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SETS OF K-RECURRENCE BUT NOT
(K+1)-RECURRENCE

NIKOS FRANTZIKINAKIS, EMMANUEL LESIGNE, AND MÁTÉ WIERDL

We dedicate this paper to Y. Katznelson. Our work began at the conference

organized for his 70th birthday, and we wish to honor him for his fundamental

contribution to ergodic theory.

Abstract. For every k ∈ N, we produce a set of integers which
is k-recurrent but not (k + 1)-recurrent. This extends a result
of Furstenberg who produced a 1-recurrent set which is not 2-
recurrent. We discuss a similar result for convergence of multiple
ergodic averages. We also point out a combinatorial consequence
related to Szemerédi’s theorem.
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1. Introduction and main results

In his seminal paper [3], Furstenberg gave an ergodic theoretic proof
of the famous theorem of Szemerédi claiming that every integer subset
with positive density contains arbitrarily long arithmetic progressions.
Furstenberg proved this by showing the following multiple recurrence
property for measure preserving systems:

Theorem 1.1 (Furstenberg). Let (X,X , µ, T ) be a finite measure
preserving dynamical system and A ∈ X be a set with µ(A) > 0. Then
for every k ∈ N, there exists n ∈ N such that

µ(A ∩ T−nA ∩ · · · ∩ T−nkA) > 0.

This motivated the following definition:
1
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Definition 1.2. Let (X,X , µ, T ) be a probability preserving dynamical
system. We say that S ⊂ N is a set of k-recurrence for the system
(X,X , µ, T ) if for every A ∈ X with µ(A) > 0, there exists n ∈ S such
that

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

We say that S ⊂ N is a set of k-recurrence if it is a set of k-recurrence
for every probability preserving dynamical system.

The corresponding definition in topological dynamics is:

Definition 1.3. We say that S ⊂ N is a set of k-topological recur-
rence if for every homeomorphism T of a compact metric space X such
that the topological dynamical system (X, T ) is minimal and for every
nonempty open subset U of X, there exists n ∈ S such that

U ∩ T−nU ∩ · · · ∩ T−knU 6= ∅.

If S is infinite then the difference set S − S = {s1 − s2 : s1, s2 ∈ S}
is easily shown to be a set of 1-recurrence. By appropriately choosing
S, Furstenberg constructed, in [4, pages 177-178], a set of 1-recurrence
that is not a set of 2-recurrence. Constructing sets of 2-recurrence is
much harder, in fact all the examples known turned out to be sets of
k-recurrence for every k. This raised the question, first stated explicitly
by Bergelson in [2]:

Question. Let k ≥ 2 be an integer. Does there exist a set of (k − 1)-
recurrence that is not a set of k-recurrence?

The main objective of this article is to show that the answer is affir-
mative. The examples that we construct are very explicit:

Theorem A. Let k ≥ 2 be an integer and α ∈ R be irrational. We
define

Sk =
{

n ∈ N : {nkα} ∈ [1/4, 3/4]
}

,

where {a} denotes the fractional part of a. Then Sk is a set of (k− 1)-
recurrence but not a set of k-recurrence.

It will appear in the proof that not only the set Sk is a set of (k−1)-
recurrence for powers of a single transformation, but that it is a set of
(k − 1)-recurrence for families of commuting transformations (see def-
inition in Section 4). Moreover, the set Sk is not a set of k-topological
recurrence (but it is a set of (k − 1)-topological recurrence since it is a
set of (k − 1)-recurrence).

We also answer the corresponding question for sets of k-convergence:
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Definition 1.4. A set S = {a1 < a2 < . . .} ⊂ N is called a set
of k-convergence if for every probability preserving dynamical system
(X,X , µ, T ) and functions f1, . . . , fk ∈ L∞(µ), the averages

1

N

N
∑

n=1

T anf1 · . . . · T
kanfk

converge in L2(µ) as N → ∞.

Host and Kra in [7] (see also Ziegler’s work in [9] for an alternate
proof) showed that S = N is a set of k-convergence for every k. We
show:

Theorem B. Let k ≥ 2 be an integer and α ∈ R be irrational. Let

Ij =

{

n ∈ [2j, 2j+1] : {nka} ∈ [1/10, 2/10] if j is even

n ∈ [2j, 2j+1] : {nka} ∈ [5/10, 6/10] if j is odd

and define

S ′

k =
∞
⋃

j=1

Ij .

Then S ′

k is a set of (k− 1)-convergence but not a set of k-convergence.

It will be clear from the proof that S ′

k is also a set of (k−1)-recurrence
but not a set of k-recurrence.

The strategy of the proof of the theorems is as follows. In Section 3
we use some elementary considerations in order to show that Sk is
not a set of k-recurrence and S ′

k is not a set of k-convergence. The
basic observation is that if S is a set of k-recurrence/convergence then
the set consisting of the k-th powers of elements of S has good 1-
recurrence/convergence properties. In Section 4 we prove a multiple
ergodic theorem (Proposition 4.2) that enables us to show that Sk is a
set of (k − 1)-recurrence and S ′

k is a set of (k − 1)-convergence.
Note that, as we already did in this introduction, we denote by N

the set of positive integers.

2. A combinatorial consequence

A set S ⊂ N is called intersective if for every integer subset Λ with
positive density we have Λ∩(Λ+n) 6= ∅ for some n ∈ S. More generally
we define:

Definition 2.1. A set S ⊂ N is k-intersective if every integer subset
with positive density contains at least one arithmetic progression of
length k + 1 and common difference in S.
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In [6, pages 528-529] it is shown that:

Proposition 2.2. A set S ⊂ N is k-intersective if and only if it is a
set of k-recurrence.

We conclude from Theorem A that:

Corollary 2.3. Let k ≥ 2. There exists a set that is (k−1)-intersective
but not k-intersective.

3. Bad sets for k-recurrence and k-convergence

We will use the following elementary fact:

Lemma 3.1. For every k, n ∈ N we have

k
∑

i=1

(−1)i+1

(

k

i

)(

in

l

)

=











1 if l = 0,

0 if 1 ≤ l < k,

(−1)k+1nk if l = k.

Proof. Consider the function

f(x) = (1 − xn)k =

k
∑

i=0

(−1)i

(

k

i

)

xin

Using the first representation for f(x) and differentiating using the
chain and product rule it is easy to check that

f (l)(x) =

{

(1 − xn)Pl(x) if 0 ≤ l < k,

(1 − xn)Pl(x) + (−1)lnl l! xl(n−1) if l = k,

for some polynomials Pl(x), l = 0, . . . , k − 1. Setting x = 1 gives

(3.1) f (l)(1) =

{

0 if 0 ≤ l < k,

(−1)lnl l! if l = k.

Using the second representation for f(x) and differentiating we find

f (l)(x) =

k
∑

i=0

(−1)i

(

k

i

)(

in

l

)

l! xin−l.

Setting x = 1 gives

(3.2) f (l)(1) =

k
∑

i=0

(−1)i

(

k

i

)(

in

l

)

l!,

for every nonnegative integer l. Comparing equations (3.1) and (3.2)
we get the advertised result. �
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The following result will enable us to show that the set Sk is bad
for k-recurrence and S ′

k is bad for k-convergence. To better illustrate
the idea, after proving the proposition, we explain how the argument
works for k = 2.

Proposition 3.2. If S = {a1 < a2 < . . .} ⊂ N is a set of k-recurrence
then Sk = {ak

1 < ak
2 < · · · } is a set of 1-recurrence for all circle

rotations, and if S is a set of k-convergence then Sk is a set of 1-
convergence.

Remarks. Note that in the above proposition we only claim that Sk

is a set of 1-recurrence for rotations of the circle. It is clear that the
argument we give in the proof below can be extended to show that if S is
a set of k-recurrence, then Sk is a set of 1-recurrence for all translations
of multidimensional tori. In fact, it is an unsolved problem whether a
set S being of k-recurrence implies that Sk is a set of 1-recurrence.

Here is a related unsolved problem of Katznelson from [8]: is it true
that a set of 1-recurrence for all translations of multidimensional tori
is, in fact, a set of 1-topological recurrence ?

Proof of Proposition 3.2. (i) Let S be a set of k-recurrence. It suffices
to show that for every α ∈ [0, 1) and ε > 0 there exists n ∈ N such
that

∥

∥ak
nα

∥

∥ ≤ ε, where ‖a‖ is the distance of a to the closest integer.
To do this we use the k-recurrence property for some appropriately
chosen system. Given α ∈ [0, 1), we define the measure preserving
transformation R acting on Tk with the Haar measure λ as follows:

R(t1, . . . , tk) = (t1 + α, t2 + t1, . . . , tk + tk−1).

Then for j = 1, . . . , k the k-th coordinate of Rjn(t1, . . . , tk) is

(3.3) cj,n,k = tk +

(

jn

1

)

tk−1 +

(

jn

2

)

tk−2 + · · ·+

(

jn

k − 1

)

t1 +

(

jn

k

)

α.

By Lemma 3.1 we have

(3.4)

k
∑

j=1

(−1)j+1

(

k

j

)

cj,n,k = tk + (−1)k+1nkα

for all n ∈ N. Let Uε = B(0, ε/2k). If S is a set of k-recurrence then
there exists an n0 ∈ S such that

Uε ∩ R−n0Uε ∩ · · · ∩ R−kn0Uε 6= ∅.

Let (t1, . . . , tk) be an element of the intersection and cj,n, j = 1, . . . , k,
be given by (3.3). We have ‖cj,n0,k‖ ≤ ε/2k, j = 1, . . . , k, and ‖tk‖ ≤
ε/2k. Using (3.4) we get that

∥

∥nk
0α

∥

∥ ≤ ε, completing the proof.
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(ii) Suppose that S = {a1 < a2 < · · · } is a set of k-convergence.
Let R be the transformation defined in the proof of part (i). For j =
1, . . . , k define the functions

fj(t1, . . . , tk) = e
(

(−1)j+1

(

k

j

)

tk

)

.

Since S is a set of k-convergence the averages

1

N

N
∑

n=1

Ranf1 · . . . · R
kanfk = e

(

tk
)

·
1

N

N
∑

n=1

e((−1)k+1ak
nα)

converge in L2(λ) as N → ∞. Hence, for every α ∈ [0, 1) the averages

1

N

N
∑

n=1

e(ak
nα)

converge as N → ∞. The spectral theorem gives that for every measure
preserving system (X,X , µ, T ) and f ∈ L2(µ) the averages

1

N

N
∑

n=1

T ak
nf

converge in L2(µ) as N → ∞, completing the proof. �

We now give an example illustrating how the argument of Proposi-
tion 3.2 works for k = 2:

Example. (i) Suppose that S is a set of 2-recurrence. Let α ∈ [0, 1)
and ε > 0. The transformation R : T2 → T2 is defined by

R(t1, t2) = (t1 + α, t2 + t1).

Then

Rn(t1, t2) =
(

t1 + nα, t2 + nt1 +

(

n

2

)

α
)

.

Since S is a set of 2-recurrence there exists an n0 ∈ S such that

Uε ∩ R−n0Uε ∩ R−2n0Uε 6= ∅,

where Uε = B(0, ε/4). If (t1, t2) is an element of the intersection then

(3.5) ‖t2‖ ≤ ε/4, ‖c1‖ ≤ ε/4, ‖c2‖ ≤ ε/4,

where

c1 = t2 + n0t1 +

(

n0

2

)

α, c2 = t2 + 2n0t1 +

(

2n0

2

)

α.
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Since
2c1 − c2 = t2 − n2

0α

we get from (3.5) that ‖n2
0α‖ ≤ ε. This implies that S2 is a set of

recurrence for circle rotations.
(ii) Suppose that S = {a1 < a2 < · · · } is a set of 2-convergence. We

define the transformation R : T2 → T2 as in part (i) and the functions

f1(t1, t2) = e(2t2), f2(t1, t2) = e(−t2).

Then
1

N

N
∑

n=1

Ranf1 · R
2anf2 = e(t2) ·

1

N

N
∑

n=1

e(−a2
nα).

Since S is a set of 2-convergence it follows that the averages

1

N

N
∑

n=1

e(a2
nα)

converge as N → ∞ for every α ∈ [0, 1). The spectral theorem gives
that S2 is a set of 2-convergence.

Corollary 3.3. The set Sk of Theorem A is not a set of k-recurrence
and the set S ′

k of Theorem B is not a set of k-convergence.

Proof. By definition, Sk
k is not a set of recurrence for the rotation by

α, so by Proposition 3.2 we have that Sk is not a set of k-recurrence.
Let S ′

k = {a1 < a2 < · · · } and

AN =
1

N

N
∑

n=1

e(ak
nα), BN =

1

N

2N
∑

n=N+1

e(ak
nα).

By the definition of S ′

k we have that for j even the real part of B2j is
positive and bounded away from zero, and for j odd the real part of
B2j is negative. Hence, the sequence BN does not converge as N →
∞. Since BN = 2A2N − AN it follows that the sequence AN does
not converge as N → ∞. By Proposition 3.2, S ′

k is not a set of k-
convergence. �

4. Good sets for k-recurrence and k-convergence

We will use the following elementary lemma ([1]):

Lemma 4.1 (Van der Corput). Let {an}n∈N be a bounded sequence
of vectors in a Hilbert space. For each m we set

bm = lim sup
N−M→∞

∣

∣

∣

1

N − M

N
∑

n=M+1

< an+m, an >
∣

∣

∣
.
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If

lim sup
N−M→∞

1

N − M

N
∑

m=M+1

bm = 0

then

lim
N−M→∞

1

N − M

N
∑

n=M+1

an = 0

in norm.

Proposition 4.2. Let k ∈ N, T1, . . . , Tk−1 be commuting measure pre-
serving transformations acting on the probability space (X,X , µ), and
p ∈ R[t] be a polynomial of degree ≥ k with irrational leading coeffi-
cient. If g : T → C is Riemann integrable and f1, . . . , fk−1 ∈ L∞(µ),
then the difference

1

N − M

N
∑

n=M+1

T n
1 f1 · . . . · T

n
k−1fk−1 · g(p(n))−

1

N − M

N
∑

n=M+1

T n
1 f1 · . . . · T

n
k−1fk−1 ·

∫

T

g dλ

converges to 0 in L2(µ) as N − M → ∞.

Proof. Using the standard estimation by continuous functions from
above and below, it suffices to check the result when g is a contin-
uous function. By Weierstrass approximation theorem of continuous
functions by trigonometric polynomials, and using linearity, it suffices
to check the result when g(t) = e2πilt for some l ∈ Z. The case l = 0 is
trivial. If l 6= 0 the polynomial q(n) = lp(n) satisfies the assumptions
of our theorem, so it suffices to verify the result when g(t) = e(t), where
e(t) = e2πit.

We proceed by induction on the number of functions k. If k = 1
(empty product is 1) then

lim
N−M→∞

1

N − M

N
∑

n=M+1

e(p(n)) = 0

follows from Weyl’s uniform distribution theorem. Assume that the
result is true for k−1 functions. We will verify the result for k functions.
We can assume that ‖fk‖∞ ≤ 1. We apply Van der Corput’s Lemma
on the Hilbert space L2(µ) for the sequence of functions

an(x) = f1(T
n
1 x) · . . . · fk(T

n
k x) · e(p(n)).
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It suffices to verify that for every m ∈ N the averages

1

N − M

N
∑

n=M+1

∫

an+m(x) · an(x) dµ =

1

N − M

N
∑

n=M+1

∫

g1(T
n
1 x) · . . . · gk(T

n
k x) · e

(

p(n + m) − p(n)
)

dµ,

where gi(x) = fi(T
m
i x) · fi(x), i = 1, . . . , k, converge to 0 as N −M →

∞. Introducing the notation Si = TiT
−1
k , i = 1, . . . , k − 1, and using

Cauchy-Schwarz inequality, it suffices to prove that

1

N − M

N
∑

n=M+1

g1(S
n
1 x) · · . . . · gk−1(S

n
k−1x) · e

(

p(n + m) − p(n)
)

converge to zero in L2(µ) as N − M → ∞. But this follows from the
induction hypothesis since the transformations Si commute, and for
m ∈ N the polynomial q(n) = p(n + m)− p(n) has degree ≥ k − 1 and
irrational leading coefficient. �

We remark that the non-uniform version (M = 0) of the previous
result suffices for the proof of the next corollary1. The uniform version
is only used to simplify the proof.

Definition 4.3. We say that S ⊂ N is a set of k-recurrence for com-
muting transformations if whenever T1, . . . , Tk are commuting measure
preserving transformations acting on the probability space (X,X , µ)
and A ∈ X with µ(A) > 0, there exists n ∈ S such that

µ(A ∩ T−n
1 A ∩ · · · ∩ T−n

k A) > 0.

Corollary 4.4. The set Sk of Theorem A is a set of (k−1)-recurrence
for commuting transformations and the set S ′

k of Theorem B is a set
of (k − 1)-convergence.

Proof. To show that Sk is a set of (k − 1)-recurrence for commuting
transformations we apply Proposition 4.2 for g(t) = 1[1/4,3/4](t) and
p(n) = nkα. We get that if T1, . . . , Tk−1 are commuting measure pre-
serving transformations acting on the probability space (X,X , µ), and

1See our note at http://www.csi.hu/mw/general_dyadic_construction_short.pdf.

http://www.csi.hu/mw/general_dyadic_construction_short.pdf
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A ∈ B with µ(A) > 0, then

lim sup
N→∞

1

N

N
∑

n=1

1Sk
(n) · µ(A ∩ T−n

1 A ∩ · · · ∩ T−n
k−1A) =

1

2
· lim sup

N→∞

1

N

N
∑

n=1

µ(A ∩ T−n
1 A ∩ · · · ∩ T−n

k−1A) > 0,(4.1)

where positiveness of the limsup in equation (4.1) follows from the
multiple recurrence theorem of Furstenberg and Katznelson [5]. Hence,
Sk is a set of (k − 1)-recurrence.

To show that S ′

k is a set of (k − 1)-convergence we apply Proposi-
tion 4.2 for Ti = T i, i = 1, . . . , k−1, p(n) = nkα, and g = 1[1/10,2/10] on
intervals of the form [2j , 2j + N), for large N < 2j ,when j is even, and
g = 1[5/10,6/10] on intervals of the form [2j, 2j + N), for large N < 2j,
when j is odd. We get that for every f1, . . . , fk−1 ∈ L∞(µ) the differ-
ence

1

N

N
∑

n=1

1S′

k
(n) ·T nf1 · . . . ·T

(k−1)nfk−1−
1

10
·

1

N

N
∑

n=1

T nf1 · . . . ·T
(k−1)nfk−1

converges to zero in L2(µ) as N → ∞. We know from [7] that the
averages

1

N

N
∑

n=1

T nf1 · . . . · T
(k−1)nfk−1

converge in L2(µ) as N → ∞, so the set S ′

k is a set of (k − 1)-
convergence. This completes the proof. �

The reason we cannot prove that S ′

k is a set of (k−1)-convergence for
commuting transformations is that we do not yet know the analogous
convergence result for the averages

1

N

N
∑

n=1

T n
1 f1 · . . . · T

n
k fk,

for commuting measure preserving transformations (Tj).
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merédi on arithmetic progressions, J. d’Analyse Math., 71, (1977), 204-256.
1

[4] H. Furstenberg. Recurrence in ergodic theory and combinatorial number theory,
Princeton University Press, (1981). 2

[5] H. Furstenberg, Y. Katznelson. An ergodic Szemerédi theorem for commuting
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