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abstract
In this paper, we investigate the minimality of the map ﬁ from the eu-

clidean unit ball B" to its boundary S"~! for weighted energy functionals of
the type E,; = [g. f(r)|[Vu|[Pdz, where f is a non-negative function. We
prove that in each of the two following cases :

i) p=1 and f is non-decreasing,

i)) p is an integer, p <n — 1 and f = r* with a > 0,

the map ir minimizes Ep,; among the maps in Whr(B"™,S" 1) which coincide
with 27 on 0B". We also study the case where f(r) = r* with —n+2 < a < 0
and prove that ”fc—” does not minimize F, y for a close to —n + 2 and when
n > 6, for a close to 4 — n.

Keys Words : minimizing map, p-harmonic map, p-energy, weighted energy.

0.1 Introduction and statement of results

For n > 3, the map up(z) =% : B" — S"! from the unit ball B" of

R" to its boundary S*~! plays a|c!ucia1 role in the study of certain natural
energy functionals. In particular, since the works of Hildebrandt, Kaul and
Widman ([[[J]), this map is considered as a natural candidate to realize, for
each real number p € [1,n) the minimum of the p-energy functional,

Ey(u) = / IVulPde



among the maps u € W'?(B", S 1) ={u € W' (B",R"; ||u|| =1a.e.} satis-
fying u(x) = x on S*71.

This question was first treated in the case p = 2. Indeed, the minimality of
ug for Fy was etablished by Jager and Kaul ( [If]) in dimension n > 7 and
by Brezis, Coron and Lieb in dimension 3 ( [B]). In [f], Coron and Gulliver
proved the minimality of u, for E, for any integer p € {1,--- ,n — 1} and
any dimension n > 3.

Lin ([I7]) has introduced the use of the elegant null Lagrangian method
(or calibration method) in this topic. Avellaneda and Lin showed the effi-
ciency of this method in [[] where they give a simpler alternative proof to
the Coron-Gulliver result. Note that several results concerning the minimiz-
ing properties of p-harmonic diffeomorphisms were also obtained in this way
in particular by Coron, Helein and El Soufi, Sandier ( [[i], [[2], [7] and [{]).

The case of non-integer p seemed to be rather difficult. It is only ten
years after the Coron-Gulliver article [f], that Hardt, Lin and Wang ([[L0])
succeeded to prove that, for all n > 3, the map up minimizes E, for p €
[n —1,n). Their proof is based on a deep studies of singularities of harmonic
and minimizing maps made in the last two decades. In dimension n > 7,
Wang ([0]) and Hong ([[[4]) have independently proved the minimality of u
for any p > 2 satisfying p +2,/p <n — 2.

In [[3], Hong remarked that the minimality of the p-energy E,, p €
(2,n — 1], is related to the minimization of the following weighted 2-energy :

Ep(u):/ TQ’I’HVUHQd:c

where r = ||z||. Indeed, using Hélder inequality, it is easy to see that if the
map ug minimizes Ep, then it also minimizes E, (see [[J], p.465). Unfortu-
nately, as we will see in Corollary 1.1 below, for many values of p € (2,n), the
map g is not a minimizer of Ep. Therefore, Theorem 6 of ([[J]), asserting
that uy minimizes Ep seems to be not correct and the question of whether
up is a minimizing map of the p-energy E, for non-integer p € (2,n — 1) is
still open !

The aim of this paper is to study the minimizing properties of the map

'We suspect a problem in Theorem 6 p.464 of ] Indeed the author claims that
the quantity G¢?7,,,7¢9171(U,p), which represents a weighted energy of the map v on the
3-dimensional cone Cy in B”, is uniformly proportional to the weighted energy on the
euclidian ball B3. There is no reason for this fact to be true, the orthogonal projection of
Co on to B™ being not homothetic.



up in regard to some weighted energy functionals of the form :

Bpsta) = [ 1)V,

where p € {1,--- ,n— 1} and f:]0,1] — R is a non-negative non-decreasing
continuous function. For p = 1, the map w, minimizes F, ; for a large class
of weights. Indeed, we have the following

Theorem 0.1 Suppose that f is a non-negative differentiable non-decreasing
function. Then the map ug = ﬁ is a minimizer of the energy E ¢, that is,

for any u in WHL(B® S"1) with u(z) = x on S*~t, we have

[ 1) Iulds < [ 10)|Vulds,

Moreover, if f has no critical points in (0,1), then the map ug = ﬁ 15 the
unique minimizer of the energy E ¢, that is, the equality in the last inequality
holds if and only if u = ug.

For p > 2, we restrict ourselves to power functions f(r) = r%,

Theorem 0.2 For any a« > 0 and any integer p € {1,---,n — 1}, the
map ug = ”i—” is a mainimizer of the energy E, .o that is, for any u in
Whp(B® S 1) with u(z) = x on S"~!, we have,

/T“HVuOde:ES/ || Vu|[Pdz .

T

Moreover, if a > 0, then the map ug = P_

ol is the unique minimizer of the
energy E, o, that is the equality in the last inequality holds if and only if
U = Ugp.

The proof of these two theorems is given in section 2. It is based on a con-

struction of an adapted null-Lagrangian. The case of p = 1 can be obtained
passing through more direct ways and will be treated independently.

The case of weights of the form f(r) = %, with a < 0, is treated in section
3. The weighted energy [g, r*||Vuo|*dz of ug = 7oy 18 finite for oo > —n +2.
Hence we consider the family of maps,

Uq(z) = a+ A\(z)(x —a), a€B",

where \,(z) € R is chosen such that u,(z) € S"! (that is u4(z) is the
intersection point of S"~1 with the half-line of origin a passing by ).

We study the energy Es,«(u,) of these maps and deduce the following
theorem.



Theorem 0.3 Suppose that n > 3.
(i) For any a € B",a # 0, there exists a negative real number
ag € (—n+2,0), such that, for any a € (—n + 2, ] we have

/raHVu0|]2d:c>/ 'r’O‘HVuaH2da:

(ii) For any integer n > 6, there exists ag € (4 —n,5 —n) such that, for any
a € (4 —n,ap), there exists a € B™ such thalt,

/r“||Vu0||2dx>/ | Vu,||2dz

Replacing in Theorem 0.3 a by 2 — p, p € (2,n), we obtain the following
corollary :

Corollary 0.1 For any n > 6, there ezists py € (n — 3,n — 2) such that,

for any p € (po,n — 2) the map ug = ﬁ does not minimize the functional
Jgn T2 7P||Vul|*dz among the maps u € WH*(B™,S"™1) satisfying u(z) = x
on S"1.

acknowledgements. The author would express his grateful to Professor Ahmad
El Soufi and Professor Etienne Sandier for their helpful advice.

0.2 Proof of theorems 0.1 and 0.2

Consider an integer p € {1,---,n—1} and f a differentiable, non-negative,
increasing, and non-identically zero map. We can suppose without loss of
generality, that f(1) = 1.

For any subset I = {iy,---,4,} C {1,---,n—1} with 4y <iy... <4, and for
any map,

u=(ug, - u,): B" — "' in C®(B",S"!) with u(z) =z on S",
we consider the n-form :

wr(u) =dxy A ANd(f(r)uy,) N ANd(f(r)ug, ) A -+ Adxy,

Lemma 0.1 We have the identity :

/ Cwr(w) = / “wi(Id) YaeB" where Id(x)=u.



Proof By Stokes theorem, we have :
/ wr(u) = / doy A= ANd(f(r)ug,) A= Ad(f(r)ug,) A Aday,
= [ 0" (f o A AdTT) A
A ) A A dy)

- / (=) doy A A d(ﬂ"’)\“il) A
Snfl
AP ) A A di,

Indeed, on S"!', we have f(r)u;, = z; (r = 1,f(1) = 1 and u(z) = z).
[terating, we get the designed identities. Consider the n-form :

S(u) = Z wr(u)
||=p
By Lemma 0.1, we have :

/]?.nS(U) = Z/anl(u) = Z/ndﬂszﬁ‘Szl‘,

|=p |=p

where |S"!| is the Lebesgue measure of the sphere.

Lemma 0.2 The n-form S(u) is O(n)—equivariant, that is, for any rotation
R in O(n), we have :

S(*RuR)(*Rx) = S(u)(x) Vz € B™

Proof Consider S(u)(x)(eq,...,e,) where (ey,...,e,) is the stantard basis
of R™ and notice that it is equal to (—1)" times the (p + 1) coefficient of
the polynomial P(\) = det(Jac(fu)(z) — Ald) which does not change when
we replace fu by ‘RfuR.

For any z € B", let R € O(n) be such that ‘Ru(z) =e, = (0,...,0,1).
Consider y =' Rz ,v =' RuR, so that :

v(y) = en, d('RuR)(y)(R") C e that is %(y) =0 Vje{l,---,n}

n
Lj



Lemma 0.3 Letay, ..., a, be n non-negative numbers, andp € {1,...,n—1}.

Then :
1 » A P
Z ail . e a'ip S mgnil ( Z aj> .

i1<...<ip

Proof See for instance Hardy coll.[4], theorem 52.

Let I = {iy,---i,} C{1,---,n}. We have :
if i, # n,
wr)(y) = (dzx A---Ad(f(r)oi) A Ad(f(r)oi) A Ade)(y)
= |fM)P(dey A Advyg A+ Advogg A+ Aday) (y).
Indeed, Vj < n—1, d(f(r)v;(y)) = d(f(r))v;(y) + f(r)dvi(y) = f(r)dv;(y)

since v(y) =e,.
If i, = n,

wr(v)(y) = \f('r’)\pfl(dajl/v-#\dvh/\~-~/\df)(y).

Indeed, d(f(r)va)(y) = df (y)va(y) + f (r)dva(y) = df (y) (as dv(y) C ;). The

Hadamard inequality gives :

S =] w)| < 1f)P > [y ]| -~ - [ vy, |

|I|=p 1< <2< <ip<n—1

s [ldvg, | - - lldnll(y)
+ P > [[day] - - [l dvi, |

1<i1<io<...<ip—1<n—1

- ldwi [ - [ldf ()
|f(7“)|p( ST ldw? - fldvs, |-

1< <i2<...<ip<n—1

---||dvip||2---||dxn||2<y>)
FOPIEr Y dmll v

1< << <ip—1<n—1

- [ldvi [[(y)-

IN
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The Hardy inequality gives, after integration and using the fact that ||Vu|| =
Vo,

Cp n—1 Cgfl D P
|S | < W/B"f (r)[[Vul[Pdz

Cho) 1 1
+ f( )P Val[P de. (1)
(-1
Remark : : If f' is positive and if equality holds in (1), then, Vi < n — 1,

yi = 0 and yp, = £75r, which implies that u(z) = £

Proof of the Theorem 1.1 Inequality (1) give
IS" ) <vn—1 f()||Vul|dz + f'(r)dx
B B

Hence :

n 1
f||Vu||dx> ‘ ‘ /f r 1dr

FIVulldz > v = 1|S"‘1|/ Feyn2dr = [ 1) Vo de.
B 0 Bn

To see the uniqueness il sufﬁces to refer to the remark above. It gives that
for any x € B", u(z) = Ta OF u(z) = T AS u(z) = x on the unit sphere,

|z
we have, for any x € B"\{0}, u(z) = Tel-

Proof of the Theorem 1.2. Let o be a positive real number. From in-
equality (1) we have :

p—1
n—1

P cP C
%|S”71| < _——nl / r?||\Vu|Pder + a——— / roP~ | V|| de.
n (n—1)P/2 Jgn (n—1)"% JBr

By Holder inequality, we have, setting g = pL1 :

Cp 1 Cpfl
“ngn-l < n ap p
" IS* < (n— 1) /Bnr |Vul[Pdx

cr-1 1/p 1/q
0 S ([ weonan) ([ erivupras)
(n—1)"2 n n

7C£_1 / rP||Vu|Pdz
(n — 1)1)/2 B

e/ R -l L ( [ Tap”w,‘pdx)”q
(n—1)"7 (n+pla—1)"7 \ /g

7
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Consider the polynomial function :

Cp Cp*1 n—1|1/p P
P(t) — n—1 4 Ta n—1 — |S | t— %‘Snfl‘
(n—1)p/2 (n—1)% (n+pla—=1)"»" n

Setting A = ([g. 'rapHVqu)l/q and B = ([g. r°?||Vuo||?) Y e get P(A) >
0 while

 n+pla—1) an+p(oz—1) n
o) W n—p Cr
— . —n—-Lfr n— _ n _ 1
n+pla — 1)|S | n nC’ﬁj(n+p(a )

= 0.

On the other hand, V¢ > 0, P'(t) > 0. Hence, P is increasing in [0, +00) and
is equal to zero only for B. Necessarily, we have A> B.
Moreover, if &« > 0, A = B implies that equality in the inequality (1) holds.

Referring to the remark above, and as ug(z) = = on the sphere, we have
x

U = Uy = Replacing a by «/p we finish the prove of the theorem.
[ |

0.3 The energy of a natural family of maps.

Let a = (6,---,0) be a point of B” with 0 < § < 1 and consider the map,
() = a+ A(z)(x — a),
where \,(z) > 0 is chosen so that u,(z) € S"~! for any z € B\ {0},

Ay(z) — (alz — a)

[z = a][?

Ao() =

and
Ag(z) = (1= [lal®)]|z = al* + (alz — a)*.



Notice that u,(z) = x as soon as x is on the sphere. If we denote by
{€i}ic(1, ny the standard basis of R", then, Vi < n, we have,

VA, = (az —a)\’
( )

I = al?

dua().€

(z — ale;)
+ |- 2w(\/£ — (alz - a))
P lall*)(z — ale;) + (z — ala)(ale;)
VA|z — alf?
_ lafe) | e
Lo <VA_T’; falﬁ; “>> ( - 27<|fx‘_ﬂif (V. ~ (el —a)

(L — [lall*)(z — ale;) + (x — ala)(ale;)

VA|[z = alf?

+

Let us prove that, for each o € (—n,0), [, 7*||Vus|/dz is finite. Consider
the map :

F: Rt xS —R"
(r,s) —a+rs=az.
Then, we have,
1 n
F(| v wal?dz) = > Hio(s)r™ dr Ads,

72 4
=1



where H; ,(s) is given on the sphere by,
Hio(s) = ((1=al*+ (a5))"/ = (a]s))’
+ {— 2(sles) (1 — [lall® + (al$)*)'"* = (sla))

<L4wm@mwwmmw@_MM42

(1= TalP + (als)?)7

+ 2((1= falP + (lsP) ~ als))

< = 2(sles) (1= Nlall* + (al$)*)* = (s]a))

(1= ol)(sled) + alesla) Y e
Tl L ) e

It is clear that H;,(s) is continuous on S"~!. Therefore, near the point a, as
n > 3, the map ||z||*||Vuq|| is integrable. Furthermore, near the point 0, as
a > —n, this map is also integrable. In conclusion, for any a € (—n,0), the
energy F,a o(u,) is finite.

Proof of Theorem 1.3(i). Since we have

5"(n — 1)

E e (ug) = NI Vuo|*da =
2reln) = [ ol Ve = S

)

the energy Es o (ug) goes to infinity as &« — —n+2. On the other hand, as the
energy Es .o (u,) is continuous in «, there exists a real number ag € (—n+2,0)
such that, Vo, 2—n<a < ay,

/’MMWMMM>/Hmwwmwm
B” B”

Proof of Theorem 1.3(ii). Since a = (6,0, -, 0), we will study the func-
tion,

G(0) = By pa(ug) = / 7| Vi, ||*dz.

Precisely, we will show that for any o« € (5 — n,4 — n), G is two times
differentiable at 6 = 0 with %(0) = 0 and, when « is sufficiently close to

4 —n, 227?(0) < 0. Assertion (ii) of Theorem 1.3 then follows immediately.

10



We have,

2
Hials) = Hip(s) = (W — «951)
1- 92>S' + 5‘19281 2
+ _23i 1—02+9232 —0s) + ( i i s, 8)
(2o —an) g
+ 2(% — 031) (“282‘(% ~bs))

— 6%)s. 02
(1 0 )SZ —|—(5119 S1 _ 5210) s,

V1-02+6%s2

where 6;; = 0 if 7 # j and 0 else.
We notice that H;y(s) is bounded on [0, 1] x S"7'. Indeed, for all x,y,z €
[0, 1], excepting (z,y) = (0,1), we have,

X
V1 =92+ y2a?) ‘\/1—.@ 24 y2a?)| T

Then, for almost all (s,0) € S"~! x [0, 1], we have,

<1 and

(1 — 02)82‘ + 5i10281
V1—0%2+6%52

and the others terms are continuous in [0, 1] x S~

We have,

Eype(ua) = /B ||x||a||wa||2dx:/B la+ rs||*r" S H(6, s)drds

Yo(s) o2
= H(6,s) / ((r +0s1)* + 6*(1 — s7)) " "r"dr| ds,
gn-1 0

where v5(s) = 1/1—62+602s1 —0s; and H(0, s) Z H, 4(s). We notice that

H (0, s) is indefinitely differentiable in (—1/2, 1/2) S” ! Let C,, be a positive
real number so that, V(6,s) € (—1/2,1/2) x S*~!

0H(0,s) D*H (0, s)

<
|H<97 8)‘ — Cn? 88 602

< Cy,

< Ch.

Furthermore, we have,

H(,5) = (n—1) = 2(n—1)810 + ((2n—3)s7— n + 2)6> + 0(6*). (A)

11



Let us set p =r + 0sy, 5(0,s) = /1—02+6%s2 and

F(f,s) = /5(973) (p— 0s1)" (0" + 0°(1 — 57))**dp.
fs1
Notice that p € [—1,3]. Then, G(0) = [y.., H(0,5)F(0,s)ds. Let us set
9(p,0,5) = (p = 051)"(p* + 67(1 — s7))*/*.

Lemma 0.4 The map 0 — G(0) is continuous on (—1/2,1/2) and continu-
ously differentiable on (—1/2,1/2)\{0} for any a > 3—n .

Proof We have, Vs € S" '\ {(+1,0,---,0)},

272
g(p,0,s) < W(ﬁ +6*(1— 7))

at+n—3

(1.2)

Since o > 3 — n we deduce that the map (p,8) — g(p, 0, s) is continuous on
(—1/2,1/2) x [—1,3]. Hence, the map z — [ g(p,0,s)dp is differentiable on
[—1,3] and,

8 z
@/0 g(p,0,s)dp = g(2,0,s).

Furthermore, for any p € [—1, 3], the map 0 — g(p, 0, s) is differentiable and

So(p.0,5) = —(n—3)s1(p—0s)" (0" +6(1 - s))?

+ Slo—0s1)"20(1 = (o + 01— 57))3 .

Let a,b be two real in (0,1/2) with a < b. We have for any |0| € (a,b), for
any s € Snil\{<i1707 o 70)}7

dg

00,5

o < (-3 HaX(1- )8

+ Jald™ 3 (1 — ) (a?(1 — 3%))%*1. (1.3)

This shows that 6 — [ g(p,0,s)dp is differentiable on (—1/2,1/2)\ {0} and

o [~ (7 Oy
%/0' g<p7975)dp—/0 %(ﬂ,e,S)dp

12



Moreover the map (z,6) — [ 5 % (p, 0, s)dpis continuous in [—1, 3] x (—1/2,1/2)\
{0}. Indeed, 0 — %(p,@, s) is clearly contmuous on (—1/2,1/2)\ {0} and
from (1.3) and by Lebesgue Theorem, 0 — [ 5 % (p,0,s)dp is continuous on

(—1/2,1/2)\ {0}. Then, for any € > 0, we will have for any sufficiently small
h, k,

/z+h@( 64k, s)d —/za( 0.5)dp| < ’/ Ok, 5)dp

—/0 @(p,ﬁ, S)dp‘

z+h@
.90

(p,9+k,3)dp'
< e
The map (z,0) — [ g(p.0,s)dp is differentiable on [—1, 3] x (—1/2,1/2)\{0}
and the map 9 — F(6,s) is differentiable in (—1/2,1/2)\ {0} and for any
e (=1/2,1/2)\{0},

oF op
00 (0 3) = 90 (9 3) (5(9, 8)70’ 3) _519(981,0, S)+/9

0(s? — 1)
(1= 02 1 0252)12

B(0,s) 3g

0P 0:8)dp

2 2.2\1/2 n—3
1
(1 — 6% + 6252)/2 — gs))

B(0,s) B(0,s)
+ / 91(p, 0, s)dp + / 92(p, 0, s)dp,
0s1 0s1
where,
91(p,0,5) = —(n = 3)s1(p — 0s1)" " (p* + 0*(1 — 57)) 2
and

(6] _ a_
92(p, 0, 5) = S (p = 0s1)" 220(1 — 1) (0 + 07 (1 — s7))2 7",

Now, the map 6 — F(0,s) is continuous on (—1/2,1/2). Indeed, since the
map 6 — g(p,0,s)dp is continuous on (—1/2,1/2) and from (1.2) 6 +—
Js 9(p.0,s)dp is continuous on (—1/2,1/2). Then, for any ¢ > 0, we have
Vh, k sufficiently small,

z+h z
/ g(p,9+k,s)d,0—/ g(p,&s)dp’ < ’/ (p,0+k,s)d
0 0

/ 9(p,0,s dp’
0

z+h
/ g(p,9+k:,s)dp’

€.

IN
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Then, the map (z,0) — [ g(p,0, s)dp is continuous on [—1,3] x (=1/2,1/2)
and consequently 6 — F(0, s) is continuous on (—1/2,1/2).

Now, we know that 0 — H(6,s)F (6, s) is continuous on (—1/2,1/2) and
differentiable on (—1/2,1/2)\ {0}. Furthermore from (1.2), we have, for any
s € S"I\{(£1,0,---,0)},

|H(0,s)F (6, 5)| < 3.2°710%C,.

a+n 3 ]_

Chpo——— (L5
(R

. 6(s2—1 n—
Consider the map 7 : (6,s) — n(0,s) = \/ﬁ((l—eaﬁ%%)lﬂ—@sl) 3
This map is indefinitely differentiable on (—1/2,1/2) x S*~!. Let B, be a
positive real number so that, V(6,s) € (—1/2,1/2) x S"71,

929, 5)F(0,5)| < 3.2"2°10

oOH
00

19,
10,9 < Bo | 5106, s>‘ <B.

Considering a,b € (0,1/2) with a < b we have, for any 6 € (a,b), for any
s € SN\ {(£1,0,---,0)},

OF

89(0 s)

’H(@, )

< (Bn+3(n—3) 440 (1 — s2)3
+ |3a|.4"—3aa—1(1—s§)%)cn. (1.6)

—1—— and s — (1 — s?)2 are integrable on S"°!,

(1-s7) 2
we deduce that 6§ — G(6) is continuous on (—1/2,1/2) and continuously

differentiable on (—1/2,1/2) \ {0}.
Lemma 0.5 The map 0 — G(0) is differentiable at 0 and “%(0) = 0.

Proof Since for any s € S""'\{(£1,0,---,0)},  — F(6,s) is continuous on
(—1/2,1/2) from (A) we have,

Since the maps s —

oH oOH

1
s — _ _ n—3+a _
50 —(0,s)F(0,s) Y (0,)F(0, s) 2(n 1)51/0 p dp

—2(77,—1)81
n—2+a

From (1.5) and Lebesgue Theorem we have,

OH —2(n —1)s;
0,s)F(0,s)d ———ds=0.
/Svnlae( 8) (’S) SGTO) S§n—1 n—2+a 5 0

14



Moreover, it is clear that,

H(0,s)n(0,s)ds — 0.
Sgn—1 6—0

Let J(m,n) be the integral,

s L
J(m,n) = /W v (\/1 — §2t— 51)" (82 4+ 1)"dt.
51

=
|
@«
=

Notice that J(m,n) converges as 6 goes to 0 if and only if m + 2n < —1.
Consider the change of variables p = t0y/1 — s? if § > 0. If § < 0, then we

set p = —tfy/1 — s? and conclusion will be the same. Hence, we assume that
6 > 0. Then,

:5(973) 14+a o
/ G0 0,9)dp = —(n— (1 - )T 4,9,
0s1

B(0.5) . N
/ 92(p,0,5)dp = a1 —s3)2 J(n—3, 5 1).
%

S1

First case :a > 4 — n.
J(n —4,%) and J(n — 3,5 — 1) go to +oo as # — 0. Furthermore, we
have,

o - \/M*1
J(n—4,§)rg(1—3f)2/31 D pttagy
w/l—s%

« 1 1 2 —1l—«
_)Fn—3+a9”*3+0‘(1_81) i

—4
Tn—4,5

Since "5 may be equal to zero at zero, we write,

1
o n— a_
J(n—3,§—1) = /s1 (\/1—stt—s)" 32+ 1)21dt

_ g2
ls1

o L .
+/¢ G (1= 82— s (2 4+ 1) 5,
1

We have,



Then, if « # 4 —n,

1 1 .
(1-s1)",

J(n—?),g—

1)~
5~ b

0n—4+4qfr—ite

and note that if « =4 —n, J(n —3,% — 1)~y —(1 — $2)"2" In(62(1 — s2)).
Hence, by (A) we have,

(6,s) .
H(0, s)/ g1(p,0,8)dp = —H(0,s)(n—3)s1(1— S%)%en—?ﬂ—a[l
0s1
(n—3)(n—1)
_ 51,
-0 n—3+a«
and

5(078) a+1
H<97 S)/ 92(/)79, S)dp:H<¢9, 8)05(1—3 ) + o 3-‘1—04[ —0.
0

51 6—0

Observe that \)il‘ < 92(1 7y — L. Indeed, s10? < 1— 62+ 6%s3. Tt follows
—2 =/
from (1.1) that

_ 2" n-4
(p—0s1)"* < W(PQ +0%(1—s7)) 2 .
— 57 P}

Recall that p = t04/1 — s2. Since a > 4 — n , we have, for any s € S*1\
{<:l:17 07 e 7())}7
O‘+19n 3+a

B(8,s)
|H<9,s> / 01(p,0.5)dp| < 2C,(n—3p"T'(1 - 7)™

S1

2o 1 ndte
X/\/e(l 2) (t2—|—1) it &
0

< (n—3)2"% 7 (1—s )QHH" 3ta
n— 4+a
\/ 1—s? ]<02 1—3%

—n+4

< c< 3)22<1_ )

Since s — (1 — s%)%+4 is integrable on S"!, by Lebesgue Theorem we have,

6(973) _ _ 1
/ H(0, s)/ g1(p, 0, s)dpds — — (n=3)(n )slds = 0.
sn-1 0

s1 0—0 §n—1 n — 3 + (8%

16



Moreover, we have, for any s € S* "1\ {(£1,0,---,0)}, since a +n — 5 > 0,

a+1

< 2C,|a2"T (1 — )7 gn3te

S1

3(0,s)
HO.5) [ gp0.5)0
0

1 _
2(1—s2 n—5+a
X/\/e(l 2) (tQ_'_l) 5t 2
0

a+1

< Cplaf2"T (1—s2)F gr3te
\/m*1 1 1 e
X E dt
/0 (t*+1) (92(1 - S%))
< cn\a|2"%2g(1 — )75

Then, by Lebesgue Theorem,

B3(0,s)
HO.5) [ 0:p.0.5)dpds —0
§n—1 0 0—0

S1

Second case :3—n < a<4—n.
For the same reasons that when o > 4 — n, we have,

B(0,s) _ _
H<97 8)/ gl<p797 S)dp%_(n 3)(” 1)51-
0

st 90 n—3+a«

Furthermore, as 4 —n > a > 3 —n, Vs € S 1\{(-1,0,---,0),(1,0,---,0)},

a+1

< 2C,(n—3)2" (1 —s2)"2 g3t

3(0,s)
H(6, 5) / 0(p, 0, 5)dp
0

S1

221 ndte
X/\/a(l ?) (t2—|—1) i &

0

< Cp(n—3)2"7 (1—s2) "2 gn3te
\/m_1 n—4+o
X / YoH T dt
0

Cp(n —3)2°7 (1 — 82)"5 gn=3+ 1 nsta

< -1)
n—3+« 0%2(1 — s3)
_ Culn— 3)2772 (1 — s2) 2"
- n—3+a '
Then, by Lebesgue Theorem,
h:) (n—3)(n—1)
- H(0,s) /931 g1(p, 0, s)dpds PR o n-31a s1ds = 0.

17



Moreover, J(n—3, §—1) is finite when 6 — 0 then, as o > 3—n, Furthermore,

B(0,s)
HO.5) [ 0:p.0.5)dpds —0
0 —>

S1

a+1

5(0,5) ~
‘H(@,s)/ 92(p,0,8)dp| < 2C,|al2"7 (1 — s2)°F gn3te
0

S1

Fa— .
></\/9(1 1) (t2—|—1) +2 5dt

0
a+1

< Cyplaf2"T (1—s2)F gr3te
\/a2(1l—s§)71 1 d 1 n
X t
/0 (2 +1) (92(1 - 5?))
n-1 gonta [T 1
< Culaj277 (1 —s7) 2 dt.
0

(t2+1)

Then, by Lebesgue Theorem,

8(0,5)
/ H(Q,S)/ 92(p707 S)dpd8—>0
S§n—1 2] 6—0

S1

Finally, we have

dG’( )

— —

do 00

By Lemma 1.4 we deduce that G is differentiable at 0 and 45(0) = 0.
Lemma 0.6 The map 0 — G(0) is two times differentiable on (—1/2,1/2)\
{0}

Proof We know that the map 6 — 2(6,5)F(0,s) is differentiable on
(_1/271/2)\{0} The maps 0 — 77(078)7 0 — gl(pvea S)a 0 — 92(p7078)
are differentiable on (—1/2,1/2)\{0}. We have,

02 L 022 _ (<2 _ f(s?-1)
@(9 - 1—60%+62s7 — 0(s7 l)m
a9" "~ 1— 02 + 0252

x(y/1— 0%+ 6252 — Os)" 3

(n—3)0(st — 1) ( o(st-1) )

+
V1—024+0252 \ \/1— 02+ 0%s]

(/1= 62 + 0252 — fsy)" 4.

18



%(p, 0.5) = (n=3)(n—4)si(p—0s))"(p* + 0°(1 - 57))*

—an— 3)s1(1— 2)6(p — Bs)" (g + 67(1 — $2))5 .

D2p.0.5) = —aln—3)si(1— 0o — 052"~ + 01— )3
+ala=2)(1 = s1)°0%(p — 051)" (0" + 02(1 — 7)) 77
+a(l—si)(p—0s)" (0" + 0*(1 = s7)) 21,

We set,

gi(p,8,s) = (n—=3)(n —4)si(p — 051)"(p* + 6°(1 — 51))%,
gi2(p,0,5) = —2a(n = 3)s1(1 — s1)0(p — 051)" " (p* + 63(1 — s71)) 1.
g1(p: 0, 5) = ala = 2)(1 = 53)*6%(p — 51)" > (p* + 6°(1 — 57)) 22,
g22(p,0,5) = a(1 = s7)(p — 0s1)" > (p? + 0*(1 = 7)) 2.
Let a,b € (0,1/2) with a < b. We have, Vs € S" 1\ {(£1,0,---,0)},

a « «@

S5 (p.6,5)| < (n=3) (n—4)4" 7" (1=s}) F +la| (n—3)4" " (1=s])E. (L)
992 0 < 9)[4n—342-2(1 2\2
W(pa )| < Ja(a—2)] a® (1 — s7)

+lald"Pa (1 = s])2

+a|(n —3)4"*a* 11— s2)2. (1.8)
Then, for any i € {1,2}, the maps 6 — foz gi(p, 0, s)dp is differentiable on
(0,1/2), and

o [ * 99
80/ 9i(p, 0, s)dp = 9 (p,0,s)dp.

agl

Furthermore, for any i € {1,2}, 0 — Z%(p, 0, ) is continuous on (—1/2,1/2)\

{0}, then, 6 — [ %% (p,0, s)dp, is contmuous on (—1/2,1/2)\{0}. Hence, for
any i € {1 2} and for any € > 0, we have Vh, k two sufficiently small,

9i “ 99
— <
/0 50 (p, 0+ k,s)dp 50 (p, 0, s)dp' < ’/ 20 L(p, 0+, s)dp

“ 0g;

_ 0, d’
0 —(p,0,)dp
Z+h8gi

. 00

(p,9+k:,s)dp’

IN

€.
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This proves that for any i € {1,2}, (2,0) — [ & 9 (.0, s)lp is continuous
n [—1,3] x (=1/2,1/2)\ {0}. Moreover, for any ’L € {1,2} the map p —
gl(p,ﬁ s) is continuous on [—1,3] for any 6 € (—1/2,1/2)\{0}. Then, z —
f;? g:(p, 0, s)dp is differentiable on [—1,3] for any 6 € (—1/2,1/2)\{0} and
52 Jo 9i(p, 0, 5)dp = gi(2,0,5).
Since (z,0) — g¢;(z,0) is continuous on [—1,3] x (—=1/2,1/2)\{0} we finally
deduce that for any i € {1,2}, 6 — 95(1 )gl(p,ﬁ s)dp is differentiable on
(=1/2,1/2)\{0} and,

O(sy — 1
O
609 1—02+0231

X ( — (n—3)s1(y/1 — 62 + 0257 — 0sy)"*

Fab(l— s2)(y/1— 62 + 6282 — 931)"‘3)

T

2

B(6,s) 6291
+ Z/@ T2g (P 0> 5)dp.

S1

i=1

We deduce that 6 — & is differentiable in (—1/2,1/2)\ {0}. Moreover, we
see that the map,
O(si — 1)

V1 — 62+ 6252

0— A0, s)

( ~(n—3)s1(1/1 — 62 + 6252 — Bs,)" "
ab(l— s2)(y/1 — 62 + 0252 — 931)”*3)
is indefinitely differentiable on (—1/2,1/2)xS"~!. Then, by (1.1), (1.2), (1.8), (1.7), (1.3)

and (A), for any a,b € (0,1/2), a < bthere exists constants K7 ,, ab.as K2.n.ab.05 K3 n.ab.0a
so that, for any |0] € (a,b), for any s € S*™1\ {(£1,0,---,0)},

*HF

a5z (0:)

el 3—n
S Kl,n,ab,a<1 — 3%)5 + K2,n,ab,a<1 - 5%) 2+ K3,n,ab,a-

We deduce by Lebesgue Theorem that the map 6 — FE(f) is two times
differentiable on (—1/2,1/2)\{0} and,
d*G p / O*HF
§n—1

S0 = [ S 0,9)ds.

Lemma 0.7 If5—n > «a >4 —n, the map 0 — G(0) is two times differen-
tiable at 0.
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Proof Suppose that « € (4 —n,5 —n). As in Lemma 1.5, we can see that,

/Snl 88—1;[(9, s)n(6, s)ds P 0,
I A
/Sn1 %—5(9, s) /:1(078) ga(p, 0, s)dpﬁ(),
/S A (0,s>%(e,s>ds o | (s - s = =)

and

H(0,5)\(0,s)ds 9—0>O.

§n—1

As in Lemma 1.5, we set p = /1 — s36t if 6 > 0. Hence,

B(6,s) w o
/ﬁ gui(p, 0, s)dp ==(n—3ﬂn—4ﬁﬂl—Sﬁjrgh“ﬂJOl—5f§)
0s1

B(6s) e o
| aalp.0.5)dp = ~2a(n-3si(1- s E 0w - 4.5 -1
0s1

B(6s) e o
| alp0.9dp = ala-2)(1- e Hsm-55 - 2)
0s1

B(6s) w o
[ a9 = ai- o35 )
0s1

Since a € (4 —n,5 — n), the integrals J(n —5,5) and J(n — 3,5 — 1) are
infinite and we have,

ey poa B
g)N(I_S%) 2 0 +4’ J(n_gjﬁ_l)N(l—S%) 2 0 i

J(n—5
(n=53)5 n—4+a 2 0 n—4+a

And the integrals
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J(n—4,5 —1) and J(n — 3,5 — 2) are finite. Then,

12

[ EEE N a(1-5)
0 ’ 0

0,s)d 0,s)d .
gu(p, ,S)Pm n—4+a 922(p, ,S)Pe—Hgn_4+a

S1 S1

6(973) 5(9,8)
/ 912<p7‘97 S)dp%(x / g21<p797 S)dpﬁo

S1 Os1
Moreover, we can see that, for any 7,5 € {1,2}, for any (0, s) € (—1/2,1/2) x
SPIN\{(&1,0,---,0)},
,3(98) 5—n a+1
H(#, S)/ 9i5(p,0,8)dp < Cpa(l — 5%>T + Dna(l = S§>T
0s1
where C,, , and D, , are two constants independent of 6. By Lebesgue The-
orem we deduce that,
O*F —(n —1)?
H i N ) Qn—1
g1 (97 S) 002 (97 S)dS E)) n ‘S |
n=3)(n—4)+a(n—-1)
n(n —4+ «)

By Lemmas 1.1,1.2,1.3, § — G(#) € C'((—1/2,1/2),R) and is two times
differentiable on (—1/2,1/2)\{0}. Furthermore, when o € (4 — n,5 — n),
as the limit of %(0) exists as § — 0 , we have § — G(0) is two times
differentiable on (—1/2,1/2).

Proof of ii). Assume that « € (4 — n,5 —n), by Lemma 1.1, 1.2, 1.3, 1.4,
we have,

+(n—1) IS™1.

1d°G 5
Furthermore we have,
d*G —n?+4n—3 . 2(n —3)(n—1) ,_
TGy = o tdn=diguy 228D guy
do 2n(n — 2+ «a) n(n — 3+ «)
—(n —1)2 — — —
n n(n —4+ «)
We have, for any n > 6.
(n—3)(n—4)+a(n—1) — —2(n—4) <0.
Then,
_ _ _ 2
(n—3)(n—4)+a(n—-1) e and&(O) .

n(n —4+ «) a—s4-n d20 7 asa-n
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Hence, there is ag such that, for any o € (4 — n,ap), G(0) < G(0) for 6
sufficiently small, that is,

G(0) = Egpa(uy) = / T“||Vua||2dx < G(0) = / TO‘HVuOHde. [ |
n B’VL

Références

[1] M. Avellaneda, F.-H. Lin, Null-Lagrangians and minimizing [ [Vul|? , C. R.
Acad. Sci. Paris, 306(1988), 355-358.

[2] H. Brezis, J.-M. Coron, E.-H. Lieb, Harmonic Maps with Defects, Commun.
Math. Phys., 107 (1986), 649-705.

[3] B. Chen, Singularities of p-harmonic mappings, Thesis, University of Min-
nesota, (1989).

[4] J.-M. Coron, F. Helein, Harmonic diffeomorphisms, minimizing harmonic maps
and rotational symmetry, Compositio Math., 69 (1989), 175-228.

[5] J.-M. Coron, R. Gulliver, Minimizing p-harmonic maps into spheres, J. reine
angew. Math., 401 (1989), 82-100.

[6] A. El Soufi, A. Jeune, Indice de Morse des applications p-harmoniques, Ann.
Inst. Henri Poincaré, 13(1996), 229-250.

[7] A. El Soufi, E. Sandier, p-harmonic diffeomorphisms, Calc. of Var., 6(1998),
161-169.

[8] B. Chen, R. Hardt, Prescribing singularities for p-harmonic mappings, Indiana
University Math. J., 44(1995), 575-601. bibitemHL1R. Hardt, F.-H. Lin, Mapping
minimizing the LP norm of the gradient, Comm. P.A.M., 15(1987), 555-588.

[9] R. Hardt, F.-H. Lin, Singularities for p-energy minimizing unit vectorfields on
planar domains , Calculus of Variations and Partial Differential Equations,
3(1995), 311-341.

[10] R. Hardt, F.-H. Lin, C.-Y. Wang, The p-energy minimality of ﬁ, Communi-
cations in analysis and geometry, 6(1998), 141-152.

[11] R. Hardt, F.-H. Lin, C.-Y. Wang, Singularities of p-Energy Minimizing Maps,
, Comm. P.A.M., 50(1997), 399-447.

[12] F. Helein, Harmonic diffeomorphisms between an open subset of R? and a
Riemannian manifold, C. R. Acad. Sci. Paris, 308(1989), 237-240.

[13] S. Hildebrandt, H. Kaul, K.-O. Wildman, An existence theorem for harmonic
mappings of Riemannian manifold, Acta Math., 138(1977), 1-16.

[14] M.-C. Hong,, On the Jiger-Kaul theorem concerning harmonic maps, Ann.
Inst. Poincaré, Analyse non-linéaire, 17 (2000), 35-46.

[15] M.-C. Hong, On the minimality of the p-harmonic map ﬁ : B?” — S 1
Calc. Var., 13 (2001), 459-468.

23



[16] W. Jager, H. Kaul, Rotationally symmetric harmonic maps from a ball into a
sphere and the regularity problem for weak solutions of elliptic systems, J. Reine
Angew. Math., 343(1983), 146-161.

[17] F-H. Lin, Une remarque sur lapplication z/|z||, C.R. Acad. Sci. Paris
305(1987), 529-531.

[18] R. Shoen, K. Uhlenbeck, A regularity theory for harmonic maps J. Differential
Geom.. 12(1982), 307-335.

[19] R. Shoen, K. Uhlenbeck, Boundary theory and the Dirichlet problem for har-
monic maps, J. Differential Geom., 18(1983), 253-268.

[20] C.Wang, Minimality and perturbation of singularities for certain p-
harmonic maps., Indania Univ. Math.J., 47(1998), 725-740.

24



