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EXTREMAL G-INVARIANT EIGENVALUES OF THE

LAPLACIAN OF G-INVARIANT METRICS

BRUNO COLBOIS, EMILY B. DRYDEN, AND AHMAD EL SOUFI

Abstract. The study of extremal properties of the spectrum of-
ten involves restricting the metrics under consideration. Motivated
by the work of Abreu and Freitas in the case of the sphere S2 en-
dowed with S1-invariant metrics, we consider the subsequence λG

k

of the spectrum of a Riemannian manifold M which corresponds
to metrics and functions invariant under the action of a compact
Lie group G. If G has dimension at least 1, we show that the
functional λ

G

k
admits no extremal metric under volume-preserving

G-invariant deformations. If, moreover, M has dimension at least
three, then the functional λG

k
is unbounded when restricted to any

conformal class of G-invariant metrics of fixed volume. As a special
case of this, we can consider the standard O(n)-action on Sn; how-
ever, if we also require the metric to be induced by an embedding
of Sn in R

n+1, we get an optimal upper bound on λG

k
.

Mathematics Subject Classification (2000): 58J50, 58E11, 35P15
Keywords: Laplacian, eigenvalue, invariant, extremal metric, upper

bound

1. Introduction

1.1. Historical background and motivation. Let M be a compact,
connected manifold of dimension n ≥ 2. To every Riemannian metric
g on M , we can associate the Laplace-Beltrami operator ∆g and its
spectrum

Spec(g) = {0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ · · · ≤ λk(g) ≤ · · · }.

Consider the kth eigenvalue as a functional

g 7→ λk(g)

on the space of Riemannian metrics of fixed volume onM ; alternatively,
consider the normalized functional

g 7→ λk(g)Vol(g)2/n

on the space of all Riemannian metrics on M . Of course, these two
functionals have the same extremal metrics.

1
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Historically, J. Hersch [15] is the first to have obtained a result on
these functionals; he showed that for any Riemannian metric g on the
sphere S2, we have the relation

λ1(g)Vol(g) ≤ 8π

with 8π = λ1(gcan)Vol(gcan), where gcan denotes the constant curvature
metric on the sphere. Moreover, the case of equality characterizes the
constant curvature metric.

Following this, P. Yang and S.-T. Yau [22] showed (see also [10]) that
for an orientable surface of genus γ, we have

λ1(g)Vol(g) ≤ 8π

[

γ + 3

2

]

,

where [·] denotes the floor function. This result was generalized to the
nonorientable case by P. Li and Yau [18], then to all k by N. Korevaar
in [17]: for a compact orientable surface M of genus γ, there exists a
universal constant C > 0 such that for every integer k ≥ 1 and every
Riemannian metric g on M , we have

λk(g)Vol(g) ≤ C(γ + 1)k.

In general, the bound is not optimal, and finding such optimal bounds
is very difficult (see [19] for the case of the torus and [16, 9] for that of
the Klein bottle).

In dimensions three and higher, the situation differs significantly
from the surface case. In fact, the first author and J. Dodziuk showed
in [5] that, for every compact manifold M of dimension n ≥ 3, we have

supλ1(g)Vol(g)2/n = ∞,

where the supremum is taken over all Riemannian metrics on M .
To study extremal properties of the spectrum, it is therefore reason-

able to impose additional constraints. For example, we can restrict to
a conformal class of metrics [11, 17], to projective Kähler metrics [4],
to metrics which preserve a symplectic or Kähler structure [20], or to
metrics invariant under the action of a Lie group [1, 14]. We will focus
on the last restriction; this can be examined in the context of folia-
tions and the basic Laplacian (e.g., [21]), although we take a different
approach.

M. Abreu and P. Freitas [1] (see also [14]) examined the case of
the sphere S2 endowed with S1-invariant metrics. They considered
the sequence of eigenvalues of the Laplacian on S1-invariant functions,
{λinv

k (g), k ∈ N}. Under such constraints they showed that the func-
tional λinv

1 (g)Vol(g) is unbounded, but becomes bounded upon restrict-
ing to the class of metrics arising from embeddings of S2 in R

3 (i.e.,
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surfaces of revolution diffeomorphic to S2). Moreover, the supremum
of the functional λinv

k (g)Vol(g) is attained by the union of two disks of
equal area, a singular surface.

This work inspires us to ask:

• What remains of these results when we replace S1 by a general
compact Lie group G and S2 by a general compact differentiable
G-manifold?

• In this general setting, do there exist extremal metrics for the
functional λinv

k (g)Vol(g)?

Let G be a compact Lie group acting differentiably and effectively
on a compact Riemannian manifold (M, g). We assume that the action
of G is not transitive on M and denote by

SpecG(g) = {0 = λG
0 (g) < λG

1 (g) ≤ λG
2 (g) ≤ · · · ≤ λG

k (g) ≤ · · · }

the subsequence of Spec(g) composed of eigenvalues of the Laplacian
∆g acting on G-invariant functions on M . Of course, for every k ∈ N,
there exists an integer m(k, g) ≥ k such that

λG
k (g) = λm(k,g)(g).

An interesting question would also be to study the behavior of m(k, g)
and in particular that of m(1, g), which corresponds to the first energy
level in which we can find eigenstates invariant by G.

1.2. Nonexistence of G-invariant extremal metrics. Despite the
non-differentiability of the functional g 7→ λG

k (g) with respect to metric
deformations, a natural notion of extremal (or critical) metric can be
introduced. Indeed, perturbation theory enables us to prove that, for
any analytic G-invariant deformation gε of a G-invariant metric g (e.g.,
gε = g + εh, where h is a G-invariant symmetric tensor), the function
ε 7→ λG

k (gε) always admits left and right derivatives at ε = 0 (see
[12, 13]). The metric g is then said to be extremal for the functional
λG

k if, for any volume preserving G-invariant deformation gε of g, one
has

d

dε
λG

k (gε)
∣

∣

∣

ε=0+
×

d

dε
λG

k (gε)
∣

∣

∣

ε=0−
≤ 0;

this means that either

λG
k (gε) ≤ λG

k (g) + o(ε) as ε→ 0,

or
λG

k (gε) ≥ λG
k (g) + o(ε) as ε→ 0.

In particular, if a metric g is a local minimizer or a local maximizer
of λG

k over the set of G-invariant metrics of fixed volume, then g is
extremal in the sense of this definition.
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Notice that a metric g is extremal for λG
k under volume preserving

G-invariant deformations if and only if it is extremal for λG
k Vol2/n under

general G-invariant deformations.

Theorem 1.1. Assume that the dimension of the Lie group G is at

least 1. Then, for all k ≥ 1, the functional λG
k admits no extremal

metric under volume preserving G-invariant deformations.

Consequently, there exist neither local minimizers nor local maxi-
mizers for the functional λG

k over the set of G-invariant metrics of fixed
volume.

1.3. Large G-invariant eigenvalues in a conformal class. Accord-
ing to Theorem 1.1, the supremum of λG

k (g) over the set RG(M) of
G-invariant metrics of volume 1 is either infinite, or achieved at the
“boundary” of RG(M) by a singular configuration. The following the-
orem tells us that when the group G is of dimension at least 1, only the
first alternative may occur. Moreover, in contrast to the functional λk,
which is bounded over each conformal class of metrics (see [11, 17]),
the functional λG

k remains unbounded when restricted to any conformal
class of metrics in RG(M).

Theorem 1.2. Let (M, g0) be a compact Riemannian manifold of di-

mension n ≥ 3 and G a compact Lie group of dimension at least 1

acting effectively and nontransitively on (M, g0) by isometries. Then

sup{λG
1 (g)Vol(g)2/n} = ∞,

where the supremum is taken over all metrics g which are G-invariant

and conformal to g0.

Remark 1.3. As a particular case of Theorem 1.2, one can consider

metrics on the sphere Sn which are invariant under the standard O(n)-
action fixing the north and south poles. As we will see in Theorem 1.7,

the situation changes completely when we add the constraint that the

metrics are induced by embeddings of Sn into R
n+1.

As alluded to above, a result of Korevaar [17] guarantees the exis-
tence of a constant Cn([g0]) depending only on the dimension n and
the conformal class [g0] of g0, so that, for any g conformal to g0 and
any positive integer k,

λk(g)V ol(g)
2/n ≤ Cn([g0])k

2/n.

Together with Theorem 1.2 this gives the following
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Corollary 1.4. Let (M, g0) and G be as in Theorem 1.2. For any

positive integer N , there exists a G-invariant metric gN conformal to

g0 such that none of the first N eigenfunctions of gN is G-invariant.

In other words, it is possible to conformally deform a metric g0 among
G-invariant metrics so that the integer m(1, g) defined by λG

1 (g) =
λm(1,g) is as large as we want.

Notice that in Theorem 1.2, the assumption on the dimension of G
is necessary. Indeed, if G is a finite group acting without fixed points
on M , then any G-invariant metric g on M induces a metric ḡ on the
manifold M/G so that SpecG(g) = Spec(ḡ). Korevaar’s result then
tells us that λG

k (g)V ol(g)2/n is uniformly bounded over any conformal
class of G-invariant metrics on M .

Nevertheless, without the restriction to a conformal class, we still
have the following

Theorem 1.5. Let M be a compact manifold of dimension at least

three and G < Diff(M) a finite group. Then

sup{λG
1 (g)V ol(g)2/n} = ∞

where the supremum is taken over the set of all G-invariant Riemann-

ian metrics on M .

1.4. Hypersurfaces of revolution. We now return to the question
of large O(n)-invariant eigenvalues on the sphere Sn (cf. Remark 1.3),
with the additional restriction that the metrics be embedded. That is,
let Sn be embedded as a hypersurface of revolution in (Rn+1, ψ), where
ψ is a Riemannian metric given in Fermi coordinates

R × R
+ × Sn−1 → R

n+1; (ρ, r, q) → (ρ, rq)

by
ψ(ρ, r, q) = G2(r)dρ2 + dr2 + F 2(r)g0,

where g0 denotes the canonical metric on Sn−1.

Example 1.6. (1) Euclidean space R
n+1 is obtained with G(r) =

1, F (r) = r.
(2) Hyperbolic space H

n+1 is obtained with G(r) = cosh r, F (r) =
sinh r.

We will assume that F and G are C∞ functions and that F is in-
creasing. This last condition is a weak one, and is clearly satisfied in
the standard cases given above. We have an isometric action of the
group O(n) on (Rn+1, ψ) given by

(A, (ρ, r, q)) → (ρ, r, Aq)
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where A ∈ O(n) and q ∈ Sn−1. A hypersurface in (Rn+1, ψ) which
is invariant under this O(n) action is said to be a “hypersurface of
revolution.”

Theorem 1.7. Let g be an O(n)-invariant metric of volume 1 on Sn

such that (Sn, g) is isometrically embedded as a hypersurface of revolu-

tion in (Rn+1, ψ). For all k,

λ
O(n)
k (g) < λ

O(n)
k (Dn)V ol(Dn)2/n

where Dn denotes the n-dimensional Euclidean ball endowed with the

metric dr2+F 2(r)g0, of volume 1
2
, and λ

O(n)
k (Dn) denotes the kth O(n)-

invariant eigenvalue in the Dirichlet or Neumann spectrum of Dn.

Moreover, there exists a sequence gi of O(n)-invariant metrics on

Sn ⊂ (Rn+1, ψ) with

λ
O(n)
k (gi)V ol(gi)

2/n → λ
O(n)
k (Dn)V ol(Dn)2/n,

but the value λ
O(n)
k (Dn)V ol(Dn)2/n is not attained by a smooth metric

on Sn.

The assumption that the hypersurfaces of revolution considered in
this last theorem are diffeomorphic to a sphere is crucial. Indeed, in
the last section, we prove that the first S1-invariant eigenvalue of tori
of revolution of area 1 in R

3 is not bounded above.

2. Extremal G-invariant metrics: Proof of Theorem 1.1

Let g be a G-invariant Riemannian metric on a compact manifold
M and let k be a positive integer. We denote by m the multiplicity of
λG

k (g), i.e. the number of G-invariant eigenvalues in specG(g) that are
equal to λG

k (g). For any G-invariant analytic deformation gε of g, one
can apply general perturbation theory of unbounded self-adjoint oper-
ators to the one-parameter family of operators ∆gε

; this gives the exis-
tence of a family of m G-invariant eigenfunctions u1,ε, . . . , um,ε associ-
ated to a family ofm (unordered) G-invariant eigenvalues Λ1,ε, . . . ,Λm,ε

of (M, gε), all depending analytically on ε in some interval (−δ, δ), and
satisfying

• Λ1,0 = · · · = Λm,0 = λG
k (g),

• ∀ε ∈ (−δ, δ), the m functions u1,ε, . . . , um,ε are orthonormal in
L2(M, gε).
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From this, one can easily deduce the existence of two integers i ≤ m
and j ≤ m such that

λG
k (gε) =







Λi(ε) if ε ∈ (−α, 0)

Λj(ε) if ε ∈ (0, α),

for some α > 0. Hence, the function ε 7→ λG
k (gε) admits left-sided and

right-sided derivatives at ε = 0 with

d

dε
λG

k (gε)
∣

∣

∣

ε=0−
= Λ′

i(0)

and
d

dε
λG

k (gε)
∣

∣

∣

ε=0+
= Λ′

j(0).

Following [3, 12], if h = d
dε
gε

∣

∣

∣

ε=0
is the variation tensor, then, for all

i ≤ m,

Λ′

i(0) = −

∫

M

〈q(ui,0), h〉vg,

with q(u) = du⊗ du+ 1
4
∆g(u

2)g.
Let us now assume that the metric g is extremal for λG

k under volume-
preserving G-invariant deformations. This implies that, for any sym-
metric 2-tensor h satisfying

∫

M
tracegh vg = 0, the quadratic form

Qh :=
∫

M
〈q(u), h〉vg is indefinite on the G-invariant eigenspace associ-

ated with λG
k (g).

Using the same arguments as in the proof of Theorem 1.1 of [12], one
can show that this last condition implies the existence of a finite family
f1, . . . , fp of G-invariant eigenfunctions associated with the eigenvalue
λG

k (g) such that
p

∑

i=1

dfi ⊗ dfi = g.

Since G is of dimension at least one and f1, . . . , fp are constant on the
orbits,

∑p
i=1 dfi⊗dfi cannot be a Riemannian metric on M , which gives

the contradiction.

3. Large G-invariant eigenvalues: Proofs of Theorems 1.2

and 1.5

A smooth action of a compact Lie group G on a smooth manifold
M is well understood. We recall a few basic facts; for more details,
see [2, Ch. I]. In this setting the orbits of G are submanifolds of M ,
and M has a special form in a neighborhood of an orbit. Let x ∈ M ;
the slice theorem [2, Thm. 2.1.1] gives the existence of an equivariant
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diffeomorphism from an open neighborhood of the orbit of x, G · x, to
a certain open neighborhood of G/Gx (Gx denotes the stabilizer of x
under the action of G). Furthermore, G ·x is mapped to G/Gx. Define
Vx = Tx(M)/Tx(G · x); then our open neighborhood of G/Gx is an
equivariant open neighborhood of the zero section in G×Gx

Vx.
When the quotient M/G is connected, the union of the principal

orbits is a dense open subset in M [2, Prop. 2.2.4]. Fix a point p
in a principal orbit and let U be an open set in Vp. By shrinking
U if necessary, we can identify U with an open set of R

d. Locally,
then, an open neighborhood of G · p in M looks like U × G/Gp. Our
assumptions about the dimension of G and the nontransitivity of the
action of G imply that the dimension d of Vp as well as the dimension
of the principal orbit G · p are between 1 and n − 1, and this is what
we will use in the proof.

3.1. Proof of Theorem 1.2. We will use the local description of M
given above in the following proof, which we complete in two steps. We
begin by assuming that the metric on M can be expressed locally as a
product metric and complete the proof in this case; we then show how
to remove our additional assumption.
Step 1. Let p be a point in a principal orbit as above. In a neighbor-
hood W of p, we suppose that (M, g0) is G-equivariantly isometric to
the Riemannian product U× (G/Gp, h). Here U is endowed with a Eu-
clidean metric and G/Gp with a homogeneous metric h. Without loss
of generality (up to homothety), we can assume that V ol(G/Gp, h) = 1.

The idea is to conformally deform this inital metric g0 so that it
approaches the product Bδ × (G/Gp,

1
δ2h). Here Bδ is a Euclidean

ball whose volume tends to zero with δ in such a way that V ol(Bδ ×
(G/Gp,

1
δ2h)) = 1. We want to show that the G-invariant spectrum

converges to the spectrum of the Euclidean ball Bδ with Neumann
boundary conditions, which will imply the existence of arbitrarily large
invariant first eigenvalues. We begin by constructing the appropriate
metric on U ×G/Gp, and subsequently extend it to all of M .

Fix a point q ∈ U . For δ > 0 sufficiently small, there exists ρ = ρ(δ)
such that the Euclidean ball B(q, ρ) of center q and radius ρ is contained
in U and has volume δn. Let Wδ ⊂W be the the open set of M which
corresponds to B(q, ρ) × (G/Gp, h) through the local isometry above.
Thus V ol(Wδ, g0) = δn and, then,

V ol(Wδ,
1

δ2
g0) = 1.
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For fixed δ, we multiply the metric 1
δ2 g0 by ǫ on the complement of

Wδ in M , denoting the resulting (piecewise defined) metric on M by
gδ,ǫ. We let ǫ tend to zero; the spectrum of (M, gδ,ǫ) converges to that
of the manifold with boundary (Wδ,

1
δ2 g0) with Neumann boundary

conditions [7, Thm. III.1]. The metric gδ,ǫ is of course not smooth, but
we can make it smooth in a conformal fashion as in the proof of [7,
Thm. III.1].

These conformal transformations do not affect the fact that G acts
isometrically on (M, gδ,ǫ). In particular, we have a decomposition of the
eigenfunctions ofM into the G-invariant functions and their orthogonal
complement with respect to the H1-norm. This decomposition passes
to the limit in the theorem of Y. Colin de Verdière [7]. Thus λG

1 (M, gδ,ǫ)
converges to the first nonzero G-invariant eigenvalue of the Neumann
problem on (Wδ,

1
δ2 g0), i.e., to the first eigenvalue of the d-dimensional

ball
(

B(q, ρ), 1
δ2 geuc

)

, where geuc is the Euclidean metric, whose volume

δn−d tends to zero with δ (recall that n > d). This eigenvalue can be
made arbitrarily large, concluding the argument in the case of an initial
local product metric.
Step 2. A classical argument allows us to remove the hypothesis that
g0 can be expressed locally as a product. Using the setup given at the
beginning of this section, we have an equivariant diffeomorphism from
an open neighborhood W of a point p in a principal orbit of M to U ×
G/Gp. Endowed with the restriction of g0, W is thus quasi-isometric
to the Riemannian product U × (G/Gp, h), where U is endowed with a
Euclidean metric and G/Gp with a homogeneous metric h. The ratio
of quasi-isometry may be very bad, but this does not matter. We
know (see [6, p. 343]) that if two metrics are quasi-isometric, the same
conformal transformation applied to both preserves the ratio of quasi-
isometry; furthermore, the spectra of two quasi-isometric metrics are
controlled by the ratio of quasi-isometry. Hence for a fixed ratio of
quasi-isometry, the conformal transformations in step 1 allow λG

1 to
become arbitrarily large.

3.2. Proof of Theorem 1.5. We apply the construction of the first
author and Dodziuk [5], making it equivariant with respect to the ac-
tion of G. That is, let p be a point in M/G that is not singular.
Following [5], we glue a sphere with a large first eigenvalue in a neigh-
borhood of p and construct an associated family of metrics. We then
lift the family of metrics to M and denote it by gǫ; the spectrum of
(M, gǫ) converges to the spectrum of a disjoint union of |G| spheres.
The multiplicity of 0 is thus |G|. However, the eigenvalues associated to
G-invariant functions converge to eigenvalues associated to G-invariant
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eigenfunctions in the limit. But the onlyG-invariant eigenfunction with
eigenvalue 0 in the limit is the constant function. Thus the first nonzero
eigenvalue for G-invariant eigenfunctions corresponds to nonzero eigen-
values of the limit spheres and hence becomes arbitrarily large.

Remark 3.1. This suggests the following natural question: For G a

discrete group, can we construct G-invariant metrics such that the func-

tional λ1V ol
2/n becomes arbitrarily large? Note that we are no longer

requiring the eigenfunctions to be G-invariant. The natural generaliza-

tion of [5] does not extend to this case.

4. Explicit bounds for embedded spheres: Proof of

Theorem 1.7

4.1. Geometry of the problem. Before going into the details of the
proof of Theorem 1.7, we present the geometry of the problem. We
are concerned with spheres that are embedded as hypersurfaces of rev-
olution in (Rn+1, ψ). Such a sphere of revolution Sn →֒ R

n+1 can be
described as the result of an O(n)-action on a curve c. A parametriza-
tion of c is given by

c(t) = (ρ(t), r(t), q0); 0 < t < L,

and we suppose that c is parametrized by arclength, i.e.

(1) ‖c′(t)‖2 = G2(r(t))ρ′2(t) + r′2(t) = 1.

This implies that

|r′(t)| =
√

1 −G2(r(t))ρ′2(t) ≤ 1,

and thus

−1 ≤ r′(t) ≤ 1.

Since our sphere is closed, we also have r(0) = r(L) = 0, which implies

r(t) ≤ t; r(t) ≤ L− t.

Finally, the induced metric on Sn is given by

g(t) = dt2 + F 2(r(t))g0,

and the volume form by

dt ∧ F n−1(r(t))ω0,

where ω0 is the standard volume form on Sn−1.



EXTREMAL G-INVARIANT EIGENVALUES 11

4.2. Proof of Theorem 1.7. We introduce a new parametrization

(2) α : [0, 1] → [0, L]; s = α(t)

which is adapted to our problem; in particular, our parametrization is
such that

(3) ωn−1

∫ α(t)

0

F n−1(r(s))ds = t, 0 ≤ t ≤ 1,

where ωn−1 denotes the volume of the unit sphere Sn−1. The associated
Riemannian metric is given by

g(r(t)) = α′2(t)dt2 + F 2(r(α(t)))g0,

and the volume form is, by construction,

ω(t, q) =
1

ωn−1
dt ∧ ω0(q).

Note that taking the derivative of both sides of (3) gives

(4) ωn−1α
′(t)F n−1(r(α(t))) = 1.

To prove our upper bounds on invariant eigenvalues, we use the
Rayleigh quotient. A function h which is O(n)-invariant depends only
on the parameter t, and its Rayleigh quotient is given by

R(h) =

∫ 1

0
h′(t)2 1

α′(t)2
dt

∫ 1

0
h(t)2dt

= ω2
n−1

∫ 1

0
h′(t)2F 2(n−1)(r(α(t)))dt

∫ 1

0
h(t)2dt

= ω2
n−1

∫ 1/2

0
h′(t)2F 2(n−1)(r(α(t)))dt+

∫ 1/2

0
h′(1 − t)2F 2(n−1)(r(α(1 − t)))dt

∫ 1

0
h(t)2dt

,

where the second equality follows from (4). Recall that F is an increas-
ing function and that r(t) ≤ t, that is, r(α(t)) ≤ α(t) and r(α(1−t)) ≤
α(1 − t); these observations imply

R(h) ≤ ω2
n−1

∫ 1/2

0
h′(t)2F 2(n−1)(α(t))dt+

∫ 1/2

0
h′(1 − t)2F 2(n−1)(α(1 − t))dt

∫ 1

0
h(t)2dt

= ω2
n−1

∫ 1

0
h′(t)2F 2(n−1)(α(t))dt

∫ 1

0
h(t)2dt

.

This last expression is familiar to us. In particular, it corresponds
to the case r(t) = t, which by equation (1) implies ρ′(t) = 0. We can,
without loss of generality, set ρ(t) = 0. It is not hard to show that this
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situation corresponds exactly to the case of two balls, each of volume 1
2

and with metric dr2+F 2(r)g0, glued at their boundaries. In particular,
note that with r(t) = t equation (3) becomes

ωn−1

∫ α(t)

0

F n−1(s)ds = t, 0 ≤ t ≤ 1;

the left-hand side of this expression denotes the volume of a portion of
an n-dimensional sphere whose boundary is a round (n−1)-dimensional
sphere of radius F (α(t)). Since orthogonal projection from R

n+1 to R
n

restricted to the hypersurface decreases distance and volume, and the
volume of the unit ball in R

n is ωn−1

n
, we deduce that for 0 ≤ t ≤ 1

2
,

ωn−1

n
F n(α(t)) ≤ ωn−1

∫ α(t)

0

F n−1(s)ds = t

which implies

F (α(t)) ≤ t1/n

(

n

ωn−1

)1/n

.

The same reasoning applies to 1
2
≤ t ≤ 1; substituting these bounds

into the numerator of the Rayleigh quotient above, we see that the
quotient is bounded by the expression corresponding to the case of
two glued balls as claimed. Thus, the eigenvalues (in L2([0, 1])) of

the quadratic form
∫ 1

0
h′(t)2 1

α′(t)2
dt are bounded above by those of the

quadratic form obtained by gluing two balls and restricting to radial
functions. By symmetry, these latter eigenvalues are those which cor-
respond to the radial eigenfunctions of the ball with either Dirichlet
or Neumann boundary conditions. Note that to have equality between
the two quadratic forms, we must have r(t) = t for all t ∈ [0, 1]; this
can never occur for a smooth metric.

5. S1-invariant eigenvalues of surfaces

On closed connected surfaces there is a classification of all possible
S1-actions (see [2, Chap. I, §3.1]). In particular, to have a nontrivial
S1-action the surface must be a sphere, a torus, a projective plane, or
a Klein bottle; note that these last two cannot be embedded in R

3.
Thus to complete our study of eigenvalue behavior for S1-actions on
embedded surfaces we must consider the torus. In contrast to the case
of the sphere, the functional λS1

1 (g)V ol(g) is unbounded for the torus.

Proposition 5.1. We have

sup{λS1

1 (g)V ol(g)} = ∞
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where the supremum is taken over all S1-invariant metrics g on the

torus T 2 such that (T 2, g) can be isometrically embedded as a surface

of revolution in R
3.

Remark 5.2. This result shows that the surface being embedded in

R
3 and the metrics being invariant under an action with codimension

one are not sufficient conditions for the functional λS1

1 (g)V ol(g) to be

bounded.

Proof. We exhibit a family of S1-invariant embeddings of T 2 in R
3 with

area tending to infinity and with first invariant eigenvalue uniformly
bounded below by a positive constant C. For this we consider the
“usual” embeddings of the torus in R

3, that is, we take a circle in
the xz-plane with center (R, 0, 0) and radius 1 (R > 1) and we rotate
it about the z-axis. By construction, the resulting metrics are S1-
invariant; the volume of the resulting torus is of the order of R as
R→ ∞. We denote this torus by TR.

We note that TR is quasi-isometric to the product S1×S1
R, where S1

denotes the circle of radius 1 and S1
R the circle of radius R. To see this

explicitly, we consider the parametrization of the torus TR given by

ψ : S1 × S1 → R
3, ψ(θ, φ) = ((R+ cosφ) cos θ, (R+ cosφ) sin θ, sin φ),

where the isometric action of S1 is given by the translation θ 7→ θ + t.
One can check that the associated riemannian metric can be expressed

in coordinates by the diagonal matrix

(

(R + cosφ)2 0
0 1

)

.

We next parametrize the product S1 × S1
R by

α : S1 × S1 → R
4; α(θ, φ) = (cos φ, sinφ,R cos θ, R sin θ),

where the isometric action of S1 is given by the translation θ 7→ θ + t.
One can check that the associated Riemannian metric can be expressed

in coordinates by the diagonal matrix

(

R2 0
0 1

)

.

The quasi-isometry between TR and S1 × S1
R is obtained by associ-

ating to the point ψ(θ, φ) ∈ TR, the point α(θ, φ) ∈ S1 × S1
R. We note

that this map is equivariant with respect to the isometric S1-action and
preserves S1-invariant functions. The ratio of quasi-isometry is given
by R2

(R+cos φ)2
and this ratio is between 1

2
and 3

2
when R is sufficiently

large.
The first nonzero S1-invariant eigenvalue of S1×S1

R is (2π)2. By a re-

sult of Dodziuk (see [8, Prop. 3.3]), λS1

1 (TR) is thus uniformly bounded

below by a positive constant C as R → ∞; hence λS1

1 (TR)V ol(TR) → ∞
as R → ∞. �
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In order to complete the case of S1-invariant eigenvalues on the em-
bedded torus, we note that it is not difficult to construct an S1-invariant
torus embedded in R

3 with λS1

1 (TR)V ol(TR) → 0. To do this, we con-
sider a “long and thin” ellipse given by

1

4ǫ2
(x− ǫ)2 + ǫ2z2

and rotate it about the z-axis. Both the volume and the first S1-
invariant eigenvalue tend to 0 with ǫ.

Remark 5.3. These results on S1-invariant eigenvalues on embedded

tori in R
3 can be extended to embedded n-dimensional products S1 ×

Sn−1 ⊂ R
n+1.
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