemma 7.3 Let ω be a domain and suppose w1, w2 ∈ C(ω) satisfy

M−(D2w1) − γ|Dw1| ≤ h and

M−(D2w2) − γ|Dw2| ≥ 0 in ω,
(79)

in the viscosity sense, for some h ∈ LN(ω), and that w2 ∈ W 2,N(ω). Then

−M+(D2(w2 − w1)) − γ|D(w2 − w1)| ≤ h in ω.

Proof of Lemma 7.3 Let us take x0 ∈ O ⊂ ω, ε > 0 and a test function
φ ∈ W 2,N(O) satisfying φ ≥ w2−w1 in O, φ(x0) = w2(x0)−w1(x0). Suppose
for contradiction that

−L+(D2φ,Dφ) ≥ h + ε in O. (80)
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By (17),(18), (79) and (80) we get

−L+
(
D2(φ − w2), D(φ − w2)

)
≥ −M+(D2φ) + M−(D2w2)

−γ|Dφ| − γ|Dw2|
≥ −M+(D2φ) − γ|Dφ|
≥ h + ε

in O.
Since w2 ∈ W 2,N(ω), φ−w2 is a test function which satisfies φ−w2 ≥ −w1

in O, with equality at x0. Now since −w1 satisfies

−L+(D2(−w1), D(−w1)) ≤ h, (81)

we get, by Definition 4.1,

−L+(D2(φ − w2), D(φ − w2)) 6≥ h + ε (82)

in O, which is a contradiction.
From inequalities (77), (78) and the above lemma, we deduce that the

function uk − w satisfies the inequality

−L+(D2(w − uk), D(w − uk)) + ν(w − uk) ≤ fk (83)

in B2. Since w − uk ≤ 0 on ∂B2 the scalar ABP inequality (Proposition 4.3)
implies

− inf
B2

(uk − w) = sup
B2

(w − uk) ≤ C∗||fk||LN (B2), (84)

which yields

uk(x) ≥ w(x) − C∗||fk||LN (B2) ≥ inf
B1

w − C∗||fk||LN (B2) (85)

for all x ∈ B1. Hence

inf
B1

uk ≥ inf
B1

w − C∗||fk||LN (B2). (86)

The point is that inf
B1

w can be estimated from below by ϕkl(inf
B2

ul). Let us

prove this. By Lemma 4.1 there exists an linear second order uniformly
elliptic operator L̃ such that L̃w = L−(D2w,Dw). Then (H3) and (78) yield





L̃w − νw = −gk(inf
B2

ulel, x) ≤ 0 in B2

L̃w − νw = −gk(inf
B2

ulel, x) ≤ −ϕkl(inf
B2

ul) in ωkl ⊂ B1

w = 0 on ∂B2.

(87)
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By the usual maximum principle w ≥ 0 in B2. We now use the following
consequence of a theorem by Krylov (Theorem 12 on p. 129 in [Kr]), in the
form which was stated in [BNV].

Theorem 7.1 (Krylov) Let L0 be a linear uniformly elliptic operator with
bounded measurable coefficients in the form (27), and suppose c ∈ L∞(B2).
Suppose α0 is an ellipticity constant for L0, and τ is an upper bound for the
L∞-norms of c and the first order coefficients of L0. Let v ∈ W 2,N

loc (B2) be a
positive function satisfying L0v+cv ≤ 0 a.e. in B2 and L0v+cv ≤ −ρ a.e. in
a closed subset ω ⊂ B2, for some ρ > 0. Then there exists a constant m > 0,
depending only on N, α0, τ, and a positive lower bound on meas (ω) > 0, such
that

inf
B1

v ≥ mρ. (88)

This theorem and (87) give the following estimate from below

inf
B1

w ≥ κklϕkl(inf
B2

ul), (89)

where κkl is the constant from Theorem 7.1. Combining (86) and (89) yields

inf
B1

uk ≥ ϕ̃kl(inf
B2

ul). (90)

This proves (73) in Lemma 7.2. Finally, we take a sequence {ij}r
j=0 as in

Lemma 7.1 and a sequence of nested balls {Bαj
}r

j=0 , αj = 1 +
j

r
. Then, as

above,
ϕ̃ijij+1

( inf
Bαj+1

uij+1
) ≤ inf

Bαj

uij (91)

and the second estimate in Lemma 7.2 follows by iterating (91) r times (note
that r < n(n − 1)), in view of the definition of ϕ̃ (see (72)).

By using the cooperativity assumption (H3) and the Lipschitz continuity
of gk at u = 0 (recall that g(0, x) = 0), we have

L−(D2uk, Duk) − νuk ≤ f in B2, (92)

for k = 1, . . . , n. The weak Harnack inequality for scalar equations (Propo-
sition 4.4) yields

|uk|pk,2 ≤ C#

(
inf
B2

uk + ‖f‖LN (B3)

)
, (93)

where pk and C# are positive constants which depend only on N,α0, γ, and ν.
We set p = min{p1, . . . , pn} and note that | · |p,R is non-decreasing in p > 0.
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Next, we replace everywhere in the above proof each function ϕij for
which ϕij(t) > 0 if t > 0 by a Lipschitz continuous function ϕ̂ij such that
ϕ̂ij(t) ≤ ϕij(t) and ϕ̂ij(t) is strictly increasing, for t ≥ 0 (if ϕij itself does
not have these properties it is easy to see that such a function ϕ̂ij can be
constructed). Of course, estimates (73) and (74) in Lemma 7.2 continue to
hold.

We set

φij(t) = ϕ̂−1
ij

(
t

κij

+
C∗

κij

‖f‖LN (B3)

)

and

Φ0

(
t, ‖f‖LN (B3)

)
= sup

k 6=l
φ̃ir−1l o φ̃ir−1ir−2 o . . . o φ̃i1i2(t) o φ̃ki1(t),

where for each (k, l), k 6= l, the chain {ij}r
j=0 is chosen as in Lemma 7.1.

Note that Φ0(t, s) is continuous and increasing on [0,∞)2, and Φ0(0, 0) = 0.
Then estimate (74) can be recast in the form

inf
B2

ul ≤ Φ0(inf
B1

uk, ||f ||LN (B3)), (94)

for all k, l = 1, · · · , n, k 6= l.
Finally

|u1 ∨ . . . ∨ un|p,2 ≤ |u1 + . . . + un|p,2

≤ (n1− 1
p ∨ 1)

n∑

i=1

|ui|p,2

≤ (n1− 1
p ∨ 1)C#

(
n∑

i=1

inf
B2

ui + n‖f‖LN (B3)

)

≤ (n2− 1
p ∨ n)C#Φ0

(
min

1≤i≤n
inf
B1

ui, ‖f‖LN (B3)

)
+ C‖f‖LN

= CΦ0

(
inf
B1

u1 ∧ . . . ∧ un, ‖f‖LN (B3)

)
+ C‖f‖LN (B3)

=: Φ

(
inf
B1

u1 ∧ . . . ∧ un, ‖f‖LN (B3)

)
,

which concludes the proof of Proposition 3.2.
The full Harnack inequality is an immediate consequence of Proposi-

tion 3.1 and Proposition 3.2.
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Part II. Linear Elliptic Systems

8 The Estimates in the Linear Case

In this section we restate and extend our results from Section 3 in the setting
of linear weakly coupled cooperative elliptic systems of second order. In
this more simple but important case we obtain more precise and easier-to-
state results. In Section 10 we discuss some extensions and give some open
problems and counterexamples.

We study the system





L1u1 + c11(x)u1 + c12(x)u2 + . . . + c1n(x)un = f1(x)
L2u2 + c21(x)u1 + c22(x)u2 + . . . + c2n(x)un = f2(x)

. . .
Lnun + cn1(x)u1 + cn2(x)u2 + . . . + cnn(x)un = fn(x)

(95)

in the bounded domain Ω ⊂ R
N ; n,N ≥ 1.

In order to simplify the notations we write (95) in the form

Lu + Cu = ~f,

where L = diag(L1, . . . , Ln), C(x) = (cij(x))n
i,j=1 , u = (u1, . . . , un)T , and

~f = (f1, . . . , fn)T .
The second-order elliptic operators L1, . . . , Ln are supposed to be in gen-

eral non-divergence form

Lk =
N∑

i,j=1

ak
ij(x)

∂2

∂xi∂xj

+
N∑

i=1

bk
i (x)

∂

∂xi

, (96)

and to be uniformly elliptic :

(L1) there exists α0 ∈ (0, 1) such that for all ξ ∈ R
N , all k = 1, . . . , n, and

almost every x ∈ Ω we have

α0|ξ|2 ≤
N∑

i,j=1

ak
ij(x)ξiξj ≤ α−1

0 |ξ|2.

We assume that the operators L1, . . . , Ln and the matrix C have bounded
measurable coefficients, with
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(L2) max
1≤k≤n

N∑

i=1

‖bk
i ‖2

L∞(Ω) = b2 ≤ ν, max
1≤k≤n

n∑

i=1

‖cki‖L∞(Ω) ≤ ν.

We assume that the system (95) is cooperative, that is, for all indices
i, j ∈ {1, . . . , n}, with i 6= j,

(L3) cij ≥ 0 a.e. in Ω.

Finally, we assume

(L4) ~f ∈ LN(Ω, Rn),

and consider LN -viscosity solutions u ∈ C(Ω, Rn) of (95). Recall that any
u ∈ W 2,N

loc (Ω, Rn) which satisfies (95) a.e. in Ω is a viscosity solution.
The first result is the ABP estimate for (95). We prove it under an

assumption which is milder that (H5) and (H6). Actually, assumption Ψ
below is sharp, in a sense which will become clear later (see Section 14).

Theorem 8.1 (ABP estimate) (a) We suppose that

(Ψ) there exists a function Ψ = (ψ1, . . . , ψn) ∈ W 2,p
loc (Ω, Rn) ∩ C(Ω, Rn), for

some p > N, such that




LΨ + CΨ ≤ 0 a.e. in Ω

Ψ > 0 in Ω.
(97)

If (L1) through (L4) hold and u ∈ C(Ω, Rn) satisfies

Lu + Cu ≥ −~f in Ω,

then

sup
Ω

(u1 ∨ . . . ∨ un) ≤ C

(
sup
∂Ω

(u+
1 ∨ . . . ∨ u+

n ) + ‖f+‖LN (Ω)

)
(98)

(recall f = f1 ∨ . . . ∨ fn). Respectively, if u is such that Lu + Cu ≤ ~f then

− inf
Ω

(u1 ∧ . . . ∧ un) ≤ C

(
sup
∂Ω

(u−
1 ∨ . . . ∨ u−

n ) + ‖f+‖LN (Ω)

)
.

The constant C depends on N, α0, ν, Ψ, and diam Ω.

(b) If instead of (Ψ) one assumes in (a) the stronger (take Ψ = (1, . . . , 1))
condition

n∑

j=1

cij(x) ≤ 0 a.e. in Ω, for every i ∈ {1, . . . , n}, (99)
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then the following stronger conclusion holds true

sup
Ω

u1 ∨ · · · ∨ un ≤ sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + CABP||f+||LN (Ω), (100)

and, respectively,

− inf
Ω

(u1 ∧ . . . ∧ un) ≤ sup
∂Ω

(u−
1 ∨ . . . ∨ u−

n ) + CABP‖f+‖LN (Ω), (101)

where the constant CABP depends only on N, α0, ν, and diam Ω.

Remark 1. Taking n = 1, u ∈ W 2,N
loc (Ω, R) in (100), we obtain Theorem 9.1

in [GT] (compare also with [BNV], Theorem 1.3). This means our results
contain the classical ABP estimate for scalar equations.

Remark 2. Hypothesis (Ψ) implies that the matrix operator L + C satisfies
the maximum principle in Ω (see [FM2] and Section 14 of our paper).
Remark 3. In the case when the second order coefficients of the elliptic
operators L1, . . . , Ln are continuous functions and ∂Ω has some regularity,
we can weaken hypothesis (Ψ). More precisely, instead of Ψ > 0 in Ω we
could suppose that Ψ > 0 in Ω, with either Ψ 6≡ 0 on ∂Ω or LΨ + CΨ 6≡ 0
in Ω. This weaker condition will be shown to be equivalent to (Ψ) (see in
particular Lemma 14.1 in Section 14).

Remark 4. The dependence in Ψ of the constant in Theorem 8.1 is expressed

in terms of upper bounds on

∣∣∣∣
∇Ψ

ψ1 ∧ . . . ∧ ψn

∣∣∣∣
L∞(Ω)

and

∣∣∣∣
ψ1 ∨ . . . ∨ ψn

ψ1 ∧ . . . ∧ ψn

∣∣∣∣
L∞(Ω)

.

We turn to the Harnack inequality for non-negative solutions of (95).
Our first goal is to describe precisely the way system (95) can force the

functions u1, . . . , un to depend on each other.
Let us restate the definition of a fully coupled system in the linear case.

Definition 8.1 A matrix C(x) = (cij(x))n
i,j=1 , which satisfies (H3), is called

irreducible in Ω, and the system Lu + Cu = f is called fully coupled in Ω,
provided for any non-empty sets I, J ⊂ {1, . . . , n} such that I ∩ J = ∅ and
I ∪ J = {1, . . . , n}, there exist i0 ∈ I and j0 ∈ J for which

meas{x ∈ Ω | ci0j0(x) > 0} > 0. (102)

For simplicity, when (102) holds we write ci0j0 6≡ 0 in Ω.

Next we give a notion of partial coupling for a non-fully coupled system.
It is easy to see, by renumbering lines and columns (i.e. by permuting the
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indices of u1, . . . , un), that any matrix C can be written in the block triangular
form

C = (Ckl)
m
k,l=1 , (103)

so that the matrix which we obtain still satisfies (H3) ; here 1 ≤ m ≤ n, Ckl

are tk×tl matrices,
m∑

k=1

tk = n, Ckk is an irreducible matrix for all k = 1, . . . , m,

and Ckl ≡ 0 in Ω, for all k, l ∈ {1, . . . ,m} with k < l. Note that m = 1 means
C is irreducible, while m = n means C is in triangular form.

From now on, we suppose that C(x) is written in the form (103). We set

s0 = 0, sk =
k∑

i=1

ti, Sk = {sk−1 + 1, . . . , sk} and

uk = usk−1+1 ∨ . . . ∨ usk
, uk = usk−1+1 ∧ . . . ∧ usk

,

for all k ∈ {1, . . . , m}.

Definition 8.2 Let (95) be a non-fully coupled system and let k > l, for
some k, l ∈ {1, . . . , m}. We call system (95) (kl)-partially coupled, provided
there exist indices (i, j) ∈ Sk × Sl such that cij 6≡ 0 in Ω. For simplicity, in
this case we write Ckl 6≡ 0 in Ω.

We fix a point x0 ∈ Ω and a ball B3R := B(x0, 3R) ⊂ Ω. We suppose the
matrix C(x) is written in the form (103) in B3R (i.e. Ckl ≡ 0 in B3R for k < l
and Ckk are irreducible in B3R).

We set, for all k, l ∈ {1, . . . , m},

Λkl(B3R) = { (i, j) | (i, j) ∈ Sk ×Sl, i 6= j and cij 6≡ 0 in B3R}, Λ =
m∪

k,l=1
Λkl,

(Λ can be empty, if (95) is totally decoupled) and fix α ∈ (0, 3) such that
Λkl(BαR) = Λkl(B3R), for all k, l ∈ {1, . . . ,m}.

We shall prove a Harnack inequality in the ball BαR. To avoid heavy
notations, we take α = 1 (in the general case the constants in the Harnack
inequality depend on 3 − α). We set, for all (i, j) ∈ Λ,

ωij = {x ∈ BR | cij(x) ≥ ρ}, (104)

where ρ > 0 is taken so that meas(ωij) > 0.

Theorem 8.2 (Harnack inequality) Suppose (L1) through (L4) are sat-
isfied and let u ≥ 0 be a solution of (95) in B3R. Then

sup
BR

uk ≤ C

(
inf
BR

uk + R‖f‖LN (B3R)

)
, (105)
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for all k ∈ {1, . . . ,m}.
If, in addition, (95) is (kl)-partially coupled, then

sup
BR

uk ∨ ul ≤ C

(
inf
BR

uk + R‖f‖LN (B3R)

)
. (106)

The constants C in (105) and (106) depend only on n,N, α0, νR2, ρR2, and
a positive lower bound for R−N meas(ωij), (i, j) ∈ Λ ∩ {1, . . . , sk}2.

Counterexample. We recall that our results fail for general non-cooperative
systems. For example, the functions u = |x|2, v = 2N solve the system





∆u − v = 0

∆v = 0
in B1 ⊂ R

N ,

and violate (106). See also the counterexamples at the end of Section 3.

A particular case of (105) is the following

Corollary 8.1 Under the hypotheses of Theorem 8.2 we have

sup
BR

ui ≤ C

(
inf
BR

ui + R‖f‖LN (B3R)

)
, (107)

for all i = 1, . . . , n.
If, in addition, system (95) is fully coupled, then

sup
BR

u1 ∨ . . . ∨ un ≤ C

(
inf
BR

u1 ∧ . . . ∧ un + R‖f‖LN (B3R)

)
. (108)

Let us recall the earlier results on Harnack inequalities for elliptic sys-
tems. Extending results by Mandras [Ma], Chen and Zhao ([CZ1]) obtained

Corollary 8.1 for strong solutions of (95), in the case ~f ≡ 0, under Hölder
regularity assumptions on the coefficients of the elliptic operators L1, . . . , Ln.
Their proof makes use of estimates on the Green functions of L1, . . . , Ln. The
result of Chen and Zhao was shown to hold for ak

ij ∈ C0,1, bk
i ∈ L∞ by Ara-

postatis, Ghosh and Marcus ([AGM]). All these works relied on typically

“linear” tools which require ~f ≡ 0 and lead to the additional regularity as-
sumptions on the coefficients of the elliptic operators. We note that, using
a Nash-Moser type iteration technique, Muscalu ([Mu]) recently obtained a
weak form of the Harnack inequality for a class of elliptic systems in diver-
gence form.

Finally, we state the two half-Harnack inequalities.
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Proposition 8.1 (local maximum principle) Suppose hypotheses (L1)
through (L4) hold. Let

Lu + Cu ≥ −~f (109)

in B3R. Then for all p > 0 we have

sup
BR

u1 ∨ . . . ∨ un ≤ C
(
|u+

1 ∨ . . . ∨ u+
n |p,2R + R||f+

1 ∨ . . . ∨ f+
n ||LN (B2R)

)
,

where C = C(N, α0, νR2, p).

Proposition 8.2 (weak Harnack inequality) Suppose hypotheses (L1)
through (L4) hold and let u ≥ 0 satisfy

Lu + Cu ≤ ~f (110)

in B3R. Then there exists a number p = p(N, n, α0, νR2) > 0 such that for
any k ∈ {1, . . . , m},

|uk|p,2R ≤ C

(
inf
BR

uk + R||f+
sk−1+1 ∨ . . . ∨ f+

sk
||LN (B3R)

)
, (111)

and, in case (95) is (kl)-partially coupled,

|uk ∨ ul|p,2R ≤ C

(
inf
BR

uk + R||f+
1 ∨ . . . ∨ f+

k ||LN (B3R)

)
, (112)

where C is as in Theorem 8.2.

9 Proofs

We begin with the proof of the linear ABP estimate (Theorem 8.1). First,
the statement in (b) is a particular case of Theorem 3.1 in Section 3.

In case system (95) satisfies condition (Ψ), we make the following change
of functions

uk =
uk

ψk

, fk =
fk

ψk

. (113)

A simple computation yields

1

ψk

Lkuk = Lkuk + uk

(
Lkψk

ψk

)
,
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for all k = 1, . . . , n, where, as in Lemma 4.2,

Lk = Lk + 2
N∑

i,j=1

ak
ij(x)

∂iψk(x)

ψk(x)

∂

∂xj

. (114)

We have then, by Lemma 4.2 (b),

Lkuk +
n∑

j=1

ckjuj ≥ −fk, (115)

where

ckj(x) =
1

ψk

(
ckjψ

j + δkjLkψk

)
.

We see that (Ψ) implies

n∑

j=1

ckj(x) ≤ 0 in Ω, (116)

for all k = 1, . . . , n. Thus, by making the change of functions (113), we
obtain a new cooperative system which satisfies (99). By applying the ABP
estimate for such systems, which we already have, we obtain

sup
Ω

u1 ∨ · · · ∨ un ≤ supΩ ψ1 ∨ · · · ∨ ψn

infΩ ψ1 ∧ · · · ∧ ψn

(
sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + C||f+||LN (Ω)

)
.

Theorem 8.1 is proved.
The linear local maximum principle (Proposition 8.1) is a consequence of

Proposition 3.1.
The proofs of the Harnack and the weak Harnack inequalities will be

carried out through an induction argument. We use induction with respect
to m, where, we recall, m is the number of irreducible blocks which appear
when we write the matrix C in the form (103).

The case m = 1 (that is, C is irreducible) is a consequence of the nonlinear
Harnack inequality we already proved in Part I. Note that in the case of a
linear system the functions ϕij are linear in t

ϕij = t

(
inf

x∈ωij

ess cij(x)

)
≥ ρt, (i, j) ∈ Λ,

so that the basic estimate (74) reduces to

inf
B1

ui ≥ κij inf
B2

uj − C∗||f ||LN (B3), i 6= j, (117)
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and the function Φ0 which appears at the end of the proof of Theorem 3.2
is linear, Φ0(t, s) = C1t + C2s. Let us suppose Theorem 8.2 and Proposition
8.2 hold for systems with at most m − 1 irreducible blocks, and let us have
a system with m irreducible blocks.

Note that, by the induction hypothesis, Theorem 8.2 and Proposition 8.2
hold for the system formed by the first sm−1 equations in (95). It remains to
prove (105), (106), (111) and (112) for k = m.

The inequality (111) is obtained by repeating the last argument in Sec-
tion 7 and by using the fact that (117) holds for i, j ∈ Sm, i 6= j. Note that
(L3) implies

(Li − c−ii)ui ≤ fi in B2, i = 1, . . . , n,

so that the weak Harnack inequality for scalar equations yields

|ui|pi,2 ≤ C

(
inf
B2

ui + ‖f+‖LN (B3)

)
. (118)

Let us prove (112). Fix l ∈ {1, . . . ,m − 1} such that Cml 6≡ 0 in B1. Let
for example ci0j0 6≡ 0 in B1, for some i0 ∈ Sm, j0 ∈ Sl. Then, by (117),

inf
B 3

2

uj0 ≤ C

(
inf
B2

ui0 + ‖f+
i0
‖LN (B3)

)
(119)

Using (111), (117), (118), (119) and the induction hypothesis, we obtain

|um ∨ ul|p,2 ≤ C (|um|p,2 + |ul|p,2)

≤ C

(
∑

i∈Sm

inf
B2

ui + min
j∈Sl

inf
B 3

2

uj + ‖f+‖LN (B3)

)

≤ C

(
∑

i∈Sm

inf
B2

ui + inf
B 3

2

uj0 + ‖f+‖LN (B3)

)

≤ C

(
2

∑

i∈Sm

inf
B2

ui + ‖f+‖LN (B3)

)

≤ C

(
min
i∈Sm

inf
B1

ui + ‖f+‖LN (B3)

)

= C

(
inf
B1

um + ‖f+‖LN (B3)

)
,

which proves (112).
Finally, let us prove (105) and (106). We distinguish two cases.
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Case 1. There exists a number l ∈ {1, . . . , m − 1} such that Ckl ≡ 0 in B1,
for all k > l.

In this case we remove from (95) the equations with numbers in Sl and
obtain a system to which the induction hypothesis applies.

Case 2. For all l ∈ {1, . . . , m−1} there exists k > l such that Ckl 6≡ 0 in B1.
In this case we can even prove that

sup
B1

u1 ∨ . . . ∨ un ≤ C

(
inf
B1

um + ‖f‖LN (B3)

)
. (120)

In view of Proposition 8.1 it suffices to prove that

|ul|p,2 ≤ C

(
inf
B1

um + ‖f‖LN (B3)

)
, (121)

for all l ∈ {1, . . . , m}. For l = m this follows from (111). On the other hand,
the assumption of Case 2 implies, by (112), that for all l ∈ {1, . . . ,m − 1}
there exists k > l such that

|ul|p,2 ≤ C

(
inf
B1

uk + ‖f‖LN (B3)

)
.

Finally, we take a sequence l = k0 < k1 < . . . < kr = m such that the
latter inequality holds between uki

and uki+1
and at most m− 1 nested balls

between B1 and B2. Iterating the inequality between each two of them, we
obtain (121).

10 Further results and some open problems

While the hypotheses under which we prove our Harnack inequality seem
natural – and the result seems complete in view of what is known for scalar
equations – a number of questions remain to be answered about the ABP
inequality, and even about the maximum principle. Namely, (H5) and (H6)
are not optimal. For instance, one could expect that Theorem 3.1 holds only
under the hypothesis

C(u, x) =

(
∂ci

∂uj

(u, x)

)n

i,j=1

is negative semi-definite for a.e. (u, x). (122)

Indeed (122) is more general than (H5) and (H6) in view of the following
lemma.
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Lemma 10.1 Let M = (mij) ∈ Mn(R) be a cooperative matrix, i.e. mij ≥ 0
for i 6= j. Suppose either that

n∑

j=1

mij ≤ 0 for all i = 1, . . . , n (123)

or that
mij ≤ mij, (124)

where M = (mij) is a negative semi-definite matrix (i.e. (Mξ, ξ) ≤ 0 for all
ξ ∈ R

n). Then M is negative semi-definite.

We give the elementary proof of Lemma 10.1 at the end of this section, for
the sake of completeness.

Although Theorem 3.1 holds under (122) for some particular systems,
this proves to be false in general. This section contains a discussion on these
points.

The problem is quite delicate, even in the linear case. In particular,
there turns out to be important differences between systems with divergence
and non-divergence form operators, between systems with autonomous (i.e.
constant in the linear case) or non-autonomous zero-order terms, and between
systems with the same or different linear elliptic operators.

To avoid technical complications, in this section we consider only strong
solutions, that is, u ∈ W 2,N

loc (Ω, Rn) ∩ C(Ω, Rn).
First, it follows from Theorem 3.1 (b) that the system

L+(D2ui, Dui) + (Cu)i = 0, i = 1, . . . , n

satisfies ABP (that is, (4) holds), if C is a constant negative semi-definite
matrix.

Next, we recall that ABP remains true under (122) for linear systems
with elliptic operators in divergence form.

Proposition 10.1 Suppose u ∈ W 2,N(Ω, Rn) satisfies

Lu + C(x)u ≥ −~f (125)

in the regular domain Ω, where Lk, k = 1, . . . , n, can be written in the form

Lk =
N∑

i,j=1

∂i(a
k
ij(x)∂j)

for some ak
ij ∈ C1(Ω), and suppose C(x) = C(u, x) satisfies (122). Then

sup
Ω

u1 ∨ · · · ∨ un ≤ C

(
sup
∂Ω

u+
1 ∨ · · · ∨ u+

n + ||f+||LN (Ω)

)
. (126)
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Remark. The assumption that the coefficients of the elliptic operators are
regular can of course be relaxed by considering the weak formulation of (125).
We have made these hypothesis for simplicity, in order to remain in the non-
divergence framework.

Proof of Proposition 10.1. As we show later, it suffices to prove that L+C
satisfies the maximum principle (since this implies (Ψ) from Theorem 8.1,
see Section 14, Theorem 14.1). Let u be such that





Lu + Cu ≤ 0 in Ω

u ≥ 0 on ∂Ω
(127)

We have to show that u ≥ 0 in Ω. We use a standard argument. We multiply
the i-th equation by u−

i and integrate over Ω. We obtain

−
∫

Ω

(
AiDui, Du−

i

)
dx +

∫

Ω

n∑

j=1

cijuju
−
i ≤ 0, i = 1, . . . , n,

where Ai = (ai
rs)r,s. Summing over i we obtain (recall that u = u+ − u−)

n∑

i=1

∫

Ω

(
AiDu−

i , Du−
i

)
dx −

n∑

i,j=1

ciju
−
j u−

i ≤ 0.

Hence, by ellipticity and (122),

α0

n∑

i=1

∫

Ω

|Du−
i |2 dx ≤

∫

Ω

(
C(x)u−, u−

)
dx ≤ 0,

which implies u−
i ≡ const = 0, i = 1, . . . , n.

The next result shows that the ABP inequality remains true for strong
solutions of linear systems in non-divergence form under assumption (122),
provided all elliptic operators Li coincide.

Proposition 10.2 Suppose C(x) = C(u, x) satisfies (122), u satisfies (125)
and that L1 = . . . = Ln is a scalar second-order operator with bounded mea-
surable coefficients in the form (96). Then (126) holds true.

Remark. We do have to restrict here to strong supersolutions; we suspect
that this result extends to viscosity supersolutions, although we do not have
a proof.
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Proof. By dividing each function ui by a solution of Lψ = −1 in Ω̃, Ω ⊂⊂ Ω̃,
we can reduce to a modified system with negative definite zero-order matrix,
see (47) and the computations thereafter. We keep the same notations for
simplicity. Hence we can assume

(C(x)ξ, ξ) ≤ −α|ξ|2 for all ξ ∈ R
n, a.e. x ∈ Ω, (128)

for some α > 0.
As we explained above, in order to establish (126) it is enough to show

that the maximum principle holds true for L+C in Ω, i.e. that (127) implies
u−

i ≡ 0 in Ω, for all i. First, note that by the cooperativity assumption (L3)
the ith equation in (127) yields

L1ui + ciiu
+
i −

n∑

j=1

ciju
−
j ≤ 0. (129)

Let us denote by φε the convolution of the function z → 1

2
(z−)2 with a

standard smoothing kernel ρε (that is,
∫
R ρε = 1, ρε ≥ 0, ρε ∈ C∞

0 (R),
supp ρε ⊂ (−ε, ε)).

Note that φ′
ε(z) = ρε ∗(−z−), so that |−φ′

ε(ui)−u−
i | ≤ ε. By multiplying

(129) by −φ′
ε(ui) (≥ 0) and by using (128) we get

−
n∑

i=1

φ′
ε(ui)L1ui ≤ −α

∑

i

(u−
i )2 + Cε, (130)

where C depends only on ||u||L∞(Ω). Observe that for any w ∈ W 2,n
loc and any

convex φ ∈ C2 we have the following well-known Kato inequality

L1(φ(w)) ≥ φ′(w)L1w. (131)

We assume for contradiction that
∑

i

(u−
i )2 > 0 and apply (131), with

w = ui, φ = φε, to (130). This yields

−L1

(
n∑

i=1

φε(ui)

)
≤ −

n∑

i=1

φ′
ε(ui)L1ui ≤ 0 (132)

for all ε > 0 small enough. By the scalar maximum principle applied to
(132), noticing that ui ≥ 0 on ∂Ω implies φε(ui) = O(ε) on ∂Ω, we get

n∑

i=1

φε(ui) ≤ Cε (133)
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in Ω. Taking ε → 0 we get u−
i ≡ 0 in Ω for all i, a contradiction.

In the nonlinear case we are able to prove that system (1) satisfies the
maximum principle under (122), provided it is autonomous. We do not know
whether ABP holds in this situation.

Proposition 10.3 Suppose u ∈ C(Ω, Rn) satisfies




L−(D2ui, Dui) + ci(u) ≤ 0 in Ω

u ≥ 0 on ∂Ω

i = 1, . . . , n

(134)

in the viscosity sense. Assume the functions ci satisfy (H0), (H3) and

(c(v), v) =
n∑

i=1

ci(v)vi ≤ 0 for all v ∈ R
n. (135)

Then u ≥ 0 in Ω.

Remark. Condition (135) is weaker than (122). This is natural, since in
Proposition 10.3 we aim at a maximum principle only.

Proof of Proposition 10.3. Set ui = uiψ, where ψ is a strong solution of
the equation 




L−(D2ψ, Dψ) = −1 in Ω̃

ψ = 0 on ∂Ω̃,

with Ω ⊂⊂ Ω̃. Up to adding a constant to γ we have




L−(D2ui, Dui) + ĉi(u) ≤ 0 in Ω

u ≥ 0 on ∂Ω

i = 1, . . . , n,

(136)

where ĉ is defined by

ĉi(u) =
1

ψ
ci(uψ) − εui, ε =

1

supΩ ψ

(see Lemma 4.3 and (48)). Now system (136) satisfies all hypotheses of
Proposition 10.3, with a strict inequality in (135), for all v ∈ R

n \ {0}. For
simplicity we write c instead of ĉ and u instead of u.
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By (H3) we have

L−(D2ui, Dui) + ci(−u−
1 , . . . ,−u−

i−1, ui,−u−
i+1, . . . ,−u−

n ) ≤ 0 in Ω

for all i. Hence
−L+(D2u−

i , Du−
i ) + ci(−u−) ≤ 0,

since u−
i = −min(ui, 0) and the minimum of supersolutions is a supersolu-

tion. Let xi ∈ Ω be a point of maximum of the nonnegative function u−
i . Set

ci = −ci(−u−
1 (x1), . . . ,−u−

n (xn)). We claim that ci ≥ 0 for all i. If not, there
exists j ∈ {1, . . . , n} such that cj < 0 and, by continuity,

cj(−u−
1 (x1), . . . ,−u−

n (xn)) >
ci

2
,

for (x1, . . . , xn) ∈ O, where O is a neighbourhood of (x1, . . . , xn), such that
u−

j achieves its maximum in O at xj. We get

L−(D2(u−
j (xj) − u−

j ), D(u−
j (xj) − u−

j )) = −L+(D2u−
j , Du−

j ) ≤ −ci

2
< 0

in O. By the scalar strong maximum principle u−
j ≡ u−

j (xj) in O, which is a
contradiction with the last inequality.

Set yi = u−
i (xi) ≥ 0 and y = (y1, . . . , yn). Then, by ci ≥ 0 and (135),

0 ≤
n∑

i=1

(−yi)ci(−y) < 0,

unless yi = 0 for all i.

Finally we show, through a counterexample, that condition (122) is not
sufficient to ensure the validity of the maximum principle in the non-autono-
mous case, even for a linear system.

Set I = (−3, 3) and define the functions a, d ∈ C∞(I) as follows

a(x) =





−ε if x ∈ [−3,−1]

−2

ε
if x ∈ [1, 3],

d(x) =





−2

ε
if x ∈ [−3,−1]

−ε if x ∈ [1, 3].

and such that a(x)d(x) ≡ 2 in I.
Let v ∈ C2(I) be a positive function such that

v(−3) = v(3) = 0, v′′ > 0 in [−3, 1) ∪ (2, 3] and v′′ < 0 in (1, 2).
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Set u(x) = v(−x). It is easy to see that if ε and c0 are small enough the
following inequalities hold





M+(D2u) + a(x)u + v ≥ 0 in I

M+(D2v) + u + d(x)v ≥ 0 in I

u, v = 0 on ∂I.

(137)

This system satisfies (122) but it does not satisfy the maximum principle,
since u, v 6≤ 0 in Ω. Note also that (137) can be written as a linear system,
by using Lemma 4.1.

Proof of Lemma 10.1. Set aij = 1
2
(mij + mji), aij = 1

2
(mij + mji), and

A = (aij), A = (aij). If (123) holds one gets by a trivial computation

(Mξ, ξ) = (Aξ, ξ) ≤ −
∑

i<j

aij(ξj − ξi)
2 ≤ 0.

In case (124) is verified (aij ≤ aij and (Aξ, ξ) ≤ 0 for all ξ ∈ R
n) we set

Bε = εI −A, Bε = εI −A = (bij), so that Bε is positive definite. It is clearly
enough to show that Bε is positive definite under the additional assumption
that A and A differ only in one entry, say

aij = aij if (i, j) 6= (i0, j0) and ai0j0 < ai0j0 . (138)

The result then follows easily by taking a chain of matrices each two consec-
utive elements of which differ only in one entry, and by letting ε → 0.

So suppose (138) and set B(t) = (1 − t)Bε + tBε = (bij(t)). Let, as
before, Mkl denotes the submatrix obtained from an arbitrary matrix M by

removing its kth line and lth column. By (138) detBi0j(t) =det B
i0j

(t), for
any j ∈ {1, . . . , n}. By Cramer’s rule and Lemma 5.3 we get

det B(t) =
∑

j 6=j0

(−1)i0+jbi0j(t) det Bi0j(t) + (−1)i0+j0bi0j0(t) det Bi0j0(t)

≥
∑

j 6=j0

(−1)i0+jbi0j(t) det B
i0j

(t) + (−1)i0+j0bi0j0(t) det B
i0j0

(t)

= det Bε > 0.

It follows, by continuity in t, that all eigenvalues of B(1) = Bε are positive,
i.e. that Bε is positive definite.
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Part III. Applications

In the third part of the paper we give several applications of the results
obtained in Parts I and II. We prove a maximum principle in unbounded
domains and a sharp strong maximum principle for cooperative systems.
An important application is the existence of a principal eigenvalue and a
principal eigenfunction of a fully coupled system. This result permits us to
obtain a necessary and sufficient condition for a cooperative (not necessarily
fully coupled) system to satisfy the maximum principle. Finally, we show
how our results can be applied to give Harnack type estimates for a class
of higher order elliptic equations, including the biharmonic and the poly-
harmonic equation. We show the existence of a principal eigenvalue and a
principal eigenfunction for these equations, in a sense which seems to be new.

In order to simplify the presentation all these applications are given in the
linear case although most results (maximum principles, higher order equa-
tions) readily extend to nonlinear equations.

11 A Maximum Principle in Unbounded Do-

mains

We say that the operator L+C satisfies the maximum principle in Ω provided
for any u ∈ C(Ω, Rn),





Lu + Cu ≤ 0 in Ω

u ≥ 0 on ∂Ω
(139)

implies u ≥ 0 in Ω. When Ω is bounded, it is well-known that the assump-
tions of Theorem 8.1 (the ABP estimate) are sufficient to ensure that L + C
satisfies the maximum principle in Ω (see [FM1]). This fact is a particular
case of Theorem 8.1.

The ABP estimate can also be used to derive a maximum principle in
unbounded domains. The next proposition contains a result of this kind.
General results of the same type for scalar equations can be found in [Bu].
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Proposition 11.1 Let Ω ⊆ R
N be a domain (bounded or unbounded). Sup-

pose (L1) through (L4) hold and

n∑

j=1

cij(x) ≤ −δ < 0 a.e. in Ω (140)

for all i = 1, . . . , n, and some δ > 0. Then there exists ε0(δ,N, α0, ν) > 0
such that





Lu + Cu ≤ 0 in Ω,

u ≥ 0 on ∂Ω, if ∂Ω 6= ∅

u−
1 (x) ∨ . . . ∨ u−

n (x) ≤ Ceε0|x| in Ω, for some C > 0,

implies u ≥ 0 in Ω.

Proof. We take β > 0 such that 2
√

Nα−1
0 β2 + ν

√
Nβ < δ and set ε0 = β/2.

We make the change of functions ui =
ui

g
, with g(x) = coshβx1 . . . coshβxN .

Then u = (u1, . . . , un) satisfies

L u + C u ≤ 0 in Ω,

where L = (L1, . . . , Ln),

Lk = Lk + 2β
∑

1≤i,j≤N

ak
ij(x)tanhβxi

∂

∂xj

and

C = C + diag

(
L1g

g
, . . . ,

Lng

g

)
.

More precisely, C = (ckj)
n
k,j=1, with

ckj = ckj + δkj


β2

∑

1≤l,m≤N
l6=m

ak
lmtanhβxl tanhβxm

+ β2
∑

1≤l≤N

ak
ll + β

∑

1≤l≤N

bk
l tanhβxl

)
.

Note that, because of the choice of β and ε0, C satisfies condition (99) and
u− → 0 as |x| → +∞, x ∈ Ω. By applying ABP inequality (Theorem 8.1,
(101)) to u in balls of increasing radii, we obtain the conclusion of Proposi-
tion 11.1.
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12 A Sharp Strong Maximum Principle

An immediate consequence of the weak Harnack inequality (Proposition 8.2)
is the following strong maximum principle. We recall we suppose that the
zero order matrix C is written in the form (103) in Ω.

Proposition 12.1 Assume (L1) through (L4) hold. Suppose u ∈ C(Ω, Rn)
satisfies 




Lu + Cu ≤ 0 in Ω

u ≥ 0 in Ω.

Let 1 ≤ k ≤ m and suppose there exists a point x0 ∈ Ω and an index
i ∈ Sk such that ui(x0) = 0. Then uj ≡ 0 for all j ∈ Sk. If, in addition,
1 ≤ k < l ≤ m are such that there exists a sequence {ij}r

j=0 for which

k = i0 > i1 > . . . > ir = l and Cijij+1
6≡ 0 in Ω (141)

then uj ≡ 0 in Ω, for all j ∈ r∪
j=0

Sij .

Remark 1. In the particular case when the system is fully coupled (m = 1),
Proposition 12.1 reduces to the known strong maximum principle (see [Sw]),
which states that ui(x0) = 0 for some x0 ∈ Ω and some i ∈ {1, . . . , n} implies
u ≡ 0 in Ω.

Remark 2. The strong maximum principle given by Proposition 12.1 is
sharp in the sense that if a sequence as in (141) does not exist then, clearly,
the system does not relate the functions with indices in Sk to the functions
with indices in Sl.

13 Existence of a Principal Eigenvalue

for a Fully Coupled System

Throughout this and the next section we suppose that (L1) through (L3)
hold and, in addition,

ak
ij ∈ C(Ω),

for all i, j ∈ {1, . . . , N}, k ∈ {1, . . . , n}. All functions considered belong to
W 2,q

loc (Ω, Rn) ∩ C(Ω, Rn), for all q < ∞ (except otherwise stated), so that, in
contrast to the rest of the paper, all equalities and inequalities hold almost
everywhere.
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For simplicity we suppose that Ω is regular (for example, Ω satisfies a
uniform exterior cone condition). All our results can be extended to arbitrary
domains, by using the arguments in [BNV].

We set

λ1 = λ1(L + C) = sup{λ ∈ R | there exists Ψ ∈ W 2,N
loc (Ω, Rn) such that

Ψ > 0 and (L + C + λI)Ψ ≤ 0 in Ω}.

Our main result in this section is the following theorem.

Theorem 13.1 Suppose that C is an irreducible matrix (see Definition 8.1).
Then (a) there exists a function Φ1 ∈ W 2,q

loc (Ω, Rn)∩C(Ω, Rn), ∀q < ∞, such
that 




(L + C + λ1I)Φ1 = 0 in Ω

Φ1 > 0 in Ω

Φ1 = 0 on ∂Ω.

(b) there are no eigenvalues of − (L + C) in the interval (−∞, λ1) ; the
vector Φ1 spans Ker (L + C + λ1I) in W 2,N

loc (Ω, Rn) ∩ C(Ω, Rn) under the
Dirichlet boundary condition.

(c) assume there is a function Ψ ∈ W 2,N
loc (Ω, Rn) such that

Ψ > 0 and (L + C)Ψ ≤ 0 in Ω.

Then either λ1 > 0 or λ1 = 0 and Ψ = const.Φ1.

(d) if Ψ ∈ W 2,N
loc (Ω, Rn) ∩ C(Ω, Rn) satisfies





(L + C + λ1I)Ψ ≤ 0 in Ω

Ψ ≥ 0 on ∂Ω

then Ψ = const.Φ1.

(e) if we normalize Φ1 = (φ1,1, . . . , φ1,n) in such a way that

min
1≤i≤n

φ1,i(x0) = 1

for some x0 ∈ Ω, then

sup
Ω

Φ1 := sup
Ω

φ1,1 ∨ . . . ∨ φ1,n ≤ C,

where C depends only on x0, Ω and the same quantities as the constant which
appears in the Harnack inequality (Theorem 8.2 in Part II).
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Remark 1. Supposing a priori that λ1 > 0 (he actually uses a hypothesis of
type (Ψ) and proves his hypothesis is equivalent to λ1 > 0), Sweers proved
parts (a) and (b) of Theorem 13.1 in [Sw] (his proof relies on the Krein-
Rutman technique ; see also [BMS] for the case of a non-regular domain).
We are going to use this result in the proof of Theorem 13.1.

Remark 2. If the boundary of Ω is not regular the principal eigenfunction
may not belong to C(Ω) and Φ1 = 0 on ∂Ω only in a certain sense (as in
[BNV] and [BMS]).

Remark 3. In [BNV] Berestycki, Nirenberg and Varadhan made a deep
study of the properties of the principal eigenvalue and the principal eigen-
function of a scalar elliptic operator in a general domain. The basic tools they
used are the ABP and the Harnack-Krylov-Safonov inequalities for scalar
equations. Since we now have such inequalities for cooperative elliptic sys-
tems, it is only a matter of technique to show that all results in [BNV] have
their analogues for systems. Here and in the next section we present some
of these analogues (and often merely adapt the proofs in [BNV] to the case
of a system). To extend to systems the rest of the results in [BNV] is left to
the interested reader.

Remark 4. The hypothesis that the system is fully coupled can be relaxed
in Theorem 13.1.

Remark 5. In [He] Hess considered a related eigenvalue problem. He showed
that the equation LΦ + µCΦ = 0 has a solution (µ, Φ) under Dirichlet
boundary conditions, with µ > 0, Φ > 0 in Ω, provided c+

kk 6≡ 0 for some
k ∈ {1, . . . , n}. In other words, Hess gave a condition on C under which one
can find a positive constant µ such that λ1(L + µC) = 0, in terms of our
definition of λ1.

Proof of Theorem 13.1. It follows from the definition of λ1 that for any
λ < λ1 the matrix operator L + C + λI satisfies the hypotheses of Theorem
1.1 in [Sw] (namely, this operator is cooperative, fully coupled, and satisfies a
condition of type (Ψ)). This theorem implies the existence of couple (µλ, Φλ)
such that Φλ ∈ W 2,N

loc (Ω, RN) ∩ C(Ω, RN), µλ > 0 and




(L + C + (λ + µλ)I)Φλ = 0 in Ω

Φλ > 0 in Ω

Φλ = 0 on ∂Ω.

(142)

We claim that

λ < λ + µλ ≤ λ1 ≤
C1

R2
, (143)
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where C1 = C1(N, α0, ν) and R > 0 is such that Ω contains a ball of radius R.
The first inequality in (143) is obvious. The second inequality follows

from the definition of λ1 and (142). The last inequality in (143) is known to
hold if λ1 is replaced by λ1(Li + cii) – the principal eigenvalue of the scalar
operator Li + cii in Ω, for any i = 1, . . . , n (this is Lemma 1.1, page 51 in
[BNV]). On the other hand, since C is cooperative,

(L + C + λI)Φ ≤ 0 implies (Li + cii + λ)φi ≤ 0

(Φ = (φ1, . . . , φn)), hence λ1 ≤ λ1(Li + cii), for all i = 1, . . . , n.
We now fix δ = δ(N, α0, ν, Ω) > 0 such that

δ <

{
2CABP

(
ν +

C1

R2

)}−N

(CABP is the constant which appears in Theorem 8.1 (b)).
Let x0 ∈ Ω. We normalize the vector Φλ = (φλ,1, . . . , φλ,n) by dividing

the equation in (142) by min
1≤i≤n

φλ,i(x0) > 0, so that we can suppose

φλ,i(x0) ≥ 1, for all i = 1, . . . , n,

and
φλ,1 ∧ . . . ∧ φλ,n(x0) = 1. (144)

We take a compact set K ⊂ Ω such that we have x0 ∈ K,BR ⊂ K,
Λ(K) = Λ(Ω) (Λ is defined in Section 8, page 38), and

meas (Ω \ K) < δ.

It follows from (144) and our Harnack inequality (Corollary 8.1 in Part II)
that

sup
K

φλ,1 ∨ . . . ∨ φλ,n ≤ C2 (145)

(the constant C, indexed or not, depends only on the appropriate quantities,
in particular, C is independent of λ).

Set e = (1, 1, . . . , 1) and Φλ = Φλ − C2e, so that

Φλ ≤ 0 on ∂(Ω \ K). (146)

We have, by (142) and (143),

(L + C − νI)Φλ = −(ν + λ + µλ)Φλ − C2(C − νI)e

≥ −
(

ν +
C1

R2

)
Φλ in Ω \ K, (147)
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where we have used the fact that (L2) implies (C − νI)e ≤ 0. This fact also
shows that the operator in the left-hand side of (147) satisfies the hypotheses
of the ABP estimate (Theorem 8.1 (b)). Applying this estimate to (147), we
obtain

sup
Ω\K

φλ,1 ∨ . . . ∨ φλ,n − C2 ≤ CABP

(
ν +

C1

R2

)
δ

1
N sup

Ω\K

φλ,1 ∨ . . . ∨ φλ,n

≤ 1

2
sup
Ω\K

φλ,1 ∨ . . . ∨ φλ,n. (148)

By combining (145) and (148) we obtain

‖Φλ‖L∞(Ω) = sup
Ω

φλ,1 ∨ . . . ∨ φλ,n ≤ C3.

Since

Lkφλ,k = −
n∑

j=1

(ckj − δkj(λ + µλ))φλ,j,

we see that Lkφλ,k remain bounded in L∞(Ω) as λ → λ1, for all k = 1, . . . , n.
Classical interior elliptic estimates for scalar equations imply

‖Φλ‖W 2,q(Ω′) ≤ C, (149)

for any 1 < q < ∞ and any Ω′ ⊂⊂ Ω.
We infer from (149) that there exists a sequence {λ(j)}∞j=1 and a function

Φ1 such that
λ(j) → λ1 and Φ(j) = Φλ(j) → Φ1

weakly in W 2,q
loc (Ω), 1 < q < ∞, and uniformly in any compact subset of Ω.

It follows that Φ1 solves the equation

(L + C + λ1I)Φ1 = 0 in Ω

(note that (143) implies λ(j) + µλ(j) → λ1), and

0 ≤ Φ1 ≤ C3e in Ω.

Since, by (144), Φ1(x0) ≥ e, the strong maximum principle implies Φ1 > 0
in Ω.

Finally,

LΦ(j) = −CΦ(j) − (λ(j) + µλ(j))Φ(j)

≥ −νC3e −
C1C3

R2
e = −C4e in Ω,
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so the usual maximum principle for scalar equations implies

Φ(j) ≤ C4Φ0 in Ω,

where Φ0 is the solution of the problem





LΦ0 = −e in Ω

Φ0 = 0 on ∂Ω.

Hence
0 < Φ1 ≤ C4Φ0 in Ω,

so Φ1 ∈ C(Ω) and Φ1 = 0 on ∂Ω.
Statements (a) and (e) of Theorem 13.1 are proved.
The first part of statement (b) follows from the result of Sweers (Theorem

1.1 in [Sw]). Indeed, if λ < λ1 is an eigenvalue for −(L+C) then the operator

L+C+ λ1+λ
2

I satisfies the hypotheses of Theorem 1.1 in [Sw], and hence does
not have negative eigenvalues - a contradiction. The second part of (b) is a
particular case of (d).

Let us prove statements (c) and (d). It is clear that the assumptions in
(c) imply λ1 ≥ 0. If λ1 = 0, set

τ = sup{t ∈ R | Ψ ≥ tΦ1 in Ω}. (150)

By continuity Ψ ≥ τΦ1. If Ψ = τΦ1, we are done. If not, the strong
maximum principle, applied to

(L + C)(Ψ − τΦ1) ≤ 0,

implies Ψ > τΦ1 in Ω. We now make use of the maximum principle in “small
domains” obtained by de Figueiredo in [dF] (this result is stated in Corollary
14.1 below). It follows from this result that if a compact set K ⊂ Ω is such
that meas(Ω\K) is small enough, then L+C satisfies the maximum principle
in Ω \K. Since K is compact, there exists ε > 0 such that Ψ ≥ (τ + ε)Φ1 in
K. Since





(L + C)(Ψ − (τ + ε)Φ1) ≤ 0 in Ω \ K

Ψ − (τ + ε)Φ1 ≥ 0 on ∂(Ω \ K),
(151)

we get, by the maximum principle, Ψ ≥ (τ + ε)Φ1 in Ω, which contradicts
(150).
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Finally, let us prove (d). We can suppose that λ1 = 0 (replace C by
C + λ1I). It suffices to find α > 0 such that

Z = Ψ + αΦ1 > 0 in Ω

(Z then satisfies the assumption in (c)). We fix a compact K ⊂ Ω such that
L + C satisfies the maximum principle in Ω \K and we take α > 0 such that
Z > 0 in K. Since





(L + C) Z ≤ 0 in Ω \ K

Z ≥ 0 on ∂ (Ω \ K) ,

we get Z > 0 in Ω \ K.
Theorem 13.1 is proved.

At the end of this section we recall the following result of Sweers ([Sw]).

Theorem 13.2 (Sweers) Suppose C is irreducible and let ~f ∈ Lq(Ω, Rn),
q ≥ N . If λ1 > 0 then there exists a unique solution in W 2,q

loc (Ω, Rn)∩C(Ω, Rn)
of the problem 




Lu + Cu = −~f in Ω

u = 0 on ∂Ω.

Moreover, ~f ≥ 0 in Ω implies u ≥ 0 in Ω ; ~f = (f1, . . . , fn) ≥ 0 and fi 6≡ 0,

for some i, imply ~f > 0.

14 Necessary and Sufficient Conditions for a

Linear System to Satisfy the Maximum

Principle

The existence of a principal eigenfunction permits us to show that condition
(Ψ) in Theorem 8.1 (a), which has long been known to be sufficient for the
maximum principle, is also necessary for its validity. Our result, applied
to a fully coupled system, says the maximum principle holds if and only
if the principal eigenvalue of the matrix operator L + C is positive. This
result contains the well-known necessary and sufficient condition for a scalar
operator to verify the maximum principle.

Let the matrix C be written in the form

C = (Ckl)
m
k,l=1 (152)
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in Ω, where, we recall, 1 ≤ m ≤ n, Ckl are tk×tl matrices,
m∑

k=1

tk = n, Ckk is an

irreducible matrix for all k = 1, . . . , m, and Ckl ≡ 0 for all k, l ∈ {1, . . . ,m}
with k < l. We have set s0 = 0, sk =

k∑
i=1

ti, and Sk = {sk−1 + 1, . . . , sk}.

Let λ
(k)
1 ∈ R and Φ

(k)
1 ∈ W 2,q

loc (Ω, Rtk)∩C(Ω, Rtk),∀q < ∞, be the principal
eigenvalue and eigenfunction of the operator Lk + Ckk in Ω, where we denote
Lk = diag (Lsk−1+1, . . . , Lsk

). The existence of λ
(k)
1 and Φ

(k)
1 is ensured by

Theorem 13.1.

Theorem 14.1 Let (L1) through (L3) hold and let ak
ij be continuous func-

tions, for all i, j, k. The following are equivalent :

(i) L + C satisfies the maximum principle in Ω, in the sense described in
the beginning of Section 11 ;

(ii) λ
(k)
1 > 0, for all k ∈ {1, . . . , m}.

(iii) there exists a function Ψ > 0 in Ω such that (L + C)Ψ ≤ 0 in Ω, and
either Ψ 6≡ 0 on ∂Ω or (L + C)Ψ 6≡ 0 in Ω (component-wise).

Proof. (i)⇒(ii). Suppose there exists k ∈ {1, . . . ,m} such that λ
(k)
1 ≤ 0.

Set
Ψ = (0, . . . , 0, Φ

(k)
1 , 0, . . . , 0)

(the only non-zero coordinates of Ψ are those with indices in Sk). Then

(L + C)Ψ = (0, . . . , 0,−λ
(k)
1 Φ

(k)
1 , Ck+1kΦ

(k)
1 , . . . , CmkΦ

(k)
1 ),

so, by (L3), {
(L + C)Ψ ≥ 0 in Ω

Ψ = 0 on ∂Ω,

but Ψ 6≤ 0 in Ω, which contradicts the maximum principle.

(ii)⇒(iii). We use a recurrent procedure to construct Ψ = (Ψ(1), . . . , Ψ(m))

(Ψ(k) consists of tk components). Set Ψ(1) = Φ
(1)
1 . If C21 ≡ 0 we take

Ψ(2) = Φ
(2)
1 . If C21 6≡ 0 we take Ψ(2) to be the solution of the problem





(
L2 + C22 +

λ
(2)
1

2

)
Ψ(2) = −C21Ψ

(1) in Ω

Ψ(2) > 0 in Ω

Ψ(2) = 0 on ∂Ω.
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This boundary value problem is solvable, by Theorem 13.2.
Finally, for any l ∈ {2, . . . , n}, when we have constructed Ψ(1), . . . , Ψ(l−1),

we take Ψ(l) to be either Φ
(l)
1 , in case Clk ≡ 0 for all k = 1, . . . , l − 1, or the

positive solution of the problem





(
Ll + Cll +

λ
(l)
1

2

)
Ψ(l) = −

l−1∑
k=1

ClkΨ
(k) in Ω

Ψ(l) = 0 on ∂Ω,

(153)

in case the right-hand side in (153) is not identically zero.
Then we have Ψ > 0 and

(L + C)Ψ ≤
(
−λ

(1)
1 Φ

(1)
1 ,−λ

(2)
1

2
Φ

(2)
1 , . . . ,−λ

(m)
1

2
Φ

(m)
1

)
< 0 in Ω.

(iii)⇒(ii). Let us note Ψ = (Ψ(1), . . . , Ψ(m)) > 0. Since (L3) holds, we have

(Lk + Ckk)Ψ
(k) ≤ 0,

and either Ψ(k) 6≡ 0 on ∂Ω or (Lk + Ckk)Ψ
(k) 6≡ 0 in Ω, for all k = 1, . . . , m.

It follows from Theorem 13.1 (c) that either λ
(k)
1 > 0 or λ

(k)
1 = 0 and, in the

latter case, Ψ(k) = const.Φ
(k)
1 . The last equality is impossible, by (iii) and

the properties of Φ1.

(iii)⇒(i). We show that (iii) is equivalent to condition (Ψ) in the ABP
estimate (Theorem 8.1 (a)). Then the conclusion is immediate, since the
maximum principle is a particular case of the ABP estimate.

Lemma 14.1 Suppose λ
(k)
1 > 0, for all k = 1, . . . ,m. Then there exists a

function Ψ ∈ W 2,q
loc (Ω, Rn) ∩ C(Ω, Rn), ∀q < ∞ such that





(L + C)Ψ ≤ 0 in Ω

Ψ ≥ e in Ω.

Proof. Since (iii) is equivalent to (ii) we can consider the vector Ψ con-
structed in the proof of (ii)⇒(iii). Then we can adapt to our situation the
proof of Lemma 6.1 in [BNV]. Let us sketch the argument.
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We take a compact set K ⊂ Ω and solve the following n scalar equations





LW = −2νe in Ω \ K

LW = 0 in K

W = 0 on ∂Ω.

As in [BNV], by taking K sufficiently close to Ω, we can ensure that W < e
in Ω. Taking ε0 such that Ψ ≥ ε0e on K and setting

a = max
1≤k≤m

4ν

λ
(k)
1 ε0

and Ψ = e + W + aΨ,

we get (L + C)Ψ ≤ 0 in Ω, as in [BNV].
Theorem 14.1 is proved.
Finally, we give a lower bound for the principal eigenvalue, analogous to

the estimate in Lemma 4.1 in [BNV].

Proposition 14.1 Under the conditions of Theorem 13.1, set

b1 = max
1≤j≤n

{
∑

i6=j

‖cij‖L∞(Ω) + ‖c+
jj‖L∞(Ω)

}
.

Then

λ1 ≥
1

CABP|Ω| 1
N

− b1.

Proof. Apply the ABP estimate to

(L + C − b1I)Φ1 = −(b1 + λ1)Φ1.

The following maximum principle in small domains (see [dF]) is a conse-
quence of Proposition 14.1 and Theorem 14.1.

Corollary 14.1 Suppose (L1) through (L3) hold. For any d > 0 there exists
a positive number δ = δ(N, c0, ν, d) such that

diam Ω < d and |Ω| < δ

imply that the operator L + C satisfies the maximum principle in Ω.
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15 Higher Order Equations. Estimates for

Equations of Polyharmonic Type.

The equation ∆nu = 0, n ≥ 2, is very classical. It is known that solutions
of this equation (called polyharmonic functions) do not admit the same es-
timates as harmonic functions. However, there is an important subclass of
polyharmonic functions (the so-called completely superharmonic functions,
see below) for which Harnack and Liouville type results have been obtained.
The possibility of extending these results to equations with right-hand side
and zero-order term has been an open question for a long time. Our estimates
for systems permit us to give an affirmative answer to this question.

Our results give ABP and Harnack estimates for equations of arbitrary
order in the form

(−Ln − cn(x)) . . . (−L1 − c1(x))u − c(x)u = f(x) in Ω (154)

(in contrast to the rest of the paper, in this section u and f denote scalar
functions). It is easy to see that (154) is equivalent to the system

Lu + Cu = ~f, (155)

where

C(x) =




c1(x) 1 0 . . . 0
0 c2(x) 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

c(x) 0 0 . . . cn(x)




, u =




u
(−L1 − c1)u

...(
n−1

Π
i=1

(−Li − ci)

)
u




and ~f = (0, . . . , 0, f)T . Note that the matrix C is fully coupled when c 6≡ 0
and is in triangular form when c ≡ 0.

The simplest and most studied example for (154) is the biharmonic equa-
tion

−∆ (∆u) + c(x)u = f(x) in Ω. (156)

which corresponds to the system





∆u + v = 0

∆v + c(x)u = f(x).
(157)

We have the following Harnack estimate for equation (154). We give
separately the Harnack estimate for the polyharmonic equation with a right-
hand side.
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Theorem 15.1 Let f ∈ LN(Ω).
(a) Suppose that u ∈ C2n−2(Ω) satisfies the equation

(−∆)n u = f (158)

in the viscosity sense in Ω and

(−∆)k u ≥ 0 (159)

in a ball B3R ⊂ Ω, for k = 0, . . . , n − 1.
Then

sup
BR

u ≤ C

(
inf
BR

u + R‖f‖LN (B3R)

)
, (160)

where C = C(n,N, R).

(b) Let c ∈ L∞ and ci ∈ L∞(Ω), i = 1, . . . , n, be functions such that

c 6≡ 0, 0 ≤ c ≤ ν, max
1≤k≤n

‖ck‖L∞(Ω) ≤ ν.

Let u ∈ C2n−2(Ω) be a non-negative viscosity solution of

(−Ln − cn) . . . (−L1 − c1)u − cu = f in Ω (161)

such that
(−Lk − ck) . . . (−L1 − c1)u ≥ 0

for all k = 1, . . . , n − 1.
Then

sup
BR

{
u ∨ max

1≤k≤n−1
(

k

Π
i=1

(−Li − ci))u

}
≤ C

(
inf
BR

{
u ∧ min

1≤k≤n−1
(

k

Π
i=1

(−Li − ci))u

}

+ R‖f‖LN (B3R)

)
.

Functions which satisfy condition (159) are called completely superhar-
monic (of order n−1). It is easy to see that this hypothesis cannot be omitted
in Theorem 15.1 (take for example u = |x|2 in the unit ball ; then the weak
Harnack inequality fails, since ∆2u = 0, u ≥ 0, u(0) = 0, but u 6≡ 0).

The particular role of completely superharmonic functions was already
noticed by M. Nicolesco in his classical book [Ni] (pages 16-25). He proved
that the coefficients in the Almansi expansion of a polyharmonic function
which satisfies this property are of constant sign, as well as a Harnack con-
vergence type theorem for such functions. Harnack type results for positive
solutions of ∆nu = 0 were obtained by many authors, mostly by studying
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spherical means of u (see for instance [DN] and [Gh]). An interesting Liou-
ville type result for completely superharmonic functions was proved by [Ov] ;
other theorems of Liouville type can be found in [Fr]. The inequality (160)
for f ≡ 0 and n = 2 appears for example in [Sm] (we could not find a ref-
erence for n > 2). All these results rely heavily on the polyharmonicity of
the function and could not be extended to equations with a non-trivial right-
hand side. Quite little is known about the equation (−∆)nu − c(x)u = 0
either (see also Theorem 15.2).

Recently, using Green functions, Grunau and Sweers (see [GS1], Theo-
rem 5.1) obtained maximum principle type results for classical solutions of
(154), in the case when the domain is a ball and all derivatives of u of order
smaller than n vanish on ∂Ω. In [GS2] they used this result to obtain a
local maximum principle for equations of order 2n, provided the lower order
coefficients are sufficiently small.

Theorem 13.1 permits us to define a “principal eigenvalue” and a “prin-
cipal eigenfunction” for the operator (−∆)n − c(x), c ≥ 0, under Dirichlet
boundary conditions for the lower order Laplacians. The positivity of this
eigenvalue is a necessary and sufficient condition for the operator to satisfy
the maximum principle. Note that the existence of a first eigenvalue for
the other classical polyharmonic boundary value problem (Lauricella’s prob-
lem) – in which the boundary conditions require that Dku = 0 on ∂Ω for
k = 0, . . . , n − 1 – is well-known.

Theorem 15.2 (a) Let c ∈ L∞(Ω), 0 ≤ c ≤ ν. There exists a real number

λ1 = λ
(c)
1 and a function φ1 = φ

(c)
1 in W 2n,q

loc (Ω) ∩ C2n−2(Ω),∀ q < ∞, such
that

(−∆ − λ1)
nφ1 − cφ1 = 0 in Ω (162)

(163)

φ1 > 0, (−∆ − λ1)
kφ1 > 0 in Ω (164)

(165)

φ1 = 0, (−∆ − λ1)
kφ1 = 0 on ∂Ω, (166)

for k = 1, . . . , n − 1. There are no eigenvalues (with the Dirichlet condition
(166)) smaller than λ1 and (λ1, φ1) is the unique couple (up to a normaliza-
tion of φ1), which satisfies (162), (164) and (166).

(b) λ
(c)
1 > 0 is a necessary and sufficient condition for the operator (−∆)n−c

to satisfy the maximum principle, in the following sense




(−∆)nu − cu ≤ 0 in Ω

(−∆)ku ≤ 0 on ∂Ω, k = 0, . . . , n − 1,
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implies (−∆)ku ≤ 0 in Ω, for k = 0, . . . , n − 1.

(c) Let φ
(c)
1 be normalized so that φ

(c)
1 (x0) = 1, for some x0 ∈ Ω. Then

sup
Ω

φ
(c)
1 ≤ C(n,N, ν, Ω).

(d) If {cj}∞j=1 is a sequence such that cj ≥ 0, {cj} is bounded in L∞(Ω) and

{cj} tends to zero a.e. in Ω, then λ
(cj)
1 tends to the principal eigenvalue of

the Laplacian in Ω and

φ
(cj)
1 → φ1(∆)

(−∆ − λ
(cj)
1 )kφ

(cj)
1 → 0, k = 1, . . . , n − 1,

weakly in W 2,q
loc (Ω) and strongly in C(Ω) (the functions φ

(cj)
1 are assumed to

be normalized as in (c)).

Proof. In view of Theorem 13.1 and the representation (155), only part (d)
needs a proof. Suppose for simplicity n = 2 (the case n > 2 is very much the
same).

Set λj = λ
(cj)
1 and φj = φ

(cj)
1 . It follows from (143) and Proposition 14.1

that the sequence {λj} is bounded. Hence (up to a subsequence) it converges
to a number λ.

We have 



(−∆ − λj)uj = vj

(−∆ − λj)vj = cjuj,
(167)

where uj = φj and vj = (−∆ − λj)φj.
Applying the Theorem of Krylov we already used in Section 7 (Theo-

rem 7.1 on page 33), we obtain from the first equation in (167)

inf
K

uj ≥ C(N, ν, K, Ω) inf
K

vj, (168)

for any compact subset K ⊂ Ω.
Applied to (167), our local maximum principle (Proposition 8.1) yields

sup
BR

uj ∨ vj ≤ C
(
|uj|p,2R + |vj|p,2R

)
, (169)

for any p > 0, any B2R ⊂ Ω, with C = C(p, N, νR2). The weak Harnack
inequality for scalar equations (Theorem 9.22 in [GT]) applied to

(−∆ − λj)uj ≥ 0 and (−∆ − λj)vj ≥ 0
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then gives

sup
BR

uj ∨ vj ≤ C

(
inf
BR

uj + inf
BR

vj

)

≤ C inf
BR

uj = C(N, ν, Ω)

if x0 ∈ BR, where we have used (168), (169), and uj(x0) = 1. Hence, for any
compact set K ⊂ Ω,

sup
K

uj ∨ vj ≤ C(N, ν, K, Ω).

By proceeding as in the proof of Theorem 13.1, that is, by taking K close
enough to Ω and by applying the ABP inequality in Ω \ K, we get

‖uj ∨ vj‖L∞(Ω) ≤ C(N, ν, Ω).

Then elliptic theory implies

uj → u and vj → v

weakly in W 2,q
loc (Ω), ∀q < ∞, and strongly in C(Ω). By passing to the limit

in (167) we obtain





(−∆ − λ)u = v in Ω

(−∆ − λ)v = 0 in Ω

u = v = 0 on ∂Ω.

(170)

Since v ≥ 0, we infer from the second equation in (170) that either v ≡ 0 or
λ = λ1(∆) and v = φ1(∆) > 0. In the second case we obtain a contradiction
with the first equation, since





(−∆ − λ1(∆))u > 0 in Ω

u = 0 on ∂Ω.

has no solution. Hence




(−∆ − λ)u = 0 in Ω

u = 0 on ∂Ω.

Since u ≥ 0 and u(x0) = 1, we get λ = λ1(∆) and u = φ1(∆).
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Theorem 15.2 is proved.

More generally, for any n elliptic operators L1, . . . , Ln, satisfying (H1)-
(H2), and any c ≥ 0, there exists a couple (λ1, φ1) such that

(−Ln − λ1) . . . (−L1 − λ1)φ1 − cφ1 = 0,

with the appropriate positivity and boundary conditions.
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