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Abstract. We prove that among all doubly connected domains of Rn bounded

by two spheres of given radii, the second eigenvalue of the Dirichlet Laplacian
achieves its maximum when the spheres are concentric (spherical shell). The
corresponding result for the first eigenvalue has been established by Hersch
[12] in dimension 2, and by Harrell, Kröger and Kurata [10] and Kesavan [13]
in any dimension.

We also prove that the same result remains valid when the ambient space
R

n is replaced by the standard sphere S
n or the hyperbolic space H

n.

1. Introduction and statement of results

The Dirichlet or fixed membrane eigenvalue problem in a bounded domain Ω ⊂
Rn, i.e.,

(1)

{

∆u = −λ u in Ω
u = 0 on ∂Ω,

admits a purely discrete spectrum

λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ · · · ≤ λi(Ω) ≤ · · · → ∞,

where each eigenvalue is repeated according to its multiplicity.
Eigenvalue optimization problems date from Lord Rayleigh’s “Theory of Sound”

(1894) where it was suggested that the disk should minimize the first eigenvalue
λ1 among all the domains of given measure. Rayleigh’s conjecture has been proved
in the 1920’s independently by Faber [7] and Krahn [14]. The topic became since
a very active research field and several eigenvalue optimization results have been
obtained under various constraints. For details and a literature review, we refer to
the classical books of Pólya and Szegö [16] and Bandle [4], and the review articles
by Payne [15], Ashbaugh [3, 2] and Henrot [11].

The case of multi-connected planar domains, i.e. whose boundary admits more
than one component, was first considered by Hersch. Using the method of interior
parallels, he proved in [12] the following extremal property of annular membranes:
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“A doubly connected fixed membrane, bounded by two circles of given radii, has
maximum λ1 when the circles are concentric”.

Here the small disk (i.e. the hole) may represent an obstacle to vibration and
the problem answered by Hersch may be understood as a particular case of the
following optimal placement problem : given a domain D, we seek the optimal
position to place an obstacle B of fixed shape inside D in order to maximize or
minimize the eigenvalue λk of the Dirichlet Laplacian on Ω = D \ B.

Hersch’s result has been extended to any dimension by Harrell, Kröger and
Kurata [10] and Kesavan [13]. These authors also proved that λ1 decreases when
the center of the small ball (the hole) moves away from the center of the large
ball. Their proofs are based on a technique of domain reflection. As shown in [10],
this method allows extensions of the result to domains D satisfying an “interior
symmetry property”. In a recent paper [6], we investigated a problem of placement
under a dihedral symmetry assumption on both the domain D and the obstacle B.
We proved that extremal configurations for λ1 correspond to the cases where the
axes of symmetry of B coincide with those of D.

The main aim of this paper is to establish a Hersch’s type extremal property
for spherical shells, but with respect to the second eigenvalue. Given two positive
numbers R1 > R0 and a point C ∈ Rn, |C| < R1 − R0, we denote by Ω(C) the
domain of Rn obtained by removing the ball of radius R0 centered at C from within
the ball of radius R1 centered at the origin.

Theorem 1.1. Among all doubly connected domains of Rn bounded by two spheres
of given radii, the spherical shell (concentric spheres) has the largest second Dirich-
let eigenvalue. That is,

λ2(Ω(C)) ≤ λ2(Ω(O)),

where the equality holds if and only if C = O.

Notice that the optimization results mentioned above concerning λ1 rely on the
positivity of the first eigenfunction and the Hadamard variation formula of λ1 with
respect to domain deformations. These two ingredients are of course no more avail-
able as soon as we deal with a higher order eigenvalue (see [5] for an approach to
evaluate the first variation of an eigenvalue with non-trivial multiplicity). How-
ever, noticing that the domain Ω(C) admits hyperplanes of symmetry, we may
consider the spectrum {λ−

i (Ω(C))}i≥1 corresponding to eigenfunctions which are
anti-invariant by the reflection with respect to such a hyperplane of symmetry. We
observe that the first anti-invariant eigenvalue λ−

1 (Ω(C)) is simple (Lemma 2.2)
and show that it decreases as C moves away from the origin (Proposition 1). The
result then follows from the inequality λ2(Ω(C)) ≤ λ−

1 (Ω(C)) and the fact that the
equality λ2(Ω(O)) = λ−

1 (Ω(O)) holds for a spherical shell (Lemma 2.1).
All our arguments can be transposed in a more general setting. Indeed, let Sn

and H
n be the standard sphere and the hyperbolic space, respectively. We consider

domains obtained by removing a geodesic ball B0 from a geodesic ball B1 such
that B̄0 ⊂ B1, and the eigenvalue problem 1 associated with the Laplace-Beltrami
operator on B1 \ B̄0. We obtain the following

Theorem 1.2. Among all doubly connected domains of Sn (resp. Hn) of the form
B1 \ B̄0, where B0 and B1 are geodesic balls of fixed radii such that B̄0 ⊂ B1, the
second Dirichlet eigenvalue achieves its maximal value uniquely when the balls are
concentric.
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The corresponding result for the first eigenvalue was obtained by Anisa and
Aithal [1].

Lastly, let us mention the somewhat related results of Shen and Shieh, concerning
spherical bands, that is, domains of S2 of the form B1 \ B̄0, where B0 and B1 are
concentric geodesic disks. They show that among all such bands of fixed area, λ1

is maximal when the band is symmetric with respect to an equator [20]. Shieh [21]
proved that this extremal property of symmetric bands remains true for the second
eigenvalue, provided the area is less than 2π.

2. Monotonicity of the first anti-invariant eigenvalue and proof of

Theorem 1.1

Let R0 and R1 be two real numbers such that R1 > R0 > 0. In all the sequel,
we will denote by B1 the open ball in Rn of radius R1 centered at the origin and,
for all t ∈ [0, R1 − R0), by B0(t) the open ball in Rn of radius R0 centered at the
point (t, 0, . . . , 0). We set Ω(t) := B1 \ B̄0(t) and denote by

λ1(t) < λ2(t) ≤ λ3(t) ≤ · · · ≤ λi(t) ≤ · · ·

the nondecreasing and unbounded sequence of its eigenvalues for the Laplace oper-
ator with homogeneous Dirichlet boundary condition.

For symmetry reasons, we only need to prove that, for all t ∈ (0, R1 − R0),

λ2(t) < λ2(0).

The domain Ω(t) is clearly symmetric with respect to any hyperplane passing
through the first coordinate axis. Let S denotes the reflection with respect to the
hyperplane {xn = 0}. The quadratic form domain H = W 1,2

0 (Ω(t)) of the Dirichlet
Laplace operator splits into the direct sum of two invariant subspaces

H = H+ ⊕ H−

with H± = {u ∈ H ; u ◦ S = ±u}. We denote by ∆± the Laplace operators
associated with the same quadratic form (that is the Dirichlet energy) restricted to
H±, so that we have

∆ = ∆+ ⊕ ∆−.

We denote by {λ+
i (t)}i≥1 and {λ−

i (t)}i≥1 the spectra of ∆+ and ∆−, respec-
tively. The spectrum of ∆ is then equal to the re-ordered union of {λ+

i (t)}i≥1

and {λ−
i (t)}i≥1. Since a first eigenfunction of ∆ does not change sign in Ω(t), one

necessarily has λ1(t) = λ+
1 (t) < λ−

1 (t). Thus, the second eigenvalue is given by

(2) λ2(t) = inf{λ−
1 (t), λ+

2 (t)}.

In the case of a spherical shell (i.e. the case where t=0), one has the following

Lemma 2.1. Let µ be the first eigenvalue and f the first eigenfunction (unique up
to scaling) of the following Sturm-Liouville eigenvalue problem:

{

f ′′(r) + n−1
r

f ′(r) − n−1
r2 f(r) = −µf(r)

f(R0) = f(R1) = 0.

Then the set of functions { f(|x|)
|x| x1, · · · , f(|x|)

|x| xn} constitutes a basis for the second

eigenspace of the spherical shell Ω(0). In particular,

λ2(0) = λ+
2 (0) = λ−

1 (0) = µ.
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Notice that f(|x|)
|x| xn ∈ H− while, ∀i ≤ n − 1, f(|x|)

|x| xi ∈ H+.

This result should likely be known, at least in dimension 2. For the sake of
completeness, we give the following short proof.

Proof of Lemma 2.1. The expression of the Laplace operator with respect to polar
coordinates (r, σ) ∈ (R0, R1) × Sn−1 is

∆ =
∂2

∂r2
+

n − 1

r

∂

∂r
+

1

r2
∆Sn−1 ,

where ∆Sn−1 is the Laplace-Beltrami operator of the standard (n−1)-sphere. Using
separation of variables, one can see that any eigenfunction is a linear combination
of functions of the form fk(r)gk(σ) where, ∀k ∈ N, gk is an eigenfunction of ∆Sn−1

associated with the eigenvalue γk = k(n+k−2) of ∆Sn−1 , and fk is an eigenfunction
of the following Sturm-Liouville eigenvalue problem:

(Pk)

{

f ′′
k (r) + n−1

r
f ′

k(r) − γk

r2 fk(r) = −µ(k)fk(r)
f(R0) = f(R1) = 0.

We denote by µ1(k) < µ2(k) ≤ µ3(k) ≤ · · · the nondecreasing sequence of eigenval-
ues of the last problem. The spectrum of ∆ is nothing but their re-ordered union,
{µl(k) ; k ≥ 0 , l ≥ 1}. Recall that a second eigenfunction admits exactly two
nodal domains (Courant’s nodal domain theorem). This condition is fulfilled by an
eigenfunction fk(r)gk(σ) if and only if, either k = 0 (that is g0 is constant) and f0

is a second eigenfunction of (P0), or k = 1 (that is g1 is a linear function) and f1 is
a first eigenfunction of (P1). In particular,

λ2(0) = min{µ2(0), µ1(1)}.

Thus, we need to compare the first eigenvalue µ1(1) of (P1) with the second eigen-
value µ2(0) of (P0). Let f0 be a second eigenfunction of (P0) and let r0 ∈ (R0, R1)
be such that f0(r0) = 0. The derivative h := f ′

0 of f0 admits two zeros, r1 ∈ (R0, r0)
and r2 ∈ (r0, R1), and, differentiating (P0), one can check that h satisfies

{

h′′(r) + n−1
r

h′(r) − γ1

r2 h(r) = −µ2(0)h(r)
h(r1) = h(r2) = 0.

Comparing with (P1), the eigenvalue monotonicity principle allows us to deduce
that µ2(0) > µ1(1) and, then, λ2(0) = µ1(1). The corresponding eigenfunctions are
of the form f(|x|)L( x

|x|), where f is a first eigenfunction of (P1) and L is a linear

function. Among these eigenfunctions, the function f(|x|)
|x| xn belongs to H−. Hence

λ2(0) ≥ λ−
1 (0). Since f(|x|)

|x| x1 belongs to H+ and is changing sign, we necessarily

have λ2(0) ≥ λ+
2 (0). Using 2, we get λ2(0) = λ+

2 (0) = λ−
1 (0). �

Remark 1. In [5], the first author and Ilias introduced the notion of extremal do-
main for the k-th Dirichlet eigenvalue λk with respect to volume-preserving domain
deformations. They showed that a necessary and sufficient condition for a domain
Ω to be extremal for λ2 is that there exists a finite family of second eigenfunctions

{u1, . . . , um} satisfying
∑m

i=1

(

∂ui

∂η

)2

= 1 on ∂Ω, where η is the unit normal vector

field of ∂Ω . Using the basis of second eigenfunctions given in Lemma 2.1, we de-
duce that the spherical shell Ω(0) is an extremal domain for λ2 with respect to any
volume-preserving domain deformation (not only those corresponding to the motion
of the inner ball inside the large ball).
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We introduce the domain

Ω+(t) := Ω(t) ∩ {xn > 0}

whose first Dirichlet eigenvalue will be denoted λ1(Ω
+(t)).

Lemma 2.2. ∀ t ∈ (0, R1 − R0), λ−
1 (t) is simple and

λ−
1 (t) = λ1(Ω

+(t)).

Proof. If u ∈ H− is a first eigenfunction of ∆− on Ω(t), then u vanishes on the
hyperplane {xn = 0}. The restriction of u to Ω+(t) is an eigenfunction of the
Dirichlet Laplacian in Ω+(t), which implies that λ1(Ω

+(t)) ≤ λ−
1 (t). On the other

hand, a first Dirichlet eigenfunction of Ω+(t) can be reflected antisymmetrically
with respect to the hyperplane {xn = 0} to give an eigenfunction of ∆− in Ω(t).
Hence, λ1(Ω

+(t)) ≥ λ−
1 (t) and the result follows immediately. �

Proposition 1. The function t 7→ λ−
1 (t) is (strictly) decreasing on (0, R1 − R0).

Proof. Fix a t in (0, R1 − R0) and let u(t) be the eigenfunction associated with
λ−

1 (t), chosen to be positive in Ω+(t) and to satisfy
∫

Ω+(t)

u(t)2dx = 1.

The function t 7→ λ−
1 (t) = λ1(Ω

+(t)) is a differentiable function of t (see [8, 18]) and
its derivative is given by the following so-called Hadamard formula (see [5, 8, 9, 19]):

(3)
d

dt
λ−

1 (t) =
d

dt
λ1(Ω

+(t)) =

∫

∂Ω+(t)

∣

∣

∣

∣

∂u(t)

∂ηt

∣

∣

∣

∣

2

ηt · v dσ,

where ηt is the inward unit normal vector field of ∂Ω+(t) and v denotes the restric-
tion to ∂Ω+(t) of the deformation vector field. In our case, this vector field has the
form ϕ(x) ∂

∂x1
, where ϕ is a smooth function that vanishes on ∂B1 and coincides

with 1 along ∂B0(t). Now, ∂Ω+(t) = (Ω(t) ∩ {xn = 0}) ∪ Γ+
1 ∪ Γ+

0 (t), with

Γ+
1 := ∂B1 ∩ {xn > 0} and Γ+

0 (t) := ∂B0(t) ∩ {xn > 0}.

Since v = 0 on Γ+
1 , ηt ·v = ∂

∂xn
· ∂

∂x1
= 0 on Ω(t)∩{xn = 0}, and ηt ·v = 1

R0
(x1 − t)

on Γ+
0 (t), the formula 3 reduces to

(4)
d

dt
λ−

1 (t) =
1

R0

∫

Γ+

0
(t)

∣

∣

∣

∣

∂u(t)

∂ηt

∣

∣

∣

∣

2

(x1 − t) dσ.

The hyperplane Zt := {x1 = t} divides Ω+(t) in two parts ; we denote by
Ω+

s (t) = Ω+(t) ∩ {x1 > t} the smallest one. The reflection of Ω+
s (t) with respect

to Zt is a proper subset of Ω+(t). We introduce the following function defined in
Ω+

s (t),

w(x) = u(t)(x) − u(t)(x∗),

where x∗ stands for the reflection of x with respect to Zt. Since u(t) vanishes on
∂Ω+(t) and is positive inside Ω+(t), w(x) ≤ 0 for all x in ∂Ω+

s (t) and, moreover,
w(x) < 0 for all x in Γ1 ∩ {x1 > t}. Therefore, w satisfies the following problem:

{

∆w = −λ1(Ω
+(t))w in Ω+

s (t)
w ≤ 0 on ∂Ω+

s (t).
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The function w must be nonpositive everywhere in Ω+
s (t). Otherwise, the subdo-

main V = {x ∈ Ω+
s (t) ; w(x) > 0} would have the same first Dirichlet eigenvalue

as Ω+(t), that is λ1(V ) = λ1(Ω
+(t)). But, thanks to the reflection with respect to

Zt, Ω+(t) would contain two disjoint copies of V and, then, λ2(Ω
+(t)) ≤ λ1(V ),

which leads to a contradiction.
Therefore, ∆w ≥ 0 in Ω+

s (t) and the maximal value of w (i.e. zero) is achieved
on the boundary. Therefore, w achieves its maximum at every point of Γ+

0,s(t) :=

Γ+
0 (t) ∩ {x1 > t}, and, due to the Hopf maximum principle (see [17, Theorem 7,

ch.2]), the normal derivative of w is negative at any point x of Γ+
0,s(t), that is

0 ≤
∂u(t)

∂ηt

(x) <
∂u(t)

∂ηt

(x∗).

Coming back to Hadamard’s formula 4, we get (noticing that x∗
1− t = −(x1− t))

d

dt
λ−

1 (t) =
1

R 0

∫

Γ+

0
(t)

∣

∣

∣

∣

∂u(t)

∂ηt

∣

∣

∣

∣

2

(x1 − t) dσ

=
1

R 0

∫

Γ+

0,s(t)

(

∣

∣

∣

∣

∂u(t)

∂ηt

(x)

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂u(t)

∂ηt

(x∗)

∣

∣

∣

∣

2
)

(x1 − t) dσ

< 0

which completes the proof. �

Proof of Theorem 1.1. Applying equation (2), Proposition 1 and Lemma 2.1, re-
spectively, we get, for all t ∈ (0, R2 − R1),

λ2(t) ≤ λ−
1 (t) < λ−

1 (0) = λ2(0).

�

3. Domains in the sphere and the hyperbolic space

We represent the standard sphere Sn = {x ∈ Rn+1 ;
∑n

i=0 x2
i = 1} and the

hyperbolic space Hn = {x ∈ Rn+1 ; x0 > 0 and x2
0−
∑n

i=1 x2
i = 1} as hypersurfaces

of the Euclidean space (Rn+1,
∑n

i=0 dx2
i ) and the Minkowski space (Rn+1,−dx2

0 +
∑n

i=1 dx2
i ), respectively, endowed with the induced Riemannian metrics. In the

sequel, we use the same letter M to denote both the standard sphere and the
hyperbolic space.

Let R0 and R1 be two real numbers such that R1 > R0 > 0, and R1 < π in the
case of Sn. We denote by B1 the open geodesic ball of radius R1 centered at the
point P := (1, 0, . . . , 0) and, for all t ∈ [0, R1 − R0), by B0(t) the open geodesic
ball of radius R0 centered at the point C(t) = (cos t, sin t, 0, . . . , 0) ∈ S

n (resp.
C(t) = (cosh t, sinh t, 0, . . . , 0) ∈ Hn) of the geodesic ray defined as intersection
with M of the (x0, x1)-plane. We set Ω(t) := B1 \ B̄0(t) and denote by

λ1(t) < λ2(t) ≤ λ3(t) ≤ · · · ≤ λi(t) ≤ · · ·

the spectrum of the Laplace-Beltrami operator ∆ with Dirichlet boundary condition
on Ω(t).

Again, for symmetry reasons, we only need to prove that, for all t ∈ (0, R1−R0),

λ2(t) < λ2(0).

The proof follows the same steps as in the Euclidean case.
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The domain Ω(t) is invariant under the reflection, again denoted by S, with
respect to the hyperplane {xn = 0}, which is an isometry of M . As before, the
spectrum of ∆ is the re-ordered union of two spectra, {λ+

i (t)}i≥1 and {λ−
i (t)}i≥1,

corresponding to invariant and anti-invariant eigenfunctions.
In the case t = 0, the domain Ω(0) can be parametrized by X : (r, σ) ∈ (R0, R1)×

Sn−1 7→ (cos r, sin r σ) ∈ Sn in the spherical case, and X : (r, σ) ∈ (R0, R1)×Sn−1 7→
(cosh r, sinh r σ) ∈ Hn in the hyperbolic case.

Lemma 3.1. Let µ be the first eigenvalue and f the first eigenfunction (unique up
to scaling) of the following Sturm-Liouville eigenvalue problem:

{

f ′′(r) + (n − 1)a′(r)
a(r) f ′(r) − n−1

a2(r)f(r) = −µf(r)

f(R0) = f(R1) = 0,

with a(r) = sin r in the case of Sn and a(r) = sinh r in the case of Hn. Then the
second eigenspace of Ω(0) consists of functions u of the form

u(X(r, σ)) = f(r)L(σ),

where L is a linear function on Sn−1 ⊂ Rn. In particular,

λ2(0) = λ+
2 (0) = λ−

1 (0) = µ.

For a point x = X(r, σ) ∈ Ω(0), r represents the distance from x to P and σ is
the projection to the hyperplane {x0 = 0} of x/a(r). Thus, the n functions

u1(x) =
f(r(x))

a(r(x))
x1, . . . , un(x) =

f(r(x))

a(r(x))
xn

constitute a basis of the second eigenspace of Ω(0). These functions are all invariant
by S except the last one which is anti-invariant.

Proof of Lemma 3.1. The Riemannian metric of Ω(0) is given in the (r, σ)-coordinates
by g = dr2+a2(r)gSn−1 , where gSn−1 is the standard metric of Sn−1. The expression
of the Laplace-Beltrami operator with respect to these coordinates is

∆ =
∂2

∂r2
+ (n − 1)

a′(r)

a(r)

∂

∂r
+

1

a2(r)
∆Sn−1 .

Separating the variables and using exactly the same arguments as in the proof of
Lemma 2.1, we get the result. �

We introduce Ω+(t) = Ω(t)∩{xn > 0} and λ1(Ω
+(t)) as in Section 2, and check

that we still have the simplicity of λ−
1 (t) with λ−

1 (t) = λ1(Ω
+(t)). The proof of

Theorem 1.2 will be complete after the following

Proposition 2. The function t 7→ λ−
1 (t) is (strictly) decreasing on (0, R1 − R0).

Proof. Hadamard’s variation formula remains valid for domains in a general Rie-
mannian manifold (see [5]) and gives:

(5)
d

dt
λ−

1 (t) =
d

dt
λ1(Ω

+(t)) =

∫

∂Ω+(t)

∣

∣

∣

∣

∂u(t)

∂ηt

∣

∣

∣

∣

2

ηt · v dσ,

where u(t), ηt and v are the first eigenfunction (satisfying
∫

Ω+(t) u(t)2 = 1 and

u(t) > 0 in Ω+(t)), the inward unit normal vector field and the deformation vector
field on ∂Ω+(t), respectively.
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Case of Sn: Let V (x) = (−x1, x0, 0, . . . , 0) be the Killing vector field of Sn

generating rotations in the (x0, x1)-plane. The motion of B0(t) inside B1 along the
geodesic ray C(t) = (cos t, sin t, 0, . . . , 0) is generated by a vector field of the form
v = ϕ(x)V , where ϕ is a smooth function that vanishes on ∂B1 and coincides with
1 along ∂B0(t). Notice that v is tangent to the geodesic ray C(t). On the other
hand, the unit normal vector ηt(x) to ∂B0(t) at x is nothing but the normalized
orthogonal projection of the vector −C(t) to the tangent space TxSn, that is,

ηt(x) = −
C(t) − (x · C(t))x
√

1 − (x · C(t))2
.

Thus, ∀x ∈ Γ+
0 (t) := ∂B0(t) ∩ {xn > 0},

ηt · v(x) = −
C(t) · V (x)

√

1 − (x · C(t))2
=

V (C(t)) · x
√

1 − (x · C(t))2

=
x1 cos t − x0 sin t

√

1 − (x0 cos t + x1 sin t)2
,

and ηt · v vanishes at any other point of the boundary of Ω+(t). Therefore, the
formula (5) reduces to

(6)
d

dt
λ−

1 (t) =

∫

Γ+

0
(t)

∣

∣

∣

∣

∂u(t)

∂ηt

∣

∣

∣

∣

2

ηt · v(x) dσ.

Consider the hyperplane Zt := {x · V (t) = 0}, with V (t) := V (C(t)), and let
Ω+

s (t) = Ω+(t)∩ {x · V (t) > 0} and Γ+
0,s(t) = Γ+

0 (t)∩ {x · V (t) > 0}. The reflection

x∗ of a point x with respect to Zt is given by x∗ = x − 2(x · V (t))V (t). One can
easily check that the image of Ω+

s (t) by this reflection is a proper subset of Ω+(t)
and that, ∀x ∈ Γ+

0 (t),

ηt · v(x∗) = −ηt · v(x) =
x · V (t)

√

1 − (x · C(t))2
.

Thus,

d

dt
λ−

1 (t) =

∫

Γ+

0,s(t)

(

∣

∣

∣

∣

∂u(t)

∂ηt

(x)

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂u(t)

∂ηt

(x∗)

∣

∣

∣

∣

2
)

x · V (t)
√

1 − (x · C(t))2
dσ.

The same argument used in the proof of Proposition 1 enables us to show that, at
any point x ∈ Γ+

0,s(t),

0 ≤
∂u(t)

∂ηt

(x) <
∂u(t)

∂ηt

(x∗),

and, then, d
dt

λ−
1 (t) < 0.

Case of Hn: The proof is the same as for Sn. All arguments and formulas
above remain true in the hyperbolic setting with V (x) = (x1, x0, 0, . . . , 0), C(t) =
(cosh t, sinh t, 0, · · · , 0), and provided the Euclidean inner product is replaced by
the bilinear form x.y = −x0y0 +

∑n
i=1 xiyi.

�
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[10] E.M. Harrell, P. Kröger and K. Kurata, On the placement of an obstacle or a well so as to

optimize the fundamental eigenvalue, SIAM J. Math. Anal., 33(2001) 240–259 (electronic).
[11] A. Henrot, Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ., 3(2003)

443–461. Dedicated to Philippe Bénilan.
[12] J. Hersch, The method of interior parallels applied to polygonal or multiply connected mem-

branes, Pacific J. Math., 13 (1963) 1229–1238.
[13] S. Kesavan, On two functionals connected to the Laplacian in a class of doubly connected

domains, Proc. Roy. Soc. Edinburgh Sect. A, 133(2003) 617–624.
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