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Uniqueness for unbounded solutions to stationary

viscous Hamilton–Jacobi equations

Guy Barles, Alessio Porretta

Abstract We consider a class of stationary viscous Hamilton–Jacobi equations as
{

λ u − div(A(x)∇u) = H(x,∇u) in Ω,

u = 0 on ∂Ω

where λ ≥ 0, A(x) is a bounded and uniformly elliptic matrix and H(x, ξ) is convex

in ξ and grows at most like |ξ|q + f(x), with 1 < q < 2 and f ∈ L
N

q′ (Ω). Under such

growth conditions solutions are in general unbounded, and there is not uniqueness

of usual weak solutions. We prove that uniqueness holds in the restricted class of

solutions satisfying a suitable energy–type estimate, i.e. (1 + |u|)q̄−1 u ∈ H1

0 (Ω), for

a certain (optimal) exponent q̄. This completes the recent results in [14], where the

existence of at least one solution in this class has been proved.

MSC: 35J60 (35R05, 35Dxx).

Running head: Viscous Hamilton–Jacobi equations

1 Introduction

In this paper we consider a class of elliptic equations in a bounded domain
Ω ⊂ IRN , N > 2

{

λu − div(A(x)∇u) = H(x,∇u) in Ω,
u = 0 on ∂Ω

(1.1)

where the function H(x, ξ) is convex and superlinear with respect to ξ.
Equations of this type are sometimes referred to as stationary viscous Hamilton–

Jacobi equations and appear in connection to stochastic optimal control prob-
lems. In that context, the convexity of H is a natural assumption.

The model example which we are going to treat is the following
{

λu− div(A(x)∇u) = γ |∇u|q + f(x) in Ω,
u = 0 on ∂Ω

(1.2)

where q > 1, λ ≥ 0 and A(x) = (ai,j(x)) is a matrix of L∞(Ω) functions ai,j(x)
satisfying uniform ellipticity and boundedness conditions

α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2 ∀ξ ∈ RN , a.e. x ∈ Ω . (1.3)
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Without loss of generality, we let γ > 0. We draw our attention to the “sub-
critical” case, namely q < 2, and, more precisely, to the question of uniqueness
of unbounded solutions.

Let us first recall that some regularity condition is needed on f in order that
problem (1.2) admits a solution. In the class of Lebesgue spaces, this condition
amounts to ask that

f ∈ L
N

q′ (Ω), (1.4)

where q′ is the conjugate exponent of q, i.e. q′ =
q

q − 1
. When q < 2, (1.4)

implies that f ∈ Lm(Ω) with m < N
2 , hence solutions are expected to be

unbounded. Moreover since, by Sobolev embedding theorem, one has

L
N

q′ (Ω) ⊂ H−1(Ω) ⇐⇒ q ≥ 1 +
2

N
, (1.5)

the value q = 1 + 2
N

is a critical one. Indeed, the solutions belong to H1
0 (Ω)

only if q ≥ 1 + 2
N

, when q is below this value solutions are not only unbounded
but have not even finite energy and should be defined in a suitable generalized
sense.

The fact that (1.4) is a necessary condition for having solutions can be
easily justified by a heuristic argument: if A(x) = I, i.e. in case of the Laplace
operator, the Calderon–Zygmund regularity implies that

−∆u ∈ Lm(Ω) → u ∈ W 2,m(Ω) → |∇u| ∈ Lm∗

(Ω) ,

where m∗ is associated to m through the Sobolev embedding, i.e., for N > m,

m∗ =
Nm

N −m
. In order to be consistent with (1.2), this means that f ∈ Lm(Ω)

and |∇u| ∈ Lqm(Ω) so that one needs qm = m∗, i.e. m = N
q′

. We refer the

reader to [1], [15] for rigorous and sharper necessary conditions on f in order
to have weak solutions. It is important to recall that if λ = 0 the data f , γ, α
must also satisfy a size condition in order that a solution exists.

Pioneering results for such kind of equations were given by P.L. Lions ([16],
[17]), mainly in case of Lipschitz solutions and including q > 2. Existence results
for the case q = 2 can be found in several works, among which we recall the
series of papers by L. Boccardo, F. Murat, J.P. Puel (see e.g. [8], [9]) and more

recently, assuming f in L
N
2 (Ω), in [13], [10].

Under assumption (1.4) with 1 < q < 2, the existence of a solution for
problems as (1.2) has been recently proved in [14] if either λ > 0 or λ = 0 and
a size condition is satisfied

γ
1

q−1 ‖f‖
L

N

q′ (Ω)
< αq′

C∗ , (1.6)

where C∗ only depends on q and N .
In this paper we deal with the problem of uniqueness of solutions. Up to

now, uniqueness results for problems like (1.2) have been proved in the Lipschitz
case ([16]) and in [2], [3] if either solutions are bounded or q = 2. Note that
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these two cases share a common feature, which is that f is required to be in
Lm(Ω), m ≥ N

2 : for less summable f as we consider, the approach of these
previous papers seems not to work. Further results when q ≤ 1 + 2

N
can be

found in [4], [5].
When dealing with the question of uniqueness, one has to consider the fol-

lowing well–known counterexample (see also [16], [1]) for q > N
N−1

u(x) = Cα (|x|α − 1) (α = − 2−q
q−1 , Cα = (N+α−2)

1
q−1

|α| ) solves
{

−∆u = |∇u|q in D′(B1(0)),
u ∈ W

1,q
0 (Ω)

(1.7)

This shows that uniqueness does not hold in the class of weak solutions u in
W

1,q
0 (Ω), and, if q ≥ 1 + 2

N
, not even in H1

0 (Ω) (one can check that u ∈ H1
0 (Ω)

in this case). It is then natural to look for a suitable class of solutions in which
problem (1.2) is well–posed. A linearization argument would suggest that there
is uniqueness in the class

u sol. of (1.2): |∇u| ∈ LN(q−1)(Ω). (1.8)

On the other hand, if q > 1 + 2
N

(which gives N(q − 1) > 2), the existence of
such kind of solutions can not be obtained unless the Calderon–Zygmund regu-
larity theorem applies; thus, in order to deal with general (bounded measurable)
coefficients ai,j , this approach is not reasonable.

Our main purpose here is to prove the uniqueness of solutions of (1.2) in
a regularity class which is consistent with the existence results available from
[14]. In this latter paper it has been proved that a natural class of solutions
for which both a priori estimates and existence hold is given through the extra
energy condition

u sol. of (1.2): (1 + |u|)q̄−1 u ∈ H1
0 (Ω), with q̄ = (N−2)(q−1)

2(2−q) . (1.9)

We are going to prove that this regularity is precisely what is needed to select
a unique solution, so that problem (1.2) is actually well–posed in this class.

Our main result concerns the case q ≥ 1 + 2
N

, which corresponds to H1
0 (Ω)

solutions (see (1.5)).

Theorem 1.1 Let 1 + 2
N

≤ q < 2. Assume (1.3), (1.4) and that
(i) either λ > 0
(ii) or λ = 0 and (1.6) is satisfied.

Then problem (1.2) has only one (distributional) solution u such that (1 +

|u|)q̄−1u ∈ H1
0 (Ω), with q̄ = (N−2)(q−1)

2(2−q) .

Note that the function u in the counterexample (1.7) satisfies (1+|u|)r−1 u ∈
H1

0 (Ω) for any r < q̄ but not for r = q̄, which proves the optimality of our result.
Observe also that q̄ tends to infinity as q → 2, which is consistent with the case
f ∈ L

N
2 (Ω), for which existence and uniqueness have been proved (see [13], [3]
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respectively) in the class of solutions u such that exp(µu) − 1 ∈ H1
0 (Ω) for a

suitable constant µ.
We leave to Section 2 the proof of Theorem 1.1, actually in a generalized

version which includes problem (1.1) where H is convex and satisfies similar
growth conditions. Some extensions to Neumann boundary conditions as well
as to the case of unbounded domains is also discussed.

In Section 3 we deal with the case N
N−1 < q < 1 + 2

N
, which corresponds

to f ∈ Lm(Ω) with 1 < m < 2N
N+2 . A similar result as Theorem 1.1 is proved,

but since, in this case, solutions do not belong to H1
0 (Ω), we use a slightly

stronger formulation than the distributional one, namely uniqueness is proved
for so–called renormalized solutions (still in the class (1.9)). This notion (see
Definition 3.1), first introduced in [12] for transport equations, is now currently
used in several different contexts when dealing with solutions of infinite energy.

Still in Section 3, we prove in fact a more general uniqueness result when q
is below the critical value 1 + 2

N
. Indeed, we will see that if q ≤ 1 + 2

N
then

the regularity (1.9) implies (1.8). This fact allows to prove uniqueness through
a simpler linearization principle, which does not need any convexity argument
and which can be applied to more general situations like, for instance, nonlinear
operators (see Theorem 3.2). Note that the limiting value q = 1 + 2

N
is also

admitted here; actually, (1.9) and (1.8) coincide in that case with u ∈ H1
0 (Ω).

On the other hand, as mentioned before, this argument was not possible for
q > 1 + 2

N
since (1.8) will no more be true in general.

Finally, some further remarks will be discussed at the end of Section 3,
including the case q < N

N−1 , where uniqueness holds simply in W 1,q
0 (Ω).

2 The case q ≥ 1 +
2
N
: finite energy solutions

We consider a natural generalization of (1.2), namely the following equation

{

λu − div(A(x)∇u) = H(x,∇u) in Ω,
u = 0 on ∂Ω

(2.1)

We still assume that λ ≥ 0, that A(x) satisfies (1.3) and that H(x, ξ) is a
Carathéodory function satisfying

ξ 7→ H(x, ξ) is convex, for a.e. x ∈ Ω, (2.2)

and the growth condition

∃ q ∈ ( N
N−1 , 2): |H(x, ξ)| ≤ γ |ξ|q + f(x) , γ > 0 , f(x) ∈ L

N

q′ (Ω). (2.3)

Note that this assumptions include the possibility that the equation contains
transport terms; indeed, the basic choice for H is

H(x,∇u) = b(x) · ∇u+ γ(x)|∇u|p + f(x)
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where b ∈
[

LN (Ω)
]N

, γ ∈ Lr(Ω) and f ∈ L
Nr(p−1)

pr−N (Ω), with r ∈ (N,+∞] and
N(r−1)
r(N−1) < p < 2 − N

r
.

In virtue of (2.3) and (1.5), assuming q ≥ 1 + 2
N

corresponds to having data
in H−1(Ω), so that we can reasonably talk of H1

0 (Ω) weak solutions.

Definition 2.1 We say that u ∈ H1
0 (Ω) is a weak subsolution of (2.1) if H(x,∇u) ∈

L1(Ω) and

λ
∫

Ω
u ξ dx+

∫

Ω
A(x)∇u∇ξ dx ≤

∫

Ω
H(x,∇u)ξ dx

∀ξ ∈ H1
0 (Ω) ∩ L∞(Ω) , ξ ≥ 0 .

(2.4)

A super-solution of (2.1) is defined if the opposite inequality holds. A function
u being both a sub and a super-solution is said to be a weak solution of (2.1).

Our proof of the comparison principle for sub and super-solutions of (2.1)
relies on two basic ideas: the first one is that if

{

−div(A(x)∇w) ≤ |∇w|q

(w+)q̄ ∈ H1
0 (Ω) ,

(2.5)

then w ≤ 0; in other words, the homogeneous problem has only the trivial
solution in this regularity class. Secondly, we aim at applying inequality (2.5)
to (a small perturbation of) the difference of two solutions u − v. In order to
obtain this inequation, we use a convexity argument, which gives account of
assumption (2.2). A further technical tool will be required in order to justify
some regularity claimed on u− v: here we apply a truncation argument.

In order to do that we introduce the following truncation function

Tn(s) =

∫ s

0

θn(ξ)dξ , θn(ξ) =







1 if |ξ| < n
2n−|ξ|

n
if n < |ξ| < 2n,

0 if |ξ| > 2n

(2.6)

and we start by giving a sort of renormalization principle for the “truncated”
equation.

Lemma 2.1 Let u ∈ H1
0 (Ω) be a weak subsolution of (2.1). Then u satisfies,

for any nonnegative ξ ∈ H1
0 (Ω) ∩ L∞(Ω) and for every n

λ

∫

Ω

Tn(u)ξ dx+

∫

Ω

A(x)∇Tn(u)∇ξ dx

≤

∫

Ω

H(x,∇Tn(u))ξ dx+ 〈In, ξ〉 ,

(2.7)

where In is defined as

〈In, ξ〉 =
1

n

∫

{n<u<2n}

A(x)∇u∇u ξ dx−
1

n

∫

{−2n<u<−n}

A(x)∇u∇u ξ dx

+ λ

∫

Ω

(Tn(u) − uθn(u))ξ dx+

∫

Ω

(H(x,∇u)θn(u) −H(x,∇Tn(u)))ξ dx .

(2.8)
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If moreover |u|q̄−1u ∈ H1
0 (Ω), where q̄ = (N−2)(q−1)

2(2−q) , we have

lim
n→+∞

n2q̄−1 ‖In‖L1(Ω) = 0 . (2.9)

Proof. Let ξ ∈ H1
0 (Ω) ∩ L∞(Ω), ξ ≥ 0, and let n > 0. Multiplying equation

(2.1) by θn(u)ξ we obtain

λ

∫

Ω

u θn(u)ξ dx+

∫

Ω

A(x)∇u∇ξθn(u) dx =

∫

Ω

H(x,∇u)θn(u)ξ dx

+
1

n

∫

{n<u<2n}

A(x)∇u∇u ξ dx−
1

n

∫

{−2n<u<−n}

A(x)∇u∇u ξ dx
(2.10)

Recalling that θn(u) = T ′
n(u) and defining In as in (2.8) we have obtained (2.7).

Now let u be such that |u|q̄−1u ∈ H1
0 (Ω), where q̄ = (N−2)(q−1)

2(2−q) . We have, by

definition of In

n2q̄−1‖In‖L1(Ω) ≤

n2q̄−1







1

n

∫

{n<u<2n}

A(x)∇u∇u dx +
1

n

∫

{−2n<u<−n}

A(x)∇u∇u dx







+ λn2q̄−1

∫

Ω

|Tn(u) − uθn(u)|dx + n2q̄−1

∫

Ω

|H(x,∇u)θn(u) −H(x,∇Tn(u))|dx

(2.11)
Observe that

n2q̄−1 1

n

∫

{n<u<2n}

A(x)∇u∇u dx ≤

∫

{n<u<2n}

A(x)∇u∇u |u|2q̄−2dx

≤
β

q̄2

∫

{n<u<2n}

|∇|u|q̄|2 dx
n→+∞
→ 0 ,

(2.12)

and similarly

n2q̄−2

∫

{−2n<u<−n}

A(x)∇u∇u dx
n→+∞
→ 0 (2.13)

We also have, using Young’s inequality, and by definition of q̄,

|∇u|q |u|2q̄−1 ≤
q

2
|∇u|2|u|2(q̄−1) +

2 − q

2
|u|2q̄+

2(q−1)
2−q

=
q

2q̄2
|∇(|u|q̄−1u)|2 +

2 − q

2
(|u|q̄)2

∗

.

Since |u|q̄−1u ∈ H1
0 (Ω), we conclude that

|∇u|q |u|2q̄−1 ∈ L1(Ω) (2.14)
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Similarly, since (2q̄ − 1)(N
q′

)′ = 2∗ q̄ we have that |u|2q̄−1 ∈ L
( N

q′
)′
(Ω); since

f ∈ L
N

q′ (Ω) we deduce that

f |u|2q̄−1 ∈ L1(Ω) (2.15)

Now we have, by definition of θn and Tn,

|H(x,∇u)θn(u) −H(x,∇Tn(u))| ≤ [|H(x,∇u)| + |H(x,∇Tn(u))|]χ{|u|>n} ,

hence, using the growth assumption (2.3),

n2q̄−1|H(x,∇u)θn(u) −H(x,∇Tn(u))| ≤ 2(γ|∇u|q + f(x))|u|2q̄−1χ{|u|>n} .

Thanks to (2.14)–(2.15) we conclude

n2q̄−1

∫

Ω

|H(x,∇u)θn(u) −H(x,∇Tn(u))| dx
n→+∞
→ 0 . (2.16)

Finally, since u ∈ L2∗q̄(Ω),

n2q̄−1

∫

Ω

|Tn(u) − uθn(u)| dx ≤ 2

∫

Ω

|u|2q̄χ{|u|>n} dx
n→+∞
→ 0. (2.17)

From (2.11), (2.12), (2.13), (2.16), (2.17) we get (2.9).

Remark 2.1 Clearly if u ∈ H1
0 (Ω) is a super-solution of (2.1) then (2.7) holds

with the opposite sign. In particular, if u is a weak solution of (2.1), then

λ

∫

Ω

Tn(u) ξ dx+

∫

Ω

A(x)∇Tn(u)∇ξ dx

=

∫

Ω

H(x,∇Tn(u))ξ dx+ 〈In, ξ〉 ,

with n2q̄−1‖In‖L1(Ω) → 0 provided |u|q̄−1u ∈ H1
0 (Ω).

We come to the main comparison result.

Theorem 2.1 Assume (1.3), (2.2), (2.3) with q ≥ 1 + 2
N

. Let λ > 0. If
u and v are respectively a subsolution and a super-solution of (2.1) such that
(1 + |u|)q̄−1u ∈ H1

0 (Ω) and (1 + |v|)q̄−1v ∈ H1
0 (Ω), then we have u ≤ v in Ω.

In particular, problem (2.1) has a unique weak solution u such that (1 +
|u|)q̄−1u ∈ H1

0 (Ω).

Proof. From Lemma 2.1 we obtain that

λ

∫

Ω

Tn(u) ξ dx+

∫

Ω

A(x)∇Tn(u)∇ξ dx ≤

∫

Ω

H(x,∇Tn(u))ξ dx+ 〈Iu
n , ξ〉 ,

(2.18)
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and

λ

∫

Ω

Tn(v) ξ dx+

∫

Ω

A(x)∇Tn(v)∇ξ dx ≥

∫

Ω

H(x,∇Tn(v))ξ dx+ 〈Iv
n, ξ〉 ,

(2.19)
for every ξ ∈ H1

0 (Ω) ∩ L∞(Ω), ξ ≥ 0.
Let now ε > 0 be fixed. Subtracting (2.18) and (2.19), we obtain

λ

∫

Ω

[Tn(u) − (1 − ε)Tn(v)] ξ dx+

∫

Ω

A(x)∇(Tn(u) − (1 − ε)Tn(v))∇ξ dx

≤

∫

Ω

[H(x,∇Tn(u)) − (1 − ε)H(x,∇Tn(v))]ξ dx+ 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 .

Now we use the convexity assumption on H , which gives

H(x, p) ≤ (1 − ε)H(x, η) + εH(x,
p− (1 − ε)η

ε
) , ∀p , η ∈ RN .

With p = ∇Tn(u), η = ∇Tn(v) we obtain

H(x,∇Tn(u)) − (1 − ε)H(x,∇Tn(v)) ≤ εH

(

x,
∇Tn(u) − (1 − ε)∇Tn(v)

ε

)

,

hence we have

λ

∫

Ω

[Tn(u) − (1 − ε)Tn(v)] ξ dx+

∫

Ω

A(x)∇[Tn(u) − (1 − ε)Tn(v)]∇ξ dx

≤ ε

∫

Ω

H

(

x,
∇[Tn(u) − (1 − ε)Tn(v)]

ε

)

ξ dx + 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 .

(2.20)
We define now

wn = Tn(u) − (1 − ε)Tn(v) − εϕ , (2.21)

where ϕ is a positive function that belongs to H1
0 (Ω) and will be chosen later.

From (2.20) we obtain

λ

∫

Ω

wn ξ dx+

∫

Ω

A(x)∇wn∇ξ dx ≤ ε

∫

Ω

H

(

x,
∇wn

ε
+ ∇ϕ

)

ξ dx

− ε

[∫

Ω

λϕ ξ +A(x)∇ϕ∇ξ dx

]

+ 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 .

(2.22)

Using assumption (2.3) we have

H

(

x,
∇wn

ε
+ ∇ϕ

)

≤ γ

∣

∣

∣

∣

∇wn

ε
+ ∇ϕ

∣

∣

∣

∣

q

+ f(x)

≤ (γ + δ) |∇ϕ|
q
+ Cδ

∣

∣

∣

∣

∇wn

ε

∣

∣

∣

∣

q

+ f(x) ,

(2.23)

where δ is any positive constant.
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Using (2.23) in (2.22) we obtain

λ

∫

Ω

wn ξ dx+

∫

Ω

A(x)∇wn∇ξ dx ≤
Cδ

εq−1

∫

Ω

|∇wn|
q
ξ dx

− ε

[∫

Ω

λϕ ξ +A(x)∇ϕ∇ξ dx − (γ + δ)|∇ϕ|qξ − f(x)ξ

]

+ 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 .

(2.24)

We choose now ϕ as a solution of

{

λϕ− div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f(x) in Ω,
(1 + |ϕ|)q̄−1ϕ ∈ H1

0 (Ω).
(2.25)

The existence of such a function ϕ is proved in [14]. Moreover, we have that
ϕ ≥ 0 (since f ≥ 0 from (2.3)). Thanks to (2.25) we obtain from (2.24)

λ

∫

Ω

wn ξ dx+

∫

Ω

A(x)∇wn∇ξ dx ≤
Cδ

εq−1

∫

Ω

|∇wn|
q
ξ dx

+ 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 .

(2.26)

For l > 0, we choose in (2.26) ξ = ξn defined as

ξn = [(wn − l)+]2q̄−1

Note that ξn is a positive function, and it belongs to H1
0 (Ω)∩L∞(Ω). Moreover,

by the definition of wn in (2.21), we have

‖ξn‖L∞(Ω) ≤ (2n)2q̄−1,

so that we can apply Lemma 2.1 for u and v and get

|〈Iu
n , ξn〉| ≤ (2n)2q̄−1‖Iu

n‖L1(Ω)
n→+∞
→ 0

|〈Iv
n, ξn〉| ≤ (2n)2q̄−1‖Iv

n‖L1(Ω)
n→+∞
→ 0.

Thus (2.26) implies

λ

∫

Ω

wn [(wn − l)+]2q̄−1 dx + (2q̄ − 1)

∫

Ω

A(x)∇wn∇wn [(wn − l)+]2q̄−2 dx

≤
Cδ

εq−1

∫

Ω

|∇wn|
q

[(wn − l)+]2q̄−1 dx+ o(1)n ,

where o(1)n goes to zero as n tends to infinity. Neglecting the zero order term
which is positive, and using that A(x) ≥ αI, we have

α(2q̄−1)

∫

Ω

|∇wn|
2[(wn−l)

+]2q̄−2 dx ≤
Cδ

εq−1

∫

Ω

|∇wn|
q

[(wn−l)
+]2q̄−1 dx+o(1)n .

(2.27)
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Young’s inequality implies

Cδ

εq−1

∫

Ω

|∇wn|
q

[(wn − l)+]2q̄−1 dx ≤
α

2
(2q̄ − 1)

∫

Ω

|∇wn|
2[(wn − l)+]2q̄−2 dx

+ Cε,δ

∫

Ω

[(wn − l)+]2q̄+
2(q−1)
2−q dx ,

hence, using that 2q̄ + 2(q−1)
2−q

= q̄2∗ we get

α

2
(2q̄ − 1)

∫

Ω

|∇wn|
2[(wn − l)+]2q̄−2 dx ≤ Cε,δ

∫

Ω

[(wn − l)+]q̄2∗

dx+ o(1)n .

Using Sobolev inequality in the left hand side we obtain

C

(∫

Ω

[(wn − l)+]q̄2∗

dx

)1− 2
N

≤ Cε,δ

∫

Ω

[(wn − l)+]q̄2
∗

dx+ o(1)n

We let now n tend to infinity; since u, v and ϕ all belong to Lq̄2∗

(Ω), we have
that

wn → w := u− (1 − ε)v − εϕ strongly in Lq̄2∗

(Ω) as n tends to infinity,

hence we get

C

(∫

Ω

[(w − l)+]q̄2∗

dx

)1− 2
N

≤ Cε,δ

∫

Ω

[(w − l)+]q̄2
∗

dx .

Since 1 − 2
N
< 1, last inequality implies that w ≤ 0; indeed, if supw > 0 (even

possibly infinite), one gets a contradiction by letting l converge to supw and
using that [(w − l)+]q̄2∗

would tend to zero in L1(Ω).
The conclusion is then that w ≤ 0, i.e.

u ≤ (1 − ε)v + εϕ ,

and, letting ε→ 0, u ≤ v in Ω.

Let us now deal with the case λ = 0. Indeed, the same proof can be applied,
provided there exists a solution of

{

−div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f(x) in Ω,
ϕ = 0 on ∂Ω,

(2.28)

for some δ > 0. This requires a further assumption, which is a sort of size
condition on the data.

Indeed, it is known from [14] that there exists a constant C∗, only depending
on q and N , such that if

b
1

q−1 ‖f‖
L

N

q′ (Ω)
< αq′

C∗ (2.29)
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then the problem

{

−div(A(x)∇z) = b|∇z|q + f(x) in Ω,
z = 0 on ∂Ω

(2.30)

admits a solution z such that (1 + |z|)q̄−1z ∈ H1
0 (Ω). In particular, if we fix α

(the coercivity constant of A(x)) and f , the set

Bf : = {b > 0 : problem (2.30) has a solution z : (1 + |z|)q̄−1z ∈ H1
0 (Ω)}

is non empty. Indeed, it is not difficult to see that Bf is even an interval. In
order to assure that (2.28) has a solution for a certain δ > 0, we are then led to
assume that (2.3) holds with γ < sup Bf .

Theorem 2.2 Let λ = 0. Assume (1.3), (2.2) and (2.3) with q ≥ 1 + 2
N

and
γ < sup Bf , which is defined above. If u and v are respectively a subsolution and
a super-solution of (2.1) such that (1 + |u|)q̄−1u ∈ H1

0 (Ω) and (1 + |v|)q̄−1v ∈
H1

0 (Ω), then we have u ≤ v in Ω. In particular problem (2.1) has a unique
solution u such that (1 + |u|)q̄−1u ∈ H1

0 (Ω).

The result of Theorem 2.2 may be rephrased more explicitly in terms of a
size condition on the norm of f . Indeed, let C∗ be the maximal possible choice
in (2.29), i.e.

C∗ = sup{C > 0 : if α−q′

b
1

q−1 ‖f‖
L

N

q′ (Ω)
< C then problem (2.30)

has a solution z : (1 + |z|)q̄−1z ∈ H1
0 (Ω)}

Then we have

Corollary 2.1 Let λ = 0. Assume (1.3), (2.2) and (2.3) with q ≥ 1 + 2
N

and

α−q′

γ
1

q−1 ‖f‖
L

N

q′ (Ω)
< C∗ (2.31)

Then problem (2.1) has a unique solution u such that (1 + |u|)q̄−1u ∈ H1
0 (Ω).

Remark 2.2 Applying Theorem 2.1 and Corollary 2.1 to the model problem

{

λu− div(A(x)Du) = γ |Du|q + f(x) in Ω,
u = 0 on ∂Ω

(2.32)

we obtain the results stated in the Introduction. Observe that if γ > 0 and

f ∈ L
N

q′ (Ω), one can easily prove that any weak solution satisfies (u−)q̄ ∈ H1
0 (Ω);

in particular, in that case uniqueness holds in the class of solutions u ∈ H1
0 (Ω)

such that (u+)q̄ ∈ H1
0 (Ω). Clearly, when γ is negative we should apply the

result to the equation satisfied by −u.
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Remark 2.3 When considering the case λ = 0, a more careful look at the proof
of Theorem 2.1 shows that in the inequality (2.23) one could replace f with
f̃ = sup

ξ

(H(x, ξ)−γ|ξ|q)+. The size condition of Theorem 2.2 and Corollary 2.1

would then concern f̃ instead of f . If one looks at the model problem (2.32),
this simply means that if λ = 0 and γ > 0, the required size condition only
concerns f+, as it is expected.

Remark 2.4 When q → 2, the exponent q̄ → +∞. In fact, if q = 2 uniqueness
for problems like (2.32) holds in the class of solutions u ∈ H1

0 (Ω) such that
eµu − 1 ∈ H1

0 (Ω) for some suitable µ > 0. This result is proved (in a more
general framework) in [3]: the idea is to use the change of unknown function
v = eγu−1, so that the standard choice is to take µ = γ and to prove uniqueness
when v ∈ H1

0 (Ω). Otherwise one should take µ = nγ for some n > 1; in that
case one proves uniqueness for solutions such that |v|n−1v ∈ H1

0 (Ω). However,
we point out that this requires to apply to the equation of v a similar truncation
argument as in Lemma 2.1.

2.1 Comments and extensions

1. Data in W−1,r.

The results of this section still hold if the right hand side in (2.1) is replaced
by H(x,∇u) + div(g(x)) with g(x) ∈ LN(q−1)(Ω).

2. Neumann boundary conditions.

Our method easily extends to prove a comparison principle for the homo-
geneous Neumann problem which can be written in a strong form as

{

λu− div(A(x)∇u) = H(x,∇u) in Ω,
A(x)∇u · ν(x) = 0 on ∂Ω,

(2.33)

where ν(x) is the outward, unit normal vector to ∂Ω at x. Of course, we
use the classical weak formulation which says that u ∈ H1(Ω) is a weak
solution of (2.33) if

λ

∫

Ω

uϕdx+

∫

Ω

A(x)∇u∇ϕdx =

∫

Ω

H(x,∇u)ϕdx ∀ϕ ∈ H1(Ω)∩L∞(Ω).

Then one has

Theorem 2.3 Assume (1.3), (2.2), (2.3) and that λ > 0. Let q ≥ 1+ 2
N

.
If u and v are respectively a subsolution and a super-solution of (2.33)
such that (1 + |u|)q̄−1u ∈ H1(Ω) and (1 + |v|)q̄−1v ∈ H1(Ω), then we have
u ≤ v in Ω.

In particular, problem (2.33) has a unique weak solution u such that (1 +
|u|)q̄−1u ∈ H1(Ω).
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Proof. The proof follows the same steps as for Theorem 2.1. Note that
Lemma 2.1 is still true without any modification. Then one defines ϕ as
a solution of

{

λϕ− div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f(x) in Ω,
A(x)∇ϕ · ν(x) = 0 on ∂Ω,

and, setting wn = Tn(u) − (1 − ε)Tn(v) − εϕ, one obtains

λ

∫

Ω

wn[(wn − l)+]2q̄−1dx+
α

2
(2q̄ − 1)

∫

Ω

|∇wn|
2[(wn − l)+]2q̄−2 dx

≤ Cε,δ

∫

Ω

[(wn − l)+]q̄2
∗

dx+ o(1)n .

Since λ > 0 one deduces

‖[(wn − l)+]q̄‖H1(Ω) ≤ C̃ε,δ

∫

Ω

[(wn − l)+]q̄2∗

dx + o(1)n .

Using now Sobolev inequality one concludes as in the Dirichlet case.

We only need to require here that Ω has enough regularity so that the
Sobolev inequality holds.

3. Unbounded domains.

A slight refinement of our proof gives a similar result in case of unbounded
domains. To be more precise, let Ω be a general domain, not necessarily

bounded. Let still q ≥ 1 + 2
N

and q̄ = (N−2)(q−1)
2(2−q) .

By a solution of (2.1) we mean a function u such that

uψ ∈ H1
0 (Ω) ∀ψ ∈ C∞

c (RN) , |u|q̄−1u ∈ H1
0 (Ω) (2.34)

and

λ

∫

Ω

uξ dx+

∫

Ω

A(x)∇u∇ξ dx =

∫

Ω

H(x,∇u)ξ dx ∀ξ ∈ C∞
c (Ω) . (2.35)

Note that condition (2.34) gives a meaning to the Dirichlet condition on
∂Ω; roughly speaking, one has (in a weak sense) u = 0 on ∂Ω ∩ BR for
any ball BR and u = 0 at infinity as well (since q̄ ≥ 1).

The existence of a solution of (2.1) in the sense of (2.34)–(2.35) has been
proved in [14]. It was also pointed out that, due to the regularity of
|u|q̄−1u, one can allow in (2.35) any test function ξ of the form S(u),
where S(0) = 0 and |S′(t)| ≤ |t|2q̄−2. This is achieved by choosing ξ =

S(u) ζ( |x|
n

), where ζ ∈ C∞
c (B2), ζ ≡ 1 on B1, and letting n go to infinity,

which is allowed thanks to (2.34) and (2.2)–(2.3).
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Theorem 2.4 Assume (1.3), (2.2), (2.3) with q ≥ 1 + 2
N

, and that

(i) either λ > 0

(ii) or λ = 0 and (2.31) holds true.

Then there exists a unique solution u of (2.1) in the sense of (2.34)–(2.35).

Proof. Note that Lemma 2.1 still holds true, i.e. (2.7) holds for any
ξ ∈ C∞

c (RN ), and estimate (2.9) is still valid, since it only depends on
the fact that |u|q̄−1u ∈ H1

0 (Ω). We proceed then as in Theorem 2.1: let ϕ
be a solution (whose existence is proved in [14]) of the auxiliary problem

{

λϕ− div(A(x)∇ϕ) = (γ + δ)|∇ϕ|q + f(x) in Ω,
|ϕ|q̄−1ϕ ∈ H1

0 (Ω) , ϕψ ∈ H1
0 (Ω) for any ψ ∈ C∞

c (RN ).

Defining wn = Tn(u) − (1 − ε)Tn(v) − εϕ we obtain

λ

∫

Ω

wn ξ dx+

∫

Ω

A(x)∇wn∇ξ dx ≤
Cδ

εq−1

∫

Ω

|∇wn|
q
ξ dx

+ 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 ,

for any ξ ∈ C∞
c (Ω). By density, one can allow ξ = z ψ for any ψ ∈

C∞
c (RN ) and for any z ∈ L∞(Ω) such that zψ ∈ H1

0 (Ω).

Now choose ξ = [(wn − l)+]2q̄−1ψ2
j , where ψj = ψ

(

|x|
j

)

, ψ ∈ C∞
c (B2),

ψ ≡ 1 on B1. We get

λ

∫

Ω

wn [(wn − l)+]2q̄−1ψ2
j dx+ α(2q̄ − 1)

∫

Ω

|∇wn|
2[(wn − l)+]2q̄−2ψ2

j dx

≤
Cδ

εq−1

∫

Ω

|∇wn|
q

[(wn − l)+]2q̄−1ψ2
j dx

− 2

∫

Ω

A(x)∇wn∇ψj [(wn − l)+]2q̄−1ψj dx

+ 〈Iu
n , [(wn − l)+]2q̄−1ψ2

j 〉 − (1 − ε)〈Iv
n, [(wn − l)+]2q̄−1ψ2

j 〉 ,

Since ψj ≤ 1, and due to estimate (2.9) we have

〈Iu
n , [(wn − l)+]2q̄−1ψ2

j 〉 − (1 − ε)〈Iv
n, [(wn − l)+]2q̄−1ψ2

j 〉

≤ n2q̄−1[‖Iu
n‖L1(Ω) + ‖Iv

n‖L1(Ω)] = o(1)n

Using Young’s inequality we get

λ

∫

Ω

wn [(wn − l)+]2q̄−1ψ2
j dx+

α(2q̄ − 1)

2

∫

Ω

|∇wn|
2[(wn − l)+]2q̄−2ψ2

j dx

≤ Cδ,ε

∫

Ω

[(wn − l)+]2
∗q̄ψ2

j dx+ C

∫

Ω

|∇ψj |
2 [(wn − l)+]2q̄ dx+ o(1)n .

(2.36)
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Observe that wn belongs to L2∗q̄(Ω), since it is so for u, v and ϕ. Moreover

|∇ψj |
2 weakly converges to zero in L

N
2 (Ω), so that

lim
j→+∞

∫

Ω

|∇ψj |
2 [(wn − l)+]2q̄ dx = 0 .

Since (2.36) implies

‖[(wn − l)+]q̄ψj‖
2
H1

0 (Ω) ≤ Cδ,ε

∫

Ω

[(wn − l)+]2
∗q̄ψ2

j dx

+ C

∫

Ω

|∇ψj |
2 [(wn − l)+]2q̄ dx+ o(1)n ,

passing to the limit as j goes to infinity we find then that [(wn − l)+]q̄ ∈
H1

0 (Ω) and

‖[(wn − l)+]q̄‖2
H1

0 (Ω) ≤ Cδ,ε

∫

Ω

[(wn − l)+]2
∗q̄ dx+ o(1)n .

Using Sobolev inequality and that

wn → u− (1 − ε)v − εϕ strongly in Lq̄2∗

(Ω) as n tends to infinity,

letting n go to infinity the conclusion follows as in Theorem 2.1.

Finally, when λ > 0 a similar result can be given in case of Neumann
boundary conditions proceeding as in Theorem 2.3.

3 The case q ≤ 1 +
2
N
.

We start by extending Theorem 2.1 to the case q < 1 + 2
N

. However, in view of
(2.3) and (1.5), in this case solutions do not belong in general to H1

0 (Ω), so that
one needs first to define a suitable concept of solution. It seems useful to adopt
the notion of renormalized solutions; this notion, introduced first in [12] for
transport equations, has been adapted to second order elliptic equations in [6],
[18], and recently used in several other contexts when dealing with unbounded
solutions having infinite energy.
Let us recall that the auxiliary functions Tn(s) are defined in (2.6).

Definition 3.1 A renormalized solution of problem (2.1) is a function u ∈
L1(Ω) such that Tn(u) ∈ H1

0 (Ω) for any n > 0, H(x,∇u) ∈ L1(Ω) and which
satisfies

λ

∫

Ω

uS(u)ξ dx+

∫

Ω

A(x)∇u∇(S(u)ξ) dx =

∫

Ω

H(x,∇u)S(u)ξ dx (3.1)
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for any Lipschitz function S having compact support and for any ξ ∈ H1(Ω) ∩
L∞(Ω) such that S(u)ξ ∈ H1

0 (Ω).
Renormalized sub or super-solutions are defined in the same way by replacing

the equality in (3.1) with the suitable inequality.

Clearly, if u ∈ H1
0 (Ω) is a weak solution then it is also a renormalized

solution: indeed, one can choose S(u)ξ ∈ H1
0 (Ω) ∩ L∞(Ω) as test function in

(2.4) and obtain (3.1). Thus, for H1
0 (Ω) solutions, the weak and renormalized

formulations are equivalent. However, as in the previous section, we deal with

solutions u such that (1+ |u|)q̄−1u ∈ H1
0 (Ω), where q̄ = (N−2)(q−1)

2(2−q) : if q < 1+ 2
N

then q̄ < 1, so that solutions do not have finite energy (i.e. they are not
in H1

0 (Ω)). In this case, the renormalized formulation is meant to allow test
functions depending on u itself, which can not be ensured by using the simpler
distributional formulation. Another possible formulation based on a duality
argument is mentioned later (see (3.26)).

The existence of a renormalized solution u such that (1 + |u|)q̄−1u ∈ H1
0 (Ω)

has been proved in [14]. The method of proof given in Section 2 can be easily
adapted to provide uniqueness of such solutions.

Theorem 3.1 Assume (1.3), (2.2), (2.3) with q < 1 + 2
N

. Let λ > 0. If u and
v are respectively renormalized subsolution and super-solution of (2.1) such that
(1 + |u|)q̄−1u ∈ H1

0 (Ω) and (1 + |v|)q̄−1v ∈ H1
0 (Ω), then we have u ≤ v in Ω.

In particular, problem (2.1) has a unique renormalized solution u such that
(1 + |u|)q̄−1u ∈ H1

0 (Ω).

Proof. First we observe that Lemma 2.1 still holds for renormalized solutions:
indeed, choosing in (3.1) S = θn (see (2.6)) yields the same as (2.10), so that
we have

λ

∫

Ω

Tn(u)ξ dx+

∫

Ω

A(x)∇Tn(u)∇ξ dx

≤

∫

Ω

H(x,∇Tn(u))ξ dx+ 〈In, ξ〉 ,

(3.2)

where In is defined as in (2.8). Moreover, proceeding exactly as in Lemma 2.1
we obtain the estimate

lim
n→+∞

n2q̄−1 ‖In‖L1(Ω) = 0 . (3.3)

The same can be proved as regards v. Then, using the convexity of H , we can
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proceed as in the proof of Theorem 2.1, in order to obtain that

λ

∫

Ω

[Tn(u) − (1 − ε)Tn(v) − εϕ] ξ dx

+

∫

Ω

A(x)∇[Tn(u) − (1 − ε)Tn(v) − εϕ]∇ξ dx

≤
Cδ

εq−1

∫

Ω

|∇[Tn(u) − (1 − ε)Tn(v) − εϕ]|
q
ξ dx

− ε

[∫

Ω

λϕ ξ +A(x)∇ϕ∇ξ dx− (γ + δ)|∇ϕ|qξ − f(x)ξ

]

+ 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 ,

(3.4)

for any ϕ, ξ ∈ H1
0 (Ω) ∩ L∞(Ω), ξ ≥ 0. We define here ϕn to be a solution of

{

λϕn − div(A(x)∇ϕn) = (γ + δ)|∇ϕn|
q + Tn(f(x)) in Ω,

ϕn = 0 on ∂Ω.
(3.5)

Note that ϕn is nonnegative and belongs to H1
0 (Ω)∩L∞(Ω). It is proved in [14]

that (1 + ϕn)q̄−1ϕn is bounded in H1
0 (Ω) and

ϕn → ϕ strongly in Lq̄ 2∗

(Ω), (3.6)

where ϕ is a renormalized solution of (3.5) corresponding to f , and satisfying
(1 + ϕ)q̄−1ϕ ∈ H1

0 (Ω).
Setting

wn = Tn(u) − (1 − ε)Tn(v) − εϕn

and using the equation satisfied by ϕn we obtain from (3.4)

λ

∫

Ω

wn ξ dx+

∫

Ω

A(x)∇wn∇ξ dx ≤
Cδ

εq−1

∫

Ω

|∇wn|
q
ξ dx

− ε

∫

Ω

(Tn(f) − f)ξ dx+ 〈Iu
n , ξ〉 − (1 − ε)〈Iv

n, ξ〉 .

(3.7)

Note that since N
N−1 < q < 1 + 2

N
then the exponent q̄ ∈ (1

2 , 1), hence 2q̄ − 1 ∈
(0, 1); for this reason we choose now ξ = ξn,σ with

ξn,σ = [σ + (wn − l)+]2q̄−1 − σ2q̄−1,

where l, σ > 0. We have, using (1.3), that

lim inf
σ→0

∫

Ω

A(x)∇wn∇ξn,σ dx ≥
(2q̄ − 1)α

q̄2

∫

Ω

|∇[(wn − l)+]q̄|2 dx .

Note that ξn,σ ≤ [(wn − l)+]2q̄−1, and clearly ξn,σ → [(wn − l)+]2q̄−1 as σ → 0.
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From (3.7) we obtain, as σ → 0,

λ

∫

Ω

wn [(wn − l)+]2q̄−1 dx+
(2q̄ − 1)α

q̄2

∫

Ω

|∇[(wn − l)+]q̄|2 dx

≤
Cδ

εq−1

∫

Ω

|∇wn|
q

[(wn − l)+]2q̄−1 dx

− ε

∫

Ω

(Tn(f) − f)[(wn − l)+]2q̄−1 dx

+ 〈Iu
n , [(wn − l)+]2q̄−1〉 − (1 − ε)〈Iv

n, [(wn − l)+]2q̄−1〉 .

Since (wn − l)+ ≤ 2n, using (3.3) we obtain that last two terms go to zero
as n tends to infinity. Moreover, since u and v belong to Lq̄ 2∗

(Ω) and using

(3.6), we have that [(wn − l)+]2q̄−1 converges strongly in L
q̄ 2∗

2q̄−1 (Ω); but we have
q̄ 2∗

2q̄−1 = (N
q′

)′, and since Tn(f) − f strongly converges to zero in L
N

q′ (Ω), we
conclude that

λ

∫

Ω

wn [(wn − l)+]2q̄−1 dx +
(2q̄ − 1)α

q̄2

∫

Ω

|∇[(wn − l)+]q̄|2 dx

≤
Cδ

εq−1

∫

Ω

|∇wn|
q

[(wn − l)+]2q̄−1 dx+ o(1)n ,

where o(1)n goes to zero as n tends to infinity. This inequality is the same as
(2.27), and the conclusion of the proof is exactly as in Theorem 2.1.

A similar result holds in case λ = 0 if the data satisfy a suitable size con-
dition, following the same principle as in Theorem 2.2. We leave the details to
the reader.

We are going now to see a different approach to uniqueness, which is based
on a simpler linearization principle. This approach, which was not possible in
the situation of Section 2, is allowed if q ≤ 1 + 2

N
(note that the limiting value

q = 1 + 2
N

is included too), and provides uniqueness in a more general context.
Namely, we consider the problem

{

λu − div(a(x,∇u)) = H(x,∇u) in Ω,
u = 0 on ∂Ω

(3.8)

where a(x, ξ) : Ω × RN → RN is a Carathéodory function such that

[a(x, ξ) − a(x, η)] · (ξ − η) ≥ α|ξ − η|2 (3.9)

|a(x, ξ)| ≤ β(k(x) + |ξ|) , β > 0 , k(x) ∈ L2(Ω) . (3.10)

We assume that H(x, ξ) : Ω × RN → R is a Carathéodory function which
satisfies

|H(x, ξ) −H(x, η)| ≤ γ(b(x) + |ξ|q−1 + |η|q−1) |ξ − η| ,

b(x) ∈ LN (Ω) , γ > 0,
(3.11)
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and
H(x, 0) ∈ L

N

q′ (Ω). (3.12)

Note that assumptions (3.11) and (3.12) imply that H(x, ξ) satisfies the growth
condition (2.3). On the other hand, no convexity is now assumed on H(x, ·).

As in Definition 3.1, we say that a function u ∈ L1(Ω) is a renormalized
subsolution (super-solution) of problem (3.8) if Tn(u) ∈ H1

0 (Ω) for any n > 0,
H(x,∇u) ∈ L1(Ω) and

λ

∫

Ω

uS(u)ξ dx +

∫

Ω

a(x,∇u)∇(S(u)ξ) dx ≤ (≥)

∫

Ω

H(x,∇u)S(u)ξ dx

(3.13)
for any Lipschitz function S having compact support and for any ξ ∈ H1(Ω) ∩
L∞(Ω) such that S(u)ξ ∈ H1

0 (Ω).

We start with two important properties of solutions in the class (1.9). We
will need a slight modification of the truncation functions Tn(s). Namely, we
set

Tn(t) =

∫ t

0

T ′
n(s)ds , T ′

n(s) =







1 if |s| < n

n+ 1 − |s| if n < |s| < n+ 1,
0 if |s| > n+ 1

Lemma 3.1 Assume (3.9)–(3.12) with N
N−1 < q ≤ 1+ 2

N
. Let u be a renormal-

ized subsolution of (3.8) such that (1 + |u|)q̄−1u ∈ H1
0 (Ω), with q̄ = (N−2)(q−1)

2(2−q) .

Then we have

(i)

u ∈ W
1,N(q−1)
0 (Ω). (3.14)

(ii)

lim
n→+∞

n2q̄−1

∫

{n<|u|<n+1}

a(x,∇u)∇u dx = 0 (3.15)

(iii) for every ξ ∈ H1
0 (Ω) ∩ L∞(Ω) and for every n

λ

∫

Ω

Tn(u)ξ dx+

∫

Ω

a(x,∇u)T ′
n(u)∇ξ dx

≤

∫

Ω

H(x,∇Tn(u))ξ dx+ 〈In, ξ〉 ,

(3.16)

with
lim

n→+∞
n2q̄−1 ‖In‖L1(Ω) = 0 . (3.17)

Proof. The regularity (3.14) follows directly from the fact that (1+ |u|)q̄−1u ∈
H1

0 (Ω). This was first observed, in a different context, in [7]; for the reader’s
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convenience, we recall the simple argument. Indeed, due to Sobolev and Hölder
’s inequalities, we have

(∫

Ω

(|u|)(N(q−1))∗ dx

)2−q

≤

∫

Ω

|∇u|N(q−1)dx

≤

(∫

Ω

|∇u|2

(1 + |u|)2−2q̄

)

N(q−1)
2

(∫

Ω

(1 + |u|)
2N(q−1)(1−q̄)

2−N(q−1) dx

)1−
N(q−1)

2

Since, by definition of q̄, we have 2N(q−1)(1−q̄)
2−N(q−1) = (N(q − 1))∗ and since 2 − q >

1 − N(q−1)
2 , we conclude that

‖u‖
W

1,N(q−1)
0 (Ω)

≤ c(1 + ‖(1 + |u|)q̄−1u‖
1
q̄

H1
0(Ω)

) .

To prove (ii), take in (3.13) ξ = 1 and S(t) = θn(t)
∫ t

0 |s|2q̄−1χ{n−1<|s|<n}ds,
where θn is defined in (2.6). Since S(t) ≤ (1 + |t|)2q̄−1χ{n−1<|u|} we have

∫

{n−1<|u|<n}

a(x,∇u)∇u|u|2q̄−1 dx ≤ c

∫

{n−1<|u|}

|H(x,∇u)| |u|2q̄−1 dx

+
c

n

∫

{n<|u|<2n}

a(x,∇u)∇u |u|2q̄−1

(3.18)

Observe that, by (3.10),

1

n

∫

{n<|u|<2n}

a(x,∇u)∇u |u|2q̄−1dx ≤ c

∫

{n<|u|<2n}

[k(x) + |∇u|]|∇u| |u|2q̄−2dx

which yields, since q̄ ≤ 1,

1

n

∫

{n<|u|<2n}

a(x,∇u)∇u |u|2q̄−1dx ≤ c

∫

{n<|u|<2n}

[k(x)2 + |∇(|u|q̄−1u)|2]dx

Thus

lim
n→+∞

1

n

∫

{n<|u|<2n}

a(x,∇u)∇u |u|2q̄−1 = 0

Moreover, since H still satisfies (2.3), we have, as in the proof of Lemma 2.1,
∫

{n−1<|u|}

|H(x,∇u)| |u|2q̄−1 dx ≤ c

∫

{n−1<|u|}

[|∇(|u|q̄−1u)|2 + (|u|q̄)2
∗

] dx
n→+∞
→ 0

so that we conclude from (3.18)
∫

{n−1<|u|<n}

a(x,∇u)∇u |u|2q̄−1 n→+∞
→ 0
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hence (3.15).
The proof of (iii) follows the outlines of Lemma 2.1. Choose S = T ′

n(t) in
(3.13), so that

λ

∫

Ω

Tn(u)ξ dx+

∫

Ω

a(x,∇u)T ′
n(u)∇ξ dx ≤

∫

Ω

H(x,∇Tn(u))ξ dx+ 〈In, ξ〉

where In is defined as

〈In, ξ〉 =

∫

{n<u<n+1}

a(x,∇u)∇u ξ dx−

∫

{−n−1<u<−n}

a(x,∇u)∇u ξ dx

+ λ

∫

Ω

(Tn(u) − uT ′
n(u))ξ dx+

∫

Ω

(H(x,∇u)T ′
n(u) −H(x,∇Tn(u)))ξ dx .

(3.19)
As in Lemma 2.1, using the growth condition on H we obtain estimates like
(2.16) and (2.17); moreover, for the first two terms of (3.19) we use (3.15).
Finally, we can conclude that (3.17) holds.

Note that the borderline value q = 1+ 2
N

is included in the previous lemma as
well as in the following comparison result. However, some statements would read
simpler for this case: in fact, if q = 1 + 2

N
then q̄ = 1, hence (1 + |u|)q̄−1u = u,

which belongs to H1
0 (Ω) (and (3.14) says the same); in particular, in this case

renormalized solutions are also standard H1
0 (Ω) weak solutions.

Theorem 3.2 Assume (3.9)–(3.12) with N
N−1 < q ≤ 1 + 2

N
. Let λ ≥ 0. If

u and v are respectively a renormalized subsolution and super-solution of (3.8)
such that (1+ |u|)q̄−1u ∈ H1

0 (Ω) and (1+ |v|)q̄−1v ∈ H1
0 (Ω), then we have u ≤ v

in Ω.
In particular, problem (3.8) has a unique renormalized solution u such that

(1 + |u|)q̄−1u ∈ H1
0 (Ω).

Proof. From Lemma 3.1 we have that

λ

∫

Ω

Tn(u) ξdx

∫

Ω

a(x,∇Tn(u))∇ξdx ≤

∫

Ω

H(x,∇Tn(u))ξdx

+

∫

Ω

[a(x,∇Tn(u)) − a(x,∇u)T ′
n(u)]∇ξ dx+ 〈Iu

n , ξ〉 ,

(3.20)

for any ξ ∈ H1
0 (Ω) ∩ L∞(Ω), ξ ≥ 0.

Similarly we deal with the equation satisfied by v, so that

λ

∫

Ω

Tn(v) ξdx

∫

Ω

a(x,∇Tn(v))∇ξdx ≥

∫

Ω

H(x,∇Tn(v))ξdx

+

∫

Ω

[a(x,∇Tn(v)) − a(x,∇v)T ′
n(v)]∇ξ dx+ 〈Iv

n, ξ〉

(3.21)

where
n2q̄−1‖Iv

n‖L1(Ω)
n→+∞
→ 0. (3.22)
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For k > 0, let us set Gk(s) = (s − k)+: subtracting (3.21) from (3.20) and
choosing

ξ = [Gk(Tn(u) − Tn(v)) + σ]2q̄−1 − σ2q̄−1 , σ > 0

we get

λ

∫

Ω

(Tn(u) − Tn(v))
(

[Gk(Tn(u) − Tn(v)) + σ]2q̄−1 − σ2q̄−1
)

dx

+

∫

Ω

[a(x,∇Tn(u)) − a(x,∇Tn(v))]∇[Gk(Tn(u) − Tn(v)) + σ]2q̄−1dx

≤

∫

Ω

[H(x,∇Tn(u)) −H(x,∇Tn(v))]
(

[Gk(Tn(u) − Tn(v)) + σ]2q̄−1 − σ2q̄−1
)

dx

+

∫

Ω

[a(x,∇Tn(u)) − a(x,∇u)T ′
n(u)]∇[Gk(Tn(u) − Tn(v)) + σ]2q̄−1

+

∫

Ω

[a(x,∇Tn(v)) − a(x,∇v)T ′
n(v)]∇[Gk(Tn(u) − Tn(v)) + σ]2q̄−1

+ 〈|Iu
n |, [Gk(Tn(u) − Tn(v)) + σ]2q̄−1〉 + 〈|Iv

n|, [Gk(Tn(u) − Tn(v)) + σ]2q̄−1〉
(3.23)

Since [Gk(Tn(u)−Tn(v))]2q̄−1 ≤ c n2q̄−1 last two terms go to zero as n tends to
infinity thanks to (3.17) and (3.22). Moreover we have from (3.10)

|a(x,∇Tn(u)) − a(x,∇u)T ′
n(u)|

≤ [|a(x,∇Tn(u))| + |a(x,∇u)|]χ{n<|u|<n+1} + a(x, 0)χ{n+1<|u|}

≤ c[|∇u|χ{n<|u|<n+1} + k(x)χ{n<|u|}] .

Using (3.9) and Young’s inequality, we have

λ

∫

Ω

(Tn(u) − Tn(v))
(

[Gk(Tn(u) − Tn(v)) + σ]2q̄−1 − σ2q̄−1
)

dx

+

∫

Ω

|∇Gk(Tn(u) − Tn(v))|2[Gk(Tn(u) − Tn(v)) + σ]2q̄−2dx

≤ c

∫

Ω

[H(x,∇Tn(u)) −H(x,∇Tn(v))]
(

[Gk(Tn(u) − Tn(v)) + σ]2q̄−1 − σ2q̄−1
)

dx

+ c

∫

Ω

[|∇u|χ{n<|u|<n+1} + k(x)χ{n<|u|}]
2[Gk(Tn(u) − Tn(v)) + σ]2q̄−2

+ c

∫

Ω

[|∇v|χ{n<|v|<n+1} + k(x)χ{n<|v|}]
2[Gk(Tn(u) − Tn(v)) + σ]2q̄−2 + o(1)n

(3.24)
Thanks to (3.15) in Lemma 3.1, and since 0 < 2q̄ − 1 ≤ 1, last two terms go to
zero as n tends to infinity (for fixed σ > 0). Thus, using also that λ ≥ 0 and
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(3.11) we have

∫

Ω

|∇Gk(Tn(u) − Tn(v))|2[Gk(Tn(u) − Tn(v)) + σ]2q̄−2dx

≤ c

∫

En

[b(x) + |∇Tn(u)|q−1 + |∇Tn(v)|q−1]|∇(Tn(u) − Tn(v))|×

× [Gk(Tn(u) − Tn(v)) + σ]2q̄−1dx+ o(1)n ,

where
En = {x : Tn(u) − Tn(v) > k , |∇(Tn(u) − Tn(v))| > 0} .

Using Young’s inequality we get

∫

Ω

|∇Gk(Tn(u) − Tn(v))|2[Gk(Tn(u) − Tn(v)) + σ]2q̄−2dx

≤ c

∫

En

[b(x) + |∇Tn(u)|q−1 + |∇Tn(v)|q−1]2×

× [Gk(Tn(u) − Tn(v)) + σ]2q̄dx+ o(1)n .

Using Sobolev inequality and that u, v ∈ W
1,N(q−1)
0 (Ω), we deduce

(∫

Ω

(

[Gk(Tn(u) − Tn(v)) + σ]q̄ − σq̄
)2∗

dx

)
2
2∗

≤

≤ c





∫

En

[b(x) + |∇u|q−1 + |∇v|q−1]Ndx





2
N

×

×

(∫

Ω

[Gk(Tn(u) − Tn(v)) + σ]q̄ 2∗

dx

)
2
2∗

+ o(1)n .

Letting n tend to infinity we obtain

(
∫

Ω

(

[Gk(u− v) + σ]q̄ − σq̄
)2∗

dx

)
2
2∗

≤

≤ c







∫

{u−v>k , |∇(u−v)|>0}

[b(x) + |∇u|q−1 + |∇v|q−1]Ndx







2
N

×

×

(∫

Ω

[Gk(u− v) + σ]q̄ 2∗

dx

)
2
2∗

,
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and then, as σ → 0,

(∫

Ω

(

[Gk(u− v)+]q̄
)2∗

dx

)
2
2∗

≤ C







∫

{u−v>k , |∇(u−v)|>0}

[b(x) + |∇u|q−1 + |∇v|q−1]Ndx







2
N

×

(∫

Ω

[Gk(u− v)+]q̄ 2∗

dx

)
2
2∗

.

(3.25)

From this inequality one can deduce that u ≤ v in Ω. Indeed, we argue by
contradiction. Set M = sup(u − v); then, should M be positive, even possibly
infinite, we have

lim
k→M

meas{x : u− v > k , |∇(u − v)| > 0} = 0 ,

since either M = +∞ or |∇(u− v) = 0| a.e. on (u − v) = M . Therefore, using

that u, v ∈ W
1,N(q−1)
0 (Ω), there exists k0 < M such that







∫

{u−v>k0 , |∇(u−v)|>0}

[b(x) + |∇u|q−1 + |∇v|q−1]Ndx







2
N

<
1

C

and then (3.25) implies that (u − v) ≤ k0 almost everywhere, getting a contra-
diction with the fact that k0 < sup(u− v). We conclude that u ≤ v.

We point out that the previous theorem extends the uniqueness result which
is proved in [5] assuming H(x, 0) ∈ H−1(Ω) and for solutions in H1

0 (Ω). How-
ever, the existence of H1

0 (Ω) solutions can not be proved, nor it is expected to
hold, under assumption (3.12) with q < 1 + 2

N
, so that, to be consistent with

the existence results (see [14]) one actually needs to work with solutions in the
class (1.9).

3.1 Comments and remarks

1. The formulation by duality in the linear case

Consider problem (2.1), where the second-order operator is linear. Instead
of using the notion of renormalized solution, a different formulation can
be given by using the linear character of the operator.

Definition 3.2 (see [19]) A function u ∈ L1(Ω) is a solution of (2.1) if
H(x,∇u) ∈ L1(Ω) and

λ
∫

Ω uϕdx−
∫

Ω u div(A∗(x)∇ϕ) dx =
∫

ΩH(x,∇u)ϕdx ,

for every ϕ ∈ H1
0 (Ω): div(A∗(x)∇ϕ) ∈ L∞(Ω),

(3.26)

where A∗(x) denotes the adjoint matrix of A(x).
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Note that in Definition 3.2 only a minimal regularity is asked on u, by
using the advantage of linearity to integrate twice by parts. It is well
known (see e.g. [11]) that, since H(x,∇u) ∈ L1(Ω), any solution in the
sense of Definition 3.2 also satisfies the renormalized formulation (3.13).
We deduce then the following

Theorem 3.3 Assume (1.3), (3.11), (3.12) with N
N−1 < q ≤ 1 + 2

N
. Let

λ ≥ 0. Then there exists a unique function u which is solution of (2.1)
in the sense of Definition 3.2 and such that (1 + |u|)q̄−1u ∈ H1

0 (Ω), with

q̄ = (N−2)(q−1)
2(2−q) .

A similar result can be given in the convex case (i.e. assuming (2.2) and
(2.3)) for any q: N

N−1 < q < 2, since the results of Theorem 2.1 and
Theorem 3.1 apply to solutions in the sense (3.26) which belong to the
class (1.9).

2. The case q ≤ N

N−1
and measure data.

The question of finding a proper class of solutions where uniqueness holds
is not relevant if q < N

N−1 (note that the counterexample given in (1.7)

holds only for q > N
N−1 ). Indeed, asking only H(x,∇u) ∈ L1(Ω), the

solutions of (1.1) are expected to belong to W
1,r
0 (Ω) for any r < N

N−1 ,
in particular they already satisfy (1.8). In fact, uniqueness results when
q < N

N−1 have already been proved, see e.g. [4] for a result in a general
context including nonlinear operators.

When q < N
N−1 and in case of linear operators, one can even prove unique-

ness if data are bounded measures, using the formulation (3.26) and a
simple duality argument. This was done in [1] for the Laplace operator,
for completeness we sketch the result for the general case.

Let H(x, ξ) satisfy

|H(x, ξ) −H(x, η)| ≤ γ(b(x) + |ξ|q−1 + |η|q−1) |ξ − η| ,

with q < N
N−1 , b(x) ∈ Lr(Ω) for some r > N , γ > 0

(3.27)

and
H(x, 0) ∈ L1(Ω). (3.28)

Let µ be a bounded Radon measure in Ω. We say that u is a solution of
{

λu − div(A(x)∇u) = H(x,∇u) + µ in Ω,
u = 0 on ∂Ω,

(3.29)

if u ∈ L1(Ω), H(x,∇u) ∈ L1(Ω) and

λ
∫

Ω
uϕdx−

∫

Ω
u div(A∗(x)∇ϕ) dx =

∫

Ω
H(x,∇u)ϕdx +

∫

Ω
ϕdµ ,

for every ϕ ∈ H1
0 (Ω): div(A∗(x)∇ϕ) ∈ L∞(Ω).

(3.30)
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Note that such test functions ϕ are Hölder continuous by means of De
Giorgi–Nash ’s results, hence they can be tested against measures. Then
we have

Theorem 3.4 Assume (1.3), (3.27) and (3.28), and let λ ≥ 0. Let µ be
a bounded Radon measure in Ω. Then there exists a unique solution u of
(3.29).

Proof. Let ui, i = 1, 2, be two solutions of (3.29) in the sense of (3.30).
It is known that ui ∈ W

1,r
0 (Ω) for any r < N

N−1 . Moreover, if Hn(x, ξ)
is a sequence of bounded functions such that Hn(x,∇ui) converges to
H(x,∇ui) in L1(Ω), and if µn is a sequence of smooth functions converging
to µ in the weak–∗ topology of measures, then the solutions of

{

λui,n − div(A(x)∇ui,n) = Hn(x,∇ui) + µn in Ω,
ui,n = 0 on ∂Ω

(3.31)

converge to ui in W
1,r
0 (Ω) for any r < N

N−1 . Moreover, one can choose

Hn to be C1 and still satisfying (3.27), and converging to H(x, ξ) locally
uniformly.

Now, since ui,n belong to H1
0 (Ω) ∩ L∞(Ω), we have

∫

Ω
(u1,n − u2,n)[λϕ− div(A∗∇ϕ)] dx

=
∫

Ω ϕ[
∫ 1

0
∂Hn

∂ξ
(x, t∇u1,n + (1 − t)∇u2,n)dt]∇(u1,n − u2,n) dx

+
∫

Ω
[Hn(x,∇u1) −Hn(x,∇u1,n)]ϕdx

−
∫

Ω[Hn(x,∇u2) −Hn(x,∇u2,n)]ϕdx .
(3.32)

Set

pn(x) =

∫ 1

0

∂Hn

∂ξ
(x, t∇u1,n + (1 − t)∇u2,n)dt

and take ϕ = ϕn the solution of
{

λϕn − div(A∗(x)∇ϕn) = −div(pn(x)ϕn) + T1(u1 − u2) in Ω,
ϕn = 0 on ∂Ω.

SinceHn satisfies (3.27), and using that ∇ui,n strongly converge inW 1,r
0 (Ω)

for every r < N
N−1 , we have that Hn(x,∇ui,n) strongly converges to

H(x,∇ui) in L1(Ω), and there exists δ > 0 such that pn strongly con-
verges in LN+δ(Ω)N . By standard regularity results this implies that ϕn

is uniformly bounded (even relatively compact) in L∞(Ω), hence last two
terms in (3.32) converge to zero. Passing to the limit we get

∫

Ω

(u1 − u2)T1(u1 − u2) dx = 0

so that u1 = u2.
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Remark 3.1 Note that the case N = 2 also enters in the previous sit-
uation; indeed, when N = 2 the values N

N−1 and 1 + 2
N

coincide and
N

N−1 = 1 + 2
N

= 2. Thus, in the subcritical case q < 2 the main unique-
ness result reads as in Theorem 3.4, at least for linear operators. For
nonlinear operators and with data in L1(Ω), this case is treated in the
results in [4].

Remark 3.2 Finally, the case q = N
N−1 is a critical one; adapting the

counterexample (1.7) it is still possible to construct a non trivial solution
u of the homogeneous equation

−∆u = |∇u|
N

N−1 , u ∈W
1, N

N−1

0 (Ω)

so that looking for a smaller class where uniqueness holds is still neces-
sary. The radial case suggests that uniqueness holds here for solutions

u such that |∇u| ∈ L
N

N−1 (logL)N−1. Indeed, in order to extend The-
orem 3.2 to q = N

N−1 one should work in the context of Orlicz spaces,
and assumption (3.12) should be suitably modified as well, e.g. by asking
H(x, 0) ∈ L1(logL)N−1.
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